FreeBSD kernel BXE device code
bxe.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#define BXE_DRIVER_VERSION "1.78.91"
33
34#include "bxe.h"
35#include "ecore_sp.h"
36#include "ecore_init.h"
37#include "ecore_init_ops.h"
38
39#include "57710_int_offsets.h"
40#include "57711_int_offsets.h"
41#include "57712_int_offsets.h"
42
43/*
44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
45 * explicitly here for older kernels that don't include this changeset.
46 */
47#ifndef CTLTYPE_U64
48#define CTLTYPE_U64 CTLTYPE_QUAD
49#define sysctl_handle_64 sysctl_handle_quad
50#endif
51
52/*
53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
54 * here as zero(0) for older kernels that don't include this changeset
55 * thereby masking the functionality.
56 */
57#ifndef CSUM_TCP_IPV6
58#define CSUM_TCP_IPV6 0
59#define CSUM_UDP_IPV6 0
60#endif
61
62#define BXE_DEF_SB_ATT_IDX 0x0001
63#define BXE_DEF_SB_IDX 0x0002
64
65/*
66 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
67 * function HW initialization.
68 */
69#define FLR_WAIT_USEC 10000 /* 10 msecs */
70#define FLR_WAIT_INTERVAL 50 /* usecs */
71#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
72
74 int pN;
75 uint32_t init_crd;
76 uint32_t crd;
77 uint32_t crd_freed;
78};
79
81 int pN;
82 uint32_t lines_occup;
83 uint32_t lines_freed;
84};
85
86/*
87 * PCI Device ID Table used by bxe_probe().
88 */
89#define BXE_DEVDESC_MAX 64
90static struct bxe_device_type bxe_devs[] = {
91 {
95 "QLogic NetXtreme II BCM57710 10GbE"
96 },
97 {
101 "QLogic NetXtreme II BCM57711 10GbE"
102 },
103 {
107 "QLogic NetXtreme II BCM57711E 10GbE"
108 },
109 {
113 "QLogic NetXtreme II BCM57712 10GbE"
114 },
115 {
119 "QLogic NetXtreme II BCM57712 MF 10GbE"
120 },
121 {
125 "QLogic NetXtreme II BCM57800 10GbE"
126 },
127 {
131 "QLogic NetXtreme II BCM57800 MF 10GbE"
132 },
133 {
137 "QLogic NetXtreme II BCM57810 10GbE"
138 },
139 {
143 "QLogic NetXtreme II BCM57810 MF 10GbE"
144 },
145 {
149 "QLogic NetXtreme II BCM57811 10GbE"
150 },
151 {
155 "QLogic NetXtreme II BCM57811 MF 10GbE"
156 },
157 {
161 "QLogic NetXtreme II BCM57840 4x10GbE"
162 },
163 {
167 "QLogic NetXtreme II BCM57840 4x10GbE"
168 },
169 {
173 "QLogic NetXtreme II BCM57840 2x20GbE"
174 },
175 {
179 "QLogic NetXtreme II BCM57840 MF 10GbE"
180 },
181 {
182 0, 0, 0, 0, NULL
183 }
184};
185
186MALLOC_DECLARE(M_BXE_ILT);
187MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
188
189/*
190 * FreeBSD device entry points.
191 */
192static int bxe_probe(device_t);
193static int bxe_attach(device_t);
194static int bxe_detach(device_t);
195static int bxe_shutdown(device_t);
196
197
198/*
199 * FreeBSD KLD module/device interface event handler method.
200 */
201static device_method_t bxe_methods[] = {
202 /* Device interface (device_if.h) */
203 DEVMETHOD(device_probe, bxe_probe),
204 DEVMETHOD(device_attach, bxe_attach),
205 DEVMETHOD(device_detach, bxe_detach),
206 DEVMETHOD(device_shutdown, bxe_shutdown),
207 /* Bus interface (bus_if.h) */
208 DEVMETHOD(bus_print_child, bus_generic_print_child),
209 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
210 KOBJMETHOD_END
211};
212
213/*
214 * FreeBSD KLD Module data declaration
215 */
216static driver_t bxe_driver = {
217 "bxe", /* module name */
218 bxe_methods, /* event handler */
219 sizeof(struct bxe_softc) /* extra data */
220};
221
222/*
223 * FreeBSD dev class is needed to manage dev instances and
224 * to associate with a bus type
225 */
226static devclass_t bxe_devclass;
227
228MODULE_DEPEND(bxe, pci, 1, 1, 1);
229MODULE_DEPEND(bxe, ether, 1, 1, 1);
231
233
234/* resources needed for unloading a previously loaded device */
235
236#define BXE_PREV_WAIT_NEEDED 1
237struct mtx bxe_prev_mtx;
238MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
240 LIST_ENTRY(bxe_prev_list_node) node;
241 uint8_t bus;
242 uint8_t slot;
243 uint8_t path;
244 uint8_t aer; /* XXX automatic error recovery */
245 uint8_t undi;
246};
247static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
248
249static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
250
251/* Tunable device values... */
252
253SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
254 "bxe driver parameters");
255
256/* Debug */
257unsigned long bxe_debug = 0;
258SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
259 &bxe_debug, 0, "Debug logging mode");
260
261/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
263SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
264 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
265
266/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
267static int bxe_queue_count = 4;
268SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
269 &bxe_queue_count, 0, "Multi-Queue queue count");
270
271/* max number of buffers per queue (default RX_BD_USABLE) */
272static int bxe_max_rx_bufs = 0;
273SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
274 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
275
276/* Host interrupt coalescing RX tick timer (usecs) */
277static int bxe_hc_rx_ticks = 25;
278SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
279 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
280
281/* Host interrupt coalescing TX tick timer (usecs) */
282static int bxe_hc_tx_ticks = 50;
283SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
284 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
285
286/* Maximum number of Rx packets to process at a time */
287static int bxe_rx_budget = 0xffffffff;
288SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
289 &bxe_rx_budget, 0, "Rx processing budget");
290
291/* Maximum LRO aggregation size */
293SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
294 &bxe_max_aggregation_size, 0, "max aggregation size");
295
296/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
297static int bxe_mrrs = -1;
298SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
299 &bxe_mrrs, 0, "PCIe maximum read request size");
300
301/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
302static int bxe_autogreeen = 0;
303SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
304 &bxe_autogreeen, 0, "AutoGrEEEn support");
305
306/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
307static int bxe_udp_rss = 0;
308SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
309 &bxe_udp_rss, 0, "UDP RSS support");
310
311
312#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
313
314#define STATS_OFFSET32(stat_name) \
315 (offsetof(struct bxe_eth_stats, stat_name) / 4)
316
317#define Q_STATS_OFFSET32(stat_name) \
318 (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
319
320static const struct {
321 uint32_t offset;
322 uint32_t size;
323 uint32_t flags;
324#define STATS_FLAGS_PORT 1
325#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
326#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
327 char string[STAT_NAME_LEN];
328} bxe_eth_stats_arr[] = {
329 { STATS_OFFSET32(total_bytes_received_hi),
330 8, STATS_FLAGS_BOTH, "rx_bytes" },
331 { STATS_OFFSET32(error_bytes_received_hi),
332 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
333 { STATS_OFFSET32(total_unicast_packets_received_hi),
334 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
335 { STATS_OFFSET32(total_multicast_packets_received_hi),
336 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
337 { STATS_OFFSET32(total_broadcast_packets_received_hi),
338 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
339 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
340 8, STATS_FLAGS_PORT, "rx_crc_errors" },
341 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
342 8, STATS_FLAGS_PORT, "rx_align_errors" },
343 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
344 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
345 { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
346 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
347 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
348 8, STATS_FLAGS_PORT, "rx_fragments" },
349 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
350 8, STATS_FLAGS_PORT, "rx_jabbers" },
351 { STATS_OFFSET32(no_buff_discard_hi),
352 8, STATS_FLAGS_BOTH, "rx_discards" },
353 { STATS_OFFSET32(mac_filter_discard),
354 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
355 { STATS_OFFSET32(mf_tag_discard),
356 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
357 { STATS_OFFSET32(pfc_frames_received_hi),
358 8, STATS_FLAGS_PORT, "pfc_frames_received" },
359 { STATS_OFFSET32(pfc_frames_sent_hi),
360 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
361 { STATS_OFFSET32(brb_drop_hi),
362 8, STATS_FLAGS_PORT, "rx_brb_discard" },
363 { STATS_OFFSET32(brb_truncate_hi),
364 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
365 { STATS_OFFSET32(pause_frames_received_hi),
366 8, STATS_FLAGS_PORT, "rx_pause_frames" },
367 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
368 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
369 { STATS_OFFSET32(nig_timer_max),
370 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
371 { STATS_OFFSET32(total_bytes_transmitted_hi),
372 8, STATS_FLAGS_BOTH, "tx_bytes" },
373 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
374 8, STATS_FLAGS_PORT, "tx_error_bytes" },
375 { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
376 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
377 { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
378 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
379 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
380 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
381 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
382 8, STATS_FLAGS_PORT, "tx_mac_errors" },
383 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
384 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
385 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
386 8, STATS_FLAGS_PORT, "tx_single_collisions" },
387 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
388 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
389 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
390 8, STATS_FLAGS_PORT, "tx_deferred" },
391 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
392 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
393 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
394 8, STATS_FLAGS_PORT, "tx_late_collisions" },
395 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
396 8, STATS_FLAGS_PORT, "tx_total_collisions" },
397 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
398 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
399 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
400 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
401 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
402 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
403 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
404 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
405 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
406 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
407 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
408 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
409 { STATS_OFFSET32(etherstatspktsover1522octets_hi),
410 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
411 { STATS_OFFSET32(pause_frames_sent_hi),
412 8, STATS_FLAGS_PORT, "tx_pause_frames" },
413 { STATS_OFFSET32(total_tpa_aggregations_hi),
414 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
415 { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
416 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
417 { STATS_OFFSET32(total_tpa_bytes_hi),
418 8, STATS_FLAGS_FUNC, "tpa_bytes"},
419 { STATS_OFFSET32(eee_tx_lpi),
420 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
421 { STATS_OFFSET32(rx_calls),
422 4, STATS_FLAGS_FUNC, "rx_calls"},
423 { STATS_OFFSET32(rx_pkts),
424 4, STATS_FLAGS_FUNC, "rx_pkts"},
425 { STATS_OFFSET32(rx_tpa_pkts),
426 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
427 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
428 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
429 { STATS_OFFSET32(rx_bxe_service_rxsgl),
430 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
431 { STATS_OFFSET32(rx_jumbo_sge_pkts),
432 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
433 { STATS_OFFSET32(rx_soft_errors),
434 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
435 { STATS_OFFSET32(rx_hw_csum_errors),
436 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
437 { STATS_OFFSET32(rx_ofld_frames_csum_ip),
438 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
439 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
440 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
441 { STATS_OFFSET32(rx_budget_reached),
442 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
443 { STATS_OFFSET32(tx_pkts),
444 4, STATS_FLAGS_FUNC, "tx_pkts"},
445 { STATS_OFFSET32(tx_soft_errors),
446 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
447 { STATS_OFFSET32(tx_ofld_frames_csum_ip),
448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
449 { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
450 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
451 { STATS_OFFSET32(tx_ofld_frames_csum_udp),
452 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
453 { STATS_OFFSET32(tx_ofld_frames_lso),
454 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
455 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
456 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
457 { STATS_OFFSET32(tx_encap_failures),
458 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
459 { STATS_OFFSET32(tx_hw_queue_full),
460 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
461 { STATS_OFFSET32(tx_hw_max_queue_depth),
462 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
463 { STATS_OFFSET32(tx_dma_mapping_failure),
464 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
465 { STATS_OFFSET32(tx_max_drbr_queue_depth),
466 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
467 { STATS_OFFSET32(tx_window_violation_std),
468 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
469 { STATS_OFFSET32(tx_window_violation_tso),
470 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
471 { STATS_OFFSET32(tx_chain_lost_mbuf),
472 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
473 { STATS_OFFSET32(tx_frames_deferred),
474 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
475 { STATS_OFFSET32(tx_queue_xoff),
476 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
477 { STATS_OFFSET32(mbuf_defrag_attempts),
478 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
479 { STATS_OFFSET32(mbuf_defrag_failures),
480 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
481 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
482 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
483 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
484 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
485 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
486 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
487 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
488 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
489 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
490 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
491 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
492 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
493 { STATS_OFFSET32(mbuf_alloc_tx),
494 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
495 { STATS_OFFSET32(mbuf_alloc_rx),
496 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
497 { STATS_OFFSET32(mbuf_alloc_sge),
498 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
499 { STATS_OFFSET32(mbuf_alloc_tpa),
500 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
501 { STATS_OFFSET32(tx_queue_full_return),
502 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
503 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
504 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
505 { STATS_OFFSET32(tx_request_link_down_failures),
506 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
507 { STATS_OFFSET32(bd_avail_too_less_failures),
508 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
509 { STATS_OFFSET32(tx_mq_not_empty),
510 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
511 { STATS_OFFSET32(nsegs_path1_errors),
512 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
513 { STATS_OFFSET32(nsegs_path2_errors),
514 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
515
516
518
519static const struct {
520 uint32_t offset;
521 uint32_t size;
522 char string[STAT_NAME_LEN];
524 { Q_STATS_OFFSET32(total_bytes_received_hi),
525 8, "rx_bytes" },
526 { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
527 8, "rx_ucast_packets" },
528 { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
529 8, "rx_mcast_packets" },
530 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
531 8, "rx_bcast_packets" },
532 { Q_STATS_OFFSET32(no_buff_discard_hi),
533 8, "rx_discards" },
534 { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
535 8, "tx_bytes" },
536 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
537 8, "tx_ucast_packets" },
538 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
539 8, "tx_mcast_packets" },
540 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
541 8, "tx_bcast_packets" },
542 { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
543 8, "tpa_aggregations" },
544 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
545 8, "tpa_aggregated_frames"},
546 { Q_STATS_OFFSET32(total_tpa_bytes_hi),
547 8, "tpa_bytes"},
548 { Q_STATS_OFFSET32(rx_calls),
549 4, "rx_calls"},
550 { Q_STATS_OFFSET32(rx_pkts),
551 4, "rx_pkts"},
552 { Q_STATS_OFFSET32(rx_tpa_pkts),
553 4, "rx_tpa_pkts"},
554 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
555 4, "rx_erroneous_jumbo_sge_pkts"},
556 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
557 4, "rx_bxe_service_rxsgl"},
558 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
559 4, "rx_jumbo_sge_pkts"},
560 { Q_STATS_OFFSET32(rx_soft_errors),
561 4, "rx_soft_errors"},
562 { Q_STATS_OFFSET32(rx_hw_csum_errors),
563 4, "rx_hw_csum_errors"},
564 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
565 4, "rx_ofld_frames_csum_ip"},
566 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
567 4, "rx_ofld_frames_csum_tcp_udp"},
568 { Q_STATS_OFFSET32(rx_budget_reached),
569 4, "rx_budget_reached"},
570 { Q_STATS_OFFSET32(tx_pkts),
571 4, "tx_pkts"},
572 { Q_STATS_OFFSET32(tx_soft_errors),
573 4, "tx_soft_errors"},
574 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
575 4, "tx_ofld_frames_csum_ip"},
576 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
577 4, "tx_ofld_frames_csum_tcp"},
578 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
579 4, "tx_ofld_frames_csum_udp"},
580 { Q_STATS_OFFSET32(tx_ofld_frames_lso),
581 4, "tx_ofld_frames_lso"},
582 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
583 4, "tx_ofld_frames_lso_hdr_splits"},
584 { Q_STATS_OFFSET32(tx_encap_failures),
585 4, "tx_encap_failures"},
586 { Q_STATS_OFFSET32(tx_hw_queue_full),
587 4, "tx_hw_queue_full"},
588 { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
589 4, "tx_hw_max_queue_depth"},
590 { Q_STATS_OFFSET32(tx_dma_mapping_failure),
591 4, "tx_dma_mapping_failure"},
592 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
593 4, "tx_max_drbr_queue_depth"},
594 { Q_STATS_OFFSET32(tx_window_violation_std),
595 4, "tx_window_violation_std"},
596 { Q_STATS_OFFSET32(tx_window_violation_tso),
597 4, "tx_window_violation_tso"},
598 { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
599 4, "tx_chain_lost_mbuf"},
600 { Q_STATS_OFFSET32(tx_frames_deferred),
601 4, "tx_frames_deferred"},
602 { Q_STATS_OFFSET32(tx_queue_xoff),
603 4, "tx_queue_xoff"},
604 { Q_STATS_OFFSET32(mbuf_defrag_attempts),
605 4, "mbuf_defrag_attempts"},
606 { Q_STATS_OFFSET32(mbuf_defrag_failures),
607 4, "mbuf_defrag_failures"},
608 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
609 4, "mbuf_rx_bd_alloc_failed"},
610 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
611 4, "mbuf_rx_bd_mapping_failed"},
612 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
613 4, "mbuf_rx_tpa_alloc_failed"},
614 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
615 4, "mbuf_rx_tpa_mapping_failed"},
616 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
617 4, "mbuf_rx_sge_alloc_failed"},
618 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
619 4, "mbuf_rx_sge_mapping_failed"},
620 { Q_STATS_OFFSET32(mbuf_alloc_tx),
621 4, "mbuf_alloc_tx"},
622 { Q_STATS_OFFSET32(mbuf_alloc_rx),
623 4, "mbuf_alloc_rx"},
624 { Q_STATS_OFFSET32(mbuf_alloc_sge),
625 4, "mbuf_alloc_sge"},
626 { Q_STATS_OFFSET32(mbuf_alloc_tpa),
627 4, "mbuf_alloc_tpa"},
628 { Q_STATS_OFFSET32(tx_queue_full_return),
629 4, "tx_queue_full_return"},
630 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
631 4, "bxe_tx_mq_sc_state_failures"},
632 { Q_STATS_OFFSET32(tx_request_link_down_failures),
633 4, "tx_request_link_down_failures"},
634 { Q_STATS_OFFSET32(bd_avail_too_less_failures),
635 4, "bd_avail_too_less_failures"},
636 { Q_STATS_OFFSET32(tx_mq_not_empty),
637 4, "tx_mq_not_empty"},
638 { Q_STATS_OFFSET32(nsegs_path1_errors),
639 4, "nsegs_path1_errors"},
640 { Q_STATS_OFFSET32(nsegs_path2_errors),
641 4, "nsegs_path2_errors"}
642
643
645
646#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
647#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
648
649
650static void bxe_cmng_fns_init(struct bxe_softc *sc,
651 uint8_t read_cfg,
652 uint8_t cmng_type);
653static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
654static void storm_memset_cmng(struct bxe_softc *sc,
655 struct cmng_init *cmng,
656 uint8_t port);
657static void bxe_set_reset_global(struct bxe_softc *sc);
658static void bxe_set_reset_in_progress(struct bxe_softc *sc);
659static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
660 int engine);
661static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
662static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
663 uint8_t *global,
664 uint8_t print);
665static void bxe_int_disable(struct bxe_softc *sc);
666static int bxe_release_leader_lock(struct bxe_softc *sc);
667static void bxe_pf_disable(struct bxe_softc *sc);
668static void bxe_free_fp_buffers(struct bxe_softc *sc);
669static inline void bxe_update_rx_prod(struct bxe_softc *sc,
670 struct bxe_fastpath *fp,
671 uint16_t rx_bd_prod,
672 uint16_t rx_cq_prod,
673 uint16_t rx_sge_prod);
674static void bxe_link_report_locked(struct bxe_softc *sc);
675static void bxe_link_report(struct bxe_softc *sc);
676static void bxe_link_status_update(struct bxe_softc *sc);
677static void bxe_periodic_callout_func(void *xsc);
678static void bxe_periodic_start(struct bxe_softc *sc);
679static void bxe_periodic_stop(struct bxe_softc *sc);
680static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
681 uint16_t prev_index,
682 uint16_t index);
683static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
684 int queue);
685static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
686 uint16_t index);
687static uint8_t bxe_txeof(struct bxe_softc *sc,
688 struct bxe_fastpath *fp);
689static void bxe_task_fp(struct bxe_fastpath *fp);
690static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
691 struct mbuf *m,
692 uint8_t contents);
693static int bxe_alloc_mem(struct bxe_softc *sc);
694static void bxe_free_mem(struct bxe_softc *sc);
695static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
696static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
697static int bxe_interrupt_attach(struct bxe_softc *sc);
698static void bxe_interrupt_detach(struct bxe_softc *sc);
699static void bxe_set_rx_mode(struct bxe_softc *sc);
700static int bxe_init_locked(struct bxe_softc *sc);
701static int bxe_stop_locked(struct bxe_softc *sc);
702static void bxe_sp_err_timeout_task(void *arg, int pending);
703void bxe_parity_recover(struct bxe_softc *sc);
704void bxe_handle_error(struct bxe_softc *sc);
705static __noinline int bxe_nic_load(struct bxe_softc *sc,
706 int load_mode);
707static __noinline int bxe_nic_unload(struct bxe_softc *sc,
708 uint32_t unload_mode,
709 uint8_t keep_link);
710
711static void bxe_handle_sp_tq(void *context, int pending);
712static void bxe_handle_fp_tq(void *context, int pending);
713
714static int bxe_add_cdev(struct bxe_softc *sc);
715static void bxe_del_cdev(struct bxe_softc *sc);
716int bxe_grc_dump(struct bxe_softc *sc);
717static int bxe_alloc_buf_rings(struct bxe_softc *sc);
718static void bxe_free_buf_rings(struct bxe_softc *sc);
719
720/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
721uint32_t
722calc_crc32(uint8_t *crc32_packet,
723 uint32_t crc32_length,
724 uint32_t crc32_seed,
725 uint8_t complement)
726{
727 uint32_t byte = 0;
728 uint32_t bit = 0;
729 uint8_t msb = 0;
730 uint32_t temp = 0;
731 uint32_t shft = 0;
732 uint8_t current_byte = 0;
733 uint32_t crc32_result = crc32_seed;
734 const uint32_t CRC32_POLY = 0x1edc6f41;
735
736 if ((crc32_packet == NULL) ||
737 (crc32_length == 0) ||
738 ((crc32_length % 8) != 0))
739 {
740 return (crc32_result);
741 }
742
743 for (byte = 0; byte < crc32_length; byte = byte + 1)
744 {
745 current_byte = crc32_packet[byte];
746 for (bit = 0; bit < 8; bit = bit + 1)
747 {
748 /* msb = crc32_result[31]; */
749 msb = (uint8_t)(crc32_result >> 31);
750
751 crc32_result = crc32_result << 1;
752
753 /* it (msb != current_byte[bit]) */
754 if (msb != (0x1 & (current_byte >> bit)))
755 {
756 crc32_result = crc32_result ^ CRC32_POLY;
757 /* crc32_result[0] = 1 */
758 crc32_result |= 1;
759 }
760 }
761 }
762
763 /* Last step is to:
764 * 1. "mirror" every bit
765 * 2. swap the 4 bytes
766 * 3. complement each bit
767 */
768
769 /* Mirror */
770 temp = crc32_result;
771 shft = sizeof(crc32_result) * 8 - 1;
772
773 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
774 {
775 temp <<= 1;
776 temp |= crc32_result & 1;
777 shft-- ;
778 }
779
780 /* temp[31-bit] = crc32_result[bit] */
781 temp <<= shft;
782
783 /* Swap */
784 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
785 {
786 uint32_t t0, t1, t2, t3;
787 t0 = (0x000000ff & (temp >> 24));
788 t1 = (0x0000ff00 & (temp >> 8));
789 t2 = (0x00ff0000 & (temp << 8));
790 t3 = (0xff000000 & (temp << 24));
791 crc32_result = t0 | t1 | t2 | t3;
792 }
793
794 /* Complement */
795 if (complement)
796 {
797 crc32_result = ~crc32_result;
798 }
799
800 return (crc32_result);
801}
802
803int
805 volatile unsigned long *addr)
806{
807 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
808}
809
810void
811bxe_set_bit(unsigned int nr,
812 volatile unsigned long *addr)
813{
814 atomic_set_acq_long(addr, (1 << nr));
815}
816
817void
819 volatile unsigned long *addr)
820{
821 atomic_clear_acq_long(addr, (1 << nr));
822}
823
824int
826 volatile unsigned long *addr)
827{
828 unsigned long x;
829 nr = (1 << nr);
830 do {
831 x = *addr;
832 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
833 // if (x & nr) bit_was_set; else bit_was_not_set;
834 return (x & nr);
835}
836
837int
839 volatile unsigned long *addr)
840{
841 unsigned long x;
842 nr = (1 << nr);
843 do {
844 x = *addr;
845 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
846 // if (x & nr) bit_was_set; else bit_was_not_set;
847 return (x & nr);
848}
849
850int
851bxe_cmpxchg(volatile int *addr,
852 int old,
853 int new)
854{
855 int x;
856 do {
857 x = *addr;
858 } while (atomic_cmpset_acq_int(addr, old, new) == 0);
859 return (x);
860}
861
862/*
863 * Get DMA memory from the OS.
864 *
865 * Validates that the OS has provided DMA buffers in response to a
866 * bus_dmamap_load call and saves the physical address of those buffers.
867 * When the callback is used the OS will return 0 for the mapping function
868 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
869 * failures back to the caller.
870 *
871 * Returns:
872 * Nothing.
873 */
874static void
875bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
876{
877 struct bxe_dma *dma = arg;
878
879 if (error) {
880 dma->paddr = 0;
881 dma->nseg = 0;
882 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
883 } else {
884 dma->paddr = segs->ds_addr;
885 dma->nseg = nseg;
886 }
887}
888
889/*
890 * Allocate a block of memory and map it for DMA. No partial completions
891 * allowed and release any resources acquired if we can't acquire all
892 * resources.
893 *
894 * Returns:
895 * 0 = Success, !0 = Failure
896 */
897int
899 bus_size_t size,
900 struct bxe_dma *dma,
901 const char *msg)
902{
903 int rc;
904
905 if (dma->size > 0) {
906 BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
907 (unsigned long)dma->size);
908 return (1);
909 }
910
911 memset(dma, 0, sizeof(*dma)); /* sanity */
912 dma->sc = sc;
913 dma->size = size;
914 snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
915
916 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
917 BCM_PAGE_SIZE, /* alignment */
918 0, /* boundary limit */
919 BUS_SPACE_MAXADDR, /* restricted low */
920 BUS_SPACE_MAXADDR, /* restricted hi */
921 NULL, /* addr filter() */
922 NULL, /* addr filter() arg */
923 size, /* max map size */
924 1, /* num discontinuous */
925 size, /* max seg size */
926 BUS_DMA_ALLOCNOW, /* flags */
927 NULL, /* lock() */
928 NULL, /* lock() arg */
929 &dma->tag); /* returned dma tag */
930 if (rc != 0) {
931 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
932 memset(dma, 0, sizeof(*dma));
933 return (1);
934 }
935
936 rc = bus_dmamem_alloc(dma->tag,
937 (void **)&dma->vaddr,
938 (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
939 &dma->map);
940 if (rc != 0) {
941 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
942 bus_dma_tag_destroy(dma->tag);
943 memset(dma, 0, sizeof(*dma));
944 return (1);
945 }
946
947 rc = bus_dmamap_load(dma->tag,
948 dma->map,
949 dma->vaddr,
950 size,
951 bxe_dma_map_addr, /* BLOGD in here */
952 dma,
953 BUS_DMA_NOWAIT);
954 if (rc != 0) {
955 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
956 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
957 bus_dma_tag_destroy(dma->tag);
958 memset(dma, 0, sizeof(*dma));
959 return (1);
960 }
961
962 return (0);
963}
964
965void
967 struct bxe_dma *dma)
968{
969 if (dma->size > 0) {
970 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
971
972 bus_dmamap_sync(dma->tag, dma->map,
973 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
974 bus_dmamap_unload(dma->tag, dma->map);
975 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
976 bus_dma_tag_destroy(dma->tag);
977 }
978
979 memset(dma, 0, sizeof(*dma));
980}
981
982/*
983 * These indirect read and write routines are only during init.
984 * The locking is handled by the MCP.
985 */
986
987void
989 uint32_t addr,
990 uint32_t val)
991{
992 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
993 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
994 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
995}
996
997uint32_t
999 uint32_t addr)
1000{
1001 uint32_t val;
1002
1003 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1004 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1005 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1006
1007 return (val);
1008}
1009
1010static int
1012 uint32_t resource)
1013{
1014 uint32_t lock_status;
1015 uint32_t resource_bit = (1 << resource);
1016 int func = SC_FUNC(sc);
1017 uint32_t hw_lock_control_reg;
1018 int cnt;
1019
1020 /* validate the resource is within range */
1021 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1022 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1023 " resource_bit 0x%x\n", resource, resource_bit);
1024 return (-1);
1025 }
1026
1027 if (func <= 5) {
1028 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1029 } else {
1030 hw_lock_control_reg =
1031 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1032 }
1033
1034 /* validate the resource is not already taken */
1035 lock_status = REG_RD(sc, hw_lock_control_reg);
1036 if (lock_status & resource_bit) {
1037 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1038 resource, lock_status, resource_bit);
1039 return (-1);
1040 }
1041
1042 /* try every 5ms for 5 seconds */
1043 for (cnt = 0; cnt < 1000; cnt++) {
1044 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1045 lock_status = REG_RD(sc, hw_lock_control_reg);
1046 if (lock_status & resource_bit) {
1047 return (0);
1048 }
1049 DELAY(5000);
1050 }
1051
1052 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1053 resource, resource_bit);
1054 return (-1);
1055}
1056
1057static int
1059 uint32_t resource)
1060{
1061 uint32_t lock_status;
1062 uint32_t resource_bit = (1 << resource);
1063 int func = SC_FUNC(sc);
1064 uint32_t hw_lock_control_reg;
1065
1066 /* validate the resource is within range */
1067 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1068 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1069 " resource_bit 0x%x\n", resource, resource_bit);
1070 return (-1);
1071 }
1072
1073 if (func <= 5) {
1074 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1075 } else {
1076 hw_lock_control_reg =
1077 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1078 }
1079
1080 /* validate the resource is currently taken */
1081 lock_status = REG_RD(sc, hw_lock_control_reg);
1082 if (!(lock_status & resource_bit)) {
1083 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1084 resource, lock_status, resource_bit);
1085 return (-1);
1086 }
1087
1088 REG_WR(sc, hw_lock_control_reg, resource_bit);
1089 return (0);
1090}
1092{
1095}
1096
1098{
1101}
1102/*
1103 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1104 * had we done things the other way around, if two pfs from the same port
1105 * would attempt to access nvram at the same time, we could run into a
1106 * scenario such as:
1107 * pf A takes the port lock.
1108 * pf B succeeds in taking the same lock since they are from the same port.
1109 * pf A takes the per pf misc lock. Performs eeprom access.
1110 * pf A finishes. Unlocks the per pf misc lock.
1111 * Pf B takes the lock and proceeds to perform it's own access.
1112 * pf A unlocks the per port lock, while pf B is still working (!).
1113 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1114 * access corrupted by pf B).*
1115 */
1116static int
1118{
1119 int port = SC_PORT(sc);
1120 int count, i;
1121 uint32_t val = 0;
1122
1123 /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1125
1126 /* adjust timeout for emulation/FPGA */
1127 count = NVRAM_TIMEOUT_COUNT;
1128 if (CHIP_REV_IS_SLOW(sc)) {
1129 count *= 100;
1130 }
1131
1132 /* request access to nvram interface */
1135
1136 for (i = 0; i < count*10; i++) {
1138 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1139 break;
1140 }
1141
1142 DELAY(5);
1143 }
1144
1145 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1146 BLOGE(sc, "Cannot get access to nvram interface "
1147 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1148 port, val);
1149 return (-1);
1150 }
1151
1152 return (0);
1153}
1154
1155static int
1157{
1158 int port = SC_PORT(sc);
1159 int count, i;
1160 uint32_t val = 0;
1161
1162 /* adjust timeout for emulation/FPGA */
1163 count = NVRAM_TIMEOUT_COUNT;
1164 if (CHIP_REV_IS_SLOW(sc)) {
1165 count *= 100;
1166 }
1167
1168 /* relinquish nvram interface */
1171
1172 for (i = 0; i < count*10; i++) {
1174 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1175 break;
1176 }
1177
1178 DELAY(5);
1179 }
1180
1181 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1182 BLOGE(sc, "Cannot free access to nvram interface "
1183 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1184 port, val);
1185 return (-1);
1186 }
1187
1188 /* release HW lock: protect against other PFs in PF Direct Assignment */
1190
1191 return (0);
1192}
1193
1194static void
1196{
1197 uint32_t val;
1198
1200
1201 /* enable both bits, even on read */
1204}
1205
1206static void
1208{
1209 uint32_t val;
1210
1212
1213 /* disable both bits, even after read */
1215 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1217}
1218
1219static int
1221 uint32_t offset,
1222 uint32_t *ret_val,
1223 uint32_t cmd_flags)
1224{
1225 int count, i, rc;
1226 uint32_t val;
1227
1228 /* build the command word */
1229 cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1230
1231 /* need to clear DONE bit separately */
1233
1234 /* address of the NVRAM to read from */
1237
1238 /* issue a read command */
1239 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1240
1241 /* adjust timeout for emulation/FPGA */
1242 count = NVRAM_TIMEOUT_COUNT;
1243 if (CHIP_REV_IS_SLOW(sc)) {
1244 count *= 100;
1245 }
1246
1247 /* wait for completion */
1248 *ret_val = 0;
1249 rc = -1;
1250 for (i = 0; i < count; i++) {
1251 DELAY(5);
1253
1254 if (val & MCPR_NVM_COMMAND_DONE) {
1256 /* we read nvram data in cpu order
1257 * but ethtool sees it as an array of bytes
1258 * converting to big-endian will do the work
1259 */
1260 *ret_val = htobe32(val);
1261 rc = 0;
1262 break;
1263 }
1264 }
1265
1266 if (rc == -1) {
1267 BLOGE(sc, "nvram read timeout expired "
1268 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1269 offset, cmd_flags, val);
1270 }
1271
1272 return (rc);
1273}
1274
1275static int
1277 uint32_t offset,
1278 uint8_t *ret_buf,
1279 int buf_size)
1280{
1281 uint32_t cmd_flags;
1282 uint32_t val;
1283 int rc;
1284
1285 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1286 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1287 offset, buf_size);
1288 return (-1);
1289 }
1290
1291 if ((offset + buf_size) > sc->devinfo.flash_size) {
1292 BLOGE(sc, "Invalid parameter, "
1293 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1294 offset, buf_size, sc->devinfo.flash_size);
1295 return (-1);
1296 }
1297
1298 /* request access to nvram interface */
1300 if (rc) {
1301 return (rc);
1302 }
1303
1304 /* enable access to nvram interface */
1306
1307 /* read the first word(s) */
1308 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1309 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1310 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1311 memcpy(ret_buf, &val, 4);
1312
1313 /* advance to the next dword */
1314 offset += sizeof(uint32_t);
1315 ret_buf += sizeof(uint32_t);
1316 buf_size -= sizeof(uint32_t);
1317 cmd_flags = 0;
1318 }
1319
1320 if (rc == 0) {
1321 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1322 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1323 memcpy(ret_buf, &val, 4);
1324 }
1325
1326 /* disable access to nvram interface */
1329
1330 return (rc);
1331}
1332
1333static int
1335 uint32_t offset,
1336 uint32_t val,
1337 uint32_t cmd_flags)
1338{
1339 int count, i, rc;
1340
1341 /* build the command word */
1343
1344 /* need to clear DONE bit separately */
1346
1347 /* write the data */
1349
1350 /* address of the NVRAM to write to */
1353
1354 /* issue the write command */
1355 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1356
1357 /* adjust timeout for emulation/FPGA */
1358 count = NVRAM_TIMEOUT_COUNT;
1359 if (CHIP_REV_IS_SLOW(sc)) {
1360 count *= 100;
1361 }
1362
1363 /* wait for completion */
1364 rc = -1;
1365 for (i = 0; i < count; i++) {
1366 DELAY(5);
1368 if (val & MCPR_NVM_COMMAND_DONE) {
1369 rc = 0;
1370 break;
1371 }
1372 }
1373
1374 if (rc == -1) {
1375 BLOGE(sc, "nvram write timeout expired "
1376 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1377 offset, cmd_flags, val);
1378 }
1379
1380 return (rc);
1381}
1382
1383#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1384
1385static int
1387 uint32_t offset,
1388 uint8_t *data_buf,
1389 int buf_size)
1390{
1391 uint32_t cmd_flags;
1392 uint32_t align_offset;
1393 uint32_t val;
1394 int rc;
1395
1396 if ((offset + buf_size) > sc->devinfo.flash_size) {
1397 BLOGE(sc, "Invalid parameter, "
1398 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1399 offset, buf_size, sc->devinfo.flash_size);
1400 return (-1);
1401 }
1402
1403 /* request access to nvram interface */
1405 if (rc) {
1406 return (rc);
1407 }
1408
1409 /* enable access to nvram interface */
1411
1413 align_offset = (offset & ~0x03);
1414 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1415
1416 if (rc == 0) {
1417 val &= ~(0xff << BYTE_OFFSET(offset));
1418 val |= (*data_buf << BYTE_OFFSET(offset));
1419
1420 /* nvram data is returned as an array of bytes
1421 * convert it back to cpu order
1422 */
1423 val = be32toh(val);
1424
1425 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1426 }
1427
1428 /* disable access to nvram interface */
1431
1432 return (rc);
1433}
1434
1435static int
1437 uint32_t offset,
1438 uint8_t *data_buf,
1439 int buf_size)
1440{
1441 uint32_t cmd_flags;
1442 uint32_t val;
1443 uint32_t written_so_far;
1444 int rc;
1445
1446 if (buf_size == 1) {
1447 return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1448 }
1449
1450 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1451 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1452 offset, buf_size);
1453 return (-1);
1454 }
1455
1456 if (buf_size == 0) {
1457 return (0); /* nothing to do */
1458 }
1459
1460 if ((offset + buf_size) > sc->devinfo.flash_size) {
1461 BLOGE(sc, "Invalid parameter, "
1462 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1463 offset, buf_size, sc->devinfo.flash_size);
1464 return (-1);
1465 }
1466
1467 /* request access to nvram interface */
1469 if (rc) {
1470 return (rc);
1471 }
1472
1473 /* enable access to nvram interface */
1475
1476 written_so_far = 0;
1477 cmd_flags = MCPR_NVM_COMMAND_FIRST;
1478 while ((written_so_far < buf_size) && (rc == 0)) {
1479 if (written_so_far == (buf_size - sizeof(uint32_t))) {
1480 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1481 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1482 cmd_flags |= MCPR_NVM_COMMAND_LAST;
1483 } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1484 cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1485 }
1486
1487 memcpy(&val, data_buf, 4);
1488
1489 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1490
1491 /* advance to the next dword */
1492 offset += sizeof(uint32_t);
1493 data_buf += sizeof(uint32_t);
1494 written_so_far += sizeof(uint32_t);
1495 cmd_flags = 0;
1496 }
1497
1498 /* disable access to nvram interface */
1501
1502 return (rc);
1503}
1504
1505/* copy command into DMAE command memory and set DMAE command Go */
1506void
1508 struct dmae_cmd *dmae,
1509 int idx)
1510{
1511 uint32_t cmd_offset;
1512 int i;
1513
1514 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1515 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1516 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1517 }
1518
1519 REG_WR(sc, dmae_reg_go_c[idx], 1);
1520}
1521
1522uint32_t
1524 uint8_t comp_type)
1525{
1526 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1528}
1529
1530uint32_t
1532{
1533 return (opcode & ~DMAE_CMD_SRC_RESET);
1534}
1535
1536uint32_t
1538 uint8_t src_type,
1539 uint8_t dst_type,
1540 uint8_t with_comp,
1541 uint8_t comp_type)
1542{
1543 uint32_t opcode = 0;
1544
1545 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1546 (dst_type << DMAE_CMD_DST_SHIFT));
1547
1549
1551
1552 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1553 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1554
1556
1557#ifdef __BIG_ENDIAN
1559#else
1561#endif
1562
1563 if (with_comp) {
1565 }
1566
1567 return (opcode);
1568}
1569
1570static void
1572 struct dmae_cmd *dmae,
1573 uint8_t src_type,
1574 uint8_t dst_type)
1575{
1576 memset(dmae, 0, sizeof(struct dmae_cmd));
1577
1578 /* set the opcode */
1579 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1580 TRUE, DMAE_COMP_PCI);
1581
1582 /* fill in the completion parameters */
1583 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1584 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1585 dmae->comp_val = DMAE_COMP_VAL;
1586}
1587
1588/* issue a DMAE command over the init channel and wait for completion */
1589static int
1591 struct dmae_cmd *dmae)
1592{
1593 uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1594 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1595
1596 BXE_DMAE_LOCK(sc);
1597
1598 /* reset completion */
1599 *wb_comp = 0;
1600
1601 /* post the command on the channel used for initializations */
1602 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1603
1604 /* wait for completion */
1605 DELAY(5);
1606
1607 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1608 if (!timeout ||
1611 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1612 *wb_comp, sc->recovery_state);
1613 BXE_DMAE_UNLOCK(sc);
1614 return (DMAE_TIMEOUT);
1615 }
1616
1617 timeout--;
1618 DELAY(50);
1619 }
1620
1621 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1622 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1623 *wb_comp, sc->recovery_state);
1624 BXE_DMAE_UNLOCK(sc);
1625 return (DMAE_PCI_ERROR);
1626 }
1627
1628 BXE_DMAE_UNLOCK(sc);
1629 return (0);
1630}
1631
1632void
1634 uint32_t src_addr,
1635 uint32_t len32)
1636{
1637 struct dmae_cmd dmae;
1638 uint32_t *data;
1639 int i, rc;
1640
1641 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1642
1643 if (!sc->dmae_ready) {
1644 data = BXE_SP(sc, wb_data[0]);
1645
1646 for (i = 0; i < len32; i++) {
1647 data[i] = (CHIP_IS_E1(sc)) ?
1648 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1649 REG_RD(sc, (src_addr + (i * 4)));
1650 }
1651
1652 return;
1653 }
1654
1655 /* set opcode and fixed command fields */
1657
1658 /* fill in addresses and len */
1659 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1660 dmae.src_addr_hi = 0;
1661 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1662 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1663 dmae.len = len32;
1664
1665 /* issue the command and wait for completion */
1666 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1667 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1668 }
1669}
1670
1671void
1673 bus_addr_t dma_addr,
1674 uint32_t dst_addr,
1675 uint32_t len32)
1676{
1677 struct dmae_cmd dmae;
1678 int rc;
1679
1680 if (!sc->dmae_ready) {
1681 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1682
1683 if (CHIP_IS_E1(sc)) {
1684 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1685 } else {
1686 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1687 }
1688
1689 return;
1690 }
1691
1692 /* set opcode and fixed command fields */
1694
1695 /* fill in addresses and len */
1696 dmae.src_addr_lo = U64_LO(dma_addr);
1697 dmae.src_addr_hi = U64_HI(dma_addr);
1698 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1699 dmae.dst_addr_hi = 0;
1700 dmae.len = len32;
1701
1702 /* issue the command and wait for completion */
1703 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1704 bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1705 }
1706}
1707
1708void
1710 bus_addr_t phys_addr,
1711 uint32_t addr,
1712 uint32_t len)
1713{
1714 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1715 int offset = 0;
1716
1717 while (len > dmae_wr_max) {
1718 bxe_write_dmae(sc,
1719 (phys_addr + offset), /* src DMA address */
1720 (addr + offset), /* dst GRC address */
1721 dmae_wr_max);
1722 offset += (dmae_wr_max * 4);
1723 len -= dmae_wr_max;
1724 }
1725
1726 bxe_write_dmae(sc,
1727 (phys_addr + offset), /* src DMA address */
1728 (addr + offset), /* dst GRC address */
1729 len);
1730}
1731
1732void
1734 struct eth_context *cxt,
1735 uint32_t cid)
1736{
1737 /* ustorm cxt validation */
1738 cxt->ustorm_ag_context.cdu_usage =
1741 /* xcontext validation */
1742 cxt->xstorm_ag_context.cdu_reserved =
1745}
1746
1747static void
1749 uint8_t port,
1750 uint8_t fw_sb_id,
1751 uint8_t sb_index,
1752 uint8_t ticks)
1753{
1754 uint32_t addr =
1756 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1757
1758 REG_WR8(sc, addr, ticks);
1759
1760 BLOGD(sc, DBG_LOAD,
1761 "port %d fw_sb_id %d sb_index %d ticks %d\n",
1762 port, fw_sb_id, sb_index, ticks);
1763}
1764
1765static void
1767 uint8_t port,
1768 uint16_t fw_sb_id,
1769 uint8_t sb_index,
1770 uint8_t disable)
1771{
1772 uint32_t enable_flag =
1773 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1774 uint32_t addr =
1776 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1777 uint8_t flags;
1778
1779 /* clear and set */
1780 flags = REG_RD8(sc, addr);
1781 flags &= ~HC_INDEX_DATA_HC_ENABLED;
1782 flags |= enable_flag;
1783 REG_WR8(sc, addr, flags);
1784
1785 BLOGD(sc, DBG_LOAD,
1786 "port %d fw_sb_id %d sb_index %d disable %d\n",
1787 port, fw_sb_id, sb_index, disable);
1788}
1789
1790void
1792 uint8_t fw_sb_id,
1793 uint8_t sb_index,
1794 uint8_t disable,
1795 uint16_t usec)
1796{
1797 int port = SC_PORT(sc);
1798 uint8_t ticks = (usec / 4); /* XXX ??? */
1799
1800 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1801
1802 disable = (disable) ? 1 : ((usec) ? 0 : 1);
1803 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1804}
1805
1806void
1808 uint32_t usecs)
1809{
1810 DELAY(usecs);
1811}
1812
1813uint32_t
1815 uint32_t reg_addr)
1816{
1817 return (REG_RD(sc, reg_addr));
1818}
1819
1820void
1822 uint32_t reg_addr,
1823 uint32_t val)
1824{
1825 REG_WR(sc, reg_addr, val);
1826}
1827
1828void
1830 uint32_t offset,
1831 uint32_t *wb_write,
1832 uint16_t len)
1833{
1834 REG_WR_DMAE(sc, offset, wb_write, len);
1835}
1836
1837void
1839 uint32_t offset,
1840 uint32_t *wb_write,
1841 uint16_t len)
1842{
1843 REG_RD_DMAE(sc, offset, wb_write, len);
1844}
1845
1846uint8_t
1848{
1849 return (SC_PATH(sc));
1850}
1851
1852void
1855 ...)
1856{
1857 /* XXX */
1858 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1859}
1860
1861static int
1863 int spio,
1864 uint32_t mode)
1865{
1866 uint32_t spio_reg;
1867
1868 /* Only 2 SPIOs are configurable */
1869 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1870 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1871 return (-1);
1872 }
1873
1875
1876 /* read SPIO and mask except the float bits */
1877 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1878
1879 switch (mode) {
1881 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1882 /* clear FLOAT and set CLR */
1883 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1884 spio_reg |= (spio << MISC_SPIO_CLR_POS);
1885 break;
1886
1888 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1889 /* clear FLOAT and set SET */
1890 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1891 spio_reg |= (spio << MISC_SPIO_SET_POS);
1892 break;
1893
1895 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1896 /* set FLOAT */
1897 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1898 break;
1899
1900 default:
1901 break;
1902 }
1903
1904 REG_WR(sc, MISC_REG_SPIO, spio_reg);
1906
1907 return (0);
1908}
1909
1910static int
1912 int gpio_num,
1913 uint8_t port)
1914{
1915 /* The GPIO should be swapped if swap register is set and active */
1916 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1917 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1918 int gpio_shift = (gpio_num +
1919 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1920 uint32_t gpio_mask = (1 << gpio_shift);
1921 uint32_t gpio_reg;
1922
1923 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1925 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1926 gpio_mask);
1927 return (-1);
1928 }
1929
1930 /* read GPIO value */
1931 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1932
1933 /* get the requested pin value */
1934 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1935}
1936
1937static int
1939 int gpio_num,
1940 uint32_t mode,
1941 uint8_t port)
1942{
1943 /* The GPIO should be swapped if swap register is set and active */
1944 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1945 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1946 int gpio_shift = (gpio_num +
1947 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1948 uint32_t gpio_mask = (1 << gpio_shift);
1949 uint32_t gpio_reg;
1950
1951 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1952 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1953 " gpio_shift %d gpio_mask 0x%x\n",
1954 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1955 return (-1);
1956 }
1957
1959
1960 /* read GPIO and mask except the float bits */
1962
1963 switch (mode) {
1965 BLOGD(sc, DBG_PHY,
1966 "Set GPIO %d (shift %d) -> output low\n",
1967 gpio_num, gpio_shift);
1968 /* clear FLOAT and set CLR */
1969 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1970 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1971 break;
1972
1974 BLOGD(sc, DBG_PHY,
1975 "Set GPIO %d (shift %d) -> output high\n",
1976 gpio_num, gpio_shift);
1977 /* clear FLOAT and set SET */
1978 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1979 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1980 break;
1981
1983 BLOGD(sc, DBG_PHY,
1984 "Set GPIO %d (shift %d) -> input\n",
1985 gpio_num, gpio_shift);
1986 /* set FLOAT */
1987 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1988 break;
1989
1990 default:
1991 break;
1992 }
1993
1994 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1996
1997 return (0);
1998}
1999
2000static int
2002 uint8_t pins,
2003 uint32_t mode)
2004{
2005 uint32_t gpio_reg;
2006
2007 /* any port swapping should be handled by caller */
2008
2010
2011 /* read GPIO and mask except the float bits */
2012 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2013 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2014 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2015 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2016
2017 switch (mode) {
2019 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2020 /* set CLR */
2021 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2022 break;
2023
2025 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2026 /* set SET */
2027 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2028 break;
2029
2031 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2032 /* set FLOAT */
2033 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2034 break;
2035
2036 default:
2037 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2038 " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2040 return (-1);
2041 }
2042
2043 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2045
2046 return (0);
2047}
2048
2049static int
2051 int gpio_num,
2052 uint32_t mode,
2053 uint8_t port)
2054{
2055 /* The GPIO should be swapped if swap register is set and active */
2056 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2057 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2058 int gpio_shift = (gpio_num +
2059 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2060 uint32_t gpio_mask = (1 << gpio_shift);
2061 uint32_t gpio_reg;
2062
2063 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2064 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2065 " gpio_shift %d gpio_mask 0x%x\n",
2066 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2067 return (-1);
2068 }
2069
2071
2072 /* read GPIO int */
2073 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2074
2075 switch (mode) {
2077 BLOGD(sc, DBG_PHY,
2078 "Clear GPIO INT %d (shift %d) -> output low\n",
2079 gpio_num, gpio_shift);
2080 /* clear SET and set CLR */
2081 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2082 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083 break;
2084
2086 BLOGD(sc, DBG_PHY,
2087 "Set GPIO INT %d (shift %d) -> output high\n",
2088 gpio_num, gpio_shift);
2089 /* clear CLR and set SET */
2090 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2091 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2092 break;
2093
2094 default:
2095 break;
2096 }
2097
2098 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2100
2101 return (0);
2102}
2103
2104uint32_t
2106 uint16_t gpio_num,
2107 uint8_t port)
2108{
2109 return (bxe_gpio_read(sc, gpio_num, port));
2110}
2111
2112uint8_t
2114 uint16_t gpio_num,
2115 uint8_t mode, /* 0=low 1=high */
2116 uint8_t port)
2117{
2118 return (bxe_gpio_write(sc, gpio_num, mode, port));
2119}
2120
2121uint8_t
2123 uint8_t pins,
2124 uint8_t mode) /* 0=low 1=high */
2125{
2126 return (bxe_gpio_mult_write(sc, pins, mode));
2127}
2128
2129uint8_t
2131 uint16_t gpio_num,
2132 uint8_t mode, /* 0=low 1=high */
2133 uint8_t port)
2134{
2135 return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2136}
2137
2138void
2140{
2142 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2143}
2144
2145/* send the MCP a request, block until there is a reply */
2146uint32_t
2148 uint32_t command,
2149 uint32_t param)
2150{
2151 int mb_idx = SC_FW_MB_IDX(sc);
2152 uint32_t seq;
2153 uint32_t rc = 0;
2154 uint32_t cnt = 1;
2155 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2156
2157 BXE_FWMB_LOCK(sc);
2158
2159 seq = ++sc->fw_seq;
2160 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2161 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2162
2163 BLOGD(sc, DBG_PHY,
2164 "wrote command 0x%08x to FW MB param 0x%08x\n",
2165 (command | seq), param);
2166
2167 /* Let the FW do it's magic. GIve it up to 5 seconds... */
2168 do {
2169 DELAY(delay * 1000);
2170 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2171 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2172
2173 BLOGD(sc, DBG_PHY,
2174 "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2175 cnt*delay, rc, seq);
2176
2177 /* is this a reply to our command? */
2178 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2179 rc &= FW_MSG_CODE_MASK;
2180 } else {
2181 /* Ruh-roh! */
2182 BLOGE(sc, "FW failed to respond!\n");
2183 // XXX bxe_fw_dump(sc);
2184 rc = 0;
2185 }
2186
2187 BXE_FWMB_UNLOCK(sc);
2188 return (rc);
2189}
2190
2191static uint32_t
2193 uint32_t command,
2194 uint32_t param)
2195{
2196 return (elink_cb_fw_command(sc, command, param));
2197}
2198
2199static void
2201 uint32_t addr,
2202 bus_addr_t mapping)
2203{
2204 REG_WR(sc, addr, U64_LO(mapping));
2205 REG_WR(sc, (addr + 4), U64_HI(mapping));
2206}
2207
2208static void
2210 bus_addr_t mapping,
2211 uint16_t abs_fid)
2212{
2213 uint32_t addr = (XSEM_REG_FAST_MEMORY +
2215 __storm_memset_dma_mapping(sc, addr, mapping);
2216}
2217
2218static void
2220 uint16_t abs_fid,
2221 uint16_t pf_id)
2222{
2223 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2224 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2225 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2226 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2227}
2228
2229static void
2231 uint16_t abs_fid,
2232 uint8_t enable)
2233{
2234 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2235 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2236 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2237 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2238}
2239
2240static void
2242 struct event_ring_data *eq_data,
2243 uint16_t pfid)
2244{
2245 uint32_t addr;
2246 size_t size;
2247
2249 size = sizeof(struct event_ring_data);
2250 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2251}
2252
2253static void
2255 uint16_t eq_prod,
2256 uint16_t pfid)
2257{
2258 uint32_t addr = (BAR_CSTRORM_INTMEM +
2260 REG_WR16(sc, addr, eq_prod);
2261}
2262
2263/*
2264 * Post a slowpath command.
2265 *
2266 * A slowpath command is used to propagate a configuration change through
2267 * the controller in a controlled manner, allowing each STORM processor and
2268 * other H/W blocks to phase in the change. The commands sent on the
2269 * slowpath are referred to as ramrods. Depending on the ramrod used the
2270 * completion of the ramrod will occur in different ways. Here's a
2271 * breakdown of ramrods and how they complete:
2272 *
2273 * RAMROD_CMD_ID_ETH_PORT_SETUP
2274 * Used to setup the leading connection on a port. Completes on the
2275 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
2276 *
2277 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2278 * Used to setup an additional connection on a port. Completes on the
2279 * RCQ of the multi-queue/RSS connection being initialized.
2280 *
2281 * RAMROD_CMD_ID_ETH_STAT_QUERY
2282 * Used to force the storm processors to update the statistics database
2283 * in host memory. This ramrod is send on the leading connection CID and
2284 * completes as an index increment of the CSTORM on the default status
2285 * block.
2286 *
2287 * RAMROD_CMD_ID_ETH_UPDATE
2288 * Used to update the state of the leading connection, usually to udpate
2289 * the RSS indirection table. Completes on the RCQ of the leading
2290 * connection. (Not currently used under FreeBSD until OS support becomes
2291 * available.)
2292 *
2293 * RAMROD_CMD_ID_ETH_HALT
2294 * Used when tearing down a connection prior to driver unload. Completes
2295 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
2296 * use this on the leading connection.
2297 *
2298 * RAMROD_CMD_ID_ETH_SET_MAC
2299 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
2300 * the RCQ of the leading connection.
2301 *
2302 * RAMROD_CMD_ID_ETH_CFC_DEL
2303 * Used when tearing down a conneciton prior to driver unload. Completes
2304 * on the RCQ of the leading connection (since the current connection
2305 * has been completely removed from controller memory).
2306 *
2307 * RAMROD_CMD_ID_ETH_PORT_DEL
2308 * Used to tear down the leading connection prior to driver unload,
2309 * typically fp[0]. Completes as an index increment of the CSTORM on the
2310 * default status block.
2311 *
2312 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2313 * Used for connection offload. Completes on the RCQ of the multi-queue
2314 * RSS connection that is being offloaded. (Not currently used under
2315 * FreeBSD.)
2316 *
2317 * There can only be one command pending per function.
2318 *
2319 * Returns:
2320 * 0 = Success, !0 = Failure.
2321 */
2322
2323/* must be called under the spq lock */
2324static inline
2326{
2327 struct eth_spe *next_spe = sc->spq_prod_bd;
2328
2329 if (sc->spq_prod_bd == sc->spq_last_bd) {
2330 /* wrap back to the first eth_spq */
2331 sc->spq_prod_bd = sc->spq;
2332 sc->spq_prod_idx = 0;
2333 } else {
2334 sc->spq_prod_bd++;
2335 sc->spq_prod_idx++;
2336 }
2337
2338 return (next_spe);
2339}
2340
2341/* must be called under the spq lock */
2342static inline
2344{
2345 int func = SC_FUNC(sc);
2346
2347 /*
2348 * Make sure that BD data is updated before writing the producer.
2349 * BD data is written to the memory, the producer is read from the
2350 * memory, thus we need a full memory barrier to ensure the ordering.
2351 */
2352 mb();
2353
2355 sc->spq_prod_idx);
2356
2357 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2358 BUS_SPACE_BARRIER_WRITE);
2359}
2360
2367static inline
2369 int cmd_type)
2370{
2371 if ((cmd_type == NONE_CONNECTION_TYPE) ||
2376 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2378 return (TRUE);
2379 } else {
2380 return (FALSE);
2381 }
2382}
2383
2398int
2400 int command,
2401 int cid,
2402 uint32_t data_hi,
2403 uint32_t data_lo,
2404 int cmd_type)
2405{
2406 struct eth_spe *spe;
2407 uint16_t type;
2408 int common;
2409
2410 common = bxe_is_contextless_ramrod(command, cmd_type);
2411
2412 BXE_SP_LOCK(sc);
2413
2414 if (common) {
2415 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2416 BLOGE(sc, "EQ ring is full!\n");
2417 BXE_SP_UNLOCK(sc);
2418 return (-1);
2419 }
2420 } else {
2421 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2422 BLOGE(sc, "SPQ ring is full!\n");
2423 BXE_SP_UNLOCK(sc);
2424 return (-1);
2425 }
2426 }
2427
2428 spe = bxe_sp_get_next(sc);
2429
2430 /* CID needs port number to be encoded int it */
2431 spe->hdr.conn_and_cmd_data =
2432 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2433
2434 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2435
2436 /* TBD: Check if it works for VFs */
2437 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2439
2440 spe->hdr.type = htole16(type);
2441
2442 spe->data.update_data_addr.hi = htole32(data_hi);
2443 spe->data.update_data_addr.lo = htole32(data_lo);
2444
2445 /*
2446 * It's ok if the actual decrement is issued towards the memory
2447 * somewhere between the lock and unlock. Thus no more explict
2448 * memory barrier is needed.
2449 */
2450 if (common) {
2451 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2452 } else {
2453 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2454 }
2455
2456 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2457 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2458 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2459 BLOGD(sc, DBG_SP,
2460 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2461 sc->spq_prod_idx,
2462 (uint32_t)U64_HI(sc->spq_dma.paddr),
2463 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2464 command,
2465 common,
2466 HW_CID(sc, cid),
2467 data_hi,
2468 data_lo,
2469 type,
2470 atomic_load_acq_long(&sc->cq_spq_left),
2471 atomic_load_acq_long(&sc->eq_spq_left));
2472
2474
2475 BXE_SP_UNLOCK(sc);
2476 return (0);
2477}
2478
2486/*
2487 * FreeBSD Device probe function.
2488 *
2489 * Compares the device found to the driver's list of supported devices and
2490 * reports back to the bsd loader whether this is the right driver for the device.
2491 * This is the driver entry function called from the "kldload" command.
2492 *
2493 * Returns:
2494 * BUS_PROBE_DEFAULT on success, positive value on failure.
2495 */
2496static int
2497bxe_probe(device_t dev)
2498{
2499 struct bxe_device_type *t;
2500 char *descbuf;
2501 uint16_t did, sdid, svid, vid;
2502
2503 /* Find our device structure */
2504 t = bxe_devs;
2505
2506 /* Get the data for the device to be probed. */
2507 vid = pci_get_vendor(dev);
2508 did = pci_get_device(dev);
2509 svid = pci_get_subvendor(dev);
2510 sdid = pci_get_subdevice(dev);
2511
2512 /* Look through the list of known devices for a match. */
2513 while (t->bxe_name != NULL) {
2514 if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2515 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2516 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2517 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2518 if (descbuf == NULL)
2519 return (ENOMEM);
2520
2521 /* Print out the device identity. */
2522 snprintf(descbuf, BXE_DEVDESC_MAX,
2523 "%s (%c%d) BXE v:%s", t->bxe_name,
2524 (((pci_read_config(dev, PCIR_REVID, 4) &
2525 0xf0) >> 4) + 'A'),
2526 (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2528
2529 device_set_desc_copy(dev, descbuf);
2530 free(descbuf, M_TEMP);
2531 return (BUS_PROBE_DEFAULT);
2532 }
2533 t++;
2534 }
2535
2536 return (ENXIO);
2537}
2538
2539static void
2541{
2542#ifdef BXE_CORE_LOCK_SX
2543 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2544 "bxe%d_core_lock", sc->unit);
2545 sx_init(&sc->core_sx, sc->core_sx_name);
2546#else
2547 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2548 "bxe%d_core_lock", sc->unit);
2549 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2550#endif
2551
2552 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2553 "bxe%d_sp_lock", sc->unit);
2554 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2555
2556 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2557 "bxe%d_dmae_lock", sc->unit);
2558 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2559
2560 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2561 "bxe%d_phy_lock", sc->unit);
2562 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2563
2564 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2565 "bxe%d_fwmb_lock", sc->unit);
2566 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2567
2568 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2569 "bxe%d_print_lock", sc->unit);
2570 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2571
2572 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2573 "bxe%d_stats_lock", sc->unit);
2574 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2575
2576 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2577 "bxe%d_mcast_lock", sc->unit);
2578 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2579}
2580
2581static void
2583{
2584#ifdef BXE_CORE_LOCK_SX
2585 sx_destroy(&sc->core_sx);
2586#else
2587 if (mtx_initialized(&sc->core_mtx)) {
2588 mtx_destroy(&sc->core_mtx);
2589 }
2590#endif
2591
2592 if (mtx_initialized(&sc->sp_mtx)) {
2593 mtx_destroy(&sc->sp_mtx);
2594 }
2595
2596 if (mtx_initialized(&sc->dmae_mtx)) {
2597 mtx_destroy(&sc->dmae_mtx);
2598 }
2599
2600 if (mtx_initialized(&sc->port.phy_mtx)) {
2601 mtx_destroy(&sc->port.phy_mtx);
2602 }
2603
2604 if (mtx_initialized(&sc->fwmb_mtx)) {
2605 mtx_destroy(&sc->fwmb_mtx);
2606 }
2607
2608 if (mtx_initialized(&sc->print_mtx)) {
2609 mtx_destroy(&sc->print_mtx);
2610 }
2611
2612 if (mtx_initialized(&sc->stats_mtx)) {
2613 mtx_destroy(&sc->stats_mtx);
2614 }
2615
2616 if (mtx_initialized(&sc->mcast_mtx)) {
2617 mtx_destroy(&sc->mcast_mtx);
2618 }
2619}
2620
2621static void
2623{
2624 if_t ifp = sc->ifp;
2625
2626 /* tell the stack the driver is stopped and TX queue is full */
2627 if (ifp != NULL) {
2628 if_setdrvflags(ifp, 0);
2629 }
2630}
2631
2632static void
2634{
2635 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2637}
2638
2639static inline uint16_t
2641 struct bxe_fastpath *fp)
2642{
2643 int16_t used;
2644 uint16_t prod;
2645 uint16_t cons;
2646
2647 prod = fp->tx_bd_prod;
2648 cons = fp->tx_bd_cons;
2649
2650 used = SUB_S16(prod, cons);
2651
2652 return (int16_t)(sc->tx_ring_size) - used;
2653}
2654
2655static inline int
2657{
2658 uint16_t hw_cons;
2659
2660 mb(); /* status block fields can change */
2661 hw_cons = le16toh(*fp->tx_cons_sb);
2662 return (hw_cons != fp->tx_pkt_cons);
2663}
2664
2665static inline uint8_t
2667{
2668 /* expand this for multi-cos if ever supported */
2669 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2670}
2671
2672static inline int
2674{
2675 uint16_t rx_cq_cons_sb;
2676
2677 mb(); /* status block fields can change */
2678 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2679 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2680 rx_cq_cons_sb++;
2681 return (fp->rx_cq_cons != rx_cq_cons_sb);
2682}
2683
2684static void
2686 struct bxe_fastpath *fp,
2687 union eth_rx_cqe *rr_cqe)
2688{
2689 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2690 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2691 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2692 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2693
2694 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2695 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2696
2697 switch (command) {
2699 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2700 drv_cmd = ECORE_Q_CMD_UPDATE;
2701 break;
2702
2704 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2705 drv_cmd = ECORE_Q_CMD_SETUP;
2706 break;
2707
2709 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2710 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2711 break;
2712
2714 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2715 drv_cmd = ECORE_Q_CMD_HALT;
2716 break;
2717
2719 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2720 drv_cmd = ECORE_Q_CMD_TERMINATE;
2721 break;
2722
2724 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2725 drv_cmd = ECORE_Q_CMD_EMPTY;
2726 break;
2727
2728 default:
2729 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2730 command, fp->index);
2731 return;
2732 }
2733
2734 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2735 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2736 /*
2737 * q_obj->complete_cmd() failure means that this was
2738 * an unexpected completion.
2739 *
2740 * In this case we don't want to increase the sc->spq_left
2741 * because apparently we haven't sent this command the first
2742 * place.
2743 */
2744 // bxe_panic(sc, ("Unexpected SP completion\n"));
2745 return;
2746 }
2747
2748 atomic_add_acq_long(&sc->cq_spq_left, 1);
2749
2750 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2751 atomic_load_acq_long(&sc->cq_spq_left));
2752}
2753
2754/*
2755 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2756 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2757 * the current aggregation queue as in-progress.
2758 */
2759static void
2761 struct bxe_fastpath *fp,
2762 uint16_t queue,
2763 uint16_t cons,
2764 uint16_t prod,
2765 struct eth_fast_path_rx_cqe *cqe)
2766{
2767 struct bxe_sw_rx_bd tmp_bd;
2768 struct bxe_sw_rx_bd *rx_buf;
2769 struct eth_rx_bd *rx_bd;
2770 int max_agg_queues __diagused;
2771 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2772 uint16_t index;
2773
2774 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2775 "cons=%d prod=%d\n",
2776 fp->index, queue, cons, prod);
2777
2778 max_agg_queues = MAX_AGG_QS(sc);
2779
2780 KASSERT((queue < max_agg_queues),
2781 ("fp[%02d] invalid aggr queue (%d >= %d)!",
2782 fp->index, queue, max_agg_queues));
2783
2784 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2785 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2786 fp->index, queue));
2787
2788 /* copy the existing mbuf and mapping from the TPA pool */
2789 tmp_bd = tpa_info->bd;
2790
2791 if (tmp_bd.m == NULL) {
2792 uint32_t *tmp;
2793
2794 tmp = (uint32_t *)cqe;
2795
2796 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2797 fp->index, queue, cons, prod);
2798 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2799 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2800
2801 /* XXX Error handling? */
2802 return;
2803 }
2804
2805 /* change the TPA queue to the start state */
2806 tpa_info->state = BXE_TPA_STATE_START;
2807 tpa_info->placement_offset = cqe->placement_offset;
2808 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
2809 tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
2810 tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
2811
2812 fp->rx_tpa_queue_used |= (1 << queue);
2813
2814 /*
2815 * If all the buffer descriptors are filled with mbufs then fill in
2816 * the current consumer index with a new BD. Else if a maximum Rx
2817 * buffer limit is imposed then fill in the next producer index.
2818 */
2819 index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2820 prod : cons;
2821
2822 /* move the received mbuf and mapping to TPA pool */
2823 tpa_info->bd = fp->rx_mbuf_chain[cons];
2824
2825 /* release any existing RX BD mbuf mappings */
2826 if (cons != index) {
2827 rx_buf = &fp->rx_mbuf_chain[cons];
2828
2829 if (rx_buf->m_map != NULL) {
2830 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2831 BUS_DMASYNC_POSTREAD);
2832 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2833 }
2834
2835 /*
2836 * We get here when the maximum number of rx buffers is less than
2837 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2838 * it out here without concern of a memory leak.
2839 */
2840 fp->rx_mbuf_chain[cons].m = NULL;
2841 }
2842
2843 /* update the Rx SW BD with the mbuf info from the TPA pool */
2844 fp->rx_mbuf_chain[index] = tmp_bd;
2845
2846 /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2847 rx_bd = &fp->rx_chain[index];
2848 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2849 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2850}
2851
2852/*
2853 * When a TPA aggregation is completed, loop through the individual mbufs
2854 * of the aggregation, combining them into a single mbuf which will be sent
2855 * up the stack. Refill all freed SGEs with mbufs as we go along.
2856 */
2857static int
2859 struct bxe_fastpath *fp,
2860 struct bxe_sw_tpa_info *tpa_info,
2861 uint16_t queue,
2862 uint16_t pages,
2863 struct mbuf *m,
2864 struct eth_end_agg_rx_cqe *cqe,
2865 uint16_t cqe_idx)
2866{
2867 struct mbuf *m_frag;
2868 uint32_t frag_len, frag_size, i;
2869 uint16_t sge_idx;
2870 int rc = 0;
2871 int j;
2872
2873 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2874
2875 BLOGD(sc, DBG_LRO,
2876 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2877 fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2878
2879 /* make sure the aggregated frame is not too big to handle */
2880 if (pages > 8 * PAGES_PER_SGE) {
2881
2882 uint32_t *tmp = (uint32_t *)cqe;
2883
2884 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2885 "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2886 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2887 tpa_info->len_on_bd, frag_size);
2888
2889 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2890 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2891
2892 bxe_panic(sc, ("sge page count error\n"));
2893 return (EINVAL);
2894 }
2895
2896 /*
2897 * Scan through the scatter gather list pulling individual mbufs into a
2898 * single mbuf for the host stack.
2899 */
2900 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2901 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2902
2903 /*
2904 * Firmware gives the indices of the SGE as if the ring is an array
2905 * (meaning that the "next" element will consume 2 indices).
2906 */
2907 frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2908
2909 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2910 "sge_idx=%d frag_size=%d frag_len=%d\n",
2911 fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2912
2913 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2914
2915 /* allocate a new mbuf for the SGE */
2916 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2917 if (rc) {
2918 /* Leave all remaining SGEs in the ring! */
2919 return (rc);
2920 }
2921
2922 /* update the fragment length */
2923 m_frag->m_len = frag_len;
2924
2925 /* concatenate the fragment to the head mbuf */
2926 m_cat(m, m_frag);
2928
2929 /* update the TPA mbuf size and remaining fragment size */
2930 m->m_pkthdr.len += frag_len;
2931 frag_size -= frag_len;
2932 }
2933
2934 BLOGD(sc, DBG_LRO,
2935 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2936 fp->index, queue, frag_size);
2937
2938 return (rc);
2939}
2940
2941static inline void
2943{
2944 int i, j;
2945
2946 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2947 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2948
2949 for (j = 0; j < 2; j++) {
2950 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2951 idx--;
2952 }
2953 }
2954}
2955
2956static inline void
2958{
2959 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2960 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2961
2962 /*
2963 * Clear the two last indices in the page to 1. These are the indices that
2964 * correspond to the "next" element, hence will never be indicated and
2965 * should be removed from the calculations.
2966 */
2968}
2969
2970static inline void
2972 uint16_t idx)
2973{
2974 uint16_t last_max = fp->last_max_sge;
2975
2976 if (SUB_S16(idx, last_max) > 0) {
2977 fp->last_max_sge = idx;
2978 }
2979}
2980
2981static inline void
2983 struct bxe_fastpath *fp,
2984 uint16_t sge_len,
2985 union eth_sgl_or_raw_data *cqe)
2986{
2987 uint16_t last_max, last_elem, first_elem;
2988 uint16_t delta = 0;
2989 uint16_t i;
2990
2991 if (!sge_len) {
2992 return;
2993 }
2994
2995 /* first mark all used pages */
2996 for (i = 0; i < sge_len; i++) {
2998 RX_SGE(le16toh(cqe->sgl[i])));
2999 }
3000
3001 BLOGD(sc, DBG_LRO,
3002 "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3003 fp->index, sge_len - 1,
3004 le16toh(cqe->sgl[sge_len - 1]));
3005
3006 /* assume that the last SGE index is the biggest */
3008 le16toh(cqe->sgl[sge_len - 1]));
3009
3010 last_max = RX_SGE(fp->last_max_sge);
3011 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3012 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3013
3014 /* if ring is not full */
3015 if (last_elem + 1 != first_elem) {
3016 last_elem++;
3017 }
3018
3019 /* now update the prod */
3020 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3021 if (__predict_true(fp->sge_mask[i])) {
3022 break;
3023 }
3024
3026 delta += BIT_VEC64_ELEM_SZ;
3027 }
3028
3029 if (delta > 0) {
3030 fp->rx_sge_prod += delta;
3031 /* clear page-end entries */
3033 }
3034
3035 BLOGD(sc, DBG_LRO,
3036 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3037 fp->index, fp->last_max_sge, fp->rx_sge_prod);
3038}
3039
3040/*
3041 * The aggregation on the current TPA queue has completed. Pull the individual
3042 * mbuf fragments together into a single mbuf, perform all necessary checksum
3043 * calculations, and send the resuting mbuf to the stack.
3044 */
3045static void
3047 struct bxe_fastpath *fp,
3048 struct bxe_sw_tpa_info *tpa_info,
3049 uint16_t queue,
3050 uint16_t pages,
3051 struct eth_end_agg_rx_cqe *cqe,
3052 uint16_t cqe_idx)
3053{
3054 if_t ifp = sc->ifp;
3055 struct mbuf *m;
3056 int rc = 0;
3057
3058 BLOGD(sc, DBG_LRO,
3059 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3060 fp->index, queue, tpa_info->placement_offset,
3061 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3062
3063 m = tpa_info->bd.m;
3064
3065 /* allocate a replacement before modifying existing mbuf */
3066 rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3067 if (rc) {
3068 /* drop the frame and log an error */
3070 goto bxe_tpa_stop_exit;
3071 }
3072
3073 /* we have a replacement, fixup the current mbuf */
3074 m_adj(m, tpa_info->placement_offset);
3075 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3076
3077 /* mark the checksums valid (taken care of by the firmware) */
3080 m->m_pkthdr.csum_data = 0xffff;
3081 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3082 CSUM_IP_VALID |
3083 CSUM_DATA_VALID |
3084 CSUM_PSEUDO_HDR);
3085
3086 /* aggregate all of the SGEs into a single mbuf */
3087 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3088 if (rc) {
3089 /* drop the packet and log an error */
3091 m_freem(m);
3092 } else {
3094 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3095 m->m_flags |= M_VLANTAG;
3096 }
3097
3098 /* assign packet to this interface interface */
3099 if_setrcvif(m, ifp);
3100
3101 /* specify what RSS queue was used for this flow */
3102 m->m_pkthdr.flowid = fp->index;
3103 BXE_SET_FLOWID(m);
3104
3105 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3107
3108 /* pass the frame to the stack */
3109 if_input(ifp, m);
3110 }
3111
3112 /* we passed an mbuf up the stack or dropped the frame */
3114
3115bxe_tpa_stop_exit:
3116
3118 fp->rx_tpa_queue_used &= ~(1 << queue);
3119}
3120
3121static uint8_t
3123 struct bxe_fastpath *fp,
3124 uint16_t len,
3125 uint16_t lenonbd,
3126 struct mbuf *m,
3127 struct eth_fast_path_rx_cqe *cqe_fp)
3128{
3129 struct mbuf *m_frag;
3130 uint16_t frags, frag_len;
3131 uint16_t sge_idx = 0;
3132 uint16_t j;
3133 uint8_t i, rc = 0;
3134 uint32_t frag_size;
3135
3136 /* adjust the mbuf */
3137 m->m_len = lenonbd;
3138
3139 frag_size = len - lenonbd;
3140 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3141
3142 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3143 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3144
3145 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3146 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3147 m_frag->m_len = frag_len;
3148
3149 /* allocate a new mbuf for the SGE */
3150 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3151 if (rc) {
3152 /* Leave all remaining SGEs in the ring! */
3153 return (rc);
3154 }
3156
3157 /* concatenate the fragment to the head mbuf */
3158 m_cat(m, m_frag);
3159
3160 frag_size -= frag_len;
3161 }
3162
3163 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3164
3165 return rc;
3166}
3167
3168static uint8_t
3170 struct bxe_fastpath *fp)
3171{
3172 if_t ifp = sc->ifp;
3173 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3174 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3175 int rx_pkts = 0;
3176 int rc = 0;
3177
3178 BXE_FP_RX_LOCK(fp);
3179
3180 /* CQ "next element" is of the size of the regular element */
3181 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3182 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3183 hw_cq_cons++;
3184 }
3185
3186 bd_cons = fp->rx_bd_cons;
3187 bd_prod = fp->rx_bd_prod;
3188 bd_prod_fw = bd_prod;
3189 sw_cq_cons = fp->rx_cq_cons;
3190 sw_cq_prod = fp->rx_cq_prod;
3191
3192 /*
3193 * Memory barrier necessary as speculative reads of the rx
3194 * buffer can be ahead of the index in the status block
3195 */
3196 rmb();
3197
3198 BLOGD(sc, DBG_RX,
3199 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3200 fp->index, hw_cq_cons, sw_cq_cons);
3201
3202 while (sw_cq_cons != hw_cq_cons) {
3203 struct bxe_sw_rx_bd *rx_buf = NULL;
3204 union eth_rx_cqe *cqe;
3205 struct eth_fast_path_rx_cqe *cqe_fp;
3206 uint8_t cqe_fp_flags;
3207 enum eth_rx_cqe_type cqe_fp_type;
3208 uint16_t len, lenonbd, pad;
3209 struct mbuf *m = NULL;
3210
3211 comp_ring_cons = RCQ(sw_cq_cons);
3212 bd_prod = RX_BD(bd_prod);
3213 bd_cons = RX_BD(bd_cons);
3214
3215 cqe = &fp->rcq_chain[comp_ring_cons];
3216 cqe_fp = &cqe->fast_path_cqe;
3217 cqe_fp_flags = cqe_fp->type_error_flags;
3218 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3219
3220 BLOGD(sc, DBG_RX,
3221 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3222 "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3223 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3224 fp->index,
3225 hw_cq_cons,
3226 sw_cq_cons,
3227 bd_prod,
3228 bd_cons,
3229 CQE_TYPE(cqe_fp_flags),
3230 cqe_fp_flags,
3231 cqe_fp->status_flags,
3232 le32toh(cqe_fp->rss_hash_result),
3233 le16toh(cqe_fp->vlan_tag),
3234 le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3235 le16toh(cqe_fp->len_on_bd));
3236
3237 /* is this a slowpath msg? */
3238 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3239 bxe_sp_event(sc, fp, cqe);
3240 goto next_cqe;
3241 }
3242
3243 rx_buf = &fp->rx_mbuf_chain[bd_cons];
3244
3245 if (!CQE_TYPE_FAST(cqe_fp_type)) {
3246 struct bxe_sw_tpa_info *tpa_info;
3247 uint16_t frag_size, pages;
3248 uint8_t queue;
3249
3250 if (CQE_TYPE_START(cqe_fp_type)) {
3251 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3252 bd_cons, bd_prod, cqe_fp);
3253 m = NULL; /* packet not ready yet */
3254 goto next_rx;
3255 }
3256
3257 KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3258 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3259
3260 queue = cqe->end_agg_cqe.queue_index;
3261 tpa_info = &fp->rx_tpa_info[queue];
3262
3263 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3264 fp->index, queue);
3265
3266 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3267 tpa_info->len_on_bd);
3268 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3269
3270 bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3271 &cqe->end_agg_cqe, comp_ring_cons);
3272
3273 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3274
3275 goto next_cqe;
3276 }
3277
3278 /* non TPA */
3279
3280 /* is this an error packet? */
3281 if (__predict_false(cqe_fp_flags &
3283 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3285 goto next_rx;
3286 }
3287
3288 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3289 lenonbd = le16toh(cqe_fp->len_on_bd);
3290 pad = cqe_fp->placement_offset;
3291
3292 m = rx_buf->m;
3293
3294 if (__predict_false(m == NULL)) {
3295 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3296 bd_cons, fp->index);
3297 goto next_rx;
3298 }
3299
3300 /* XXX double copy if packet length under a threshold */
3301
3302 /*
3303 * If all the buffer descriptors are filled with mbufs then fill in
3304 * the current consumer index with a new BD. Else if a maximum Rx
3305 * buffer limit is imposed then fill in the next producer index.
3306 */
3307 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3308 (sc->max_rx_bufs != RX_BD_USABLE) ?
3309 bd_prod : bd_cons);
3310 if (rc != 0) {
3311
3312 /* we simply reuse the received mbuf and don't post it to the stack */
3313 m = NULL;
3314
3315 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3316 fp->index, rc);
3318
3319 if (sc->max_rx_bufs != RX_BD_USABLE) {
3320 /* copy this consumer index to the producer index */
3321 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3322 sizeof(struct bxe_sw_rx_bd));
3323 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3324 }
3325
3326 goto next_rx;
3327 }
3328
3329 /* current mbuf was detached from the bd */
3331
3332 /* we allocated a replacement mbuf, fixup the current one */
3333 m_adj(m, pad);
3334 m->m_pkthdr.len = m->m_len = len;
3335
3336 if ((len > 60) && (len > lenonbd)) {
3338 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3339 if (rc)
3340 break;
3342 } else if (lenonbd < len) {
3344 }
3345
3346 /* assign packet to this interface interface */
3347 if_setrcvif(m, ifp);
3348
3349 /* assume no hardware checksum has complated */
3350 m->m_pkthdr.csum_flags = 0;
3351
3352 /* validate checksum if offload enabled */
3353 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3354 /* check for a valid IP frame */
3355 if (!(cqe->fast_path_cqe.status_flags &
3357 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3358 if (__predict_false(cqe_fp_flags &
3361 } else {
3363 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3364 }
3365 }
3366
3367 /* check for a valid TCP/UDP frame */
3368 if (!(cqe->fast_path_cqe.status_flags &
3370 if (__predict_false(cqe_fp_flags &
3373 } else {
3375 m->m_pkthdr.csum_data = 0xFFFF;
3376 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3377 CSUM_PSEUDO_HDR);
3378 }
3379 }
3380 }
3381
3382 /* if there is a VLAN tag then flag that info */
3384 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3385 m->m_flags |= M_VLANTAG;
3386 }
3387
3388 /* specify what RSS queue was used for this flow */
3389 m->m_pkthdr.flowid = fp->index;
3390 BXE_SET_FLOWID(m);
3391
3392next_rx:
3393
3394 bd_cons = RX_BD_NEXT(bd_cons);
3395 bd_prod = RX_BD_NEXT(bd_prod);
3396 bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3397
3398 /* pass the frame to the stack */
3399 if (__predict_true(m != NULL)) {
3400 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3401 rx_pkts++;
3402 if_input(ifp, m);
3403 }
3404
3405next_cqe:
3406
3407 sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3408 sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3409
3410 /* limit spinning on the queue */
3411 if (rc != 0)
3412 break;
3413
3414 if (rx_pkts == sc->rx_budget) {
3416 break;
3417 }
3418 } /* while work to do */
3419
3420 fp->rx_bd_cons = bd_cons;
3421 fp->rx_bd_prod = bd_prod_fw;
3422 fp->rx_cq_cons = sw_cq_cons;
3423 fp->rx_cq_prod = sw_cq_prod;
3424
3425 /* Update producers */
3426 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3427
3428 fp->eth_q_stats.rx_pkts += rx_pkts;
3429 fp->eth_q_stats.rx_calls++;
3430
3431 BXE_FP_RX_UNLOCK(fp);
3432
3433 return (sw_cq_cons != hw_cq_cons);
3434}
3435
3436static uint16_t
3438 struct bxe_fastpath *fp,
3439 uint16_t idx)
3440{
3441 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3442 struct eth_tx_start_bd *tx_start_bd;
3443 uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3444 uint16_t new_cons;
3445 int nbd;
3446
3447 /* unmap the mbuf from non-paged memory */
3448 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3449
3450 tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3451 nbd = le16toh(tx_start_bd->nbd) - 1;
3452
3453 new_cons = (tx_buf->first_bd + nbd);
3454
3455 /* free the mbuf */
3456 if (__predict_true(tx_buf->m != NULL)) {
3457 m_freem(tx_buf->m);
3459 } else {
3461 }
3462
3463 tx_buf->m = NULL;
3464 tx_buf->first_bd = 0;
3465
3466 return (new_cons);
3467}
3468
3469/* transmit timeout watchdog */
3470static int
3472 struct bxe_fastpath *fp)
3473{
3474 BXE_FP_TX_LOCK(fp);
3475
3476 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3477 BXE_FP_TX_UNLOCK(fp);
3478 return (0);
3479 }
3480
3481 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3482
3483 BXE_FP_TX_UNLOCK(fp);
3485 taskqueue_enqueue_timeout(taskqueue_thread,
3486 &sc->sp_err_timeout_task, hz/10);
3487
3488 return (-1);
3489}
3490
3491/* processes transmit completions */
3492static uint8_t
3494 struct bxe_fastpath *fp)
3495{
3496 if_t ifp = sc->ifp;
3497 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3498 uint16_t tx_bd_avail;
3499
3501
3502 bd_cons = fp->tx_bd_cons;
3503 hw_cons = le16toh(*fp->tx_cons_sb);
3504 sw_cons = fp->tx_pkt_cons;
3505
3506 while (sw_cons != hw_cons) {
3507 pkt_cons = TX_BD(sw_cons);
3508
3509 BLOGD(sc, DBG_TX,
3510 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3511 fp->index, hw_cons, sw_cons, pkt_cons);
3512
3513 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3514
3515 sw_cons++;
3516 }
3517
3518 fp->tx_pkt_cons = sw_cons;
3519 fp->tx_bd_cons = bd_cons;
3520
3521 BLOGD(sc, DBG_TX,
3522 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3523 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3524
3525 mb();
3526
3527 tx_bd_avail = bxe_tx_avail(sc, fp);
3528
3529 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3530 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3531 } else {
3532 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3533 }
3534
3535 if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3536 /* reset the watchdog timer if there are pending transmits */
3538 return (TRUE);
3539 } else {
3540 /* clear watchdog when there are no pending transmits */
3541 fp->watchdog_timer = 0;
3542 return (FALSE);
3543 }
3544}
3545
3546static void
3548{
3549 struct bxe_fastpath *fp;
3550 int i, count;
3551
3552 /* wait until all TX fastpath tasks have completed */
3553 for (i = 0; i < sc->num_queues; i++) {
3554 fp = &sc->fp[i];
3555
3556 count = 1000;
3557
3558 while (bxe_has_tx_work(fp)) {
3559
3560 BXE_FP_TX_LOCK(fp);
3561 bxe_txeof(sc, fp);
3562 BXE_FP_TX_UNLOCK(fp);
3563
3564 if (count == 0) {
3565 BLOGE(sc, "Timeout waiting for fp[%d] "
3566 "transmits to complete!\n", i);
3567 bxe_panic(sc, ("tx drain failure\n"));
3568 return;
3569 }
3570
3571 count--;
3572 DELAY(1000);
3573 rmb();
3574 }
3575 }
3576
3577 return;
3578}
3579
3580static int
3582 struct ecore_vlan_mac_obj *mac_obj,
3583 int mac_type,
3584 uint8_t wait_for_comp)
3585{
3586 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3587 int rc;
3588
3589 /* wait for completion of requested */
3590 if (wait_for_comp) {
3591 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3592 }
3593
3594 /* Set the mac type of addresses we want to clear */
3595 bxe_set_bit(mac_type, &vlan_mac_flags);
3596
3597 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3598 if (rc < 0) {
3599 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3600 rc, mac_type, wait_for_comp);
3601 }
3602
3603 return (rc);
3604}
3605
3606static int
3608 uint32_t rx_mode,
3609 unsigned long *rx_accept_flags,
3610 unsigned long *tx_accept_flags)
3611{
3612 /* Clear the flags first */
3613 *rx_accept_flags = 0;
3614 *tx_accept_flags = 0;
3615
3616 switch (rx_mode) {
3617 case BXE_RX_MODE_NONE:
3618 /*
3619 * 'drop all' supersedes any accept flags that may have been
3620 * passed to the function.
3621 */
3622 break;
3623
3624 case BXE_RX_MODE_NORMAL:
3625 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3626 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3628
3629 /* internal switching mode */
3630 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3631 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3632 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3633
3634 break;
3635
3637 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3638 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3639 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3640
3641 /* internal switching mode */
3642 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3643 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645
3646 break;
3647
3649 /*
3650 * According to deffinition of SI mode, iface in promisc mode
3651 * should receive matched and unmatched (in resolution of port)
3652 * unicast packets.
3653 */
3654 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3655 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3656 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3657 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3658
3659 /* internal switching mode */
3660 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3661 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3662
3663 if (IS_MF_SI(sc)) {
3664 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3665 } else {
3666 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3667 }
3668
3669 break;
3670
3671 default:
3672 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3673 return (-1);
3674 }
3675
3676 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3677 if (rx_mode != BXE_RX_MODE_NONE) {
3678 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3679 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3680 }
3681
3682 return (0);
3683}
3684
3685static int
3687 uint8_t cl_id,
3688 unsigned long rx_mode_flags,
3689 unsigned long rx_accept_flags,
3690 unsigned long tx_accept_flags,
3691 unsigned long ramrod_flags)
3692{
3693 struct ecore_rx_mode_ramrod_params ramrod_param;
3694 int rc;
3695
3696 memset(&ramrod_param, 0, sizeof(ramrod_param));
3697
3698 /* Prepare ramrod parameters */
3699 ramrod_param.cid = 0;
3700 ramrod_param.cl_id = cl_id;
3701 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3702 ramrod_param.func_id = SC_FUNC(sc);
3703
3704 ramrod_param.pstate = &sc->sp_state;
3705 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3706
3707 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3708 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3709
3711
3712 ramrod_param.ramrod_flags = ramrod_flags;
3713 ramrod_param.rx_mode_flags = rx_mode_flags;
3714
3715 ramrod_param.rx_accept_flags = rx_accept_flags;
3716 ramrod_param.tx_accept_flags = tx_accept_flags;
3717
3718 rc = ecore_config_rx_mode(sc, &ramrod_param);
3719 if (rc < 0) {
3720 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3721 "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3722 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3723 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3724 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3725 return (rc);
3726 }
3727
3728 return (0);
3729}
3730
3731static int
3733{
3734 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3735 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3736 int rc;
3737
3740 if (rc) {
3741 return (rc);
3742 }
3743
3746
3747 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3748 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3750 ramrod_flags));
3751}
3752
3753/* returns the "mcp load_code" according to global load_count array */
3754static int
3756{
3757 int path = SC_PATH(sc);
3758 int port = SC_PORT(sc);
3759
3760 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3761 path, load_count[path][0], load_count[path][1],
3762 load_count[path][2]);
3763 load_count[path][0]++;
3764 load_count[path][1 + port]++;
3765 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3766 path, load_count[path][0], load_count[path][1],
3767 load_count[path][2]);
3768 if (load_count[path][0] == 1) {
3770 } else if (load_count[path][1 + port] == 1) {
3772 } else {
3774 }
3775}
3776
3777/* returns the "mcp load_code" according to global load_count array */
3778static int
3780{
3781 int port = SC_PORT(sc);
3782 int path = SC_PATH(sc);
3783
3784 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3785 path, load_count[path][0], load_count[path][1],
3786 load_count[path][2]);
3787 load_count[path][0]--;
3788 load_count[path][1 + port]--;
3789 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3790 path, load_count[path][0], load_count[path][1],
3791 load_count[path][2]);
3792 if (load_count[path][0] == 0) {
3794 } else if (load_count[path][1 + port] == 0) {
3796 } else {
3798 }
3799}
3800
3801/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3802static uint32_t
3804 int unload_mode)
3805{
3806 uint32_t reset_code = 0;
3807
3808 /* Select the UNLOAD request mode */
3809 if (unload_mode == UNLOAD_NORMAL) {
3811 } else {
3813 }
3814
3815 /* Send the request to the MCP */
3816 if (!BXE_NOMCP(sc)) {
3817 reset_code = bxe_fw_command(sc, reset_code, 0);
3818 } else {
3819 reset_code = bxe_nic_unload_no_mcp(sc);
3820 }
3821
3822 return (reset_code);
3823}
3824
3825/* send UNLOAD_DONE command to the MCP */
3826static void
3828 uint8_t keep_link)
3829{
3830 uint32_t reset_param =
3832
3833 /* Report UNLOAD_DONE to MCP */
3834 if (!BXE_NOMCP(sc)) {
3835 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3836 }
3837}
3838
3839static int
3841{
3842 int tout = 50;
3843
3844 if (!sc->port.pmf) {
3845 return (0);
3846 }
3847
3848 /*
3849 * (assumption: No Attention from MCP at this stage)
3850 * PMF probably in the middle of TX disable/enable transaction
3851 * 1. Sync IRS for default SB
3852 * 2. Sync SP queue - this guarantees us that attention handling started
3853 * 3. Wait, that TX disable/enable transaction completes
3854 *
3855 * 1+2 guarantee that if DCBX attention was scheduled it already changed
3856 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3857 * received completion for the transaction the state is TX_STOPPED.
3858 * State will return to STARTED after completion of TX_STOPPED-->STARTED
3859 * transaction.
3860 */
3861
3862 /* XXX make sure default SB ISR is done */
3863 /* need a way to synchronize an irq (intr_mtx?) */
3864
3865 /* XXX flush any work queues */
3866
3867 while (ecore_func_get_state(sc, &sc->func_obj) !=
3868 ECORE_F_STATE_STARTED && tout--) {
3869 DELAY(20000);
3870 }
3871
3873 /*
3874 * Failed to complete the transaction in a "good way"
3875 * Force both transactions with CLR bit.
3876 */
3877 struct ecore_func_state_params func_params = { NULL };
3878
3879 BLOGE(sc, "Unexpected function state! "
3880 "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3881
3882 func_params.f_obj = &sc->func_obj;
3884
3885 /* STARTED-->TX_STOPPED */
3886 func_params.cmd = ECORE_F_CMD_TX_STOP;
3887 ecore_func_state_change(sc, &func_params);
3888
3889 /* TX_STOPPED-->STARTED */
3890 func_params.cmd = ECORE_F_CMD_TX_START;
3891 return (ecore_func_state_change(sc, &func_params));
3892 }
3893
3894 return (0);
3895}
3896
3897static int
3899 int index)
3900{
3901 struct bxe_fastpath *fp = &sc->fp[index];
3902 struct ecore_queue_state_params q_params = { NULL };
3903 int rc;
3904
3905 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3906
3907 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3908 /* We want to wait for completion in this context */
3910
3911 /* Stop the primary connection: */
3912
3913 /* ...halt the connection */
3914 q_params.cmd = ECORE_Q_CMD_HALT;
3915 rc = ecore_queue_state_change(sc, &q_params);
3916 if (rc) {
3917 return (rc);
3918 }
3919
3920 /* ...terminate the connection */
3921 q_params.cmd = ECORE_Q_CMD_TERMINATE;
3922 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3924 rc = ecore_queue_state_change(sc, &q_params);
3925 if (rc) {
3926 return (rc);
3927 }
3928
3929 /* ...delete cfc entry */
3930 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3931 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3933 return (ecore_queue_state_change(sc, &q_params));
3934}
3935
3936/* wait for the outstanding SP commands */
3937static inline uint8_t
3939 unsigned long mask)
3940{
3941 unsigned long tmp;
3942 int tout = 5000; /* wait for 5 secs tops */
3943
3944 while (tout--) {
3945 mb();
3946 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3947 return (TRUE);
3948 }
3949
3950 DELAY(1000);
3951 }
3952
3953 mb();
3954
3955 tmp = atomic_load_acq_long(&sc->sp_state);
3956 if (tmp & mask) {
3957 BLOGE(sc, "Filtering completion timed out: "
3958 "sp_state 0x%lx, mask 0x%lx\n",
3959 tmp, mask);
3960 return (FALSE);
3961 }
3962
3963 return (FALSE);
3964}
3965
3966static int
3968{
3969 struct ecore_func_state_params func_params = { NULL };
3970 int rc;
3971
3972 /* prepare parameters for function state transitions */
3974 func_params.f_obj = &sc->func_obj;
3975 func_params.cmd = ECORE_F_CMD_STOP;
3976
3977 /*
3978 * Try to stop the function the 'good way'. If it fails (in case
3979 * of a parity error during bxe_chip_cleanup()) and we are
3980 * not in a debug mode, perform a state transaction in order to
3981 * enable further HW_RESET transaction.
3982 */
3983 rc = ecore_func_state_change(sc, &func_params);
3984 if (rc) {
3985 BLOGE(sc, "FUNC_STOP ramrod failed. "
3986 "Running a dry transaction (%d)\n", rc);
3988 return (ecore_func_state_change(sc, &func_params));
3989 }
3990
3991 return (0);
3992}
3993
3994static int
3996 uint32_t load_code)
3997{
3998 struct ecore_func_state_params func_params = { NULL };
3999
4000 /* Prepare parameters for function state transitions */
4002
4003 func_params.f_obj = &sc->func_obj;
4004 func_params.cmd = ECORE_F_CMD_HW_RESET;
4005
4006 func_params.params.hw_init.load_phase = load_code;
4007
4008 return (ecore_func_state_change(sc, &func_params));
4009}
4010
4011static void
4013 int disable_hw)
4014{
4015 if (disable_hw) {
4016 /* prevent the HW from sending interrupts */
4017 bxe_int_disable(sc);
4018 }
4019
4020 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4021 /* make sure all ISRs are done */
4022
4023 /* XXX make sure sp_task is not running */
4024 /* cancel and flush work queues */
4025}
4026
4027static void
4029 uint32_t unload_mode,
4030 uint8_t keep_link)
4031{
4032 int port = SC_PORT(sc);
4033 struct ecore_mcast_ramrod_params rparam = { NULL };
4034 uint32_t reset_code;
4035 int i, rc = 0;
4036
4038
4039 /* give HW time to discard old tx messages */
4040 DELAY(1000);
4041
4042 /* Clean all ETH MACs */
4043 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4044 if (rc < 0) {
4045 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4046 }
4047
4048 /* Clean up UC list */
4049 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4050 if (rc < 0) {
4051 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4052 }
4053
4054 /* Disable LLH */
4055 if (!CHIP_IS_E1(sc)) {
4056 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4057 }
4058
4059 /* Set "drop all" to stop Rx */
4060
4061 /*
4062 * We need to take the BXE_MCAST_LOCK() here in order to prevent
4063 * a race between the completion code and this code.
4064 */
4065 BXE_MCAST_LOCK(sc);
4066
4069 } else {
4071 }
4072
4073 /* Clean up multicast configuration */
4074 rparam.mcast_obj = &sc->mcast_obj;
4075 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4076 if (rc < 0) {
4077 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4078 }
4079
4080 BXE_MCAST_UNLOCK(sc);
4081
4082 // XXX bxe_iov_chip_cleanup(sc);
4083
4084 /*
4085 * Send the UNLOAD_REQUEST to the MCP. This will return if
4086 * this function should perform FUNCTION, PORT, or COMMON HW
4087 * reset.
4088 */
4089 reset_code = bxe_send_unload_req(sc, unload_mode);
4090
4091 /*
4092 * (assumption: No Attention from MCP at this stage)
4093 * PMF probably in the middle of TX disable/enable transaction
4094 */
4095 rc = bxe_func_wait_started(sc);
4096 if (rc) {
4097 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4098 }
4099
4100 /*
4101 * Close multi and leading connections
4102 * Completions for ramrods are collected in a synchronous way
4103 */
4104 for (i = 0; i < sc->num_queues; i++) {
4105 if (bxe_stop_queue(sc, i)) {
4106 goto unload_error;
4107 }
4108 }
4109
4110 /*
4111 * If SP settings didn't get completed so far - something
4112 * very wrong has happen.
4113 */
4114 if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4115 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4116 }
4117
4118unload_error:
4119
4120 rc = bxe_func_stop(sc);
4121 if (rc) {
4122 BLOGE(sc, "Function stop failed!(%d)\n", rc);
4123 }
4124
4125 /* disable HW interrupts */
4126 bxe_int_disable_sync(sc, TRUE);
4127
4128 /* detach interrupts */
4130
4131 /* Reset the chip */
4132 rc = bxe_reset_hw(sc, reset_code);
4133 if (rc) {
4134 BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4135 }
4136
4137 /* Report UNLOAD_DONE to MCP */
4138 bxe_send_unload_done(sc, keep_link);
4139}
4140
4141static void
4143{
4144 uint32_t val;
4145 int port = SC_PORT(sc);
4146
4147 BLOGD(sc, DBG_LOAD,
4148 "Disabling 'close the gates'\n");
4149
4150 if (CHIP_IS_E1(sc)) {
4151 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4153 val = REG_RD(sc, addr);
4154 val &= ~(0x300);
4155 REG_WR(sc, addr, val);
4156 } else {
4161 }
4162}
4163
4164/*
4165 * Cleans the object that have internal lists without sending
4166 * ramrods. Should be run when interrutps are disabled.
4167 */
4168static void
4170{
4171 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4172 struct ecore_mcast_ramrod_params rparam = { NULL };
4173 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4174 int rc;
4175
4176 /* Cleanup MACs' object first... */
4177
4178 /* Wait for completion of requested */
4179 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4180 /* Perform a dry cleanup */
4181 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4182
4183 /* Clean ETH primary MAC */
4184 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4185 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4186 &ramrod_flags);
4187 if (rc != 0) {
4188 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4189 }
4190
4191 /* Cleanup UC list */
4192 vlan_mac_flags = 0;
4193 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4194 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4195 &ramrod_flags);
4196 if (rc != 0) {
4197 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4198 }
4199
4200 /* Now clean mcast object... */
4201
4202 rparam.mcast_obj = &sc->mcast_obj;
4204
4205 /* Add a DEL command... */
4206 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4207 if (rc < 0) {
4208 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4209 }
4210
4211 /* now wait until all pending commands are cleared */
4212
4213 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4214 while (rc != 0) {
4215 if (rc < 0) {
4216 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4217 return;
4218 }
4219
4220 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4221 }
4222}
4223
4224/* stop the controller */
4225static __noinline int
4227 uint32_t unload_mode,
4228 uint8_t keep_link)
4229{
4230 uint8_t global = FALSE;
4231 uint32_t val;
4232 int i;
4233
4235
4236 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4237
4238 for (i = 0; i < sc->num_queues; i++) {
4239 struct bxe_fastpath *fp;
4240
4241 fp = &sc->fp[i];
4242 fp->watchdog_timer = 0;
4243 BXE_FP_TX_LOCK(fp);
4244 BXE_FP_TX_UNLOCK(fp);
4245 }
4246
4247 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4248
4249 /* mark driver as unloaded in shmem2 */
4250 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4251 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4252 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4254 }
4255
4258
4260 /*
4261 * We can get here if the driver has been unloaded
4262 * during parity error recovery and is either waiting for a
4263 * leader to complete or for other functions to unload and
4264 * then ifconfig down has been issued. In this case we want to
4265 * unload and let other functions to complete a recovery
4266 * process.
4267 */
4269 sc->is_leader = 0;
4271 mb();
4272 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4273 }
4274 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4275 " state = 0x%x\n", sc->recovery_state, sc->state);
4276 return (-1);
4277 }
4278
4279 /*
4280 * Nothing to do during unload if previous bxe_nic_load()
4281 * did not completed successfully - all resourses are released.
4282 */
4283 if ((sc->state == BXE_STATE_CLOSED) ||
4284 (sc->state == BXE_STATE_ERROR)) {
4285 return (0);
4286 }
4287
4289 mb();
4290
4291 /* stop tx */
4293
4295 /* XXX set rx mode ??? */
4296
4297 if (IS_PF(sc) && !sc->grcdump_done) {
4298 /* set ALWAYS_ALIVE bit in shmem */
4300
4302
4305 }
4306
4307 /* wait till consumers catch up with producers in all queues */
4309
4310 /* if VF indicate to PF this function is going down (PF will delete sp
4311 * elements and clear initializations
4312 */
4313 if (IS_VF(sc)) {
4314 ; /* bxe_vfpf_close_vf(sc); */
4315 } else if (unload_mode != UNLOAD_RECOVERY) {
4316 /* if this is a normal/close unload need to clean up chip */
4317 if (!sc->grcdump_done)
4318 bxe_chip_cleanup(sc, unload_mode, keep_link);
4319 } else {
4320 /* Send the UNLOAD_REQUEST to the MCP */
4321 bxe_send_unload_req(sc, unload_mode);
4322
4323 /*
4324 * Prevent transactions to host from the functions on the
4325 * engine that doesn't reset global blocks in case of global
4326 * attention once gloabl blocks are reset and gates are opened
4327 * (the engine which leader will perform the recovery
4328 * last).
4329 */
4330 if (!CHIP_IS_E1x(sc)) {
4332 }
4333
4334 /* disable HW interrupts */
4335 bxe_int_disable_sync(sc, TRUE);
4336
4337 /* detach interrupts */
4339
4340 /* Report UNLOAD_DONE to MCP */
4341 bxe_send_unload_done(sc, FALSE);
4342 }
4343
4344 /*
4345 * At this stage no more interrupts will arrive so we may safely clean
4346 * the queue'able objects here in case they failed to get cleaned so far.
4347 */
4348 if (IS_PF(sc)) {
4350 }
4351
4352 /* There should be no more pending SP commands at this stage */
4353 sc->sp_state = 0;
4354
4355 sc->port.pmf = 0;
4356
4358
4359 if (IS_PF(sc)) {
4361 }
4362
4364
4366
4367 /*
4368 * Check if there are pending parity attentions. If there are - set
4369 * RECOVERY_IN_PROGRESS.
4370 */
4371 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4373
4374 /* Set RESET_IS_GLOBAL if needed */
4375 if (global) {
4377 }
4378 }
4379
4380 /*
4381 * The last driver must disable a "close the gate" if there is no
4382 * parity attention or "process kill" pending.
4383 */
4384 if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4387 }
4388
4389 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4390
4392
4393 return (0);
4394}
4395
4396/*
4397 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4398 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4399 */
4400static int
4401bxe_ifmedia_update(struct ifnet *ifp)
4402{
4403 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4404 struct ifmedia *ifm;
4405
4406 ifm = &sc->ifmedia;
4407
4408 /* We only support Ethernet media type. */
4409 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4410 return (EINVAL);
4411 }
4412
4413 switch (IFM_SUBTYPE(ifm->ifm_media)) {
4414 case IFM_AUTO:
4415 break;
4416 case IFM_10G_CX4:
4417 case IFM_10G_SR:
4418 case IFM_10G_T:
4419 case IFM_10G_TWINAX:
4420 default:
4421 /* We don't support changing the media type. */
4422 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4423 IFM_SUBTYPE(ifm->ifm_media));
4424 return (EINVAL);
4425 }
4426
4427 return (0);
4428}
4429
4430/*
4431 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4432 */
4433static void
4434bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4435{
4436 struct bxe_softc *sc = if_getsoftc(ifp);
4437
4438 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4439 line if the IFM_AVALID flag is *NOT* set. So we need to set this
4440 flag unconditionally (irrespective of the admininistrative
4441 'up/down' state of the interface) to ensure that that line is always
4442 displayed.
4443 */
4444 ifmr->ifm_status = IFM_AVALID;
4445
4446 /* Setup the default interface info. */
4447 ifmr->ifm_active = IFM_ETHER;
4448
4449 /* Report link down if the driver isn't running. */
4450 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4451 ifmr->ifm_active |= IFM_NONE;
4452 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4453 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4454 __func__, sc->link_vars.link_up);
4455 return;
4456 }
4457
4458
4459 if (sc->link_vars.link_up) {
4460 ifmr->ifm_status |= IFM_ACTIVE;
4461 ifmr->ifm_active |= IFM_FDX;
4462 } else {
4463 ifmr->ifm_active |= IFM_NONE;
4464 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4465 __func__);
4466 return;
4467 }
4468
4469 ifmr->ifm_active |= sc->media;
4470 return;
4471}
4472
4473static void
4475 int pending)
4476{
4477 struct bxe_softc *sc = (struct bxe_softc *)context;
4478 long work = atomic_load_acq_long(&sc->chip_tq_flags);
4479
4480 switch (work)
4481 {
4482
4483 case CHIP_TQ_REINIT:
4484 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4485 /* restart the interface */
4486 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4488 BXE_CORE_LOCK(sc);
4489 bxe_stop_locked(sc);
4490 bxe_init_locked(sc);
4491 BXE_CORE_UNLOCK(sc);
4492 }
4493 break;
4494
4495 default:
4496 break;
4497 }
4498}
4499
4500/*
4501 * Handles any IOCTL calls from the operating system.
4502 *
4503 * Returns:
4504 * 0 = Success, >0 Failure
4505 */
4506static int
4508 u_long command,
4509 caddr_t data)
4510{
4511 struct bxe_softc *sc = if_getsoftc(ifp);
4512 struct ifreq *ifr = (struct ifreq *)data;
4513 int mask = 0;
4514 int reinit = 0;
4515 int error = 0;
4516
4517 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4518 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4519
4520 switch (command)
4521 {
4522 case SIOCSIFMTU:
4523 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4524 ifr->ifr_mtu);
4525
4526 if (sc->mtu == ifr->ifr_mtu) {
4527 /* nothing to change */
4528 break;
4529 }
4530
4531 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4532 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4533 ifr->ifr_mtu, mtu_min, mtu_max);
4534 error = EINVAL;
4535 break;
4536 }
4537
4538 atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4539 (unsigned long)ifr->ifr_mtu);
4540 /*
4541 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4542 (unsigned long)ifr->ifr_mtu);
4543 XXX - Not sure why it needs to be atomic
4544 */
4545 if_setmtu(ifp, ifr->ifr_mtu);
4546 reinit = 1;
4547 break;
4548
4549 case SIOCSIFFLAGS:
4550 /* toggle the interface state up or down */
4551 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4552
4553 BXE_CORE_LOCK(sc);
4554 /* check if the interface is up */
4555 if (if_getflags(ifp) & IFF_UP) {
4556 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4557 /* set the receive mode flags */
4558 bxe_set_rx_mode(sc);
4559 } else if(sc->state != BXE_STATE_DISABLED) {
4560 bxe_init_locked(sc);
4561 }
4562 } else {
4563 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4565 bxe_stop_locked(sc);
4566 }
4567 }
4568 BXE_CORE_UNLOCK(sc);
4569
4570 break;
4571
4572 case SIOCADDMULTI:
4573 case SIOCDELMULTI:
4574 /* add/delete multicast addresses */
4575 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4576
4577 /* check if the interface is up */
4578 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4579 /* set the receive mode flags */
4580 BXE_CORE_LOCK(sc);
4581 bxe_set_rx_mode(sc);
4582 BXE_CORE_UNLOCK(sc);
4583 }
4584
4585 break;
4586
4587 case SIOCSIFCAP:
4588 /* find out which capabilities have changed */
4589 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4590
4591 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4592 mask);
4593
4594 /* toggle the LRO capabilites enable flag */
4595 if (mask & IFCAP_LRO) {
4596 if_togglecapenable(ifp, IFCAP_LRO);
4597 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4598 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4599 reinit = 1;
4600 }
4601
4602 /* toggle the TXCSUM checksum capabilites enable flag */
4603 if (mask & IFCAP_TXCSUM) {
4604 if_togglecapenable(ifp, IFCAP_TXCSUM);
4605 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4606 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4607 if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4608 if_sethwassistbits(ifp, (CSUM_IP |
4609 CSUM_TCP |
4610 CSUM_UDP |
4611 CSUM_TSO |
4613 CSUM_UDP_IPV6), 0);
4614 } else {
4615 if_clearhwassist(ifp); /* XXX */
4616 }
4617 }
4618
4619 /* toggle the RXCSUM checksum capabilities enable flag */
4620 if (mask & IFCAP_RXCSUM) {
4621 if_togglecapenable(ifp, IFCAP_RXCSUM);
4622 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4623 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4624 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4625 if_sethwassistbits(ifp, (CSUM_IP |
4626 CSUM_TCP |
4627 CSUM_UDP |
4628 CSUM_TSO |
4630 CSUM_UDP_IPV6), 0);
4631 } else {
4632 if_clearhwassist(ifp); /* XXX */
4633 }
4634 }
4635
4636 /* toggle TSO4 capabilities enabled flag */
4637 if (mask & IFCAP_TSO4) {
4638 if_togglecapenable(ifp, IFCAP_TSO4);
4639 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4640 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4641 }
4642
4643 /* toggle TSO6 capabilities enabled flag */
4644 if (mask & IFCAP_TSO6) {
4645 if_togglecapenable(ifp, IFCAP_TSO6);
4646 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4647 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4648 }
4649
4650 /* toggle VLAN_HWTSO capabilities enabled flag */
4651 if (mask & IFCAP_VLAN_HWTSO) {
4652
4653 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4654 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4655 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4656 }
4657
4658 /* toggle VLAN_HWCSUM capabilities enabled flag */
4659 if (mask & IFCAP_VLAN_HWCSUM) {
4660 /* XXX investigate this... */
4661 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4662 error = EINVAL;
4663 }
4664
4665 /* toggle VLAN_MTU capabilities enable flag */
4666 if (mask & IFCAP_VLAN_MTU) {
4667 /* XXX investigate this... */
4668 BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4669 error = EINVAL;
4670 }
4671
4672 /* toggle VLAN_HWTAGGING capabilities enabled flag */
4673 if (mask & IFCAP_VLAN_HWTAGGING) {
4674 /* XXX investigate this... */
4675 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4676 error = EINVAL;
4677 }
4678
4679 /* toggle VLAN_HWFILTER capabilities enabled flag */
4680 if (mask & IFCAP_VLAN_HWFILTER) {
4681 /* XXX investigate this... */
4682 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4683 error = EINVAL;
4684 }
4685
4686 /* XXX not yet...
4687 * IFCAP_WOL_MAGIC
4688 */
4689
4690 break;
4691
4692 case SIOCSIFMEDIA:
4693 case SIOCGIFMEDIA:
4694 /* set/get interface media */
4695 BLOGD(sc, DBG_IOCTL,
4696 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4697 (command & 0xff));
4698 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4699 break;
4700
4701 default:
4702 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4703 (command & 0xff));
4704 error = ether_ioctl(ifp, command, data);
4705 break;
4706 }
4707
4708 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4709 BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4710 "Re-initializing hardware from IOCTL change\n");
4712 BXE_CORE_LOCK(sc);
4713 bxe_stop_locked(sc);
4714 bxe_init_locked(sc);
4715 BXE_CORE_UNLOCK(sc);
4716 }
4717
4718 return (error);
4719}
4720
4721static __noinline void
4723 struct mbuf *m,
4724 uint8_t contents)
4725{
4726 char * type;
4727 int i = 0;
4728
4729 if (!(sc->debug & DBG_MBUF)) {
4730 return;
4731 }
4732
4733 if (m == NULL) {
4734 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4735 return;
4736 }
4737
4738 while (m) {
4739
4740 BLOGD(sc, DBG_MBUF,
4741 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4742 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4743
4744 if (m->m_flags & M_PKTHDR) {
4745 BLOGD(sc, DBG_MBUF,
4746 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4747 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4748 (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4749 }
4750
4751 if (m->m_flags & M_EXT) {
4752 switch (m->m_ext.ext_type) {
4753 case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
4754 case EXT_SFBUF: type = "EXT_SFBUF"; break;
4755 case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
4756 case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
4757 case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
4758 case EXT_PACKET: type = "EXT_PACKET"; break;
4759 case EXT_MBUF: type = "EXT_MBUF"; break;
4760 case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
4761 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
4762 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4763 case EXT_EXTREF: type = "EXT_EXTREF"; break;
4764 default: type = "UNKNOWN"; break;
4765 }
4766
4767 BLOGD(sc, DBG_MBUF,
4768 "%02d: - m_ext: %p ext_size=%d type=%s\n",
4769 i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4770 }
4771
4772 if (contents) {
4773 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4774 }
4775
4776 m = m->m_next;
4777 i++;
4778 }
4779}
4780
4781/*
4782 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4783 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4784 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4785 * The headers comes in a separate bd in FreeBSD so 13-3=10.
4786 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4787 */
4788static int
4790 int nsegs,
4791 bus_dma_segment_t *segs,
4792 struct mbuf *m)
4793{
4794 uint32_t num_wnds, wnd_size, wnd_sum;
4795 int32_t frag_idx, wnd_idx;
4796 unsigned short lso_mss;
4797
4798 wnd_sum = 0;
4799 wnd_size = 10;
4800 num_wnds = nsegs - wnd_size;
4801 lso_mss = htole16(m->m_pkthdr.tso_segsz);
4802
4803 /*
4804 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4805 * first window sum of data while skipping the first assuming it is the
4806 * header in FreeBSD.
4807 */
4808 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4809 wnd_sum += htole16(segs[frag_idx].ds_len);
4810 }
4811
4812 /* check the first 10 bd window size */
4813 if (wnd_sum < lso_mss) {
4814 return (1);
4815 }
4816
4817 /* run through the windows */
4818 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4819 /* subtract the first mbuf->m_len of the last wndw(-header) */
4820 wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4821 /* add the next mbuf len to the len of our new window */
4822 wnd_sum += htole16(segs[frag_idx].ds_len);
4823 if (wnd_sum < lso_mss) {
4824 return (1);
4825 }
4826 }
4827
4828 return (0);
4829}
4830
4831static uint8_t
4833 struct mbuf *m,
4834 uint32_t *parsing_data)
4835{
4836 struct ether_vlan_header *eh = NULL;
4837 struct ip *ip4 = NULL;
4838 struct ip6_hdr *ip6 = NULL;
4839 caddr_t ip = NULL;
4840 struct tcphdr *th = NULL;
4841 int e_hlen, ip_hlen, l4_off;
4842 uint16_t proto;
4843
4844 if (m->m_pkthdr.csum_flags == CSUM_IP) {
4845 /* no L4 checksum offload needed */
4846 return (0);
4847 }
4848
4849 /* get the Ethernet header */
4850 eh = mtod(m, struct ether_vlan_header *);
4851
4852 /* handle VLAN encapsulation if present */
4853 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4854 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4855 proto = ntohs(eh->evl_proto);
4856 } else {
4857 e_hlen = ETHER_HDR_LEN;
4858 proto = ntohs(eh->evl_encap_proto);
4859 }
4860
4861 switch (proto) {
4862 case ETHERTYPE_IP:
4863 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4864 ip4 = (m->m_len < sizeof(struct ip)) ?
4865 (struct ip *)m->m_next->m_data :
4866 (struct ip *)(m->m_data + e_hlen);
4867 /* ip_hl is number of 32-bit words */
4868 ip_hlen = (ip4->ip_hl << 2);
4869 ip = (caddr_t)ip4;
4870 break;
4871 case ETHERTYPE_IPV6:
4872 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4873 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4874 (struct ip6_hdr *)m->m_next->m_data :
4875 (struct ip6_hdr *)(m->m_data + e_hlen);
4876 /* XXX cannot support offload with IPv6 extensions */
4877 ip_hlen = sizeof(struct ip6_hdr);
4878 ip = (caddr_t)ip6;
4879 break;
4880 default:
4881 /* We can't offload in this case... */
4882 /* XXX error stat ??? */
4883 return (0);
4884 }
4885
4886 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4887 l4_off = (e_hlen + ip_hlen);
4888
4889 *parsing_data |=
4892
4893 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4894 CSUM_TSO |
4895 CSUM_TCP_IPV6)) {
4897 th = (struct tcphdr *)(ip + ip_hlen);
4898 /* th_off is number of 32-bit words */
4899 *parsing_data |= ((th->th_off <<
4902 return (l4_off + (th->th_off << 2)); /* entire header length */
4903 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4904 CSUM_UDP_IPV6)) {
4906 return (l4_off + sizeof(struct udphdr)); /* entire header length */
4907 } else {
4908 /* XXX error stat ??? */
4909 return (0);
4910 }
4911}
4912
4913static uint8_t
4915 struct mbuf *m,
4916 struct eth_tx_parse_bd_e1x *pbd)
4917{
4918 struct ether_vlan_header *eh = NULL;
4919 struct ip *ip4 = NULL;
4920 struct ip6_hdr *ip6 = NULL;
4921 caddr_t ip = NULL;
4922 struct tcphdr *th = NULL;
4923 struct udphdr *uh = NULL;
4924 int e_hlen, ip_hlen;
4925 uint16_t proto;
4926 uint8_t hlen;
4927 uint16_t tmp_csum;
4928 uint32_t *tmp_uh;
4929
4930 /* get the Ethernet header */
4931 eh = mtod(m, struct ether_vlan_header *);
4932
4933 /* handle VLAN encapsulation if present */
4934 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4935 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4936 proto = ntohs(eh->evl_proto);
4937 } else {
4938 e_hlen = ETHER_HDR_LEN;
4939 proto = ntohs(eh->evl_encap_proto);
4940 }
4941
4942 switch (proto) {
4943 case ETHERTYPE_IP:
4944 /* get the IP header, if mbuf len < 20 then header in next mbuf */
4945 ip4 = (m->m_len < sizeof(struct ip)) ?
4946 (struct ip *)m->m_next->m_data :
4947 (struct ip *)(m->m_data + e_hlen);
4948 /* ip_hl is number of 32-bit words */
4949 ip_hlen = (ip4->ip_hl << 1);
4950 ip = (caddr_t)ip4;
4951 break;
4952 case ETHERTYPE_IPV6:
4953 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4954 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4955 (struct ip6_hdr *)m->m_next->m_data :
4956 (struct ip6_hdr *)(m->m_data + e_hlen);
4957 /* XXX cannot support offload with IPv6 extensions */
4958 ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4959 ip = (caddr_t)ip6;
4960 break;
4961 default:
4962 /* We can't offload in this case... */
4963 /* XXX error stat ??? */
4964 return (0);
4965 }
4966
4967 hlen = (e_hlen >> 1);
4968
4969 /* note that rest of global_data is indirectly zeroed here */
4970 if (m->m_flags & M_VLANTAG) {
4971 pbd->global_data =
4972 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4973 } else {
4974 pbd->global_data = htole16(hlen);
4975 }
4976
4977 pbd->ip_hlen_w = ip_hlen;
4978
4979 hlen += pbd->ip_hlen_w;
4980
4981 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4982
4983 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4984 CSUM_TSO |
4985 CSUM_TCP_IPV6)) {
4986 th = (struct tcphdr *)(ip + (ip_hlen << 1));
4987 /* th_off is number of 32-bit words */
4988 hlen += (uint16_t)(th->th_off << 1);
4989 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4990 CSUM_UDP_IPV6)) {
4991 uh = (struct udphdr *)(ip + (ip_hlen << 1));
4992 hlen += (sizeof(struct udphdr) / 2);
4993 } else {
4994 /* valid case as only CSUM_IP was set */
4995 return (0);
4996 }
4997
4998 pbd->total_hlen_w = htole16(hlen);
4999
5000 if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5001 CSUM_TSO |
5002 CSUM_TCP_IPV6)) {
5004 pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5005 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5006 CSUM_UDP_IPV6)) {
5008
5009 /*
5010 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5011 * checksums and does not know anything about the UDP header and where
5012 * the checksum field is located. It only knows about TCP. Therefore
5013 * we "lie" to the hardware for outgoing UDP packets w/ checksum
5014 * offload. Since the checksum field offset for TCP is 16 bytes and
5015 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5016 * bytes less than the start of the UDP header. This allows the
5017 * hardware to write the checksum in the correct spot. But the
5018 * hardware will compute a checksum which includes the last 10 bytes
5019 * of the IP header. To correct this we tweak the stack computed
5020 * pseudo checksum by folding in the calculation of the inverse
5021 * checksum for those final 10 bytes of the IP header. This allows
5022 * the correct checksum to be computed by the hardware.
5023 */
5024
5025 /* set pointer 10 bytes before UDP header */
5026 tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5027
5028 /* calculate a pseudo header checksum over the first 10 bytes */
5029 tmp_csum = in_pseudo(*tmp_uh,
5030 *(tmp_uh + 1),
5031 *(uint16_t *)(tmp_uh + 2));
5032
5033 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5034 }
5035
5036 return (hlen * 2); /* entire header length, number of bytes */
5037}
5038
5039static void
5040bxe_set_pbd_lso_e2(struct mbuf *m,
5041 uint32_t *parsing_data)
5042{
5043 *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5046
5047 /* XXX test for IPv6 with extension header... */
5048}
5049
5050static void
5051bxe_set_pbd_lso(struct mbuf *m,
5052 struct eth_tx_parse_bd_e1x *pbd)
5053{
5054 struct ether_vlan_header *eh = NULL;
5055 struct ip *ip = NULL;
5056 struct tcphdr *th = NULL;
5057 int e_hlen;
5058
5059 /* get the Ethernet header */
5060 eh = mtod(m, struct ether_vlan_header *);
5061
5062 /* handle VLAN encapsulation if present */
5063 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5064 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5065
5066 /* get the IP and TCP header, with LSO entire header in first mbuf */
5067 /* XXX assuming IPv4 */
5068 ip = (struct ip *)(m->m_data + e_hlen);
5069 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5070
5071 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5072 pbd->tcp_send_seq = ntohl(th->th_seq);
5073 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5074
5075#if 1
5076 /* XXX IPv4 */
5077 pbd->ip_id = ntohs(ip->ip_id);
5078 pbd->tcp_pseudo_csum =
5079 ntohs(in_pseudo(ip->ip_src.s_addr,
5080 ip->ip_dst.s_addr,
5081 htons(IPPROTO_TCP)));
5082#else
5083 /* XXX IPv6 */
5084 pbd->tcp_pseudo_csum =
5085 ntohs(in_pseudo(&ip6->ip6_src,
5086 &ip6->ip6_dst,
5087 htons(IPPROTO_TCP)));
5088#endif
5089
5090 pbd->global_data |=
5092}
5093
5094/*
5095 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5096 * visible to the controller.
5097 *
5098 * If an mbuf is submitted to this routine and cannot be given to the
5099 * controller (e.g. it has too many fragments) then the function may free
5100 * the mbuf and return to the caller.
5101 *
5102 * Returns:
5103 * 0 = Success, !0 = Failure
5104 * Note the side effect that an mbuf may be freed if it causes a problem.
5105 */
5106static int
5107bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5108{
5109 bus_dma_segment_t segs[32];
5110 struct mbuf *m0;
5111 struct bxe_sw_tx_bd *tx_buf;
5112 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5113 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5114 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5115 struct eth_tx_bd *tx_data_bd;
5116 struct eth_tx_bd *tx_total_pkt_size_bd;
5117 struct eth_tx_start_bd *tx_start_bd;
5118 uint16_t bd_prod, pkt_prod, total_pkt_size;
5119 uint8_t mac_type;
5120 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5121 struct bxe_softc *sc;
5122 uint16_t tx_bd_avail;
5123 struct ether_vlan_header *eh;
5124 uint32_t pbd_e2_parsing_data = 0;
5125 uint8_t hlen = 0;
5126 int tmp_bd;
5127 int i;
5128
5129 sc = fp->sc;
5130
5131 M_ASSERTPKTHDR(*m_head);
5132
5133 m0 = *m_head;
5134 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5135 tx_start_bd = NULL;
5136 tx_data_bd = NULL;
5137 tx_total_pkt_size_bd = NULL;
5138
5139 /* get the H/W pointer for packets and BDs */
5140 pkt_prod = fp->tx_pkt_prod;
5141 bd_prod = fp->tx_bd_prod;
5142
5143 mac_type = UNICAST_ADDRESS;
5144
5145 /* map the mbuf into the next open DMAable memory */
5146 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5147 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5148 tx_buf->m_map, m0,
5149 segs, &nsegs, BUS_DMA_NOWAIT);
5150
5151 /* mapping errors */
5152 if(__predict_false(error != 0)) {
5154 if (error == ENOMEM) {
5155 /* resource issue, try again later */
5156 rc = ENOMEM;
5157 } else if (error == EFBIG) {
5158 /* possibly recoverable with defragmentation */
5160 m0 = m_defrag(*m_head, M_NOWAIT);
5161 if (m0 == NULL) {
5163 rc = ENOBUFS;
5164 } else {
5165 /* defrag successful, try mapping again */
5166 *m_head = m0;
5167 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5168 tx_buf->m_map, m0,
5169 segs, &nsegs, BUS_DMA_NOWAIT);
5170 if (error) {
5172 rc = error;
5173 }
5174 }
5175 } else {
5176 /* unknown, unrecoverable mapping error */
5177 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5178 bxe_dump_mbuf(sc, m0, FALSE);
5179 rc = error;
5180 }
5181
5182 goto bxe_tx_encap_continue;
5183 }
5184
5185 tx_bd_avail = bxe_tx_avail(sc, fp);
5186
5187 /* make sure there is enough room in the send queue */
5188 if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5189 /* Recoverable, try again later. */
5191 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5192 rc = ENOMEM;
5193 goto bxe_tx_encap_continue;
5194 }
5195
5196 /* capture the current H/W TX chain high watermark */
5197 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5198 (TX_BD_USABLE - tx_bd_avail))) {
5199 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5200 }
5201
5202 /* make sure it fits in the packet window */
5203 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5204 /*
5205 * The mbuf may be to big for the controller to handle. If the frame
5206 * is a TSO frame we'll need to do an additional check.
5207 */
5208 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5209 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5210 goto bxe_tx_encap_continue; /* OK to send */
5211 } else {
5213 }
5214 } else {
5216 }
5217
5218 /* lets try to defragment this mbuf and remap it */
5220 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5221
5222 m0 = m_defrag(*m_head, M_NOWAIT);
5223 if (m0 == NULL) {
5225 /* Ugh, just drop the frame... :( */
5226 rc = ENOBUFS;
5227 } else {
5228 /* defrag successful, try mapping again */
5229 *m_head = m0;
5230 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5231 tx_buf->m_map, m0,
5232 segs, &nsegs, BUS_DMA_NOWAIT);
5233 if (error) {
5235 /* No sense in trying to defrag/copy chain, drop it. :( */
5236 rc = error;
5237 } else {
5238 /* if the chain is still too long then drop it */
5239 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5240 /*
5241 * in case TSO is enabled nsegs should be checked against
5242 * BXE_TSO_MAX_SEGMENTS
5243 */
5244 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5245 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5247 rc = ENODEV;
5248 }
5249 } else {
5250 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5251 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5253 rc = ENODEV;
5254 }
5255 }
5256 }
5257 }
5258 }
5259
5260bxe_tx_encap_continue:
5261
5262 /* Check for errors */
5263 if (rc) {
5264 if (rc == ENOMEM) {
5265 /* recoverable try again later */
5266 } else {
5269 m_freem(*m_head);
5270 *m_head = NULL;
5271 }
5272
5273 return (rc);
5274 }
5275
5276 /* set flag according to packet type (UNICAST_ADDRESS is default) */
5277 if (m0->m_flags & M_BCAST) {
5278 mac_type = BROADCAST_ADDRESS;
5279 } else if (m0->m_flags & M_MCAST) {
5280 mac_type = MULTICAST_ADDRESS;
5281 }
5282
5283 /* store the mbuf into the mbuf ring */
5284 tx_buf->m = m0;
5285 tx_buf->first_bd = fp->tx_bd_prod;
5286 tx_buf->flags = 0;
5287
5288 /* prepare the first transmit (start) BD for the mbuf */
5289 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5290
5291 BLOGD(sc, DBG_TX,
5292 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5293 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5294
5295 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5296 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5297 tx_start_bd->nbytes = htole16(segs[0].ds_len);
5298 total_pkt_size += tx_start_bd->nbytes;
5300
5301 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5302
5303 /* all frames have at least Start BD + Parsing BD */
5304 nbds = nsegs + 1;
5305 tx_start_bd->nbd = htole16(nbds);
5306
5307 if (m0->m_flags & M_VLANTAG) {
5308 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5309 tx_start_bd->bd_flags.as_bitfield |=
5311 } else {
5312 /* vf tx, start bd must hold the ethertype for fw to enforce it */
5313 if (IS_VF(sc)) {
5314 /* map ethernet header to find type and header length */
5315 eh = mtod(m0, struct ether_vlan_header *);
5316 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5317 } else {
5318 /* used by FW for packet accounting */
5319 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5320 }
5321 }
5322
5323 /*
5324 * add a parsing BD from the chain. The parsing BD is always added
5325 * though it is only used for TSO and chksum
5326 */
5327 bd_prod = TX_BD_NEXT(bd_prod);
5328
5329 if (m0->m_pkthdr.csum_flags) {
5330 if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5333 }
5334
5335 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5336 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5338 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5339 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5342 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5343 (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5345 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5348 }
5349 }
5350
5351 if (!CHIP_IS_E1x(sc)) {
5352 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5353 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5354
5355 if (m0->m_pkthdr.csum_flags) {
5356 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5357 }
5358
5359 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5360 mac_type);
5361 } else {
5362 uint16_t global_data = 0;
5363
5364 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5365 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5366
5367 if (m0->m_pkthdr.csum_flags) {
5368 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5369 }
5370
5371 SET_FLAG(global_data,
5373 pbd_e1x->global_data |= htole16(global_data);
5374 }
5375
5376 /* setup the parsing BD with TSO specific info */
5377 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5380
5381 if (__predict_false(tx_start_bd->nbytes > hlen)) {
5383
5384 /* split the first BD into header/data making the fw job easy */
5385 nbds++;
5386 tx_start_bd->nbd = htole16(nbds);
5387 tx_start_bd->nbytes = htole16(hlen);
5388
5389 bd_prod = TX_BD_NEXT(bd_prod);
5390
5391 /* new transmit BD after the tx_parse_bd */
5392 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5393 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5394 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5395 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
5396 if (tx_total_pkt_size_bd == NULL) {
5397 tx_total_pkt_size_bd = tx_data_bd;
5398 }
5399
5400 BLOGD(sc, DBG_TX,
5401 "TSO split header size is %d (%x:%x) nbds %d\n",
5402 le16toh(tx_start_bd->nbytes),
5403 le32toh(tx_start_bd->addr_hi),
5404 le32toh(tx_start_bd->addr_lo),
5405 nbds);
5406 }
5407
5408 if (!CHIP_IS_E1x(sc)) {
5409 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5410 } else {
5411 bxe_set_pbd_lso(m0, pbd_e1x);
5412 }
5413 }
5414
5415 if (pbd_e2_parsing_data) {
5416 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5417 }
5418
5419 /* prepare remaining BDs, start tx bd contains first seg/frag */
5420 for (i = 1; i < nsegs ; i++) {
5421 bd_prod = TX_BD_NEXT(bd_prod);
5422 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5423 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5424 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5425 tx_data_bd->nbytes = htole16(segs[i].ds_len);
5426 if (tx_total_pkt_size_bd == NULL) {
5427 tx_total_pkt_size_bd = tx_data_bd;
5428 }
5429 total_pkt_size += tx_data_bd->nbytes;
5430 }
5431
5432 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5433
5434 if (tx_total_pkt_size_bd != NULL) {
5435 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5436 }
5437
5438 if (__predict_false(sc->debug & DBG_TX)) {
5439 tmp_bd = tx_buf->first_bd;
5440 for (i = 0; i < nbds; i++)
5441 {
5442 if (i == 0) {
5443 BLOGD(sc, DBG_TX,
5444 "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5445 "bd_flags=0x%x hdr_nbds=%d\n",
5446 tx_start_bd,
5447 tmp_bd,
5448 le16toh(tx_start_bd->nbd),
5449 le16toh(tx_start_bd->vlan_or_ethertype),
5450 tx_start_bd->bd_flags.as_bitfield,
5451 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5452 } else if (i == 1) {
5453 if (pbd_e1x) {
5454 BLOGD(sc, DBG_TX,
5455 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5456 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5457 "tcp_seq=%u total_hlen_w=%u\n",
5458 pbd_e1x,
5459 tmp_bd,
5460 pbd_e1x->global_data,
5461 pbd_e1x->ip_hlen_w,
5462 pbd_e1x->ip_id,
5463 pbd_e1x->lso_mss,
5464 pbd_e1x->tcp_flags,
5465 pbd_e1x->tcp_pseudo_csum,
5466 pbd_e1x->tcp_send_seq,
5467 le16toh(pbd_e1x->total_hlen_w));
5468 } else { /* if (pbd_e2) */
5469 BLOGD(sc, DBG_TX,
5470 "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5471 "src=%02x:%02x:%02x parsing_data=0x%x\n",
5472 pbd_e2,
5473 tmp_bd,
5474 pbd_e2->data.mac_addr.dst_hi,
5475 pbd_e2->data.mac_addr.dst_mid,
5476 pbd_e2->data.mac_addr.dst_lo,
5477 pbd_e2->data.mac_addr.src_hi,
5478 pbd_e2->data.mac_addr.src_mid,
5479 pbd_e2->data.mac_addr.src_lo,
5480 pbd_e2->parsing_data);
5481 }
5482 }
5483
5484 if (i != 1) { /* skip parse db as it doesn't hold data */
5485 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5486 BLOGD(sc, DBG_TX,
5487 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5488 tx_data_bd,
5489 tmp_bd,
5490 le16toh(tx_data_bd->nbytes),
5491 le32toh(tx_data_bd->addr_hi),
5492 le32toh(tx_data_bd->addr_lo));
5493 }
5494
5495 tmp_bd = TX_BD_NEXT(tmp_bd);
5496 }
5497 }
5498
5499 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5500
5501 /* update TX BD producer index value for next TX */
5502 bd_prod = TX_BD_NEXT(bd_prod);
5503
5504 /*
5505 * If the chain of tx_bd's describing this frame is adjacent to or spans
5506 * an eth_tx_next_bd element then we need to increment the nbds value.
5507 */
5508 if (TX_BD_IDX(bd_prod) < nbds) {
5509 nbds++;
5510 }
5511
5512 /* don't allow reordering of writes for nbd and packets */
5513 mb();
5514
5515 fp->tx_db.data.prod += nbds;
5516
5517 /* producer points to the next free tx_bd at this point */
5518 fp->tx_pkt_prod++;
5519 fp->tx_bd_prod = bd_prod;
5520
5521 DOORBELL(sc, fp->index, fp->tx_db.raw);
5522
5523 fp->eth_q_stats.tx_pkts++;
5524
5525 /* Prevent speculative reads from getting ahead of the status block. */
5526 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5527 0, 0, BUS_SPACE_BARRIER_READ);
5528
5529 /* Prevent speculative reads from getting ahead of the doorbell. */
5530 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5531 0, 0, BUS_SPACE_BARRIER_READ);
5532
5533 return (0);
5534}
5535
5536static void
5538 if_t ifp,
5539 struct bxe_fastpath *fp)
5540{
5541 struct mbuf *m = NULL;
5542 int tx_count = 0;
5543 uint16_t tx_bd_avail;
5544
5546
5547 /* keep adding entries while there are frames to send */
5548 while (!if_sendq_empty(ifp)) {
5549
5550 /*
5551 * check for any frames to send
5552 * dequeue can still be NULL even if queue is not empty
5553 */
5554 m = if_dequeue(ifp);
5555 if (__predict_false(m == NULL)) {
5556 break;
5557 }
5558
5559 /* the mbuf now belongs to us */
5561
5562 /*
5563 * Put the frame into the transmit ring. If we don't have room,
5564 * place the mbuf back at the head of the TX queue, set the
5565 * OACTIVE flag, and wait for the NIC to drain the chain.
5566 */
5567 if (__predict_false(bxe_tx_encap(fp, &m))) {
5569 if (m != NULL) {
5570 /* mark the TX queue as full and return the frame */
5571 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5572 if_sendq_prepend(ifp, m);
5575 }
5576
5577 /* stop looking for more work */
5578 break;
5579 }
5580
5581 /* the frame was enqueued successfully */
5582 tx_count++;
5583
5584 /* send a copy of the frame to any BPF listeners. */
5585 if_etherbpfmtap(ifp, m);
5586
5587 tx_bd_avail = bxe_tx_avail(sc, fp);
5588
5589 /* handle any completions if we're running low */
5590 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5591 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5592 bxe_txeof(sc, fp);
5593 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5594 break;
5595 }
5596 }
5597 }
5598
5599 /* all TX packets were dequeued and/or the tx ring is full */
5600 if (tx_count > 0) {
5601 /* reset the TX watchdog timeout timer */
5603 }
5604}
5605
5606/* Legacy (non-RSS) dispatch routine */
5607static void
5609{
5610 struct bxe_softc *sc;
5611 struct bxe_fastpath *fp;
5612
5613 sc = if_getsoftc(ifp);
5614
5615 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5616 BLOGW(sc, "Interface not running, ignoring transmit request\n");
5617 return;
5618 }
5619
5620 if (!sc->link_vars.link_up) {
5621 BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5622 return;
5623 }
5624
5625 fp = &sc->fp[0];
5626
5627 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5629 return;
5630 }
5631
5632 BXE_FP_TX_LOCK(fp);
5633 bxe_tx_start_locked(sc, ifp, fp);
5634 BXE_FP_TX_UNLOCK(fp);
5635}
5636
5637static int
5639 if_t ifp,
5640 struct bxe_fastpath *fp,
5641 struct mbuf *m)
5642{
5643 struct buf_ring *tx_br = fp->tx_br;
5644 struct mbuf *next;
5645 int depth, rc, tx_count;
5646 uint16_t tx_bd_avail;
5647
5648 rc = tx_count = 0;
5649
5651
5652 if (sc->state != BXE_STATE_OPEN) {
5654 return ENETDOWN;
5655 }
5656
5657 if (!tx_br) {
5658 BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5659 return (EINVAL);
5660 }
5661
5662 if (m != NULL) {
5663 rc = drbr_enqueue(ifp, tx_br, m);
5664 if (rc != 0) {
5666 goto bxe_tx_mq_start_locked_exit;
5667 }
5668 }
5669
5670 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5672 goto bxe_tx_mq_start_locked_exit;
5673 }
5674
5675 /* fetch the depth of the driver queue */
5676 depth = drbr_inuse(ifp, tx_br);
5677 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5679 }
5680
5681 /* keep adding entries while there are frames to send */
5682 while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5683 /* handle any completions if we're running low */
5684 tx_bd_avail = bxe_tx_avail(sc, fp);
5685 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5686 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5687 bxe_txeof(sc, fp);
5688 tx_bd_avail = bxe_tx_avail(sc, fp);
5689 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5691 m_freem(next);
5692 drbr_advance(ifp, tx_br);
5693 rc = ENOBUFS;
5694 break;
5695 }
5696 }
5697
5698 /* the mbuf now belongs to us */
5700
5701 /*
5702 * Put the frame into the transmit ring. If we don't have room,
5703 * place the mbuf back at the head of the TX queue, set the
5704 * OACTIVE flag, and wait for the NIC to drain the chain.
5705 */
5706 rc = bxe_tx_encap(fp, &next);
5707 if (__predict_false(rc != 0)) {
5709 if (next != NULL) {
5710 /* mark the TX queue as full and save the frame */
5711 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5712 drbr_putback(ifp, tx_br, next);
5715 } else
5716 drbr_advance(ifp, tx_br);
5717
5718 /* stop looking for more work */
5719 break;
5720 }
5721
5722 /* the transmit frame was enqueued successfully */
5723 tx_count++;
5724
5725 /* send a copy of the frame to any BPF listeners */
5726 if_etherbpfmtap(ifp, next);
5727
5728 drbr_advance(ifp, tx_br);
5729 }
5730
5731 /* all TX packets were dequeued and/or the tx ring is full */
5732 if (tx_count > 0) {
5733 /* reset the TX watchdog timeout timer */
5735 }
5736
5737bxe_tx_mq_start_locked_exit:
5738 /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5739 if (!drbr_empty(ifp, tx_br)) {
5741 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5742 }
5743
5744 return (rc);
5745}
5746
5747static void
5749 int pending)
5750{
5751 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5752 struct bxe_softc *sc = fp->sc;
5753 if_t ifp = sc->ifp;
5754
5756 bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5758}
5759
5760/* Multiqueue (TSS) dispatch routine. */
5761static int
5762bxe_tx_mq_start(struct ifnet *ifp,
5763 struct mbuf *m)
5764{
5765 struct bxe_softc *sc = if_getsoftc(ifp);
5766 struct bxe_fastpath *fp;
5767 int fp_index, rc;
5768
5769 fp_index = 0; /* default is the first queue */
5770
5771 /* check if flowid is set */
5772
5773 if (BXE_VALID_FLOWID(m))
5774 fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5775
5776 fp = &sc->fp[fp_index];
5777
5778 if (sc->state != BXE_STATE_OPEN) {
5780 return ENETDOWN;
5781 }
5782
5783 if (BXE_FP_TX_TRYLOCK(fp)) {
5784 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5785 BXE_FP_TX_UNLOCK(fp);
5786 } else {
5787 rc = drbr_enqueue(ifp, fp->tx_br, m);
5788 taskqueue_enqueue(fp->tq, &fp->tx_task);
5789 }
5790
5791 return (rc);
5792}
5793
5794static void
5795bxe_mq_flush(struct ifnet *ifp)
5796{
5797 struct bxe_softc *sc = if_getsoftc(ifp);
5798 struct bxe_fastpath *fp;
5799 struct mbuf *m;
5800 int i;
5801
5802 for (i = 0; i < sc->num_queues; i++) {
5803 fp = &sc->fp[i];
5804
5805 if (fp->state != BXE_FP_STATE_IRQ) {
5806 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5807 fp->index, fp->state);
5808 continue;
5809 }
5810
5811 if (fp->tx_br != NULL) {
5812 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5813 BXE_FP_TX_LOCK(fp);
5814 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5815 m_freem(m);
5816 }
5817 BXE_FP_TX_UNLOCK(fp);
5818 }
5819 }
5820
5821 if_qflush(ifp);
5822}
5823
5824static uint16_t
5826{
5827 if (IS_SRIOV(sc)) {
5829 }
5830 return (L2_ILT_LINES(sc));
5831}
5832
5833static void
5835{
5836 struct ilt_client_info *ilt_client;
5837 struct ecore_ilt *ilt = sc->ilt;
5838 uint16_t line = 0;
5839
5840 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5841 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5842
5843 /* CDU */
5844 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5845 ilt_client->client_num = ILT_CLIENT_CDU;
5846 ilt_client->page_size = CDU_ILT_PAGE_SZ;
5847 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5848 ilt_client->start = line;
5849 line += bxe_cid_ilt_lines(sc);
5850
5851 if (CNIC_SUPPORT(sc)) {
5852 line += CNIC_ILT_LINES;
5853 }
5854
5855 ilt_client->end = (line - 1);
5856
5857 BLOGD(sc, DBG_LOAD,
5858 "ilt client[CDU]: start %d, end %d, "
5859 "psz 0x%x, flags 0x%x, hw psz %d\n",
5860 ilt_client->start, ilt_client->end,
5861 ilt_client->page_size,
5862 ilt_client->flags,
5863 ilog2(ilt_client->page_size >> 12));
5864
5865 /* QM */
5866 if (QM_INIT(sc->qm_cid_count)) {
5867 ilt_client = &ilt->clients[ILT_CLIENT_QM];
5868 ilt_client->client_num = ILT_CLIENT_QM;
5869 ilt_client->page_size = QM_ILT_PAGE_SZ;
5870 ilt_client->flags = 0;
5871 ilt_client->start = line;
5872
5873 /* 4 bytes for each cid */
5876
5877 ilt_client->end = (line - 1);
5878
5879 BLOGD(sc, DBG_LOAD,
5880 "ilt client[QM]: start %d, end %d, "
5881 "psz 0x%x, flags 0x%x, hw psz %d\n",
5882 ilt_client->start, ilt_client->end,
5883 ilt_client->page_size, ilt_client->flags,
5884 ilog2(ilt_client->page_size >> 12));
5885 }
5886
5887 if (CNIC_SUPPORT(sc)) {
5888 /* SRC */
5889 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5890 ilt_client->client_num = ILT_CLIENT_SRC;
5891 ilt_client->page_size = SRC_ILT_PAGE_SZ;
5892 ilt_client->flags = 0;
5893 ilt_client->start = line;
5894 line += SRC_ILT_LINES;
5895 ilt_client->end = (line - 1);
5896
5897 BLOGD(sc, DBG_LOAD,
5898 "ilt client[SRC]: start %d, end %d, "
5899 "psz 0x%x, flags 0x%x, hw psz %d\n",
5900 ilt_client->start, ilt_client->end,
5901 ilt_client->page_size, ilt_client->flags,
5902 ilog2(ilt_client->page_size >> 12));
5903
5904 /* TM */
5905 ilt_client = &ilt->clients[ILT_CLIENT_TM];
5906 ilt_client->client_num = ILT_CLIENT_TM;
5907 ilt_client->page_size = TM_ILT_PAGE_SZ;
5908 ilt_client->flags = 0;
5909 ilt_client->start = line;
5910 line += TM_ILT_LINES;
5911 ilt_client->end = (line - 1);
5912
5913 BLOGD(sc, DBG_LOAD,
5914 "ilt client[TM]: start %d, end %d, "
5915 "psz 0x%x, flags 0x%x, hw psz %d\n",
5916 ilt_client->start, ilt_client->end,
5917 ilt_client->page_size, ilt_client->flags,
5918 ilog2(ilt_client->page_size >> 12));
5919 }
5920
5921 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5922}
5923
5924static void
5926{
5927 int i;
5928 uint32_t rx_buf_size;
5929
5930 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5931
5932 for (i = 0; i < sc->num_queues; i++) {
5933 if(rx_buf_size <= MCLBYTES){
5934 sc->fp[i].rx_buf_size = rx_buf_size;
5935 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5936 }else if (rx_buf_size <= MJUMPAGESIZE){
5937 sc->fp[i].rx_buf_size = rx_buf_size;
5938 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5939 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5940 sc->fp[i].rx_buf_size = MCLBYTES;
5941 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5942 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5943 sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5944 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5945 }else {
5946 sc->fp[i].rx_buf_size = MCLBYTES;
5947 sc->fp[i].mbuf_alloc_size = MCLBYTES;
5948 }
5949 }
5950}
5951
5952static int
5954{
5955 int rc = 0;
5956
5957 if ((sc->ilt =
5958 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5959 M_BXE_ILT,
5960 (M_NOWAIT | M_ZERO))) == NULL) {
5961 rc = 1;
5962 }
5963
5964 return (rc);
5965}
5966
5967static int
5969{
5970 int rc = 0;
5971
5972 if ((sc->ilt->lines =
5973 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5974 M_BXE_ILT,
5975 (M_NOWAIT | M_ZERO))) == NULL) {
5976 rc = 1;
5977 }
5978
5979 return (rc);
5980}
5981
5982static void
5984{
5985 if (sc->ilt != NULL) {
5986 free(sc->ilt, M_BXE_ILT);
5987 sc->ilt = NULL;
5988 }
5989}
5990
5991static void
5993{
5994 if (sc->ilt->lines != NULL) {
5995 free(sc->ilt->lines, M_BXE_ILT);
5996 sc->ilt->lines = NULL;
5997 }
5998}
5999
6000static void
6002{
6003 int i;
6004
6005 for (i = 0; i < L2_ILT_LINES(sc); i++) {
6006 bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6007 sc->context[i].vcxt = NULL;
6008 sc->context[i].size = 0;
6009 }
6010
6012
6014
6015}
6016
6017static int
6019{
6020
6021 int context_size;
6022 int allocated;
6023 int i;
6024
6025 /*
6026 * Allocate memory for CDU context:
6027 * This memory is allocated separately and not in the generic ILT
6028 * functions because CDU differs in few aspects:
6029 * 1. There can be multiple entities allocating memory for context -
6030 * regular L2, CNIC, and SRIOV drivers. Each separately controls
6031 * its own ILT lines.
6032 * 2. Since CDU page-size is not a single 4KB page (which is the case
6033 * for the other ILT clients), to be efficient we want to support
6034 * allocation of sub-page-size in the last entry.
6035 * 3. Context pointers are used by the driver to pass to FW / update
6036 * the context (for the other ILT clients the pointers are used just to
6037 * free the memory during unload).
6038 */
6039 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6040 for (i = 0, allocated = 0; allocated < context_size; i++) {
6041 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6042 (context_size - allocated));
6043
6044 if (bxe_dma_alloc(sc, sc->context[i].size,
6045 &sc->context[i].vcxt_dma,
6046 "cdu context") != 0) {
6047 bxe_free_mem(sc);
6048 return (-1);
6049 }
6050
6051 sc->context[i].vcxt =
6052 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6053
6054 allocated += sc->context[i].size;
6055 }
6056
6058
6059 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6060 sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6061 {
6062 for (i = 0; i < 4; i++) {
6063 BLOGD(sc, DBG_LOAD,
6064 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6065 i,
6066 sc->ilt->clients[i].page_size,
6067 sc->ilt->clients[i].start,
6068 sc->ilt->clients[i].end,
6069 sc->ilt->clients[i].client_num,
6070 sc->ilt->clients[i].flags);
6071 }
6072 }
6074 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6075 bxe_free_mem(sc);
6076 return (-1);
6077 }
6078
6079 return (0);
6080}
6081
6082static void
6084{
6085 int i;
6086
6087 if (fp->rx_mbuf_tag == NULL) {
6088 return;
6089 }
6090
6091 /* free all mbufs and unload all maps */
6092 for (i = 0; i < RX_BD_TOTAL; i++) {
6093 if (fp->rx_mbuf_chain[i].m_map != NULL) {
6094 bus_dmamap_sync(fp->rx_mbuf_tag,
6095 fp->rx_mbuf_chain[i].m_map,
6096 BUS_DMASYNC_POSTREAD);
6097 bus_dmamap_unload(fp->rx_mbuf_tag,
6098 fp->rx_mbuf_chain[i].m_map);
6099 }
6100
6101 if (fp->rx_mbuf_chain[i].m != NULL) {
6102 m_freem(fp->rx_mbuf_chain[i].m);
6103 fp->rx_mbuf_chain[i].m = NULL;
6105 }
6106 }
6107}
6108
6109static void
6111{
6112 struct bxe_softc *sc;
6113 int i, max_agg_queues;
6114
6115 sc = fp->sc;
6116
6117 if (fp->rx_mbuf_tag == NULL) {
6118 return;
6119 }
6120
6121 max_agg_queues = MAX_AGG_QS(sc);
6122
6123 /* release all mbufs and unload all DMA maps in the TPA pool */
6124 for (i = 0; i < max_agg_queues; i++) {
6125 if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6126 bus_dmamap_sync(fp->rx_mbuf_tag,
6127 fp->rx_tpa_info[i].bd.m_map,
6128 BUS_DMASYNC_POSTREAD);
6129 bus_dmamap_unload(fp->rx_mbuf_tag,
6130 fp->rx_tpa_info[i].bd.m_map);
6131 }
6132
6133 if (fp->rx_tpa_info[i].bd.m != NULL) {
6134 m_freem(fp->rx_tpa_info[i].bd.m);
6135 fp->rx_tpa_info[i].bd.m = NULL;
6137 }
6138 }
6139}
6140
6141static void
6143{
6144 int i;
6145
6146 if (fp->rx_sge_mbuf_tag == NULL) {
6147 return;
6148 }
6149
6150 /* rree all mbufs and unload all maps */
6151 for (i = 0; i < RX_SGE_TOTAL; i++) {
6152 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6153 bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6155 BUS_DMASYNC_POSTREAD);
6156 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6158 }
6159
6160 if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6161 m_freem(fp->rx_sge_mbuf_chain[i].m);
6162 fp->rx_sge_mbuf_chain[i].m = NULL;
6164 }
6165 }
6166}
6167
6168static void
6170{
6171 struct bxe_fastpath *fp;
6172 int i;
6173
6174 for (i = 0; i < sc->num_queues; i++) {
6175 fp = &sc->fp[i];
6176
6177 if (fp->tx_br != NULL) {
6178 /* just in case bxe_mq_flush() wasn't called */
6179 if (mtx_initialized(&fp->tx_mtx)) {
6180 struct mbuf *m;
6181
6182 BXE_FP_TX_LOCK(fp);
6183 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6184 m_freem(m);
6185 BXE_FP_TX_UNLOCK(fp);
6186 }
6187 }
6188
6189 /* free all RX buffers */
6193
6194 if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6195 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6197 }
6198
6199 if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6200 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6202 }
6203
6204 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6205 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6207 }
6208
6209 if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6210 BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6212 }
6213
6214 /* XXX verify all mbufs were reclaimed */
6215 }
6216}
6217
6218static int
6220 uint16_t prev_index,
6221 uint16_t index)
6222{
6223 struct bxe_sw_rx_bd *rx_buf;
6224 struct eth_rx_bd *rx_bd;
6225 bus_dma_segment_t segs[1];
6226 bus_dmamap_t map;
6227 struct mbuf *m;
6228 int nsegs, rc;
6229
6230 rc = 0;
6231
6232 /* allocate the new RX BD mbuf */
6233 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6234 if (__predict_false(m == NULL)) {
6236 return (ENOBUFS);
6237 }
6238
6240
6241 /* initialize the mbuf buffer length */
6242 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6243
6244 /* map the mbuf into non-paged pool */
6245 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6247 m, segs, &nsegs, BUS_DMA_NOWAIT);
6248 if (__predict_false(rc != 0)) {
6250 m_freem(m);
6252 return (rc);
6253 }
6254
6255 /* all mbufs must map to a single segment */
6256 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6257
6258 /* release any existing RX BD mbuf mappings */
6259
6260 if (prev_index != index) {
6261 rx_buf = &fp->rx_mbuf_chain[prev_index];
6262
6263 if (rx_buf->m_map != NULL) {
6264 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6265 BUS_DMASYNC_POSTREAD);
6266 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6267 }
6268
6269 /*
6270 * We only get here from bxe_rxeof() when the maximum number
6271 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6272 * holds the mbuf in the prev_index so it's OK to NULL it out
6273 * here without concern of a memory leak.
6274 */
6275 fp->rx_mbuf_chain[prev_index].m = NULL;
6276 }
6277
6278 rx_buf = &fp->rx_mbuf_chain[index];
6279
6280 if (rx_buf->m_map != NULL) {
6281 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6282 BUS_DMASYNC_POSTREAD);
6283 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6284 }
6285
6286 /* save the mbuf and mapping info for a future packet */
6287 map = (prev_index != index) ?
6288 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6289 rx_buf->m_map = fp->rx_mbuf_spare_map;
6290 fp->rx_mbuf_spare_map = map;
6291 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6292 BUS_DMASYNC_PREREAD);
6293 rx_buf->m = m;
6294
6295 rx_bd = &fp->rx_chain[index];
6296 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6297 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6298
6299 return (rc);
6300}
6301
6302static int
6304 int queue)
6305{
6306 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6307 bus_dma_segment_t segs[1];
6308 bus_dmamap_t map;
6309 struct mbuf *m;
6310 int nsegs;
6311 int rc = 0;
6312
6313 /* allocate the new TPA mbuf */
6314 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6315 if (__predict_false(m == NULL)) {
6317 return (ENOBUFS);
6318 }
6319
6321
6322 /* initialize the mbuf buffer length */
6323 m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6324
6325 /* map the mbuf into non-paged pool */
6326 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6328 m, segs, &nsegs, BUS_DMA_NOWAIT);
6329 if (__predict_false(rc != 0)) {
6331 m_free(m);
6333 return (rc);
6334 }
6335
6336 /* all mbufs must map to a single segment */
6337 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6338
6339 /* release any existing TPA mbuf mapping */
6340 if (tpa_info->bd.m_map != NULL) {
6341 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6342 BUS_DMASYNC_POSTREAD);
6343 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6344 }
6345
6346 /* save the mbuf and mapping info for the TPA mbuf */
6347 map = tpa_info->bd.m_map;
6348 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6350 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6351 BUS_DMASYNC_PREREAD);
6352 tpa_info->bd.m = m;
6353 tpa_info->seg = segs[0];
6354
6355 return (rc);
6356}
6357
6358/*
6359 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6360 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6361 * chain.
6362 */
6363static int
6365 uint16_t index)
6366{
6367 struct bxe_sw_rx_bd *sge_buf;
6368 struct eth_rx_sge *sge;
6369 bus_dma_segment_t segs[1];
6370 bus_dmamap_t map;
6371 struct mbuf *m;
6372 int nsegs;
6373 int rc = 0;
6374
6375 /* allocate a new SGE mbuf */
6376 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6377 if (__predict_false(m == NULL)) {
6379 return (ENOMEM);
6380 }
6381
6383
6384 /* initialize the mbuf buffer length */
6385 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6386
6387 /* map the SGE mbuf into non-paged pool */
6388 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6390 m, segs, &nsegs, BUS_DMA_NOWAIT);
6391 if (__predict_false(rc != 0)) {
6393 m_freem(m);
6395 return (rc);
6396 }
6397
6398 /* all mbufs must map to a single segment */
6399 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6400
6401 sge_buf = &fp->rx_sge_mbuf_chain[index];
6402
6403 /* release any existing SGE mbuf mapping */
6404 if (sge_buf->m_map != NULL) {
6405 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6406 BUS_DMASYNC_POSTREAD);
6407 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6408 }
6409
6410 /* save the mbuf and mapping info for a future packet */
6411 map = sge_buf->m_map;
6412 sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6413 fp->rx_sge_mbuf_spare_map = map;
6414 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6415 BUS_DMASYNC_PREREAD);
6416 sge_buf->m = m;
6417
6418 sge = &fp->rx_sge_chain[index];
6419 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6420 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6421
6422 return (rc);
6423}
6424
6425static __noinline int
6427{
6428 struct bxe_fastpath *fp;
6429 int i, j, rc = 0;
6430 int ring_prod, cqe_ring_prod;
6431 int max_agg_queues;
6432
6433 for (i = 0; i < sc->num_queues; i++) {
6434 fp = &sc->fp[i];
6435
6436 ring_prod = cqe_ring_prod = 0;
6437 fp->rx_bd_cons = 0;
6438 fp->rx_cq_cons = 0;
6439
6440 /* allocate buffers for the RX BDs in RX BD chain */
6441 for (j = 0; j < sc->max_rx_bufs; j++) {
6442 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6443 if (rc != 0) {
6444 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6445 i, rc);
6446 goto bxe_alloc_fp_buffers_error;
6447 }
6448
6449 ring_prod = RX_BD_NEXT(ring_prod);
6450 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6451 }
6452
6453 fp->rx_bd_prod = ring_prod;
6454 fp->rx_cq_prod = cqe_ring_prod;
6456
6457 max_agg_queues = MAX_AGG_QS(sc);
6458
6459 fp->tpa_enable = TRUE;
6460
6461 /* fill the TPA pool */
6462 for (j = 0; j < max_agg_queues; j++) {
6463 rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6464 if (rc != 0) {
6465 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6466 i, j);
6467 fp->tpa_enable = FALSE;
6468 goto bxe_alloc_fp_buffers_error;
6469 }
6470
6472 }
6473
6474 if (fp->tpa_enable) {
6475 /* fill the RX SGE chain */
6476 ring_prod = 0;
6477 for (j = 0; j < RX_SGE_USABLE; j++) {
6478 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6479 if (rc != 0) {
6480 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6481 i, ring_prod);
6482 fp->tpa_enable = FALSE;
6483 ring_prod = 0;
6484 goto bxe_alloc_fp_buffers_error;
6485 }
6486
6487 ring_prod = RX_SGE_NEXT(ring_prod);
6488 }
6489
6490 fp->rx_sge_prod = ring_prod;
6491 }
6492 }
6493
6494 return (0);
6495
6496bxe_alloc_fp_buffers_error:
6497
6498 /* unwind what was already allocated */
6502
6503 return (ENOBUFS);
6504}
6505
6506static void
6508{
6510
6511 sc->fw_stats_num = 0;
6512
6513 sc->fw_stats_req_size = 0;
6514 sc->fw_stats_req = NULL;
6516
6518 sc->fw_stats_data = NULL;
6520}
6521
6522static int
6524{
6525 uint8_t num_queue_stats;
6526 int num_groups;
6527
6528 /* number of queues for statistics is number of eth queues */
6529 num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6530
6531 /*
6532 * Total number of FW statistics requests =
6533 * 1 for port stats + 1 for PF stats + num of queues
6534 */
6535 sc->fw_stats_num = (2 + num_queue_stats);
6536
6537 /*
6538 * Request is built from stats_query_header and an array of
6539 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6540 * rules. The real number or requests is configured in the
6541 * stats_query_header.
6542 */
6543 num_groups =
6545 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6546
6547 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6548 sc->fw_stats_num, num_groups);
6549
6551 (sizeof(struct stats_query_header) +
6552 (num_groups * sizeof(struct stats_query_cmd_group)));
6553
6554 /*
6555 * Data for statistics requests + stats_counter.
6556 * stats_counter holds per-STORM counters that are incremented when
6557 * STORM has finished with the current request. Memory for FCoE
6558 * offloaded statistics are counted anyway, even if they will not be sent.
6559 * VF stats are not accounted for here as the data of VF stats is stored
6560 * in memory allocated by the VF, not here.
6561 */
6562 sc->fw_stats_data_size =
6563 (sizeof(struct stats_counter) +
6564 sizeof(struct per_port_stats) +
6565 sizeof(struct per_pf_stats) +
6566 /* sizeof(struct fcoe_statistics_params) + */
6567 (sizeof(struct per_queue_stats) * num_queue_stats));
6568
6570 &sc->fw_stats_dma, "fw stats") != 0) {
6572 return (-1);
6573 }
6574
6575 /* set up the shortcuts */
6576
6577 sc->fw_stats_req =
6578 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6580
6581 sc->fw_stats_data =
6582 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6583 sc->fw_stats_req_size);
6585 sc->fw_stats_req_size);
6586
6587 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6588 (uintmax_t)sc->fw_stats_req_mapping);
6589
6590 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6591 (uintmax_t)sc->fw_stats_data_mapping);
6592
6593 return (0);
6594}
6595
6596/*
6597 * Bits map:
6598 * 0-7 - Engine0 load counter.
6599 * 8-15 - Engine1 load counter.
6600 * 16 - Engine0 RESET_IN_PROGRESS bit.
6601 * 17 - Engine1 RESET_IN_PROGRESS bit.
6602 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
6603 * function on the engine
6604 * 19 - Engine1 ONE_IS_LOADED.
6605 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
6606 * leader to complete (check for both RESET_IN_PROGRESS bits and not
6607 * for just the one belonging to its engine).
6608 */
6609#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
6610#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
6611#define BXE_PATH0_LOAD_CNT_SHIFT 0
6612#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
6613#define BXE_PATH1_LOAD_CNT_SHIFT 8
6614#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6615#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6616#define BXE_GLOBAL_RESET_BIT 0x00040000
6617
6618/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6619static void
6621{
6622 uint32_t val;
6624 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6627}
6628
6629/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6630static void
6632{
6633 uint32_t val;
6635 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6638}
6639
6640/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6641static uint8_t
6643{
6644 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6645 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6646 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6647}
6648
6649/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6650static void
6652{
6653 uint32_t val;
6654 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6656
6658
6659 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6660 /* Clear the bit */
6661 val &= ~bit;
6662 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6663
6665}
6666
6667/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6668static void
6670{
6671 uint32_t val;
6672 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6674
6676
6677 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6678 /* Set the bit */
6679 val |= bit;
6680 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6681
6683}
6684
6685/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6686static uint8_t
6688 int engine)
6689{
6690 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6691 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6693
6694 /* return false if bit is set */
6695 return (val & bit) ? FALSE : TRUE;
6696}
6697
6698/* get the load status for an engine, should be run under rtnl lock */
6699static uint8_t
6701 int engine)
6702{
6703 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6705 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6707 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6708
6709 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6710
6711 val = ((val & mask) >> shift);
6712
6713 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6714
6715 return (val != 0);
6716}
6717
6718/* set pf load mark */
6719/* XXX needs to be under rtnl lock */
6720static void
6722{
6723 uint32_t val;
6724 uint32_t val1;
6725 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6727 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6729
6731
6732 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6733 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6734
6735 /* get the current counter value */
6736 val1 = ((val & mask) >> shift);
6737
6738 /* set bit of this PF */
6739 val1 |= (1 << SC_ABS_FUNC(sc));
6740
6741 /* clear the old value */
6742 val &= ~mask;
6743
6744 /* set the new one */
6745 val |= ((val1 << shift) & mask);
6746
6747 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6748
6750}
6751
6752/* clear pf load mark */
6753/* XXX needs to be under rtnl lock */
6754static uint8_t
6756{
6757 uint32_t val1, val;
6758 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6760 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6762
6764 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6765 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6766
6767 /* get the current counter value */
6768 val1 = (val & mask) >> shift;
6769
6770 /* clear bit of that PF */
6771 val1 &= ~(1 << SC_ABS_FUNC(sc));
6772
6773 /* clear the old value */
6774 val &= ~mask;
6775
6776 /* set the new one */
6777 val |= ((val1 << shift) & mask);
6778
6779 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6781 return (val1 != 0);
6782}
6783
6784/* send load requrest to mcp and analyze response */
6785static int
6787 uint32_t *load_code)
6788{
6789 /* init fw_seq */
6790 sc->fw_seq =
6791 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6793
6794 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6795
6796 /* get the current FW pulse sequence */
6798 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6800
6801 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6803
6804 /* load request */
6805 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6807
6808 /* if the MCP fails to respond we must abort */
6809 if (!(*load_code)) {
6810 BLOGE(sc, "MCP response failure!\n");
6811 return (-1);
6812 }
6813
6814 /* if MCP refused then must abort */
6815 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6816 BLOGE(sc, "MCP refused load request\n");
6817 return (-1);
6818 }
6819
6820 return (0);
6821}
6822
6823/*
6824 * Check whether another PF has already loaded FW to chip. In virtualized
6825 * environments a pf from anoth VM may have already initialized the device
6826 * including loading FW.
6827 */
6828static int
6830 uint32_t load_code)
6831{
6832 uint32_t my_fw, loaded_fw;
6833
6834 /* is another pf loaded on this engine? */
6835 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6836 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6837 /* build my FW version dword */
6838 my_fw = (BCM_5710_FW_MAJOR_VERSION +
6842
6843 /* read loaded FW from chip */
6844 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6845 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6846 loaded_fw, my_fw);
6847
6848 /* abort nic load if version mismatch */
6849 if (my_fw != loaded_fw) {
6850 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6851 loaded_fw, my_fw);
6852 return (-1);
6853 }
6854 }
6855
6856 return (0);
6857}
6858
6859/* mark PMF if applicable */
6860static void
6862 uint32_t load_code)
6863{
6864 uint32_t ncsi_oem_data_addr;
6865
6866 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6867 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6868 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6869 /*
6870 * Barrier here for ordering between the writing to sc->port.pmf here
6871 * and reading it from the periodic task.
6872 */
6873 sc->port.pmf = 1;
6874 mb();
6875 } else {
6876 sc->port.pmf = 0;
6877 }
6878
6879 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6880
6881 /* XXX needed? */
6882 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6883 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6884 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6885 if (ncsi_oem_data_addr) {
6886 REG_WR(sc,
6887 (ncsi_oem_data_addr +
6888 offsetof(struct glob_ncsi_oem_data, driver_version)),
6889 0);
6890 }
6891 }
6892 }
6893}
6894
6895static void
6897{
6898 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6899 int abs_func;
6900 int vn;
6901
6902 if (BXE_NOMCP(sc)) {
6903 return; /* what should be the default bvalue in this case */
6904 }
6905
6906 /*
6907 * The formula for computing the absolute function number is...
6908 * For 2 port configuration (4 functions per port):
6909 * abs_func = 2 * vn + SC_PORT + SC_PATH
6910 * For 4 port configuration (2 functions per port):
6911 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6912 */
6913 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6914 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6915 if (abs_func >= E1H_FUNC_MAX) {
6916 break;
6917 }
6918 sc->devinfo.mf_info.mf_config[vn] =
6919 MFCFG_RD(sc, func_mf_config[abs_func].config);
6920 }
6921
6922 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6924 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6925 sc->flags |= BXE_MF_FUNC_DIS;
6926 } else {
6927 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6928 sc->flags &= ~BXE_MF_FUNC_DIS;
6929 }
6930}
6931
6932/* acquire split MCP access lock register */
6933static int bxe_acquire_alr(struct bxe_softc *sc)
6934{
6935 uint32_t j, val;
6936
6937 for (j = 0; j < 1000; j++) {
6938 val = (1UL << 31);
6939 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6940 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6941 if (val & (1L << 31))
6942 break;
6943
6944 DELAY(5000);
6945 }
6946
6947 if (!(val & (1L << 31))) {
6948 BLOGE(sc, "Cannot acquire MCP access lock register\n");
6949 return (-1);
6950 }
6951
6952 return (0);
6953}
6954
6955/* release split MCP access lock register */
6956static void bxe_release_alr(struct bxe_softc *sc)
6957{
6958 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6959}
6960
6961static void
6963{
6964 int port = SC_PORT(sc);
6965 uint32_t ext_phy_config;
6966
6967 /* mark the failure */
6968 ext_phy_config =
6969 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6970
6971 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6972 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6973 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6974 ext_phy_config);
6975
6976 /* log the failure */
6977 BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6978 "the card to prevent permanent damage. "
6979 "Please contact OEM Support for assistance\n");
6980
6981 /* XXX */
6982#if 1
6983 bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6984#else
6985 /*
6986 * Schedule device reset (unload)
6987 * This is due to some boards consuming sufficient power when driver is
6988 * up to overheat if fan fails.
6989 */
6990 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6991 schedule_delayed_work(&sc->sp_rtnl_task, 0);
6992#endif
6993}
6994
6995/* this function is called upon a link interrupt */
6996static void
6998{
6999 uint32_t pause_enabled = 0;
7000 struct host_port_stats *pstats;
7001 int cmng_fns;
7002 struct bxe_fastpath *fp;
7003 int i;
7004
7005 /* Make sure that we are synced with the current statistics */
7007 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7009
7010 if (sc->link_vars.link_up) {
7011
7012 /* dropless flow control */
7013 if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7014 pause_enabled = 0;
7015
7017 pause_enabled = 1;
7018 }
7019
7020 REG_WR(sc,
7023 pause_enabled);
7024 }
7025
7027 pstats = BXE_SP(sc, port_stats);
7028 /* reset old mac stats */
7029 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7030 }
7031
7032 if (sc->state == BXE_STATE_OPEN) {
7034 /* Restart tx when the link comes back. */
7036 fp = &sc->fp[i];
7037 taskqueue_enqueue(fp->tq, &fp->tx_task);
7038 }
7039 }
7040
7041 }
7042
7044 cmng_fns = bxe_get_cmng_fns_mode(sc);
7045
7046 if (cmng_fns != CMNG_FNS_NONE) {
7047 bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7049 } else {
7050 /* rate shaping and fairness are disabled */
7051 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7052 }
7053 }
7054
7056
7057 if (IS_MF(sc)) {
7058 ; // XXX bxe_link_sync_notify(sc);
7059 }
7060}
7061
7062static void
7064 uint32_t asserted)
7065{
7066 int port = SC_PORT(sc);
7067 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7069 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7071 uint32_t aeu_mask;
7072 uint32_t nig_mask = 0;
7073 uint32_t reg_addr;
7074 uint32_t igu_acked;
7075 uint32_t cnt;
7076
7077 if (sc->attn_state & asserted) {
7078 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7079 }
7080
7082
7083 aeu_mask = REG_RD(sc, aeu_addr);
7084
7085 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7086 aeu_mask, asserted);
7087
7088 aeu_mask &= ~(asserted & 0x3ff);
7089
7090 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7091
7092 REG_WR(sc, aeu_addr, aeu_mask);
7093
7095
7096 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7097 sc->attn_state |= asserted;
7098 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7099
7100 if (asserted & ATTN_HARD_WIRED_MASK) {
7101 if (asserted & ATTN_NIG_FOR_FUNC) {
7102
7104 /* save nig interrupt mask */
7105 nig_mask = REG_RD(sc, nig_int_mask_addr);
7106
7107 /* If nig_mask is not set, no need to call the update function */
7108 if (nig_mask) {
7109 REG_WR(sc, nig_int_mask_addr, 0);
7110
7112 }
7113
7114 /* handle unicore attn? */
7115 }
7116
7117 if (asserted & ATTN_SW_TIMER_4_FUNC) {
7118 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7119 }
7120
7121 if (asserted & GPIO_2_FUNC) {
7122 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7123 }
7124
7125 if (asserted & GPIO_3_FUNC) {
7126 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7127 }
7128
7129 if (asserted & GPIO_4_FUNC) {
7130 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7131 }
7132
7133 if (port == 0) {
7134 if (asserted & ATTN_GENERAL_ATTN_1) {
7135 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7137 }
7138 if (asserted & ATTN_GENERAL_ATTN_2) {
7139 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7141 }
7142 if (asserted & ATTN_GENERAL_ATTN_3) {
7143 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7145 }
7146 } else {
7147 if (asserted & ATTN_GENERAL_ATTN_4) {
7148 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7150 }
7151 if (asserted & ATTN_GENERAL_ATTN_5) {
7152 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7154 }
7155 if (asserted & ATTN_GENERAL_ATTN_6) {
7156 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7158 }
7159 }
7160 } /* hardwired */
7161
7162 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7164 } else {
7166 }
7167
7168 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7169 asserted,
7170 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7171 REG_WR(sc, reg_addr, asserted);
7172
7173 /* now set back the mask */
7174 if (asserted & ATTN_NIG_FOR_FUNC) {
7175 /*
7176 * Verify that IGU ack through BAR was written before restoring
7177 * NIG mask. This loop should exit after 2-3 iterations max.
7178 */
7179 if (sc->devinfo.int_block != INT_BLOCK_HC) {
7180 cnt = 0;
7181
7182 do {
7183 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7184 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7185 (++cnt < MAX_IGU_ATTN_ACK_TO));
7186
7187 if (!igu_acked) {
7188 BLOGE(sc, "Failed to verify IGU ack on time\n");
7189 }
7190
7191 mb();
7192 }
7193
7194 REG_WR(sc, nig_int_mask_addr, nig_mask);
7195
7197 }
7198}
7199
7200static void
7202 int idx,
7203 const char *blk)
7204{
7205 BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7206}
7207
7208static int
7210 uint32_t sig,
7211 int par_num,
7212 uint8_t print)
7213{
7214 uint32_t cur_bit = 0;
7215 int i = 0;
7216
7217 for (i = 0; sig; i++) {
7218 cur_bit = ((uint32_t)0x1 << i);
7219 if (sig & cur_bit) {
7220 switch (cur_bit) {
7222 if (print)
7223 bxe_print_next_block(sc, par_num++, "BRB");
7224 break;
7226 if (print)
7227 bxe_print_next_block(sc, par_num++, "PARSER");
7228 break;
7230 if (print)
7231 bxe_print_next_block(sc, par_num++, "TSDM");
7232 break;
7234 if (print)
7235 bxe_print_next_block(sc, par_num++, "SEARCHER");
7236 break;
7238 if (print)
7239 bxe_print_next_block(sc, par_num++, "TCM");
7240 break;
7242 if (print)
7243 bxe_print_next_block(sc, par_num++, "TSEMI");
7244 break;
7246 if (print)
7247 bxe_print_next_block(sc, par_num++, "XPB");
7248 break;
7249 }
7250
7251 /* Clear the bit */
7252 sig &= ~cur_bit;
7253 }
7254 }
7255
7256 return (par_num);
7257}
7258
7259static int
7261 uint32_t sig,
7262 int par_num,
7263 uint8_t *global,
7264 uint8_t print)
7265{
7266 int i = 0;
7267 uint32_t cur_bit = 0;
7268 for (i = 0; sig; i++) {
7269 cur_bit = ((uint32_t)0x1 << i);
7270 if (sig & cur_bit) {
7271 switch (cur_bit) {
7273 if (print)
7274 bxe_print_next_block(sc, par_num++, "PBF");
7275 break;
7277 if (print)
7278 bxe_print_next_block(sc, par_num++, "QM");
7279 break;
7281 if (print)
7282 bxe_print_next_block(sc, par_num++, "TM");
7283 break;
7285 if (print)
7286 bxe_print_next_block(sc, par_num++, "XSDM");
7287 break;
7289 if (print)
7290 bxe_print_next_block(sc, par_num++, "XCM");
7291 break;
7293 if (print)
7294 bxe_print_next_block(sc, par_num++, "XSEMI");
7295 break;
7297 if (print)
7298 bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7299 break;
7301 if (print)
7302 bxe_print_next_block(sc, par_num++, "NIG");
7303 break;
7305 if (print)
7306 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7307 *global = TRUE;
7308 break;
7310 if (print)
7311 bxe_print_next_block(sc, par_num++, "DEBUG");
7312 break;
7314 if (print)
7315 bxe_print_next_block(sc, par_num++, "USDM");
7316 break;
7318 if (print)
7319 bxe_print_next_block(sc, par_num++, "UCM");
7320 break;
7322 if (print)
7323 bxe_print_next_block(sc, par_num++, "USEMI");
7324 break;
7326 if (print)
7327 bxe_print_next_block(sc, par_num++, "UPB");
7328 break;
7330 if (print)
7331 bxe_print_next_block(sc, par_num++, "CSDM");
7332 break;
7334 if (print)
7335 bxe_print_next_block(sc, par_num++, "CCM");
7336 break;
7337 }
7338
7339 /* Clear the bit */
7340 sig &= ~cur_bit;
7341 }
7342 }
7343
7344 return (par_num);
7345}
7346
7347static int
7349 uint32_t sig,
7350 int par_num,
7351 uint8_t print)
7352{
7353 uint32_t cur_bit = 0;
7354 int i = 0;
7355
7356 for (i = 0; sig; i++) {
7357 cur_bit = ((uint32_t)0x1 << i);
7358 if (sig & cur_bit) {
7359 switch (cur_bit) {
7361 if (print)
7362 bxe_print_next_block(sc, par_num++, "CSEMI");
7363 break;
7365 if (print)
7366 bxe_print_next_block(sc, par_num++, "PXP");
7367 break;
7369 if (print)
7370 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7371 break;
7373 if (print)
7374 bxe_print_next_block(sc, par_num++, "CFC");
7375 break;
7377 if (print)
7378 bxe_print_next_block(sc, par_num++, "CDU");
7379 break;
7381 if (print)
7382 bxe_print_next_block(sc, par_num++, "DMAE");
7383 break;
7385 if (print)
7386 bxe_print_next_block(sc, par_num++, "IGU");
7387 break;
7389 if (print)
7390 bxe_print_next_block(sc, par_num++, "MISC");
7391 break;
7392 }
7393
7394 /* Clear the bit */
7395 sig &= ~cur_bit;
7396 }
7397 }
7398
7399 return (par_num);
7400}
7401
7402static int
7404 uint32_t sig,
7405 int par_num,
7406 uint8_t *global,
7407 uint8_t print)
7408{
7409 uint32_t cur_bit = 0;
7410 int i = 0;
7411
7412 for (i = 0; sig; i++) {
7413 cur_bit = ((uint32_t)0x1 << i);
7414 if (sig & cur_bit) {
7415 switch (cur_bit) {
7417 if (print)
7418 bxe_print_next_block(sc, par_num++, "MCP ROM");
7419 *global = TRUE;
7420 break;
7422 if (print)
7423 bxe_print_next_block(sc, par_num++,
7424 "MCP UMP RX");
7425 *global = TRUE;
7426 break;
7428 if (print)
7429 bxe_print_next_block(sc, par_num++,
7430 "MCP UMP TX");
7431 *global = TRUE;
7432 break;
7434 if (print)
7435 bxe_print_next_block(sc, par_num++,
7436 "MCP SCPAD");
7437 *global = TRUE;
7438 break;
7439 }
7440
7441 /* Clear the bit */
7442 sig &= ~cur_bit;
7443 }
7444 }
7445
7446 return (par_num);
7447}
7448
7449static int
7451 uint32_t sig,
7452 int par_num,
7453 uint8_t print)
7454{
7455 uint32_t cur_bit = 0;
7456 int i = 0;
7457
7458 for (i = 0; sig; i++) {
7459 cur_bit = ((uint32_t)0x1 << i);
7460 if (sig & cur_bit) {
7461 switch (cur_bit) {
7463 if (print)
7464 bxe_print_next_block(sc, par_num++, "PGLUE_B");
7465 break;
7467 if (print)
7468 bxe_print_next_block(sc, par_num++, "ATC");
7469 break;
7470 }
7471
7472 /* Clear the bit */
7473 sig &= ~cur_bit;
7474 }
7475 }
7476
7477 return (par_num);
7478}
7479
7480static uint8_t
7482 uint8_t *global,
7483 uint8_t print,
7484 uint32_t *sig)
7485{
7486 int par_num = 0;
7487
7488 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7489 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7490 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7491 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7492 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7493 BLOGE(sc, "Parity error: HW block parity attention:\n"
7494 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7495 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7496 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7497 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7498 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7499 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7500
7501 if (print)
7502 BLOGI(sc, "Parity errors detected in blocks: ");
7503
7504 par_num =
7507 par_num, print);
7508 par_num =
7511 par_num, global, print);
7512 par_num =
7515 par_num, print);
7516 par_num =
7519 par_num, global, print);
7520 par_num =
7523 par_num, print);
7524
7525 if (print)
7526 BLOGI(sc, "\n");
7527
7528 if( *global == TRUE ) {
7530 }
7531
7532 return (TRUE);
7533 }
7534
7535 return (FALSE);
7536}
7537
7538static uint8_t
7540 uint8_t *global,
7541 uint8_t print)
7542{
7543 struct attn_route attn = { {0} };
7544 int port = SC_PORT(sc);
7545
7546 if(sc->state != BXE_STATE_OPEN)
7547 return FALSE;
7548
7549 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7550 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7551 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7552 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7553
7554 /*
7555 * Since MCP attentions can't be disabled inside the block, we need to
7556 * read AEU registers to see whether they're currently disabled
7557 */
7558 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7562
7563
7564 if (!CHIP_IS_E1x(sc))
7565 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7566
7567 return (bxe_parity_attn(sc, global, print, attn.sig));
7568}
7569
7570static void
7572 uint32_t attn)
7573{
7574 uint32_t val;
7575 boolean_t err_flg = FALSE;
7576
7579 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7580 err_flg = TRUE;
7582 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7584 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7586 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7588 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7590 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7592 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7594 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7596 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7598 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7599 }
7600
7603 BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7604 err_flg = TRUE;
7606 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7608 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7610 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7612 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7614 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7616 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7617 }
7618
7621 BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7622 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7624 err_flg = TRUE;
7625 }
7626 if (err_flg) {
7628 taskqueue_enqueue_timeout(taskqueue_thread,
7629 &sc->sp_err_timeout_task, hz/10);
7630 }
7631
7632}
7633
7634static void
7636{
7637 int port = SC_PORT(sc);
7638
7639 bxe_tx_disable(sc);
7640
7641 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7642}
7643
7644static void
7646{
7647 int port = SC_PORT(sc);
7648
7649 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7650
7651 // XXX bxe_tx_enable(sc);
7652}
7653
7654/*
7655 * called due to MCP event (on pmf):
7656 * reread new bandwidth configuration
7657 * configure FW
7658 * notify others function about the change
7659 */
7660static void
7662{
7663 if (sc->link_vars.link_up) {
7665 // XXX bxe_link_sync_notify(sc);
7666 }
7667
7668 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7669}
7670
7671static void
7673{
7674 bxe_config_mf_bw(sc);
7676}
7677
7678static void
7680{
7681 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7683}
7684
7685#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7686
7687static void
7689{
7690 struct eth_stats_info *ether_stat =
7692
7693 strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7695
7696 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7697 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7699 ether_stat->mac_local + MAC_PAD,
7700 MAC_PAD, ETH_ALEN);
7701
7702 ether_stat->mtu_size = sc->mtu;
7703
7705 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7706 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7707 }
7708
7709 // XXX ether_stat->feature_flags |= ???;
7710
7711 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7712
7713 ether_stat->txq_size = sc->tx_ring_size;
7714 ether_stat->rxq_size = sc->rx_ring_size;
7715}
7716
7717static void
7719{
7720 enum drv_info_opcode op_code;
7721 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7722
7723 /* if drv_info version supported by MFW doesn't match - send NACK */
7724 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7726 return;
7727 }
7728
7729 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7731
7732 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7733
7734 switch (op_code) {
7735 case ETH_STATS_OPCODE:
7737 break;
7738 case FCOE_STATS_OPCODE:
7739 case ISCSI_STATS_OPCODE:
7740 default:
7741 /* if op code isn't supported - send NACK */
7743 return;
7744 }
7745
7746 /*
7747 * If we got drv_info attn from MFW then these fields are defined in
7748 * shmem2 for sure
7749 */
7750 SHMEM2_WR(sc, drv_info_host_addr_lo,
7752 SHMEM2_WR(sc, drv_info_host_addr_hi,
7754
7756}
7757
7758static void
7760 uint32_t dcc_event)
7761{
7762 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7763
7764 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7765 /*
7766 * This is the only place besides the function initialization
7767 * where the sc->flags can change so it is done without any
7768 * locks
7769 */
7771 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7772 sc->flags |= BXE_MF_FUNC_DIS;
7773 bxe_e1h_disable(sc);
7774 } else {
7775 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7776 sc->flags &= ~BXE_MF_FUNC_DIS;
7777 bxe_e1h_enable(sc);
7778 }
7779 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7780 }
7781
7782 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7783 bxe_config_mf_bw(sc);
7784 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7785 }
7786
7787 /* Report results to MCP */
7788 if (dcc_event)
7790 else
7792}
7793
7794static void
7796{
7797 int port = SC_PORT(sc);
7798 uint32_t val;
7799
7800 sc->port.pmf = 1;
7801 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7802
7803 /*
7804 * We need the mb() to ensure the ordering between the writing to
7805 * sc->port.pmf here and reading it from the bxe_periodic_task().
7806 */
7807 mb();
7808
7809 /* queue a periodic task */
7810 // XXX schedule task...
7811
7812 // XXX bxe_dcbx_pmf_update(sc);
7813
7814 /* enable nig attention */
7815 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7816 if (sc->devinfo.int_block == INT_BLOCK_HC) {
7817 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7818 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7819 } else if (!CHIP_IS_E1x(sc)) {
7822 }
7823
7825}
7826
7827static int
7829{
7830 char last_idx;
7831 int i, rc = 0;
7832 uint32_t row0, row1, row2, row3;
7833
7834 /* XSTORM */
7836 if (last_idx)
7837 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7838
7839 /* print the asserts */
7840 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7841
7846
7848 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7849 i, row3, row2, row1, row0);
7850 rc++;
7851 } else {
7852 break;
7853 }
7854 }
7855
7856 /* TSTORM */
7858 if (last_idx) {
7859 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7860 }
7861
7862 /* print the asserts */
7863 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7864
7869
7871 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7872 i, row3, row2, row1, row0);
7873 rc++;
7874 } else {
7875 break;
7876 }
7877 }
7878
7879 /* CSTORM */
7881 if (last_idx) {
7882 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7883 }
7884
7885 /* print the asserts */
7886 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7887
7892
7894 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7895 i, row3, row2, row1, row0);
7896 rc++;
7897 } else {
7898 break;
7899 }
7900 }
7901
7902 /* USTORM */
7904 if (last_idx) {
7905 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7906 }
7907
7908 /* print the asserts */
7909 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7910
7915
7917 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7918 i, row3, row2, row1, row0);
7919 rc++;
7920 } else {
7921 break;
7922 }
7923 }
7924
7925 return (rc);
7926}
7927
7928static void
7930 uint32_t attn)
7931{
7932 int func = SC_FUNC(sc);
7933 uint32_t val;
7934
7935 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7936
7937 if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7938
7939 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7940 bxe_read_mf_cfg(sc);
7941 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7942 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7943 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7944
7945 if (val & DRV_STATUS_DCC_EVENT_MASK)
7947
7948 if (val & DRV_STATUS_SET_MF_BW)
7949 bxe_set_mf_bw(sc);
7950
7951 if (val & DRV_STATUS_DRV_INFO_REQ)
7953
7954 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7955 bxe_pmf_update(sc);
7956
7959
7960 if (sc->link_vars.periodic_flags &
7962 /* sync with link */
7965 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7967 if (IS_MF(sc))
7968 ; // XXX bxe_link_sync_notify(sc);
7969 bxe_link_report(sc);
7970 }
7971
7972 /*
7973 * Always call it here: bxe_link_report() will
7974 * prevent the link indication duplication.
7975 */
7977
7978 } else if (attn & BXE_MC_ASSERT_BITS) {
7979
7980 BLOGE(sc, "MC assert!\n");
7981 bxe_mc_assert(sc);
7986 bxe_int_disable(sc);
7988 taskqueue_enqueue_timeout(taskqueue_thread,
7989 &sc->sp_err_timeout_task, hz/10);
7990
7991 } else if (attn & BXE_MCP_ASSERT) {
7992
7993 BLOGE(sc, "MCP assert!\n");
7996 taskqueue_enqueue_timeout(taskqueue_thread,
7997 &sc->sp_err_timeout_task, hz/10);
7998 bxe_int_disable(sc); /*avoid repetive assert alert */
7999
8000
8001 } else {
8002 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8003 }
8004 }
8005
8007 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8008 if (attn & BXE_GRC_TIMEOUT) {
8009 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8010 BLOGE(sc, "GRC time-out 0x%08x\n", val);
8011 }
8012 if (attn & BXE_GRC_RSV) {
8013 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8014 BLOGE(sc, "GRC reserved 0x%08x\n", val);
8015 }
8017 }
8018}
8019
8020static void
8022 uint32_t attn)
8023{
8024 int port = SC_PORT(sc);
8025 int reg_offset;
8026 uint32_t val0, mask0, val1, mask1;
8027 uint32_t val;
8028 boolean_t err_flg = FALSE;
8029
8032 BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8033 /* CFC error attention */
8034 if (val & 0x2) {
8035 BLOGE(sc, "FATAL error from CFC\n");
8036 err_flg = TRUE;
8037 }
8038 }
8039
8042 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8043 /* RQ_USDMDP_FIFO_OVERFLOW */
8044 if (val & 0x18000) {
8045 BLOGE(sc, "FATAL error from PXP\n");
8046 err_flg = TRUE;
8047 }
8048
8049 if (!CHIP_IS_E1x(sc)) {
8051 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8052 err_flg = TRUE;
8053 }
8054 }
8055
8056#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8057#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8058
8059 if (attn & AEU_PXP2_HW_INT_BIT) {
8060 /* CQ47854 workaround do not panic on
8061 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8062 */
8063 if (!CHIP_IS_E1x(sc)) {
8064 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8065 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8066 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8067 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8068 /*
8069 * If the only PXP2_EOP_ERROR_BIT is set in
8070 * STS0 and STS1 - clear it
8071 *
8072 * probably we lose additional attentions between
8073 * STS0 and STS_CLR0, in this case user will not
8074 * be notified about them
8075 */
8076 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8077 !(val1 & mask1))
8079
8080 /* print the register, since no one can restore it */
8081 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8082
8083 /*
8084 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8085 * then notify
8086 */
8087 if (val0 & PXP2_EOP_ERROR_BIT) {
8088 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8089 err_flg = TRUE;
8090
8091 /*
8092 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8093 * set then clear attention from PXP2 block without panic
8094 */
8095 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8096 ((val1 & mask1) == 0))
8097 attn &= ~AEU_PXP2_HW_INT_BIT;
8098 }
8099 }
8100 }
8101
8102 if (attn & HW_INTERRUT_ASSERT_SET_2) {
8103 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8105
8106 val = REG_RD(sc, reg_offset);
8107 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8108 REG_WR(sc, reg_offset, val);
8109
8110 BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8111 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8112 err_flg = TRUE;
8113 bxe_panic(sc, ("HW block attention set2\n"));
8114 }
8115 if(err_flg) {
8117 taskqueue_enqueue_timeout(taskqueue_thread,
8118 &sc->sp_err_timeout_task, hz/10);
8119 }
8120
8121}
8122
8123static void
8125 uint32_t attn)
8126{
8127 int port = SC_PORT(sc);
8128 int reg_offset;
8129 uint32_t val;
8130 boolean_t err_flg = FALSE;
8131
8134 BLOGE(sc, "DB hw attention 0x%08x\n", val);
8135 /* DORQ discard attention */
8136 if (val & 0x2) {
8137 BLOGE(sc, "FATAL error from DORQ\n");
8138 err_flg = TRUE;
8139 }
8140 }
8141
8142 if (attn & HW_INTERRUT_ASSERT_SET_1) {
8143 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8145
8146 val = REG_RD(sc, reg_offset);
8147 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8148 REG_WR(sc, reg_offset, val);
8149
8150 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8151 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8152 err_flg = TRUE;
8153 bxe_panic(sc, ("HW block attention set1\n"));
8154 }
8155 if(err_flg) {
8157 taskqueue_enqueue_timeout(taskqueue_thread,
8158 &sc->sp_err_timeout_task, hz/10);
8159 }
8160
8161}
8162
8163static void
8165 uint32_t attn)
8166{
8167 int port = SC_PORT(sc);
8168 int reg_offset;
8169 uint32_t val;
8170
8171 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8173
8174 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8175 val = REG_RD(sc, reg_offset);
8176 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8177 REG_WR(sc, reg_offset, val);
8178
8179 BLOGW(sc, "SPIO5 hw attention\n");
8180
8181 /* Fan failure attention */
8183 bxe_fan_failure(sc);
8184 }
8185
8186 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8190 }
8191
8192 if (attn & HW_INTERRUT_ASSERT_SET_0) {
8193 val = REG_RD(sc, reg_offset);
8194 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8195 REG_WR(sc, reg_offset, val);
8196
8197
8199 taskqueue_enqueue_timeout(taskqueue_thread,
8200 &sc->sp_err_timeout_task, hz/10);
8201
8202 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8203 (attn & HW_INTERRUT_ASSERT_SET_0)));
8204 }
8205}
8206
8207static void
8209 uint32_t deasserted)
8210{
8211 struct attn_route attn;
8212 struct attn_route *group_mask;
8213 int port = SC_PORT(sc);
8214 int index;
8215 uint32_t reg_addr;
8216 uint32_t val;
8217 uint32_t aeu_mask;
8218 uint8_t global = FALSE;
8219
8220 /*
8221 * Need to take HW lock because MCP or other port might also
8222 * try to handle this event.
8223 */
8224 bxe_acquire_alr(sc);
8225
8226 if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8227 /* XXX
8228 * In case of parity errors don't handle attentions so that
8229 * other function would "see" parity errors.
8230 */
8231 // XXX schedule a recovery task...
8232 /* disable HW interrupts */
8233 bxe_int_disable(sc);
8235 taskqueue_enqueue_timeout(taskqueue_thread,
8236 &sc->sp_err_timeout_task, hz/10);
8237 bxe_release_alr(sc);
8238 return;
8239 }
8240
8241 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8242 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8243 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8244 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8245 if (!CHIP_IS_E1x(sc)) {
8246 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8247 } else {
8248 attn.sig[4] = 0;
8249 }
8250
8251 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8252 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8253
8254 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8255 if (deasserted & (1 << index)) {
8256 group_mask = &sc->attn_group[index];
8257
8258 BLOGD(sc, DBG_INTR,
8259 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8260 group_mask->sig[0], group_mask->sig[1],
8261 group_mask->sig[2], group_mask->sig[3],
8262 group_mask->sig[4]);
8263
8264 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8265 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8266 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8267 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8268 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8269 }
8270 }
8271
8272 bxe_release_alr(sc);
8273
8274 if (sc->devinfo.int_block == INT_BLOCK_HC) {
8275 reg_addr = (HC_REG_COMMAND_REG + port*32 +
8277 } else {
8279 }
8280
8281 val = ~deasserted;
8282 BLOGD(sc, DBG_INTR,
8283 "about to mask 0x%08x at %s addr 0x%08x\n", val,
8284 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8285 REG_WR(sc, reg_addr, val);
8286
8287 if (~sc->attn_state & deasserted) {
8288 BLOGE(sc, "IGU error\n");
8289 }
8290
8293
8295
8296 aeu_mask = REG_RD(sc, reg_addr);
8297
8298 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8299 aeu_mask, deasserted);
8300 aeu_mask |= (deasserted & 0x3ff);
8301 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8302
8303 REG_WR(sc, reg_addr, aeu_mask);
8305
8306 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8307 sc->attn_state &= ~deasserted;
8308 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8309}
8310
8311static void
8313{
8314 /* read local copy of bits */
8315 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8316 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8317 uint32_t attn_state = sc->attn_state;
8318
8319 /* look for changed bits */
8320 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
8321 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
8322
8323 BLOGD(sc, DBG_INTR,
8324 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8325 attn_bits, attn_ack, asserted, deasserted);
8326
8327 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8328 BLOGE(sc, "BAD attention state\n");
8329 }
8330
8331 /* handle bits that were raised */
8332 if (asserted) {
8333 bxe_attn_int_asserted(sc, asserted);
8334 }
8335
8336 if (deasserted) {
8337 bxe_attn_int_deasserted(sc, deasserted);
8338 }
8339}
8340
8341static uint16_t
8343{
8344 struct host_sp_status_block *def_sb = sc->def_sb;
8345 uint16_t rc = 0;
8346
8347 mb(); /* status block is written to by the chip */
8348
8349 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8351 rc |= BXE_DEF_SB_ATT_IDX;
8352 }
8353
8354 if (sc->def_idx != def_sb->sp_sb.running_index) {
8355 sc->def_idx = def_sb->sp_sb.running_index;
8356 rc |= BXE_DEF_SB_IDX;
8357 }
8358
8359 mb();
8360
8361 return (rc);
8362}
8363
8364static inline struct ecore_queue_sp_obj *
8366 uint32_t cid)
8367{
8368 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8369 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8370}
8371
8372static void
8374{
8375 struct ecore_mcast_ramrod_params rparam;
8376 int rc;
8377
8378 memset(&rparam, 0, sizeof(rparam));
8379
8380 rparam.mcast_obj = &sc->mcast_obj;
8381
8382 BXE_MCAST_LOCK(sc);
8383
8384 /* clear pending state for the last command */
8386
8387 /* if there are pending mcast commands - send them */
8388 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8389 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8390 if (rc < 0) {
8391 BLOGD(sc, DBG_SP,
8392 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8393 }
8394 }
8395
8396 BXE_MCAST_UNLOCK(sc);
8397}
8398
8399static void
8401 union event_ring_elem *elem)
8402{
8403 unsigned long ramrod_flags = 0;
8404 int rc = 0;
8405 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8406 struct ecore_vlan_mac_obj *vlan_mac_obj;
8407
8408 /* always push next commands out, don't wait here */
8409 bit_set(&ramrod_flags, RAMROD_CONT);
8410
8411 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8413 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8414 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8415 break;
8416
8418 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8419 /*
8420 * This is only relevant for 57710 where multicast MACs are
8421 * configured as unicast MACs using the same ramrod.
8422 */
8424 return;
8425
8426 default:
8427 BLOGE(sc, "Unsupported classification command: %d\n",
8428 elem->message.data.eth_event.echo);
8429 return;
8430 }
8431
8432 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8433
8434 if (rc < 0) {
8435 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8436 } else if (rc > 0) {
8437 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8438 }
8439}
8440
8441static void
8443 union event_ring_elem *elem)
8444{
8446
8447 /* send rx_mode command again if was requested */
8449 &sc->sp_state)) {
8451 }
8452}
8453
8454static void
8456 uint16_t prod)
8457{
8458 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8459 wmb(); /* keep prod updates ordered */
8460}
8461
8462static void
8464{
8465 uint16_t hw_cons, sw_cons, sw_prod;
8466 union event_ring_elem *elem;
8467 uint8_t echo;
8468 uint32_t cid;
8469 uint8_t opcode;
8470 int spqe_cnt = 0;
8471 struct ecore_queue_sp_obj *q_obj;
8472 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8473 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8474
8475 hw_cons = le16toh(*sc->eq_cons_sb);
8476
8477 /*
8478 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8479 * when we get to the next-page we need to adjust so the loop
8480 * condition below will be met. The next element is the size of a
8481 * regular element and hence incrementing by 1
8482 */
8483 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8484 hw_cons++;
8485 }
8486
8487 /*
8488 * This function may never run in parallel with itself for a
8489 * specific sc and no need for a read memory barrier here.
8490 */
8491 sw_cons = sc->eq_cons;
8492 sw_prod = sc->eq_prod;
8493
8494 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8495 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8496
8497 for (;
8498 sw_cons != hw_cons;
8499 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8500
8501 elem = &sc->eq[EQ_DESC(sw_cons)];
8502
8503 /* elem CID originates from FW, actually LE */
8505 opcode = elem->message.opcode;
8506
8507 /* handle eq element */
8508 switch (opcode) {
8509
8511 BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8512 sc->stats_comp++);
8513 /* nothing to do with stats comp */
8514 goto next_spqe;
8515
8517 /* handle according to cid range */
8518 /* we may want to verify here that the sc state is HALTING */
8519 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8520 q_obj = bxe_cid_to_q_obj(sc, cid);
8521 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8522 break;
8523 }
8524 goto next_spqe;
8525
8527 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8528 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8529 break;
8530 }
8531 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8532 goto next_spqe;
8533
8535 BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8536 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8537 break;
8538 }
8539 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8540 goto next_spqe;
8541
8544 if (echo == SWITCH_UPDATE) {
8545 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8546 if (f_obj->complete_cmd(sc, f_obj,
8548 break;
8549 }
8550 }
8551 else {
8552 BLOGD(sc, DBG_SP,
8553 "AFEX: ramrod completed FUNCTION_UPDATE\n");
8554 }
8555 goto next_spqe;
8556
8558 q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8559 if (q_obj->complete_cmd(sc, q_obj,
8561 break;
8562 }
8563 goto next_spqe;
8564
8566 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8567 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8568 break;
8569 }
8570 goto next_spqe;
8571
8573 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8574 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8575 break;
8576 }
8577 goto next_spqe;
8578 }
8579
8580 switch (opcode | sc->state) {
8584 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8585 rss_raw->clear_pending(rss_raw);
8586 break;
8587
8594 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8596 break;
8597
8601 BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8603 break;
8604
8608 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8609 bxe_handle_rx_mode_eqe(sc, elem);
8610 break;
8611
8612 default:
8613 /* unknown event log error and continue */
8614 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8615 elem->message.opcode, sc->state);
8616 }
8617
8618next_spqe:
8619 spqe_cnt++;
8620 } /* for */
8621
8622 mb();
8623 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8624
8625 sc->eq_cons = sw_cons;
8626 sc->eq_prod = sw_prod;
8627
8628 /* make sure that above mem writes were issued towards the memory */
8629 wmb();
8630
8631 /* update producer */
8632 bxe_update_eq_prod(sc, sc->eq_prod);
8633}
8634
8635static void
8636bxe_handle_sp_tq(void *context,
8637 int pending)
8638{
8639 struct bxe_softc *sc = (struct bxe_softc *)context;
8640 uint16_t status;
8641
8642 BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8643
8644 /* what work needs to be performed? */
8645 status = bxe_update_dsb_idx(sc);
8646
8647 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8648
8649 /* HW attentions */
8650 if (status & BXE_DEF_SB_ATT_IDX) {
8651 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8652 bxe_attn_int(sc);
8653 status &= ~BXE_DEF_SB_ATT_IDX;
8654 }
8655
8656 /* SP events: STAT_QUERY and others */
8657 if (status & BXE_DEF_SB_IDX) {
8658 /* handle EQ completions */
8659 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8660 bxe_eq_int(sc);
8662 le16toh(sc->def_idx), IGU_INT_NOP, 1);
8663 status &= ~BXE_DEF_SB_IDX;
8664 }
8665
8666 /* if status is non zero then something went wrong */
8667 if (__predict_false(status)) {
8668 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8669 }
8670
8671 /* ack status block only if something was actually handled */
8673 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8674
8675 /*
8676 * Must be called after the EQ processing (since eq leads to sriov
8677 * ramrod completion flows).
8678 * This flow may have been scheduled by the arrival of a ramrod
8679 * completion, or by the sriov code rescheduling itself.
8680 */
8681 // XXX bxe_iov_sp_task(sc);
8682
8683}
8684
8685static void
8687 int pending)
8688{
8689 struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8690 struct bxe_softc *sc = fp->sc;
8691 uint8_t more_tx = FALSE;
8692 uint8_t more_rx = FALSE;
8693
8694 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8695
8696 /* XXX
8697 * IFF_DRV_RUNNING state can't be checked here since we process
8698 * slowpath events on a client queue during setup. Instead
8699 * we need to add a "process/continue" flag here that the driver
8700 * can use to tell the task here not to do anything.
8701 */
8702#if 0
8703 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8704 return;
8705 }
8706#endif
8707
8708 /* update the fastpath index */
8710
8711 /* XXX add loop here if ever support multiple tx CoS */
8712 /* fp->txdata[cos] */
8713 if (bxe_has_tx_work(fp)) {
8715 more_tx = bxe_txeof(sc, fp);
8717 }
8718
8719 if (bxe_has_rx_work(fp)) {
8720 more_rx = bxe_rxeof(sc, fp);
8721 }
8722
8723 if (more_rx /*|| more_tx*/) {
8724 /* still more work to do */
8725 taskqueue_enqueue(fp->tq, &fp->tq_task);
8726 return;
8727 }
8728
8730 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8731}
8732
8733static void
8735{
8736 struct bxe_softc *sc = fp->sc;
8737 uint8_t more_tx = FALSE;
8738 uint8_t more_rx = FALSE;
8739
8740 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8741
8742 /* update the fastpath index */
8744
8745 /* XXX add loop here if ever support multiple tx CoS */
8746 /* fp->txdata[cos] */
8747 if (bxe_has_tx_work(fp)) {
8749 more_tx = bxe_txeof(sc, fp);
8751 }
8752
8753 if (bxe_has_rx_work(fp)) {
8754 more_rx = bxe_rxeof(sc, fp);
8755 }
8756
8757 if (more_rx /*|| more_tx*/) {
8758 /* still more work to do, bail out if this ISR and process later */
8759 taskqueue_enqueue(fp->tq, &fp->tq_task);
8760 return;
8761 }
8762
8763 /*
8764 * Here we write the fastpath index taken before doing any tx or rx work.
8765 * It is very well possible other hw events occurred up to this point and
8766 * they were actually processed accordingly above. Since we're going to
8767 * write an older fastpath index, an interrupt is coming which we might
8768 * not do any work in.
8769 */
8771 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8772}
8773
8774/*
8775 * Legacy interrupt entry point.
8776 *
8777 * Verifies that the controller generated the interrupt and
8778 * then calls a separate routine to handle the various
8779 * interrupt causes: link, RX, and TX.
8780 */
8781static void
8783{
8784 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8785 struct bxe_fastpath *fp;
8786 uint16_t status, mask;
8787 int i;
8788
8789 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8790
8791 /*
8792 * 0 for ustorm, 1 for cstorm
8793 * the bits returned from ack_int() are 0-15
8794 * bit 0 = attention status block
8795 * bit 1 = fast path status block
8796 * a mask of 0x2 or more = tx/rx event
8797 * a mask of 1 = slow path event
8798 */
8799
8800 status = bxe_ack_int(sc);
8801
8802 /* the interrupt is not for us */
8803 if (__predict_false(status == 0)) {
8804 BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8805 return;
8806 }
8807
8808 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8809
8811 fp = &sc->fp[i];
8812 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8813 if (status & mask) {
8814 /* acknowledge and disable further fastpath interrupts */
8816 bxe_task_fp(fp);
8817 status &= ~mask;
8818 }
8819 }
8820
8821 if (__predict_false(status & 0x1)) {
8822 /* acknowledge and disable further slowpath interrupts */
8824
8825 /* schedule slowpath handler */
8826 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8827
8828 status &= ~0x1;
8829 }
8830
8831 if (__predict_false(status)) {
8832 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8833 }
8834}
8835
8836/* slowpath interrupt entry point */
8837static void
8838bxe_intr_sp(void *xsc)
8839{
8840 struct bxe_softc *sc = (struct bxe_softc *)xsc;
8841
8842 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8843
8844 /* acknowledge and disable further slowpath interrupts */
8846
8847 /* schedule slowpath handler */
8848 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8849}
8850
8851/* fastpath interrupt entry point */
8852static void
8853bxe_intr_fp(void *xfp)
8854{
8855 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8856 struct bxe_softc *sc = fp->sc;
8857
8858 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8859
8860 BLOGD(sc, DBG_INTR,
8861 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8862 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8863
8864 /* acknowledge and disable further fastpath interrupts */
8866
8867 bxe_task_fp(fp);
8868}
8869
8870/* Release all interrupts allocated by the driver. */
8871static void
8873{
8874 int i;
8875
8876 switch (sc->interrupt_mode) {
8877 case INTR_MODE_INTX:
8878 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8879 if (sc->intr[0].resource != NULL) {
8880 bus_release_resource(sc->dev,
8881 SYS_RES_IRQ,
8882 sc->intr[0].rid,
8883 sc->intr[0].resource);
8884 }
8885 break;
8886 case INTR_MODE_MSI:
8887 for (i = 0; i < sc->intr_count; i++) {
8888 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8889 if (sc->intr[i].resource && sc->intr[i].rid) {
8890 bus_release_resource(sc->dev,
8891 SYS_RES_IRQ,
8892 sc->intr[i].rid,
8893 sc->intr[i].resource);
8894 }
8895 }
8896 pci_release_msi(sc->dev);
8897 break;
8898 case INTR_MODE_MSIX:
8899 for (i = 0; i < sc->intr_count; i++) {
8900 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8901 if (sc->intr[i].resource && sc->intr[i].rid) {
8902 bus_release_resource(sc->dev,
8903 SYS_RES_IRQ,
8904 sc->intr[i].rid,
8905 sc->intr[i].resource);
8906 }
8907 }
8908 pci_release_msi(sc->dev);
8909 break;
8910 default:
8911 /* nothing to do as initial allocation failed */
8912 break;
8913 }
8914}
8915
8916/*
8917 * This function determines and allocates the appropriate
8918 * interrupt based on system capabilites and user request.
8919 *
8920 * The user may force a particular interrupt mode, specify
8921 * the number of receive queues, specify the method for
8922 * distribuitng received frames to receive queues, or use
8923 * the default settings which will automatically select the
8924 * best supported combination. In addition, the OS may or
8925 * may not support certain combinations of these settings.
8926 * This routine attempts to reconcile the settings requested
8927 * by the user with the capabilites available from the system
8928 * to select the optimal combination of features.
8929 *
8930 * Returns:
8931 * 0 = Success, !0 = Failure.
8932 */
8933static int
8935{
8936 int msix_count = 0;
8937 int msi_count = 0;
8938 int num_requested = 0;
8939 int num_allocated = 0;
8940 int rid, i, j;
8941 int rc;
8942
8943 /* get the number of available MSI/MSI-X interrupts from the OS */
8944 if (sc->interrupt_mode > 0) {
8946 msix_count = pci_msix_count(sc->dev);
8947 }
8948
8950 msi_count = pci_msi_count(sc->dev);
8951 }
8952
8953 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8954 msi_count, msix_count);
8955 }
8956
8957 do { /* try allocating MSI-X interrupt resources (at least 2) */
8958 if (sc->interrupt_mode != INTR_MODE_MSIX) {
8959 break;
8960 }
8961
8962 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8963 (msix_count < 2)) {
8964 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8965 break;
8966 }
8967
8968 /* ask for the necessary number of MSI-X vectors */
8969 num_requested = min((sc->num_queues + 1), msix_count);
8970
8971 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8972
8973 num_allocated = num_requested;
8974 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8975 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8976 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8977 break;
8978 }
8979
8980 if (num_allocated < 2) { /* possible? */
8981 BLOGE(sc, "MSI-X allocation less than 2!\n");
8982 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8983 pci_release_msi(sc->dev);
8984 break;
8985 }
8986
8987 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8988 num_requested, num_allocated);
8989
8990 /* best effort so use the number of vectors allocated to us */
8991 sc->intr_count = num_allocated;
8992 sc->num_queues = num_allocated - 1;
8993
8994 rid = 1; /* initial resource identifier */
8995
8996 /* allocate the MSI-X vectors */
8997 for (i = 0; i < num_allocated; i++) {
8998 sc->intr[i].rid = (rid + i);
8999
9000 if ((sc->intr[i].resource =
9001 bus_alloc_resource_any(sc->dev,
9002 SYS_RES_IRQ,
9003 &sc->intr[i].rid,
9004 RF_ACTIVE)) == NULL) {
9005 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9006 i, (rid + i));
9007
9008 for (j = (i - 1); j >= 0; j--) {
9009 bus_release_resource(sc->dev,
9010 SYS_RES_IRQ,
9011 sc->intr[j].rid,
9012 sc->intr[j].resource);
9013 }
9014
9015 sc->intr_count = 0;
9016 sc->num_queues = 0;
9017 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9018 pci_release_msi(sc->dev);
9019 break;
9020 }
9021
9022 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9023 }
9024 } while (0);
9025
9026 do { /* try allocating MSI vector resources (at least 2) */
9027 if (sc->interrupt_mode != INTR_MODE_MSI) {
9028 break;
9029 }
9030
9031 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9032 (msi_count < 1)) {
9033 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9034 break;
9035 }
9036
9037 /* ask for a single MSI vector */
9038 num_requested = 1;
9039
9040 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9041
9042 num_allocated = num_requested;
9043 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9044 BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9045 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9046 break;
9047 }
9048
9049 if (num_allocated != 1) { /* possible? */
9050 BLOGE(sc, "MSI allocation is not 1!\n");
9051 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9052 pci_release_msi(sc->dev);
9053 break;
9054 }
9055
9056 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9057 num_requested, num_allocated);
9058
9059 /* best effort so use the number of vectors allocated to us */
9060 sc->intr_count = num_allocated;
9061 sc->num_queues = num_allocated;
9062
9063 rid = 1; /* initial resource identifier */
9064
9065 sc->intr[0].rid = rid;
9066
9067 if ((sc->intr[0].resource =
9068 bus_alloc_resource_any(sc->dev,
9069 SYS_RES_IRQ,
9070 &sc->intr[0].rid,
9071 RF_ACTIVE)) == NULL) {
9072 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9073 sc->intr_count = 0;
9074 sc->num_queues = 0;
9075 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9076 pci_release_msi(sc->dev);
9077 break;
9078 }
9079
9080 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9081 } while (0);
9082
9083 do { /* try allocating INTx vector resources */
9084 if (sc->interrupt_mode != INTR_MODE_INTX) {
9085 break;
9086 }
9087
9088 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9089
9090 /* only one vector for INTx */
9091 sc->intr_count = 1;
9092 sc->num_queues = 1;
9093
9094 rid = 0; /* initial resource identifier */
9095
9096 sc->intr[0].rid = rid;
9097
9098 if ((sc->intr[0].resource =
9099 bus_alloc_resource_any(sc->dev,
9100 SYS_RES_IRQ,
9101 &sc->intr[0].rid,
9102 (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9103 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9104 sc->intr_count = 0;
9105 sc->num_queues = 0;
9106 sc->interrupt_mode = -1; /* Failed! */
9107 break;
9108 }
9109
9110 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9111 } while (0);
9112
9113 if (sc->interrupt_mode == -1) {
9114 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9115 rc = 1;
9116 } else {
9117 BLOGD(sc, DBG_LOAD,
9118 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9119 sc->interrupt_mode, sc->num_queues);
9120 rc = 0;
9121 }
9122
9123 return (rc);
9124}
9125
9126static void
9128{
9129 struct bxe_fastpath *fp;
9130 int i;
9131
9132 /* release interrupt resources */
9133 for (i = 0; i < sc->intr_count; i++) {
9134 if (sc->intr[i].resource && sc->intr[i].tag) {
9135 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9136 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9137 }
9138 }
9139
9140 for (i = 0; i < sc->num_queues; i++) {
9141 fp = &sc->fp[i];
9142 if (fp->tq) {
9143 taskqueue_drain(fp->tq, &fp->tq_task);
9144 taskqueue_drain(fp->tq, &fp->tx_task);
9145 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9146 NULL))
9147 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9148 }
9149
9150 for (i = 0; i < sc->num_queues; i++) {
9151 fp = &sc->fp[i];
9152 if (fp->tq != NULL) {
9153 taskqueue_free(fp->tq);
9154 fp->tq = NULL;
9155 }
9156 }
9157 }
9158
9159 if (sc->sp_tq) {
9160 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9161 taskqueue_free(sc->sp_tq);
9162 sc->sp_tq = NULL;
9163 }
9164}
9165
9166/*
9167 * Enables interrupts and attach to the ISR.
9168 *
9169 * When using multiple MSI/MSI-X vectors the first vector
9170 * is used for slowpath operations while all remaining
9171 * vectors are used for fastpath operations. If only a
9172 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9173 * ISR must look for both slowpath and fastpath completions.
9174 */
9175static int
9177{
9178 struct bxe_fastpath *fp;
9179 int rc = 0;
9180 int i;
9181
9182 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9183 "bxe%d_sp_tq", sc->unit);
9184 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9185 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9186 taskqueue_thread_enqueue,
9187 &sc->sp_tq);
9188 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9189 "%s", sc->sp_tq_name);
9190
9191
9192 for (i = 0; i < sc->num_queues; i++) {
9193 fp = &sc->fp[i];
9194 snprintf(fp->tq_name, sizeof(fp->tq_name),
9195 "bxe%d_fp%d_tq", sc->unit, i);
9196 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9197 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9198 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9199 taskqueue_thread_enqueue,
9200 &fp->tq);
9201 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9203 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9204 "%s", fp->tq_name);
9205 }
9206
9207 /* setup interrupt handlers */
9209 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9210
9211 /*
9212 * Setup the interrupt handler. Note that we pass the driver instance
9213 * to the interrupt handler for the slowpath.
9214 */
9215 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9216 (INTR_TYPE_NET | INTR_MPSAFE),
9217 NULL, bxe_intr_sp, sc,
9218 &sc->intr[0].tag)) != 0) {
9219 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9220 goto bxe_interrupt_attach_exit;
9221 }
9222
9223 bus_describe_intr(sc->dev, sc->intr[0].resource,
9224 sc->intr[0].tag, "sp");
9225
9226 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9227
9228 /* initialize the fastpath vectors (note the first was used for sp) */
9229 for (i = 0; i < sc->num_queues; i++) {
9230 fp = &sc->fp[i];
9231 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9232
9233 /*
9234 * Setup the interrupt handler. Note that we pass the
9235 * fastpath context to the interrupt handler in this
9236 * case.
9237 */
9238 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9239 (INTR_TYPE_NET | INTR_MPSAFE),
9240 NULL, bxe_intr_fp, fp,
9241 &sc->intr[i + 1].tag)) != 0) {
9242 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9243 (i + 1), rc);
9244 goto bxe_interrupt_attach_exit;
9245 }
9246
9247 bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9248 sc->intr[i + 1].tag, "fp%02d", i);
9249
9250 /* bind the fastpath instance to a cpu */
9251 if (sc->num_queues > 1) {
9252 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9253 }
9254
9255 fp->state = BXE_FP_STATE_IRQ;
9256 }
9257 } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9258 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9259
9260 /*
9261 * Setup the interrupt handler. Note that we pass the
9262 * driver instance to the interrupt handler which
9263 * will handle both the slowpath and fastpath.
9264 */
9265 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9266 (INTR_TYPE_NET | INTR_MPSAFE),
9267 NULL, bxe_intr_legacy, sc,
9268 &sc->intr[0].tag)) != 0) {
9269 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9270 goto bxe_interrupt_attach_exit;
9271 }
9272
9273 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9274 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9275
9276 /*
9277 * Setup the interrupt handler. Note that we pass the
9278 * driver instance to the interrupt handler which
9279 * will handle both the slowpath and fastpath.
9280 */
9281 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9282 (INTR_TYPE_NET | INTR_MPSAFE),
9283 NULL, bxe_intr_legacy, sc,
9284 &sc->intr[0].tag)) != 0) {
9285 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9286 goto bxe_interrupt_attach_exit;
9287 }
9288 }
9289
9290bxe_interrupt_attach_exit:
9291
9292 return (rc);
9293}
9294
9295static int bxe_init_hw_common_chip(struct bxe_softc *sc);
9296static int bxe_init_hw_common(struct bxe_softc *sc);
9297static int bxe_init_hw_port(struct bxe_softc *sc);
9298static int bxe_init_hw_func(struct bxe_softc *sc);
9299static void bxe_reset_common(struct bxe_softc *sc);
9300static void bxe_reset_port(struct bxe_softc *sc);
9301static void bxe_reset_func(struct bxe_softc *sc);
9302static int bxe_gunzip_init(struct bxe_softc *sc);
9303static void bxe_gunzip_end(struct bxe_softc *sc);
9304static int bxe_init_firmware(struct bxe_softc *sc);
9305static void bxe_release_firmware(struct bxe_softc *sc);
9306
9307static struct
9310 .init_hw_cmn = bxe_init_hw_common,
9311 .init_hw_port = bxe_init_hw_port,
9312 .init_hw_func = bxe_init_hw_func,
9313
9314 .reset_hw_cmn = bxe_reset_common,
9315 .reset_hw_port = bxe_reset_port,
9316 .reset_hw_func = bxe_reset_func,
9317
9318 .gunzip_init = bxe_gunzip_init,
9319 .gunzip_end = bxe_gunzip_end,
9320
9321 .init_fw = bxe_init_firmware,
9322 .release_fw = bxe_release_firmware,
9323};
9324
9325static void
9327{
9328 sc->dmae_ready = 0;
9329
9331 &sc->func_obj,
9332 BXE_SP(sc, func_rdata),
9333 BXE_SP_MAPPING(sc, func_rdata),
9334 BXE_SP(sc, func_afex_rdata),
9335 BXE_SP_MAPPING(sc, func_afex_rdata),
9337}
9338
9339static int
9341 uint32_t load_code)
9342{
9343 struct ecore_func_state_params func_params = { NULL };
9344 int rc;
9345
9346 /* prepare the parameters for function state transitions */
9347 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9348
9349 func_params.f_obj = &sc->func_obj;
9350 func_params.cmd = ECORE_F_CMD_HW_INIT;
9351
9352 func_params.params.hw_init.load_phase = load_code;
9353
9354 /*
9355 * Via a plethora of function pointers, we will eventually reach
9356 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9357 */
9358 rc = ecore_func_state_change(sc, &func_params);
9359
9360 return (rc);
9361}
9362
9363static void
9365 uint32_t addr,
9366 int fill,
9367 uint32_t len)
9368{
9369 uint32_t i;
9370
9371 if (!(len % 4) && !(addr % 4)) {
9372 for (i = 0; i < len; i += 4) {
9373 REG_WR(sc, (addr + i), fill);
9374 }
9375 } else {
9376 for (i = 0; i < len; i++) {
9377 REG_WR8(sc, (addr + i), fill);
9378 }
9379 }
9380}
9381
9382/* writes FP SP data to FW - data_size in dwords */
9383static void
9385 int fw_sb_id,
9386 uint32_t *sb_data_p,
9387 uint32_t data_size)
9388{
9389 int index;
9390
9391 for (index = 0; index < data_size; index++) {
9392 REG_WR(sc,
9395 (sizeof(uint32_t) * index)),
9396 *(sb_data_p + index));
9397 }
9398}
9399
9400static void
9402 int fw_sb_id)
9403{
9404 struct hc_status_block_data_e2 sb_data_e2;
9405 struct hc_status_block_data_e1x sb_data_e1x;
9406 uint32_t *sb_data_p;
9407 uint32_t data_size = 0;
9408
9409 if (!CHIP_IS_E1x(sc)) {
9410 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9411 sb_data_e2.common.state = SB_DISABLED;
9412 sb_data_e2.common.p_func.vf_valid = FALSE;
9413 sb_data_p = (uint32_t *)&sb_data_e2;
9414 data_size = (sizeof(struct hc_status_block_data_e2) /
9415 sizeof(uint32_t));
9416 } else {
9417 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9418 sb_data_e1x.common.state = SB_DISABLED;
9419 sb_data_e1x.common.p_func.vf_valid = FALSE;
9420 sb_data_p = (uint32_t *)&sb_data_e1x;
9421 data_size = (sizeof(struct hc_status_block_data_e1x) /
9422 sizeof(uint32_t));
9423 }
9424
9425 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9426
9431}
9432
9433static void
9435 struct hc_sp_status_block_data *sp_sb_data)
9436{
9437 int i;
9438
9439 for (i = 0;
9440 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9441 i++) {
9442 REG_WR(sc,
9445 (i * sizeof(uint32_t))),
9446 *((uint32_t *)sp_sb_data + i));
9447 }
9448}
9449
9450static void
9452{
9453 struct hc_sp_status_block_data sp_sb_data;
9454
9455 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9456
9457 sp_sb_data.state = SB_DISABLED;
9458 sp_sb_data.p_func.vf_valid = FALSE;
9459
9460 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9461
9462 bxe_fill(sc,
9466 bxe_fill(sc,
9470}
9471
9472static void
9474 int igu_sb_id,
9475 int igu_seg_id)
9476{
9477 hc_sm->igu_sb_id = igu_sb_id;
9478 hc_sm->igu_seg_id = igu_seg_id;
9479 hc_sm->timer_value = 0xFF;
9480 hc_sm->time_to_expire = 0xFFFFFFFF;
9481}
9482
9483static void
9485{
9486 /* zero out state machine indices */
9487
9488 /* rx indices */
9489 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9490
9491 /* tx indices */
9492 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9493 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9494 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9495 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9496
9497 /* map indices */
9498
9499 /* rx indices */
9500 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9501 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9502
9503 /* tx indices */
9504 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9505 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9506 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9507 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9508 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9509 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9510 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9511 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9512}
9513
9514static void
9516 bus_addr_t busaddr,
9517 int vfid,
9518 uint8_t vf_valid,
9519 int fw_sb_id,
9520 int igu_sb_id)
9521{
9522 struct hc_status_block_data_e2 sb_data_e2;
9523 struct hc_status_block_data_e1x sb_data_e1x;
9524 struct hc_status_block_sm *hc_sm_p;
9525 uint32_t *sb_data_p;
9526 int igu_seg_id;
9527 int data_size;
9528
9529 if (CHIP_INT_MODE_IS_BC(sc)) {
9530 igu_seg_id = HC_SEG_ACCESS_NORM;
9531 } else {
9532 igu_seg_id = IGU_SEG_ACCESS_NORM;
9533 }
9534
9535 bxe_zero_fp_sb(sc, fw_sb_id);
9536
9537 if (!CHIP_IS_E1x(sc)) {
9538 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9539 sb_data_e2.common.state = SB_ENABLED;
9540 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9541 sb_data_e2.common.p_func.vf_id = vfid;
9542 sb_data_e2.common.p_func.vf_valid = vf_valid;
9543 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9544 sb_data_e2.common.same_igu_sb_1b = TRUE;
9545 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9546 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9547 hc_sm_p = sb_data_e2.common.state_machine;
9548 sb_data_p = (uint32_t *)&sb_data_e2;
9549 data_size = (sizeof(struct hc_status_block_data_e2) /
9550 sizeof(uint32_t));
9552 } else {
9553 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9554 sb_data_e1x.common.state = SB_ENABLED;
9555 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9556 sb_data_e1x.common.p_func.vf_id = 0xff;
9557 sb_data_e1x.common.p_func.vf_valid = FALSE;
9558 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9559 sb_data_e1x.common.same_igu_sb_1b = TRUE;
9560 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9561 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9562 hc_sm_p = sb_data_e1x.common.state_machine;
9563 sb_data_p = (uint32_t *)&sb_data_e1x;
9564 data_size = (sizeof(struct hc_status_block_data_e1x) /
9565 sizeof(uint32_t));
9567 }
9568
9569 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9570 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9571
9572 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9573
9574 /* write indices to HW - PCI guarantees endianity of regpairs */
9575 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9576}
9577
9578static inline uint8_t
9580{
9581 if (CHIP_IS_E1x(fp->sc)) {
9582 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9583 } else {
9584 return (fp->cl_id);
9585 }
9586}
9587
9588static inline uint32_t
9590 struct bxe_fastpath *fp)
9591{
9592 uint32_t offset = BAR_USTRORM_INTMEM;
9593
9594 if (!CHIP_IS_E1x(sc)) {
9596 } else {
9598 }
9599
9600 return (offset);
9601}
9602
9603static void
9605 int idx)
9606{
9607 struct bxe_fastpath *fp = &sc->fp[idx];
9608 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9609 unsigned long q_type = 0;
9610 int cos;
9611
9612 fp->sc = sc;
9613 fp->index = idx;
9614
9615 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9616 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9617
9618 fp->cl_id = (CHIP_IS_E1x(sc)) ?
9619 (SC_L_ID(sc) + idx) :
9620 /* want client ID same as IGU SB ID for non-E1 */
9621 fp->igu_sb_id;
9622 fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9623
9624 /* setup sb indices */
9625 if (!CHIP_IS_E1x(sc)) {
9628 } else {
9631 }
9632
9633 /* init shortcut */
9635
9637
9638 /*
9639 * XXX If multiple CoS is ever supported then each fastpath structure
9640 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9641 */
9642 for (cos = 0; cos < sc->max_cos; cos++) {
9643 cids[cos] = idx;
9644 }
9646
9647 /* nothing more for a VF to do */
9648 if (IS_VF(sc)) {
9649 return;
9650 }
9651
9653 fp->fw_sb_id, fp->igu_sb_id);
9654
9656
9657 /* Configure Queue State object */
9658 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9659 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9660
9662 &sc->sp_objs[idx].q_obj,
9663 fp->cl_id,
9664 cids,
9665 sc->max_cos,
9666 SC_FUNC(sc),
9667 BXE_SP(sc, q_rdata),
9668 BXE_SP_MAPPING(sc, q_rdata),
9669 q_type);
9670
9671 /* configure classification DBs */
9673 &sc->sp_objs[idx].mac_obj,
9674 fp->cl_id,
9675 idx,
9676 SC_FUNC(sc),
9677 BXE_SP(sc, mac_rdata),
9678 BXE_SP_MAPPING(sc, mac_rdata),
9680 &sc->sp_state,
9682 &sc->macs_pool);
9683
9684 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9685 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9686}
9687
9688static inline void
9690 struct bxe_fastpath *fp,
9691 uint16_t rx_bd_prod,
9692 uint16_t rx_cq_prod,
9693 uint16_t rx_sge_prod)
9694{
9695 struct ustorm_eth_rx_producers rx_prods = { 0 };
9696 uint32_t i;
9697
9698 /* update producers */
9699 rx_prods.bd_prod = rx_bd_prod;
9700 rx_prods.cqe_prod = rx_cq_prod;
9701 rx_prods.sge_prod = rx_sge_prod;
9702
9703 /*
9704 * Make sure that the BD and SGE data is updated before updating the
9705 * producers since FW might read the BD/SGE right after the producer
9706 * is updated.
9707 * This is only applicable for weak-ordered memory model archs such
9708 * as IA-64. The following barrier is also mandatory since FW will
9709 * assumes BDs must have buffers.
9710 */
9711 wmb();
9712
9713 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9714 REG_WR(sc,
9715 (fp->ustorm_rx_prods_offset + (i * 4)),
9716 ((uint32_t *)&rx_prods)[i]);
9717 }
9718
9719 wmb(); /* keep prod updates ordered */
9720
9721 BLOGD(sc, DBG_RX,
9722 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9723 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9724}
9725
9726static void
9728{
9729 struct bxe_fastpath *fp;
9730 int i;
9731
9732 for (i = 0; i < sc->num_queues; i++) {
9733 fp = &sc->fp[i];
9734
9735 fp->rx_bd_cons = 0;
9736
9737 /*
9738 * Activate the BD ring...
9739 * Warning, this will generate an interrupt (to the TSTORM)
9740 * so this can only be done after the chip is initialized
9741 */
9743 fp->rx_bd_prod,
9744 fp->rx_cq_prod,
9745 fp->rx_sge_prod);
9746
9747 if (i != 0) {
9748 continue;
9749 }
9750
9751 if (CHIP_IS_E1(sc)) {
9752 REG_WR(sc,
9755 U64_LO(fp->rcq_dma.paddr));
9756 REG_WR(sc,
9759 U64_HI(fp->rcq_dma.paddr));
9760 }
9761 }
9762}
9763
9764static void
9766{
9767 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9768 fp->tx_db.data.zero_fill1 = 0;
9769 fp->tx_db.data.prod = 0;
9770
9771 fp->tx_pkt_prod = 0;
9772 fp->tx_pkt_cons = 0;
9773 fp->tx_bd_prod = 0;
9774 fp->tx_bd_cons = 0;
9775 fp->eth_q_stats.tx_pkts = 0;
9776}
9777
9778static inline void
9780{
9781 int i;
9782
9783 for (i = 0; i < sc->num_queues; i++) {
9785 }
9786}
9787
9788static void
9790{
9791 struct host_sp_status_block *def_sb = sc->def_sb;
9792 bus_addr_t mapping = sc->def_sb_dma.paddr;
9793 int igu_sp_sb_index;
9794 int igu_seg_id;
9795 int port = SC_PORT(sc);
9796 int func = SC_FUNC(sc);
9797 int reg_offset, reg_offset_en5;
9798 uint64_t section;
9799 int index, sindex;
9800 struct hc_sp_status_block_data sp_sb_data;
9801
9802 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9803
9804 if (CHIP_INT_MODE_IS_BC(sc)) {
9805 igu_sp_sb_index = DEF_SB_IGU_ID;
9806 igu_seg_id = HC_SEG_ACCESS_DEF;
9807 } else {
9808 igu_sp_sb_index = sc->igu_dsb_id;
9809 igu_seg_id = IGU_SEG_ACCESS_DEF;
9810 }
9811
9812 /* attentions */
9813 section = ((uint64_t)mapping +
9814 offsetof(struct host_sp_status_block, atten_status_block));
9815 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9816 sc->attn_state = 0;
9817
9818 reg_offset = (port) ?
9821 reg_offset_en5 = (port) ?
9824
9825 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9826 /* take care of sig[0]..sig[4] */
9827 for (sindex = 0; sindex < 4; sindex++) {
9828 sc->attn_group[index].sig[sindex] =
9829 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9830 }
9831
9832 if (!CHIP_IS_E1x(sc)) {
9833 /*
9834 * enable5 is separate from the rest of the registers,
9835 * and the address skip is 4 and not 16 between the
9836 * different groups
9837 */
9838 sc->attn_group[index].sig[4] =
9839 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9840 } else {
9841 sc->attn_group[index].sig[4] = 0;
9842 }
9843 }
9844
9845 if (sc->devinfo.int_block == INT_BLOCK_HC) {
9846 reg_offset = (port) ?
9849 REG_WR(sc, reg_offset, U64_LO(section));
9850 REG_WR(sc, (reg_offset + 4), U64_HI(section));
9851 } else if (!CHIP_IS_E1x(sc)) {
9852 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9853 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9854 }
9855
9856 section = ((uint64_t)mapping +
9857 offsetof(struct host_sp_status_block, sp_sb));
9858
9859 bxe_zero_sp_sb(sc);
9860
9861 /* PCI guarantees endianity of regpair */
9862 sp_sb_data.state = SB_ENABLED;
9863 sp_sb_data.host_sb_addr.lo = U64_LO(section);
9864 sp_sb_data.host_sb_addr.hi = U64_HI(section);
9865 sp_sb_data.igu_sb_id = igu_sp_sb_index;
9866 sp_sb_data.igu_seg_id = igu_seg_id;
9867 sp_sb_data.p_func.pf_id = func;
9868 sp_sb_data.p_func.vnic_id = SC_VN(sc);
9869 sp_sb_data.p_func.vf_id = 0xff;
9870
9871 bxe_wr_sp_sb_data(sc, &sp_sb_data);
9872
9874}
9875
9876static void
9878{
9879 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9880 sc->spq_prod_idx = 0;
9882 sc->spq_prod_bd = sc->spq;
9884}
9885
9886static void
9888{
9889 union event_ring_elem *elem;
9890 int i;
9891
9892 for (i = 1; i <= NUM_EQ_PAGES; i++) {
9893 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9894
9895 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9897 (i % NUM_EQ_PAGES)));
9898 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9900 (i % NUM_EQ_PAGES)));
9901 }
9902
9903 sc->eq_cons = 0;
9904 sc->eq_prod = NUM_EQ_DESC;
9906
9907 atomic_store_rel_long(&sc->eq_spq_left,
9909 NUM_EQ_DESC) - 1));
9910}
9911
9912static void
9914{
9915 int i;
9916
9917 /*
9918 * Zero this manually as its initialization is currently missing
9919 * in the initTool.
9920 */
9921 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9922 REG_WR(sc,
9924 0);
9925 }
9926
9927 if (!CHIP_IS_E1x(sc)) {
9930 }
9931}
9932
9933static void
9935 uint32_t load_code)
9936{
9937 switch (load_code) {
9941 /* no break */
9942
9944 /* nothing to do */
9945 /* no break */
9946
9948 /* internal memory per function is initialized inside bxe_pf_init */
9949 break;
9950
9951 default:
9952 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9953 break;
9954 }
9955}
9956
9957static void
9960 uint16_t abs_fid)
9961{
9962 uint32_t addr;
9963 size_t size;
9964
9967 size = sizeof(struct tstorm_eth_function_common_config);
9968 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9969}
9970
9971static void
9973 struct bxe_func_init_params *p)
9974{
9975 struct tstorm_eth_function_common_config tcfg = { 0 };
9976
9977 if (CHIP_IS_E1x(sc)) {
9978 storm_memset_func_cfg(sc, &tcfg, p->func_id);
9979 }
9980
9981 /* Enable the function in the FW */
9983 storm_memset_func_en(sc, p->func_id, 1);
9984
9985 /* spq */
9986 if (p->func_flgs & FUNC_FLG_SPQ) {
9988 REG_WR(sc,
9990 p->spq_prod);
9991 }
9992}
9993
9994/*
9995 * Calculates the sum of vn_min_rates.
9996 * It's needed for further normalizing of the min_rates.
9997 * Returns:
9998 * sum of vn_min_rates.
9999 * or
10000 * 0 - if all the min_rates are 0.
10001 * In the later case fainess algorithm should be deactivated.
10002 * If all min rates are not zero then those that are zeroes will be set to 1.
10003 */
10004static void
10006 struct cmng_init_input *input)
10007{
10008 uint32_t vn_cfg;
10009 uint32_t vn_min_rate;
10010 int all_zero = 1;
10011 int vn;
10012
10013 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10014 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10015 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10017
10018 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10019 /* skip hidden VNs */
10020 vn_min_rate = 0;
10021 } else if (!vn_min_rate) {
10022 /* If min rate is zero - set it to 100 */
10023 vn_min_rate = DEF_MIN_RATE;
10024 } else {
10025 all_zero = 0;
10026 }
10027
10028 input->vnic_min_rate[vn] = vn_min_rate;
10029 }
10030
10031 /* if ETS or all min rates are zeros - disable fairness */
10032 if (BXE_IS_ETS_ENABLED(sc)) {
10033 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10034 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10035 } else if (all_zero) {
10036 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10037 BLOGD(sc, DBG_LOAD,
10038 "Fariness disabled (all MIN values are zeroes)\n");
10039 } else {
10041 }
10042}
10043
10044static inline uint16_t
10046 uint32_t mf_cfg)
10047{
10048 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10050
10051 if (!max_cfg) {
10052 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10053 max_cfg = 100;
10054 }
10055
10056 return (max_cfg);
10057}
10058
10059static void
10061 int vn,
10062 struct cmng_init_input *input)
10063{
10064 uint16_t vn_max_rate;
10065 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10066 uint32_t max_cfg;
10067
10068 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10069 vn_max_rate = 0;
10070 } else {
10071 max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10072
10073 if (IS_MF_SI(sc)) {
10074 /* max_cfg in percents of linkspeed */
10075 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10076 } else { /* SD modes */
10077 /* max_cfg is absolute in 100Mb units */
10078 vn_max_rate = (max_cfg * 100);
10079 }
10080 }
10081
10082 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10083
10084 input->vnic_max_rate[vn] = vn_max_rate;
10085}
10086
10087static void
10089 uint8_t read_cfg,
10090 uint8_t cmng_type)
10091{
10092 struct cmng_init_input input;
10093 int vn;
10094
10095 memset(&input, 0, sizeof(struct cmng_init_input));
10096
10097 input.port_rate = sc->link_vars.line_speed;
10098
10099 if (cmng_type == CMNG_FNS_MINMAX) {
10100 /* read mf conf from shmem */
10101 if (read_cfg) {
10102 bxe_read_mf_cfg(sc);
10103 }
10104
10105 /* get VN min rate and enable fairness if not 0 */
10106 bxe_calc_vn_min(sc, &input);
10107
10108 /* get VN max rate */
10109 if (sc->port.pmf) {
10110 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10111 bxe_calc_vn_max(sc, vn, &input);
10112 }
10113 }
10114
10115 /* always enable rate shaping and fairness */
10117
10118 ecore_init_cmng(&input, &sc->cmng);
10119 return;
10120 }
10121
10122 /* rate shaping and fairness are disabled */
10123 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10124}
10125
10126static int
10128{
10129 if (CHIP_REV_IS_SLOW(sc)) {
10130 return (CMNG_FNS_NONE);
10131 }
10132
10133 if (IS_MF(sc)) {
10134 return (CMNG_FNS_MINMAX);
10135 }
10136
10137 return (CMNG_FNS_NONE);
10138}
10139
10140static void
10142 struct cmng_init *cmng,
10143 uint8_t port)
10144{
10145 int vn;
10146 int func;
10147 uint32_t addr;
10148 size_t size;
10149
10152 size = sizeof(struct cmng_struct_per_port);
10153 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10154
10155 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10156 func = func_by_vn(sc, vn);
10157
10160 size = sizeof(struct rate_shaping_vars_per_vn);
10162 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10163
10166 size = sizeof(struct fairness_vars_per_vn);
10168 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10169 }
10170}
10171
10172static void
10174{
10175 struct bxe_func_init_params func_init = { 0 };
10176 struct event_ring_data eq_data = { { 0 } };
10177 uint16_t flags;
10178
10179 if (!CHIP_IS_E1x(sc)) {
10180 /* reset IGU PF statistics: MSIX + ATTN */
10181 /* PF */
10182 REG_WR(sc,
10185 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10186 0);
10187 /* ATTN */
10188 REG_WR(sc,
10192 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10193 0);
10194 }
10195
10196 /* function setup flags */
10198
10199 /*
10200 * This flag is relevant for E1x only.
10201 * E2 doesn't have a TPA configuration in a function level.
10202 */
10203 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10204
10205 func_init.func_flgs = flags;
10206 func_init.pf_id = SC_FUNC(sc);
10207 func_init.func_id = SC_FUNC(sc);
10208 func_init.spq_map = sc->spq_dma.paddr;
10209 func_init.spq_prod = sc->spq_prod_idx;
10210
10211 bxe_func_init(sc, &func_init);
10212
10213 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10214
10215 /*
10216 * Congestion management values depend on the link rate.
10217 * There is no active link so initial link rate is set to 10Gbps.
10218 * When the link comes up the congestion management values are
10219 * re-calculated according to the actual link rate.
10220 */
10223
10224 /* Only the PMF sets the HW */
10225 if (sc->port.pmf) {
10226 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10227 }
10228
10229 /* init Event Queue - PCI bus guarantees correct endainity */
10230 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10231 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10232 eq_data.producer = sc->eq_prod;
10233 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
10234 eq_data.sb_id = DEF_SB_ID;
10235 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10236}
10237
10238static void
10240{
10241 int port = SC_PORT(sc);
10242 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10243 uint32_t val = REG_RD(sc, addr);
10244 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10245 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10246 (sc->intr_count == 1)) ? TRUE : FALSE;
10247 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10248
10249 if (msix) {
10254 if (single_msix) {
10256 }
10257 } else if (msi) {
10258 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10262 } else {
10267
10268 if (!CHIP_IS_E1(sc)) {
10269 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10270 val, port, addr);
10271
10272 REG_WR(sc, addr, val);
10273
10274 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10275 }
10276 }
10277
10278 if (CHIP_IS_E1(sc)) {
10279 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10280 }
10281
10282 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10283 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10284
10285 REG_WR(sc, addr, val);
10286
10287 /* ensure that HC_CONFIG is written before leading/trailing edge config */
10288 mb();
10289
10290 if (!CHIP_IS_E1(sc)) {
10291 /* init leading/trailing edge */
10292 if (IS_MF(sc)) {
10293 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10294 if (sc->port.pmf) {
10295 /* enable nig and gpio3 attention */
10296 val |= 0x1100;
10297 }
10298 } else {
10299 val = 0xffff;
10300 }
10301
10302 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10303 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10304 }
10305
10306 /* make sure that interrupts are indeed enabled from here on */
10307 mb();
10308}
10309
10310static void
10312{
10313 uint32_t val;
10314 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10315 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10316 (sc->intr_count == 1)) ? TRUE : FALSE;
10317 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10318
10320
10321 if (msix) {
10322 val &= ~(IGU_PF_CONF_INT_LINE_EN |
10324 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10326 if (single_msix) {
10328 }
10329 } else if (msi) {
10330 val &= ~IGU_PF_CONF_INT_LINE_EN;
10331 val |= (IGU_PF_CONF_MSI_MSIX_EN |
10334 } else {
10335 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10336 val |= (IGU_PF_CONF_INT_LINE_EN |
10339 }
10340
10341 /* clean previous status - need to configure igu prior to ack*/
10342 if ((!msix) || single_msix) {
10344 bxe_ack_int(sc);
10345 }
10346
10347 val |= IGU_PF_CONF_FUNC_EN;
10348
10349 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10350 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10351
10353
10354 mb();
10355
10356 /* init leading/trailing edge */
10357 if (IS_MF(sc)) {
10358 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10359 if (sc->port.pmf) {
10360 /* enable nig and gpio3 attention */
10361 val |= 0x1100;
10362 }
10363 } else {
10364 val = 0xffff;
10365 }
10366
10369
10370 /* make sure that interrupts are indeed enabled from here on */
10371 mb();
10372}
10373
10374static void
10376{
10377 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10379 } else {
10381 }
10382}
10383
10384static void
10386{
10387 int port = SC_PORT(sc);
10388 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10389 uint32_t val = REG_RD(sc, addr);
10390
10391 /*
10392 * In E1 we must use only PCI configuration space to disable MSI/MSIX
10393 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10394 * block
10395 */
10396 if (CHIP_IS_E1(sc)) {
10397 /*
10398 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10399 * to prevent from HC sending interrupts after we exit the function
10400 */
10401 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10402
10406 } else {
10411 }
10412
10413 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10414
10415 /* flush all outstanding writes */
10416 mb();
10417
10418 REG_WR(sc, addr, val);
10419 if (REG_RD(sc, addr) != val) {
10420 BLOGE(sc, "proper val not read from HC IGU!\n");
10421 }
10422}
10423
10424static void
10426{
10427 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10428
10429 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10432
10433 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10434
10435 /* flush all outstanding writes */
10436 mb();
10437
10439 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10440 BLOGE(sc, "proper val not read from IGU!\n");
10441 }
10442}
10443
10444static void
10446{
10447 if (sc->devinfo.int_block == INT_BLOCK_HC) {
10449 } else {
10451 }
10452}
10453
10454static void
10456 int load_code)
10457{
10458 int i;
10459
10460 for (i = 0; i < sc->num_queues; i++) {
10461 bxe_init_eth_fp(sc, i);
10462 }
10463
10464 rmb(); /* ensure status block indices were read */
10465
10468
10469 if (IS_VF(sc)) {
10470 return;
10471 }
10472
10473 /* initialize MOD_ABS interrupts */
10475 sc->devinfo.chip_id,
10476 sc->devinfo.shmem_base,
10477 sc->devinfo.shmem2_base,
10478 SC_PORT(sc));
10479
10480 bxe_init_def_sb(sc);
10482 bxe_init_sp_ring(sc);
10483 bxe_init_eq_ring(sc);
10484 bxe_init_internal(sc, load_code);
10485 bxe_pf_init(sc);
10486 bxe_stats_init(sc);
10487
10488 /* flush all before enabling interrupts */
10489 mb();
10490
10491 bxe_int_enable(sc);
10492
10493 /* check for SPIO5 */
10495 REG_RD(sc,
10497 SC_PORT(sc)*4)) &
10499}
10500
10501static inline void
10503{
10504 /* mcast rules must be added to tx if tx switching is enabled */
10505 ecore_obj_type o_type =
10508
10509 /* RX_MODE controlling object */
10511
10512 /* multicast configuration controlling object */
10514 &sc->mcast_obj,
10515 sc->fp[0].cl_id,
10516 sc->fp[0].index,
10517 SC_FUNC(sc),
10518 SC_FUNC(sc),
10519 BXE_SP(sc, mcast_rdata),
10520 BXE_SP_MAPPING(sc, mcast_rdata),
10522 &sc->sp_state,
10523 o_type);
10524
10525 /* Setup CAM credit pools */
10527 &sc->macs_pool,
10528 SC_FUNC(sc),
10529 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10530 VNICS_PER_PATH(sc));
10531
10533 &sc->vlans_pool,
10534 SC_ABS_FUNC(sc) >> 1,
10535 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10536 VNICS_PER_PATH(sc));
10537
10538 /* RSS configuration object */
10540 &sc->rss_conf_obj,
10541 sc->fp[0].cl_id,
10542 sc->fp[0].index,
10543 SC_FUNC(sc),
10544 SC_FUNC(sc),
10545 BXE_SP(sc, rss_rdata),
10546 BXE_SP_MAPPING(sc, rss_rdata),
10549}
10550
10551/*
10552 * Initialize the function. This must be called before sending CLIENT_SETUP
10553 * for the first client.
10554 */
10555static inline int
10557{
10558 struct ecore_func_state_params func_params = { NULL };
10559 struct ecore_func_start_params *start_params = &func_params.params.start;
10560
10561 /* Prepare parameters for function state transitions */
10562 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10563
10564 func_params.f_obj = &sc->func_obj;
10565 func_params.cmd = ECORE_F_CMD_START;
10566
10567 /* Function parameters */
10568 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
10569 start_params->sd_vlan_tag = OVLAN(sc);
10570
10571 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10572 start_params->network_cos_mode = STATIC_COS;
10573 } else { /* CHIP_IS_E1X */
10574 start_params->network_cos_mode = FW_WRR;
10575 }
10576
10577 //start_params->gre_tunnel_mode = 0;
10578 //start_params->gre_tunnel_rss = 0;
10579
10580 return (ecore_func_state_change(sc, &func_params));
10581}
10582
10583static int
10585 uint8_t state)
10586{
10587 uint16_t pmcsr;
10588
10589 /* If there is no power capability, silently succeed */
10591 BLOGW(sc, "No power capability\n");
10592 return (0);
10593 }
10594
10595 pmcsr = pci_read_config(sc->dev,
10596 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10597 2);
10598
10599 switch (state) {
10600 case PCI_PM_D0:
10601 pci_write_config(sc->dev,
10602 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10603 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10604
10605 if (pmcsr & PCIM_PSTAT_DMASK) {
10606 /* delay required during transition out of D3hot */
10607 DELAY(20000);
10608 }
10609
10610 break;
10611
10612 case PCI_PM_D3hot:
10613 /* XXX if there are other clients above don't shut down the power */
10614
10615 /* don't shut down the power for emulation and FPGA */
10616 if (CHIP_REV_IS_SLOW(sc)) {
10617 return (0);
10618 }
10619
10620 pmcsr &= ~PCIM_PSTAT_DMASK;
10621 pmcsr |= PCIM_PSTAT_D3;
10622
10623 if (sc->wol) {
10624 pmcsr |= PCIM_PSTAT_PMEENABLE;
10625 }
10626
10627 pci_write_config(sc->dev,
10628 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10629 pmcsr, 4);
10630
10631 /*
10632 * No more memory access after this point until device is brought back
10633 * to D0 state.
10634 */
10635 break;
10636
10637 default:
10638 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10639 state, pmcsr);
10640 return (-1);
10641 }
10642
10643 return (0);
10644}
10645
10646
10647/* return true if succeeded to acquire the lock */
10648static uint8_t
10650 uint32_t resource)
10651{
10652 uint32_t lock_status;
10653 uint32_t resource_bit = (1 << resource);
10654 int func = SC_FUNC(sc);
10655 uint32_t hw_lock_control_reg;
10656
10657 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10658
10659 /* Validating that the resource is within range */
10660 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10661 BLOGD(sc, DBG_LOAD,
10662 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10663 resource, HW_LOCK_MAX_RESOURCE_VALUE);
10664 return (FALSE);
10665 }
10666
10667 if (func <= 5) {
10668 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10669 } else {
10670 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10671 }
10672
10673 /* try to acquire the lock */
10674 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10675 lock_status = REG_RD(sc, hw_lock_control_reg);
10676 if (lock_status & resource_bit) {
10677 return (TRUE);
10678 }
10679
10680 BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10681 "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10682 lock_status, resource_bit);
10683
10684 return (FALSE);
10685}
10686
10687/*
10688 * Get the recovery leader resource id according to the engine this function
10689 * belongs to. Currently only only 2 engines is supported.
10690 */
10691static int
10693{
10694 if (SC_PATH(sc)) {
10696 } else {
10698 }
10699}
10700
10701/* try to acquire a leader lock for current engine */
10702static uint8_t
10704{
10706}
10707
10708static int
10710{
10712}
10713
10714/* close gates #2, #3 and #4 */
10715static void
10717 uint8_t close)
10718{
10719 uint32_t val;
10720
10721 /* gates #2 and #4a are closed/opened for "not E1" only */
10722 if (!CHIP_IS_E1(sc)) {
10723 /* #4 */
10725 /* #2 */
10727 }
10728
10729 /* #3 */
10730 if (CHIP_IS_E1x(sc)) {
10731 /* prevent interrupts from HC on both ports */
10732 val = REG_RD(sc, HC_REG_CONFIG_1);
10734 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10735 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10736
10737 val = REG_RD(sc, HC_REG_CONFIG_0);
10739 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10740 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10741 } else {
10742 /* Prevent incoming interrupts in IGU */
10744
10746 (!close) ?
10748 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10749 }
10750
10751 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10752 close ? "closing" : "opening");
10753
10754 wmb();
10755}
10756
10757/* poll for pending writes bit, it should get cleared in no more than 1s */
10758static int
10760{
10761 uint32_t cnt = 1000;
10762 uint32_t pend_bits = 0;
10763
10764 do {
10765 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10766
10767 if (pend_bits == 0) {
10768 break;
10769 }
10770
10771 DELAY(1000);
10772 } while (--cnt > 0);
10773
10774 if (cnt == 0) {
10775 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10776 return (-1);
10777 }
10778
10779 return (0);
10780}
10781
10782#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
10783
10784static void
10786 uint32_t *magic_val)
10787{
10788 /* Do some magic... */
10789 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10790 *magic_val = val & SHARED_MF_CLP_MAGIC;
10791 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10792}
10793
10794/* restore the value of the 'magic' bit */
10795static void
10797 uint32_t magic_val)
10798{
10799 /* Restore the 'magic' bit value... */
10800 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10801 MFCFG_WR(sc, shared_mf_config.clp_mb,
10802 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10803}
10804
10805/* prepare for MCP reset, takes care of CLP configurations */
10806static void
10808 uint32_t *magic_val)
10809{
10810 uint32_t shmem;
10811 uint32_t validity_offset;
10812
10813 /* set `magic' bit in order to save MF config */
10814 if (!CHIP_IS_E1(sc)) {
10815 bxe_clp_reset_prep(sc, magic_val);
10816 }
10817
10818 /* get shmem offset */
10819 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10820 validity_offset =
10821 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10822
10823 /* Clear validity map flags */
10824 if (shmem > 0) {
10825 REG_WR(sc, shmem + validity_offset, 0);
10826 }
10827}
10828
10829#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
10830#define MCP_ONE_TIMEOUT 100 /* 100 ms */
10831
10832static void
10834{
10835 /* special handling for emulation and FPGA (10 times longer) */
10836 if (CHIP_REV_IS_SLOW(sc)) {
10837 DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10838 } else {
10839 DELAY((MCP_ONE_TIMEOUT) * 1000);
10840 }
10841}
10842
10843/* initialize shmem_base and waits for validity signature to appear */
10844static int
10846{
10847 int cnt = 0;
10848 uint32_t val = 0;
10849
10850 do {
10851 sc->devinfo.shmem_base =
10854
10855 if (sc->devinfo.shmem_base) {
10856 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10857 if (val & SHR_MEM_VALIDITY_MB)
10858 return (0);
10859 }
10860
10861 bxe_mcp_wait_one(sc);
10862
10863 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10864
10865 BLOGE(sc, "BAD MCP validity signature\n");
10866
10867 return (-1);
10868}
10869
10870static int
10872 uint32_t magic_val)
10873{
10874 int rc = bxe_init_shmem(sc);
10875
10876 /* Restore the `magic' bit value */
10877 if (!CHIP_IS_E1(sc)) {
10878 bxe_clp_reset_done(sc, magic_val);
10879 }
10880
10881 return (rc);
10882}
10883
10884static void
10886{
10887 if (!CHIP_IS_E1(sc)) {
10890 wmb();
10891 }
10892}
10893
10894/*
10895 * Reset the whole chip except for:
10896 * - PCIE core
10897 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10898 * - IGU
10899 * - MISC (including AEU)
10900 * - GRC
10901 * - RBCN, RBCP
10902 */
10903static void
10905 uint8_t global)
10906{
10907 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10908 uint32_t global_bits2, stay_reset2;
10909
10910 /*
10911 * Bits that have to be set in reset_mask2 if we want to reset 'global'
10912 * (per chip) blocks.
10913 */
10914 global_bits2 =
10917
10918 /*
10919 * Don't reset the following blocks.
10920 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10921 * reset, as in 4 port device they might still be owned
10922 * by the MCP (there is only one leader per path).
10923 */
10924 not_reset_mask1 =
10928
10929 not_reset_mask2 =
10946
10947 /*
10948 * Keep the following blocks in reset:
10949 * - all xxMACs are handled by the elink code.
10950 */
10951 stay_reset2 =
10954
10955 /* Full reset masks according to the chip */
10956 reset_mask1 = 0xffffffff;
10957
10958 if (CHIP_IS_E1(sc))
10959 reset_mask2 = 0xffff;
10960 else if (CHIP_IS_E1H(sc))
10961 reset_mask2 = 0x1ffff;
10962 else if (CHIP_IS_E2(sc))
10963 reset_mask2 = 0xfffff;
10964 else /* CHIP_IS_E3 */
10965 reset_mask2 = 0x3ffffff;
10966
10967 /* Don't reset global blocks unless we need to */
10968 if (!global)
10969 reset_mask2 &= ~global_bits2;
10970
10971 /*
10972 * In case of attention in the QM, we need to reset PXP
10973 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10974 * because otherwise QM reset would release 'close the gates' shortly
10975 * before resetting the PXP, then the PSWRQ would send a write
10976 * request to PGLUE. Then when PXP is reset, PGLUE would try to
10977 * read the payload data from PSWWR, but PSWWR would not
10978 * respond. The write queue in PGLUE would stuck, dmae commands
10979 * would not return. Therefore it's important to reset the second
10980 * reset register (containing the
10981 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10982 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10983 * bit).
10984 */
10986 reset_mask2 & (~not_reset_mask2));
10987
10989 reset_mask1 & (~not_reset_mask1));
10990
10991 mb();
10992 wmb();
10993
10995 reset_mask2 & (~stay_reset2));
10996
10997 mb();
10998 wmb();
10999
11001 wmb();
11002}
11003
11004static int
11006 uint8_t global)
11007{
11008 int cnt = 1000;
11009 uint32_t val = 0;
11010 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11011 uint32_t tags_63_32 = 0;
11012
11013 /* Empty the Tetris buffer, wait for 1s */
11014 do {
11015 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11016 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11017 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11018 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11019 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11020 if (CHIP_IS_E3(sc)) {
11021 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11022 }
11023
11024 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11025 ((port_is_idle_0 & 0x1) == 0x1) &&
11026 ((port_is_idle_1 & 0x1) == 0x1) &&
11027 (pgl_exp_rom2 == 0xffffffff) &&
11028 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11029 break;
11030 DELAY(1000);
11031 } while (cnt-- > 0);
11032
11033 if (cnt <= 0) {
11034 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11035 "are still outstanding read requests after 1s! "
11036 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11037 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11038 sr_cnt, blk_cnt, port_is_idle_0,
11039 port_is_idle_1, pgl_exp_rom2);
11040 return (-1);
11041 }
11042
11043 mb();
11044
11045 /* Close gates #2, #3 and #4 */
11046 bxe_set_234_gates(sc, TRUE);
11047
11048 /* Poll for IGU VQs for 57712 and newer chips */
11049 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11050 return (-1);
11051 }
11052
11053 /* XXX indicate that "process kill" is in progress to MCP */
11054
11055 /* clear "unprepared" bit */
11057 mb();
11058
11059 /* Make sure all is written to the chip before the reset */
11060 wmb();
11061
11062 /*
11063 * Wait for 1ms to empty GLUE and PCI-E core queues,
11064 * PSWHST, GRC and PSWRD Tetris buffer.
11065 */
11066 DELAY(1000);
11067
11068 /* Prepare to chip reset: */
11069 /* MCP */
11070 if (global) {
11071 bxe_reset_mcp_prep(sc, &val);
11072 }
11073
11074 /* PXP */
11075 bxe_pxp_prep(sc);
11076 mb();
11077
11078 /* reset the chip */
11079 bxe_process_kill_chip_reset(sc, global);
11080 mb();
11081
11082 /* clear errors in PGB */
11083 if (!CHIP_IS_E1(sc))
11085
11086 /* Recover after reset: */
11087 /* MCP */
11088 if (global && bxe_reset_mcp_comp(sc, val)) {
11089 return (-1);
11090 }
11091
11092 /* XXX add resetting the NO_MCP mode DB here */
11093
11094 /* Open the gates #2, #3 and #4 */
11095 bxe_set_234_gates(sc, FALSE);
11096
11097 /* XXX
11098 * IGU/AEU preparation bring back the AEU/IGU to a reset state
11099 * re-enable attentions
11100 */
11101
11102 return (0);
11103}
11104
11105static int
11107{
11108 int rc = 0;
11109 uint8_t global = bxe_reset_is_global(sc);
11110 uint32_t load_code;
11111
11112 /*
11113 * If not going to reset MCP, load "fake" driver to reset HW while
11114 * driver is owner of the HW.
11115 */
11116 if (!global && !BXE_NOMCP(sc)) {
11117 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11119 if (!load_code) {
11120 BLOGE(sc, "MCP response failure, aborting\n");
11121 rc = -1;
11122 goto exit_leader_reset;
11123 }
11124
11125 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11126 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11127 BLOGE(sc, "MCP unexpected response, aborting\n");
11128 rc = -1;
11129 goto exit_leader_reset2;
11130 }
11131
11132 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11133 if (!load_code) {
11134 BLOGE(sc, "MCP response failure, aborting\n");
11135 rc = -1;
11136 goto exit_leader_reset2;
11137 }
11138 }
11139
11140 /* try to recover after the failure */
11141 if (bxe_process_kill(sc, global)) {
11142 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11143 rc = -1;
11144 goto exit_leader_reset2;
11145 }
11146
11147 /*
11148 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11149 * state.
11150 */
11152 if (global) {
11154 }
11155
11156exit_leader_reset2:
11157
11158 /* unload "fake driver" if it was loaded */
11159 if (!global && !BXE_NOMCP(sc)) {
11162 }
11163
11164exit_leader_reset:
11165
11166 sc->is_leader = 0;
11168
11169 mb();
11170 return (rc);
11171}
11172
11173/*
11174 * prepare INIT transition, parameters configured:
11175 * - HC configuration
11176 * - Queue's CDU context
11177 */
11178static void
11180 struct bxe_fastpath *fp,
11181 struct ecore_queue_init_params *init_params)
11182{
11183 uint8_t cos;
11184 int cxt_index, cxt_offset;
11185
11186 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11187 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11188
11189 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11190 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11191
11192 /* HC rate */
11193 init_params->rx.hc_rate =
11194 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11195 init_params->tx.hc_rate =
11196 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11197
11198 /* FW SB ID */
11199 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11200
11201 /* CQ index among the SB indices */
11202 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11204
11205 /* set maximum number of COSs supported by this queue */
11206 init_params->max_cos = sc->max_cos;
11207
11208 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11209 fp->index, init_params->max_cos);
11210
11211 /* set the context pointers queue object */
11212 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11213 /* XXX change index/cid here if ever support multiple tx CoS */
11214 /* fp->txdata[cos]->cid */
11215 cxt_index = fp->index / ILT_PAGE_CIDS;
11216 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11217 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11218 }
11219}
11220
11221/* set flags that are common for the Tx-only and not normal connections */
11222static unsigned long
11224 struct bxe_fastpath *fp,
11225 uint8_t zero_stats)
11226{
11227 unsigned long flags = 0;
11228
11229 /* PF driver will always initialize the Queue to an ACTIVE state */
11231
11232 /*
11233 * tx only connections collect statistics (on the same index as the
11234 * parent connection). The statistics are zeroed when the parent
11235 * connection is initialized.
11236 */
11237
11239 if (zero_stats) {
11241 }
11242
11243 /*
11244 * tx only connections can support tx-switching, though their
11245 * CoS-ness doesn't survive the loopback
11246 */
11247 if (sc->flags & BXE_TX_SWITCHING) {
11249 }
11250
11252
11253 return (flags);
11254}
11255
11256static unsigned long
11258 struct bxe_fastpath *fp,
11259 uint8_t leading)
11260{
11261 unsigned long flags = 0;
11262
11263 if (IS_MF_SD(sc)) {
11265 }
11266
11267 if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11270 }
11271
11272 if (leading) {
11275 }
11276
11278
11279 /* merge with common flags */
11280 return (flags | bxe_get_common_flags(sc, fp, TRUE));
11281}
11282
11283static void
11285 struct bxe_fastpath *fp,
11286 struct ecore_general_setup_params *gen_init,
11287 uint8_t cos)
11288{
11289 gen_init->stat_id = bxe_stats_id(fp);
11290 gen_init->spcl_id = fp->cl_id;
11291 gen_init->mtu = sc->mtu;
11292 gen_init->cos = cos;
11293}
11294
11295static void
11297 struct bxe_fastpath *fp,
11298 struct rxq_pause_params *pause,
11299 struct ecore_rxq_setup_params *rxq_init)
11300{
11301 uint8_t max_sge = 0;
11302 uint16_t sge_sz = 0;
11303 uint16_t tpa_agg_size = 0;
11304
11305 pause->sge_th_lo = SGE_TH_LO(sc);
11306 pause->sge_th_hi = SGE_TH_HI(sc);
11307
11308 /* validate SGE ring has enough to cross high threshold */
11309 if (sc->dropless_fc &&
11310 (pause->sge_th_hi + FW_PREFETCH_CNT) >
11312 BLOGW(sc, "sge ring threshold limit\n");
11313 }
11314
11315 /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11316 tpa_agg_size = (2 * sc->mtu);
11317 if (tpa_agg_size < sc->max_aggregation_size) {
11318 tpa_agg_size = sc->max_aggregation_size;
11319 }
11320
11321 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11322 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11324 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11325
11326 /* pause - not for e1 */
11327 if (!CHIP_IS_E1(sc)) {
11328 pause->bd_th_lo = BD_TH_LO(sc);
11329 pause->bd_th_hi = BD_TH_HI(sc);
11330
11331 pause->rcq_th_lo = RCQ_TH_LO(sc);
11332 pause->rcq_th_hi = RCQ_TH_HI(sc);
11333
11334 /* validate rings have enough entries to cross high thresholds */
11335 if (sc->dropless_fc &&
11336 pause->bd_th_hi + FW_PREFETCH_CNT >
11337 sc->rx_ring_size) {
11338 BLOGW(sc, "rx bd ring threshold limit\n");
11339 }
11340
11341 if (sc->dropless_fc &&
11342 pause->rcq_th_hi + FW_PREFETCH_CNT >
11344 BLOGW(sc, "rcq ring threshold limit\n");
11345 }
11346
11347 pause->pri_map = 1;
11348 }
11349
11350 /* rxq setup */
11351 rxq_init->dscr_map = fp->rx_dma.paddr;
11352 rxq_init->sge_map = fp->rx_sge_dma.paddr;
11353 rxq_init->rcq_map = fp->rcq_dma.paddr;
11354 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11355
11356 /*
11357 * This should be a maximum number of data bytes that may be
11358 * placed on the BD (not including paddings).
11359 */
11360 rxq_init->buf_sz = (fp->rx_buf_size -
11362
11363 rxq_init->cl_qzone_id = fp->cl_qzone_id;
11364 rxq_init->tpa_agg_sz = tpa_agg_size;
11365 rxq_init->sge_buf_sz = sge_sz;
11366 rxq_init->max_sges_pkt = max_sge;
11367 rxq_init->rss_engine_id = SC_FUNC(sc);
11368 rxq_init->mcast_engine_id = SC_FUNC(sc);
11369
11370 /*
11371 * Maximum number or simultaneous TPA aggregation for this Queue.
11372 * For PF Clients it should be the maximum available number.
11373 * VF driver(s) may want to define it to a smaller value.
11374 */
11375 rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11376
11378 rxq_init->fw_sb_id = fp->fw_sb_id;
11379
11381
11382 /*
11383 * configure silent vlan removal
11384 * if multi function mode is afex, then mask default vlan
11385 */
11386 if (IS_MF_AFEX(sc)) {
11387 rxq_init->silent_removal_value =
11389 rxq_init->silent_removal_mask = EVL_VLID_MASK;
11390 }
11391}
11392
11393static void
11395 struct bxe_fastpath *fp,
11396 struct ecore_txq_setup_params *txq_init,
11397 uint8_t cos)
11398{
11399 /*
11400 * XXX If multiple CoS is ever supported then each fastpath structure
11401 * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11402 * fp->txdata[cos]->tx_dma.paddr;
11403 */
11404 txq_init->dscr_map = fp->tx_dma.paddr;
11407 txq_init->fw_sb_id = fp->fw_sb_id;
11408
11409 /*
11410 * set the TSS leading client id for TX classfication to the
11411 * leading RSS client id
11412 */
11413 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11414}
11415
11416/*
11417 * This function performs 2 steps in a queue state machine:
11418 * 1) RESET->INIT
11419 * 2) INIT->SETUP
11420 */
11421static int
11423 struct bxe_fastpath *fp,
11424 uint8_t leading)
11425{
11426 struct ecore_queue_state_params q_params = { NULL };
11427 struct ecore_queue_setup_params *setup_params =
11428 &q_params.params.setup;
11429 int rc;
11430
11431 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11432
11434
11435 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11436
11437 /* we want to wait for completion in this context */
11439
11440 /* prepare the INIT parameters */
11441 bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11442
11443 /* Set the command */
11444 q_params.cmd = ECORE_Q_CMD_INIT;
11445
11446 /* Change the state to INIT */
11447 rc = ecore_queue_state_change(sc, &q_params);
11448 if (rc) {
11449 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11450 return (rc);
11451 }
11452
11453 BLOGD(sc, DBG_LOAD, "init complete\n");
11454
11455 /* now move the Queue to the SETUP state */
11456 memset(setup_params, 0, sizeof(*setup_params));
11457
11458 /* set Queue flags */
11459 setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11460
11461 /* set general SETUP parameters */
11462 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11464
11465 bxe_pf_rx_q_prep(sc, fp,
11466 &setup_params->pause_params,
11467 &setup_params->rxq_params);
11468
11469 bxe_pf_tx_q_prep(sc, fp,
11470 &setup_params->txq_params,
11472
11473 /* Set the command */
11474 q_params.cmd = ECORE_Q_CMD_SETUP;
11475
11476 /* change the state to SETUP */
11477 rc = ecore_queue_state_change(sc, &q_params);
11478 if (rc) {
11479 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11480 return (rc);
11481 }
11482
11483 return (rc);
11484}
11485
11486static int
11488{
11489 return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11490}
11491
11492static int
11494 struct ecore_rss_config_obj *rss_obj,
11495 uint8_t config_hash)
11496{
11497 struct ecore_config_rss_params params = { NULL };
11498 int i;
11499
11500 /*
11501 * Although RSS is meaningless when there is a single HW queue we
11502 * still need it enabled in order to have HW Rx hash generated.
11503 */
11504
11505 params.rss_obj = rss_obj;
11506
11508
11510
11511 /* RSS configuration */
11516 if (rss_obj->udp_rss_v4) {
11518 }
11519 if (rss_obj->udp_rss_v6) {
11521 }
11522
11523 /* Hash bits */
11524 params.rss_result_mask = MULTI_MASK;
11525
11526 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11527
11528 if (config_hash) {
11529 /* RSS keys */
11530 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11531 params.rss_key[i] = arc4random();
11532 }
11533
11535 }
11536
11537 return (ecore_config_rss(sc, &params));
11538}
11539
11540static int
11542 uint8_t config_hash)
11543{
11544 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11545}
11546
11547static int
11549{
11550 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11551 int i;
11552
11553 /*
11554 * Prepare the initial contents of the indirection table if
11555 * RSS is enabled
11556 */
11557 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11558 sc->rss_conf_obj.ind_table[i] =
11559 (sc->fp->cl_id + (i % num_eth_queues));
11560 }
11561
11562 if (sc->udp_rss) {
11564 }
11565
11566 /*
11567 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11568 * per-port, so if explicit configuration is needed, do it only
11569 * for a PMF.
11570 *
11571 * For 57712 and newer it's a per-function configuration.
11572 */
11573 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11574}
11575
11576static int
11578 uint8_t *mac,
11579 struct ecore_vlan_mac_obj *obj,
11580 uint8_t set,
11581 int mac_type,
11582 unsigned long *ramrod_flags)
11583{
11584 struct ecore_vlan_mac_ramrod_params ramrod_param;
11585 int rc;
11586
11587 memset(&ramrod_param, 0, sizeof(ramrod_param));
11588
11589 /* fill in general parameters */
11590 ramrod_param.vlan_mac_obj = obj;
11591 ramrod_param.ramrod_flags = *ramrod_flags;
11592
11593 /* fill a user request section if needed */
11595 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11596
11597 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11598
11599 /* Set the command: ADD or DEL */
11600 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11602 }
11603
11604 rc = ecore_config_vlan_mac(sc, &ramrod_param);
11605
11606 if (rc == ECORE_EXISTS) {
11607 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11608 /* do not treat adding same MAC as error */
11609 rc = 0;
11610 } else if (rc < 0) {
11611 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11612 }
11613
11614 return (rc);
11615}
11616
11617static int
11619 uint8_t set)
11620{
11621 unsigned long ramrod_flags = 0;
11622
11623 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11624
11626
11627 /* Eth MAC is set on RSS leading client (fp[0]) */
11628 return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11629 &sc->sp_objs->mac_obj,
11630 set, ECORE_ETH_MAC, &ramrod_flags));
11631}
11632
11633static int
11635{
11636 uint32_t sel_phy_idx = 0;
11637
11638 if (sc->link_params.num_phys <= 1) {
11639 return (ELINK_INT_PHY);
11640 }
11641
11642 if (sc->link_vars.link_up) {
11643 sel_phy_idx = ELINK_EXT_PHY1;
11644 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11648 sel_phy_idx = ELINK_EXT_PHY2;
11649 } else {
11650 switch (elink_phy_selection(&sc->link_params)) {
11654 sel_phy_idx = ELINK_EXT_PHY1;
11655 break;
11658 sel_phy_idx = ELINK_EXT_PHY2;
11659 break;
11660 }
11661 }
11662
11663 return (sel_phy_idx);
11664}
11665
11666static int
11668{
11669 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11670
11671 /*
11672 * The selected activated PHY is always after swapping (in case PHY
11673 * swapping is enabled). So when swapping is enabled, we need to reverse
11674 * the configuration
11675 */
11676
11678 if (sel_phy_idx == ELINK_EXT_PHY1)
11679 sel_phy_idx = ELINK_EXT_PHY2;
11680 else if (sel_phy_idx == ELINK_EXT_PHY2)
11681 sel_phy_idx = ELINK_EXT_PHY1;
11682 }
11683
11684 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11685}
11686
11687static void
11689{
11690 /*
11691 * Initialize link parameters structure variables
11692 * It is recommended to turn off RX FC for jumbo frames
11693 * for better performance
11694 */
11695 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11697 } else {
11699 }
11700}
11701
11702static void
11704{
11705 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11706
11707
11708 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11710
11711 switch (sc->link_vars.ieee_fc &
11713
11715 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11717 break;
11718
11720 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11721 break;
11722
11723 default:
11724 break;
11725
11726 }
11727}
11728
11729static uint16_t
11731{
11732 uint16_t line_speed = sc->link_vars.line_speed;
11733 if (IS_MF(sc)) {
11734 uint16_t maxCfg =
11736
11737 /* calculate the current MAX line speed limit for the MF devices */
11738 if (IS_MF_SI(sc)) {
11739 line_speed = (line_speed * maxCfg) / 100;
11740 } else { /* SD mode */
11741 uint16_t vn_max_rate = maxCfg * 100;
11742
11743 if (vn_max_rate < line_speed) {
11744 line_speed = vn_max_rate;
11745 }
11746 }
11747 }
11748
11749 return (line_speed);
11750}
11751
11752static void
11754 struct bxe_link_report_data *data)
11755{
11756 uint16_t line_speed = bxe_get_mf_speed(sc);
11757
11758 memset(data, 0, sizeof(*data));
11759
11760 /* fill the report data with the effective line speed */
11761 data->line_speed = line_speed;
11762
11763 /* Link is down */
11764 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11766 }
11767
11768 /* Full DUPLEX */
11769 if (sc->link_vars.duplex == DUPLEX_FULL) {
11771 }
11772
11773 /* Rx Flow Control is ON */
11776 }
11777
11778 /* Tx Flow Control is ON */
11781 }
11782}
11783
11784/* report link status to OS, should be called under phy_lock */
11785static void
11787{
11788 struct bxe_link_report_data cur_data;
11789
11790 /* reread mf_cfg */
11791 if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11792 bxe_read_mf_cfg(sc);
11793 }
11794
11795 /* Read the current link report info */
11796 bxe_fill_report_data(sc, &cur_data);
11797
11798 /* Don't report link down or exactly the same link status twice */
11799 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11803 &cur_data.link_report_flags))) {
11804 return;
11805 }
11806
11807 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11809 sc->link_cnt++;
11810
11811 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11812 /* report new link params and remember the state for the next time */
11813 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11814
11816 &cur_data.link_report_flags)) {
11817 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11818 } else {
11819 const char *duplex;
11820 const char *flow;
11821
11823 &cur_data.link_report_flags)) {
11824 duplex = "full";
11825 ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11826 } else {
11827 duplex = "half";
11828 ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11829 }
11830
11831 /*
11832 * Handle the FC at the end so that only these flags would be
11833 * possibly set. This way we may easily check if there is no FC
11834 * enabled.
11835 */
11836 if (cur_data.link_report_flags) {
11838 &cur_data.link_report_flags) &&
11840 &cur_data.link_report_flags)) {
11841 flow = "ON - receive & transmit";
11843 &cur_data.link_report_flags) &&
11845 &cur_data.link_report_flags)) {
11846 flow = "ON - receive";
11848 &cur_data.link_report_flags) &&
11850 &cur_data.link_report_flags)) {
11851 flow = "ON - transmit";
11852 } else {
11853 flow = "none"; /* possible? */
11854 }
11855 } else {
11856 flow = "none";
11857 }
11858
11859 if_link_state_change(sc->ifp, LINK_STATE_UP);
11860 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11861 cur_data.line_speed, duplex, flow);
11862 }
11863}
11864
11865static void
11867{
11871}
11872
11873static void
11875{
11876 if (sc->state != BXE_STATE_OPEN) {
11877 return;
11878 }
11879
11880 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11882 } else {
11895 sc->port.advertising[0] = sc->port.supported[0];
11896
11897 sc->link_params.sc = sc;
11898 sc->link_params.port = SC_PORT(sc);
11902 sc->link_params.speed_cap_mask[0] = 0x7f0000;
11904
11905 if (CHIP_REV_IS_FPGA(sc)) {
11910 } else {
11915 }
11916
11917 sc->link_vars.link_up = 1;
11918
11921
11922 if (IS_PF(sc)) {
11925 bxe_link_report(sc);
11926 }
11927 }
11928
11929 if (IS_PF(sc)) {
11930 if (sc->link_vars.link_up) {
11932 } else {
11934 }
11935 bxe_link_report(sc);
11936 } else {
11937 bxe_link_report(sc);
11939 }
11940}
11941
11942static int
11944 int load_mode)
11945{
11946 int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11947 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11948 struct elink_params *lp = &sc->link_params;
11949
11951
11952 if (CHIP_REV_IS_SLOW(sc)) {
11953 uint32_t bond = CHIP_BOND_ID(sc);
11954 uint32_t feat = 0;
11955
11958 } else if (bond & 0x4) {
11959 if (CHIP_IS_E3(sc)) {
11961 } else {
11963 }
11964 } else if (bond & 0x8) {
11965 if (CHIP_IS_E3(sc)) {
11967 } else {
11969 }
11970 }
11971
11972 /* disable EMAC for E3 and above */
11973 if (bond & 0x2) {
11975 }
11976
11978 }
11979
11981
11982 if (load_mode == LOAD_DIAG) {
11984 /* Prefer doing PHY loopback at 10G speed, if possible */
11985 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11986 if (lp->speed_cap_mask[cfg_idx] &
11988 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11989 } else {
11990 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11991 }
11992 }
11993 }
11994
11995 if (load_mode == LOAD_LOOPBACK_EXT) {
11997 }
11998
12000
12002
12004
12005 if (sc->link_vars.link_up) {
12008 }
12009
12010 if (!CHIP_REV_IS_SLOW(sc)) {
12012 }
12013
12015 return (rc);
12016}
12017
12018static u_int
12019bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12020{
12021 struct ecore_mcast_list_elem *mc_mac = arg;
12022
12023 mc_mac += cnt;
12024 mc_mac->mac = (uint8_t *)LLADDR(sdl);
12025
12026 return (1);
12027}
12028
12029static int
12031 struct ecore_mcast_ramrod_params *p)
12032{
12033 if_t ifp = sc->ifp;
12034 int mc_count;
12035 struct ecore_mcast_list_elem *mc_mac;
12036
12038 p->mcast_list_len = 0;
12039
12040 /* XXXGL: multicast count may change later */
12041 mc_count = if_llmaddr_count(ifp);
12042
12043 if (!mc_count) {
12044 return (0);
12045 }
12046
12047 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12048 (M_NOWAIT | M_ZERO));
12049 if (!mc_mac) {
12050 BLOGE(sc, "Failed to allocate temp mcast list\n");
12051 return (-1);
12052 }
12053 bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12054 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12055
12056 for (int i = 0; i < mc_count; i ++) {
12057 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12058 BLOGD(sc, DBG_LOAD,
12059 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12060 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12061 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12062 mc_count);
12063 }
12064
12065 p->mcast_list_len = mc_count;
12066
12067 return (0);
12068}
12069
12070static void
12072{
12073 struct ecore_mcast_list_elem *mc_mac =
12075 struct ecore_mcast_list_elem,
12076 link);
12077
12078 if (mc_mac) {
12079 /* only a single free as all mc_macs are in the same heap array */
12080 free(mc_mac, M_DEVBUF);
12081 }
12082}
12083static int
12085{
12086 struct ecore_mcast_ramrod_params rparam = { NULL };
12087 int rc = 0;
12088
12089 rparam.mcast_obj = &sc->mcast_obj;
12090
12091 BXE_MCAST_LOCK(sc);
12092
12093 /* first, clear all configured multicast MACs */
12094 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12095 if (rc < 0) {
12096 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12097 /* Manual backport parts of FreeBSD upstream r284470. */
12098 BXE_MCAST_UNLOCK(sc);
12099 return (rc);
12100 }
12101
12102 /* configure a new MACs list */
12103 rc = bxe_init_mcast_macs_list(sc, &rparam);
12104 if (rc) {
12105 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12106 BXE_MCAST_UNLOCK(sc);
12107 return (rc);
12108 }
12109
12110 /* Now add the new MACs */
12111 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12112 if (rc < 0) {
12113 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12114 }
12115
12116 bxe_free_mcast_macs_list(&rparam);
12117
12118 BXE_MCAST_UNLOCK(sc);
12119
12120 return (rc);
12121}
12122
12124 struct bxe_softc *sc;
12125 unsigned long ramrod_flags;
12126 int rc;
12127};
12128
12129static u_int
12130bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12131{
12132 struct bxe_set_addr_ctx *ctx = arg;
12133 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12134 int rc;
12135
12136 if (ctx->rc < 0)
12137 return (0);
12138
12139 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12141
12142 /* do not treat adding same MAC as an error */
12143 if (rc == -EEXIST)
12144 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12145 else if (rc < 0) {
12146 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12147 ctx->rc = rc;
12148 }
12149
12150 return (1);
12151}
12152
12153static int
12155{
12156 if_t ifp = sc->ifp;
12157 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12158 struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12159 int rc;
12160
12161 /* first schedule a cleanup up of old configuration */
12162 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12163 if (rc < 0) {
12164 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12165 return (rc);
12166 }
12167
12168 if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12169 if (ctx.rc < 0)
12170 return (ctx.rc);
12171
12172 /* Execute the pending commands */
12173 bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12174 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12176}
12177
12178static void
12180{
12181 if_t ifp = sc->ifp;
12182 uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12183
12184 if (sc->state != BXE_STATE_OPEN) {
12185 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12186 return;
12187 }
12188
12189 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12190
12191 if (if_getflags(ifp) & IFF_PROMISC) {
12192 rx_mode = BXE_RX_MODE_PROMISC;
12193 } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12194 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12195 CHIP_IS_E1(sc))) {
12196 rx_mode = BXE_RX_MODE_ALLMULTI;
12197 } else {
12198 if (IS_PF(sc)) {
12199 /* some multicasts */
12200 if (bxe_set_mc_list(sc) < 0) {
12201 rx_mode = BXE_RX_MODE_ALLMULTI;
12202 }
12203 if (bxe_set_uc_list(sc) < 0) {
12204 rx_mode = BXE_RX_MODE_PROMISC;
12205 }
12206 }
12207 }
12208
12209 sc->rx_mode = rx_mode;
12210
12211 /* schedule the rx_mode command */
12213 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12215 return;
12216 }
12217
12218 if (IS_PF(sc)) {
12220 }
12221}
12222
12223
12224/* update flags in shmem */
12225static void
12227 uint32_t flags,
12228 uint32_t set)
12229{
12230 uint32_t drv_flags;
12231
12232 if (SHMEM2_HAS(sc, drv_flags)) {
12234 drv_flags = SHMEM2_RD(sc, drv_flags);
12235
12236 if (set) {
12237 SET_FLAGS(drv_flags, flags);
12238 } else {
12239 RESET_FLAGS(drv_flags, flags);
12240 }
12241
12242 SHMEM2_WR(sc, drv_flags, drv_flags);
12243 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12244
12246 }
12247}
12248
12249/* periodic timer callout routine, only runs when the interface is up */
12250
12251static void
12253{
12254 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12255 int i;
12256
12257 if (!BXE_CORE_TRYLOCK(sc)) {
12258 /* just bail and try again next time */
12259
12260 if ((sc->state == BXE_STATE_OPEN) &&
12261 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12262 /* schedule the next periodic callout */
12263 callout_reset(&sc->periodic_callout, hz,
12265 }
12266
12267 return;
12268 }
12269
12270 if ((sc->state != BXE_STATE_OPEN) ||
12271 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12272 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12273 BXE_CORE_UNLOCK(sc);
12274 return;
12275 }
12276
12277
12278 /* Check for TX timeouts on any fastpath. */
12279 FOR_EACH_QUEUE(sc, i) {
12280 if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12281 /* Ruh-Roh, chip was reset! */
12282 break;
12283 }
12284 }
12285
12286 if (!CHIP_REV_IS_SLOW(sc)) {
12287 /*
12288 * This barrier is needed to ensure the ordering between the writing
12289 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12290 * the reading here.
12291 */
12292 mb();
12293 if (sc->port.pmf) {
12297 }
12298 }
12299
12300 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12301 int mb_idx = SC_FW_MB_IDX(sc);
12302 uint32_t drv_pulse;
12303 uint32_t mcp_pulse;
12304
12305 ++sc->fw_drv_pulse_wr_seq;
12307
12308 drv_pulse = sc->fw_drv_pulse_wr_seq;
12309 bxe_drv_pulse(sc);
12310
12311 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12313
12314 /*
12315 * The delta between driver pulse and mcp response should
12316 * be 1 (before mcp response) or 0 (after mcp response).
12317 */
12318 if ((drv_pulse != mcp_pulse) &&
12319 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12320 /* someone lost a heartbeat... */
12321 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12322 drv_pulse, mcp_pulse);
12323 }
12324 }
12325
12326 /* state is BXE_STATE_OPEN */
12328
12329 BXE_CORE_UNLOCK(sc);
12330
12331 if ((sc->state == BXE_STATE_OPEN) &&
12332 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12333 /* schedule the next periodic callout */
12334 callout_reset(&sc->periodic_callout, hz,
12336 }
12337}
12338
12339static void
12341{
12342 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12343 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12344}
12345
12346static void
12348{
12349 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12350 callout_drain(&sc->periodic_callout);
12351}
12352
12353void
12355{
12356 uint8_t global = FALSE;
12357 uint32_t error_recovered, error_unrecovered;
12358 bool is_parity;
12359
12360
12361 if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12362 (sc->state == BXE_STATE_ERROR)) {
12363 BLOGE(sc, "RECOVERY failed, "
12364 "stack notified driver is NOT running! "
12365 "Please reboot/power cycle the system.\n");
12366 return;
12367 }
12368
12369 while (1) {
12370 BLOGD(sc, DBG_SP,
12371 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12372 __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12373
12374 switch(sc->recovery_state) {
12375
12376 case BXE_RECOVERY_INIT:
12377 is_parity = bxe_chk_parity_attn(sc, &global, FALSE);
12378
12379 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12381 (sc->error_status & BXE_ERR_GLOBAL)) {
12382
12383 BXE_CORE_LOCK(sc);
12384 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12386 }
12387 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12388 sc->state = BXE_STATE_ERROR;
12390 BLOGE(sc, " No Recovery tried for error 0x%x"
12391 " stack notified driver is NOT running!"
12392 " Please reboot/power cycle the system.\n",
12393 sc->error_status);
12394 BXE_CORE_UNLOCK(sc);
12395 return;
12396 }
12397
12398
12399 /* Try to get a LEADER_LOCK HW lock */
12400 if (bxe_trylock_leader_lock(sc)) {
12401
12403 /*
12404 * Check if there is a global attention and if
12405 * there was a global attention, set the global
12406 * reset bit.
12407 */
12408 if (global) {
12410 }
12411 sc->is_leader = 1;
12412 }
12413
12414 /* If interface has been removed - break */
12415
12416 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12418 }
12419
12420 BXE_CORE_LOCK(sc);
12423 BXE_CORE_UNLOCK(sc);
12424
12425 /*
12426 * Ensure "is_leader", MCP command sequence and
12427 * "recovery_state" update values are seen on other
12428 * CPUs.
12429 */
12430 mb();
12431 break;
12432 case BXE_RECOVERY_WAIT:
12433
12434 if (sc->is_leader) {
12435 int other_engine = SC_PATH(sc) ? 0 : 1;
12436 bool other_load_status =
12437 bxe_get_load_status(sc, other_engine);
12438 bool load_status =
12440 global = bxe_reset_is_global(sc);
12441
12442 /*
12443 * In case of a parity in a global block, let
12444 * the first leader that performs a
12445 * leader_reset() reset the global blocks in
12446 * order to clear global attentions. Otherwise
12447 * the gates will remain closed for that
12448 * engine.
12449 */
12450 if (load_status ||
12451 (global && other_load_status)) {
12452 /*
12453 * Wait until all other functions get
12454 * down.
12455 */
12456 taskqueue_enqueue_timeout(taskqueue_thread,
12457 &sc->sp_err_timeout_task, hz/10);
12458 return;
12459 } else {
12460 /*
12461 * If all other functions got down
12462 * try to bring the chip back to
12463 * normal. In any case it's an exit
12464 * point for a leader.
12465 */
12466 if (bxe_leader_reset(sc)) {
12467 BLOGE(sc, "RECOVERY failed, "
12468 "stack notified driver is NOT running!\n");
12470 sc->state = BXE_STATE_ERROR;
12471 mb();
12472 return;
12473 }
12474
12475 /*
12476 * If we are here, means that the
12477 * leader has succeeded and doesn't
12478 * want to be a leader any more. Try
12479 * to continue as a none-leader.
12480 */
12481 break;
12482 }
12483
12484 } else { /* non-leader */
12485 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12486 /*
12487 * Try to get a LEADER_LOCK HW lock as
12488 * long as a former leader may have
12489 * been unloaded by the user or
12490 * released a leadership by another
12491 * reason.
12492 */
12493 if (bxe_trylock_leader_lock(sc)) {
12494 /*
12495 * I'm a leader now! Restart a
12496 * switch case.
12497 */
12498 sc->is_leader = 1;
12499 break;
12500 }
12501
12502 taskqueue_enqueue_timeout(taskqueue_thread,
12503 &sc->sp_err_timeout_task, hz/10);
12504 return;
12505
12506 } else {
12507 /*
12508 * If there was a global attention, wait
12509 * for it to be cleared.
12510 */
12511 if (bxe_reset_is_global(sc)) {
12512 taskqueue_enqueue_timeout(taskqueue_thread,
12513 &sc->sp_err_timeout_task, hz/10);
12514 return;
12515 }
12516
12517 error_recovered =
12519 error_unrecovered =
12521 BXE_CORE_LOCK(sc);
12522 sc->recovery_state =
12524 if (bxe_nic_load(sc, LOAD_NORMAL)) {
12525 error_unrecovered++;
12527 sc->state = BXE_STATE_ERROR;
12528 BLOGE(sc, "Recovery is NOT successfull, "
12529 " state=0x%x recovery_state=0x%x error=%x\n",
12530 sc->state, sc->recovery_state, sc->error_status);
12531 sc->error_status = 0;
12532 } else {
12533 sc->recovery_state =
12535 error_recovered++;
12536 BLOGI(sc, "Recovery is successfull from errors %x,"
12537 " state=0x%x"
12538 " recovery_state=0x%x \n", sc->error_status,
12539 sc->state, sc->recovery_state);
12540 mb();
12541 }
12542 sc->error_status = 0;
12543 BXE_CORE_UNLOCK(sc);
12545 error_recovered;
12547 error_unrecovered;
12548
12549 return;
12550 }
12551 }
12552 default:
12553 return;
12554 }
12555 }
12556}
12557void
12559{
12560
12562 return;
12563 }
12564 if(sc->error_status) {
12565 if (sc->state == BXE_STATE_OPEN) {
12566 bxe_int_disable(sc);
12567 }
12568 if (sc->link_vars.link_up) {
12569 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12570 }
12572 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12573 sc->unit, sc->error_status, sc->recovery_state);
12575 }
12576}
12577
12578static void
12579bxe_sp_err_timeout_task(void *arg, int pending)
12580{
12581
12582 struct bxe_softc *sc = (struct bxe_softc *)arg;
12583
12584 BLOGD(sc, DBG_SP,
12585 "%s state = 0x%x rec state=0x%x error_status=%x\n",
12586 __func__, sc->state, sc->recovery_state, sc->error_status);
12587
12588 if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12589 (sc->state == BXE_STATE_ERROR)) {
12590 return;
12591 }
12592 /* if can be taken */
12593 if ((sc->error_status) && (sc->trigger_grcdump)) {
12594 bxe_grc_dump(sc);
12595 }
12596 if (sc->recovery_state != BXE_RECOVERY_DONE) {
12597 bxe_handle_error(sc);
12599 } else if (sc->error_status) {
12600 bxe_handle_error(sc);
12601 }
12602
12603 return;
12604}
12605
12606/* start the controller */
12607static __noinline int
12609 int load_mode)
12610{
12611 uint32_t val;
12612 int load_code = 0;
12613 int i, rc = 0;
12614
12616
12617 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12618
12620
12621 if (IS_PF(sc)) {
12622 /* must be called before memory allocation and HW init */
12623 bxe_ilt_set_info(sc);
12624 }
12625
12626 sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12627
12629
12630 if (bxe_alloc_fp_buffers(sc) != 0) {
12631 BLOGE(sc, "Failed to allocate fastpath memory\n");
12632 sc->state = BXE_STATE_CLOSED;
12633 rc = ENOMEM;
12634 goto bxe_nic_load_error0;
12635 }
12636
12637 if (bxe_alloc_mem(sc) != 0) {
12638 sc->state = BXE_STATE_CLOSED;
12639 rc = ENOMEM;
12640 goto bxe_nic_load_error0;
12641 }
12642
12643 if (bxe_alloc_fw_stats_mem(sc) != 0) {
12644 sc->state = BXE_STATE_CLOSED;
12645 rc = ENOMEM;
12646 goto bxe_nic_load_error0;
12647 }
12648
12649 if (IS_PF(sc)) {
12650 /* set pf load just before approaching the MCP */
12651 bxe_set_pf_load(sc);
12652
12653 /* if MCP exists send load request and analyze response */
12654 if (!BXE_NOMCP(sc)) {
12655 /* attempt to load pf */
12656 if (bxe_nic_load_request(sc, &load_code) != 0) {
12657 sc->state = BXE_STATE_CLOSED;
12658 rc = ENXIO;
12659 goto bxe_nic_load_error1;
12660 }
12661
12662 /* what did the MCP say? */
12663 if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12665 sc->state = BXE_STATE_CLOSED;
12666 rc = ENXIO;
12667 goto bxe_nic_load_error2;
12668 }
12669 } else {
12670 BLOGI(sc, "Device has no MCP!\n");
12671 load_code = bxe_nic_load_no_mcp(sc);
12672 }
12673
12674 /* mark PMF if applicable */
12675 bxe_nic_load_pmf(sc, load_code);
12676
12677 /* Init Function state controlling object */
12679
12680 /* Initialize HW */
12681 if (bxe_init_hw(sc, load_code) != 0) {
12682 BLOGE(sc, "HW init failed\n");
12684 sc->state = BXE_STATE_CLOSED;
12685 rc = ENXIO;
12686 goto bxe_nic_load_error2;
12687 }
12688 }
12689
12690 /* set ALWAYS_ALIVE bit in shmem */
12692 bxe_drv_pulse(sc);
12693 sc->flags |= BXE_NO_PULSE;
12694
12695 /* attach interrupts */
12696 if (bxe_interrupt_attach(sc) != 0) {
12697 sc->state = BXE_STATE_CLOSED;
12698 rc = ENXIO;
12699 goto bxe_nic_load_error2;
12700 }
12701
12702 bxe_nic_init(sc, load_code);
12703
12704 /* Init per-function objects */
12705 if (IS_PF(sc)) {
12706 bxe_init_objs(sc);
12707 // XXX bxe_iov_nic_init(sc);
12708
12709 /* set AFEX default VLAN tag to an invalid value */
12711 // XXX bxe_nic_load_afex_dcc(sc, load_code);
12712
12714 rc = bxe_func_start(sc);
12715 if (rc) {
12716 BLOGE(sc, "Function start failed! rc = %d\n", rc);
12718 sc->state = BXE_STATE_ERROR;
12719 goto bxe_nic_load_error3;
12720 }
12721
12722 /* send LOAD_DONE command to MCP */
12723 if (!BXE_NOMCP(sc)) {
12724 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12725 if (!load_code) {
12726 BLOGE(sc, "MCP response failure, aborting\n");
12727 sc->state = BXE_STATE_ERROR;
12728 rc = ENXIO;
12729 goto bxe_nic_load_error3;
12730 }
12731 }
12732
12733 rc = bxe_setup_leading(sc);
12734 if (rc) {
12735 BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12736 sc->state = BXE_STATE_ERROR;
12737 goto bxe_nic_load_error3;
12738 }
12739
12741 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12742 if (rc) {
12743 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12744 sc->state = BXE_STATE_ERROR;
12745 goto bxe_nic_load_error3;
12746 }
12747 }
12748
12749 rc = bxe_init_rss_pf(sc);
12750 if (rc) {
12751 BLOGE(sc, "PF RSS init failed\n");
12752 sc->state = BXE_STATE_ERROR;
12753 goto bxe_nic_load_error3;
12754 }
12755 }
12756 /* XXX VF */
12757
12758 /* now when Clients are configured we are ready to work */
12759 sc->state = BXE_STATE_OPEN;
12760
12761 /* Configure a ucast MAC */
12762 if (IS_PF(sc)) {
12763 rc = bxe_set_eth_mac(sc, TRUE);
12764 }
12765 if (rc) {
12766 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12767 sc->state = BXE_STATE_ERROR;
12768 goto bxe_nic_load_error3;
12769 }
12770
12771 if (sc->port.pmf) {
12772 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12773 if (rc) {
12774 sc->state = BXE_STATE_ERROR;
12775 goto bxe_nic_load_error3;
12776 }
12777 }
12778
12780 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12781
12782 /* start fast path */
12783
12784 /* Initialize Rx filter */
12785 bxe_set_rx_mode(sc);
12786
12787 /* start the Tx */
12788 switch (/* XXX load_mode */LOAD_OPEN) {
12789 case LOAD_NORMAL:
12790 case LOAD_OPEN:
12791 break;
12792
12793 case LOAD_DIAG:
12794 case LOAD_LOOPBACK_EXT:
12795 sc->state = BXE_STATE_DIAG;
12796 break;
12797
12798 default:
12799 break;
12800 }
12801
12802 if (sc->port.pmf) {
12804 } else {
12806 }
12807
12808 /* start the periodic timer callout */
12810
12811 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12812 /* mark driver is loaded in shmem2 */
12813 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12814 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12815 (val |
12818 }
12819
12820 /* wait for all pending SP commands to complete */
12821 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12822 BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12824 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12825 return (ENXIO);
12826 }
12827
12828 /* Tell the stack the driver is running! */
12829 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12830
12831 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12832
12833 return (0);
12834
12835bxe_nic_load_error3:
12836
12837 if (IS_PF(sc)) {
12838 bxe_int_disable_sync(sc, 1);
12839
12840 /* clean out queued objects */
12842 }
12843
12845
12846bxe_nic_load_error2:
12847
12848 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12851 }
12852
12853 sc->port.pmf = 0;
12854
12855bxe_nic_load_error1:
12856
12857 /* clear pf_load status, as it was already set */
12858 if (IS_PF(sc)) {
12860 }
12861
12862bxe_nic_load_error0:
12863
12866 bxe_free_mem(sc);
12867
12868 return (rc);
12869}
12870
12871static int
12873{
12874 int other_engine = SC_PATH(sc) ? 0 : 1;
12875 uint8_t other_load_status, load_status;
12876 uint8_t global = FALSE;
12877 int rc;
12878
12880
12881 /* check if the driver is already running */
12882 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12883 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12884 return (0);
12885 }
12886
12887 if((sc->state == BXE_STATE_ERROR) &&
12889 BLOGE(sc, "Initialization not done, "
12890 "as previous recovery failed."
12891 "Reboot/Power-cycle the system\n" );
12892 return (ENXIO);
12893 }
12894
12895
12897
12898 /*
12899 * If parity occurred during the unload, then attentions and/or
12900 * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12901 * loaded on the current engine to complete the recovery. Parity recovery
12902 * is only relevant for PF driver.
12903 */
12904 if (IS_PF(sc)) {
12905 other_load_status = bxe_get_load_status(sc, other_engine);
12906 load_status = bxe_get_load_status(sc, SC_PATH(sc));
12907
12908 if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12909 bxe_chk_parity_attn(sc, &global, TRUE)) {
12910 do {
12911 /*
12912 * If there are attentions and they are in global blocks, set
12913 * the GLOBAL_RESET bit regardless whether it will be this
12914 * function that will complete the recovery or not.
12915 */
12916 if (global) {
12918 }
12919
12920 /*
12921 * Only the first function on the current engine should try
12922 * to recover in open. In case of attentions in global blocks
12923 * only the first in the chip should try to recover.
12924 */
12925 if ((!load_status && (!global || !other_load_status)) &&
12927 BLOGI(sc, "Recovered during init\n");
12928 break;
12929 }
12930
12931 /* recovery has failed... */
12934
12935 BLOGE(sc, "Recovery flow hasn't properly "
12936 "completed yet, try again later. "
12937 "If you still see this message after a "
12938 "few retries then power cycle is required.\n");
12939
12940 rc = ENXIO;
12941 goto bxe_init_locked_done;
12942 } while (0);
12943 }
12944 }
12945
12947
12948 rc = bxe_nic_load(sc, LOAD_OPEN);
12949
12950bxe_init_locked_done:
12951
12952 if (rc) {
12953 /* Tell the stack the driver is NOT running! */
12954 BLOGE(sc, "Initialization failed, "
12955 "stack notified driver is NOT running!\n");
12956 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12957 }
12958
12959 return (rc);
12960}
12961
12962static int
12964{
12966 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12967}
12968
12969/*
12970 * Handles controller initialization when called from an unlocked routine.
12971 * ifconfig calls this function.
12972 *
12973 * Returns:
12974 * void
12975 */
12976static void
12977bxe_init(void *xsc)
12978{
12979 struct bxe_softc *sc = (struct bxe_softc *)xsc;
12980
12981 BXE_CORE_LOCK(sc);
12982 bxe_init_locked(sc);
12983 BXE_CORE_UNLOCK(sc);
12984}
12985
12986static int
12988{
12989 if_t ifp;
12990 int capabilities;
12991
12992 /* ifconfig entrypoint for media type/status reporting */
12993 ifmedia_init(&sc->ifmedia, IFM_IMASK,
12996
12997 /* set the default interface values */
12998 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12999 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13000 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13001
13002 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13003 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
13004
13005 /* allocate the ifnet structure */
13006 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13007 BLOGE(sc, "Interface allocation failed!\n");
13008 return (ENXIO);
13009 }
13010
13011 if_setsoftc(ifp, sc);
13012 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13013 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13014 if_setioctlfn(ifp, bxe_ioctl);
13015 if_setstartfn(ifp, bxe_tx_start);
13016 if_setgetcounterfn(ifp, bxe_get_counter);
13017 if_settransmitfn(ifp, bxe_tx_mq_start);
13018 if_setqflushfn(ifp, bxe_mq_flush);
13019 if_setinitfn(ifp, bxe_init);
13020 if_setmtu(ifp, sc->mtu);
13021 if_sethwassist(ifp, (CSUM_IP |
13022 CSUM_TCP |
13023 CSUM_UDP |
13024 CSUM_TSO |
13026 CSUM_UDP_IPV6));
13027
13028 capabilities =
13029 (IFCAP_VLAN_MTU |
13030 IFCAP_VLAN_HWTAGGING |
13031 IFCAP_VLAN_HWTSO |
13032 IFCAP_VLAN_HWFILTER |
13033 IFCAP_VLAN_HWCSUM |
13034 IFCAP_HWCSUM |
13035 IFCAP_JUMBO_MTU |
13036 IFCAP_LRO |
13037 IFCAP_TSO4 |
13038 IFCAP_TSO6 |
13039 IFCAP_WOL_MAGIC);
13040 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13041 if_setcapenable(ifp, if_getcapabilities(ifp));
13042 if_setbaudrate(ifp, IF_Gbps(10));
13043/* XXX */
13044 if_setsendqlen(ifp, sc->tx_ring_size);
13045 if_setsendqready(ifp);
13046/* XXX */
13047
13048 sc->ifp = ifp;
13049
13050 /* attach to the Ethernet interface list */
13051 ether_ifattach(ifp, sc->link_params.mac_addr);
13052
13053 /* Attach driver debugnet methods. */
13054 DEBUGNET_SET(ifp, bxe);
13055
13056 return (0);
13057}
13058
13059static void
13061{
13062 int i;
13063
13064 for (i = 0; i < MAX_BARS; i++) {
13065 if (sc->bar[i].resource != NULL) {
13066 bus_release_resource(sc->dev,
13067 SYS_RES_MEMORY,
13068 sc->bar[i].rid,
13069 sc->bar[i].resource);
13070 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13071 i, PCIR_BAR(i));
13072 }
13073 }
13074}
13075
13076static int
13078{
13079 u_int flags;
13080 int i;
13081
13082 memset(sc->bar, 0, sizeof(sc->bar));
13083
13084 for (i = 0; i < MAX_BARS; i++) {
13085
13086 /* memory resources reside at BARs 0, 2, 4 */
13087 /* Run `pciconf -lb` to see mappings */
13088 if ((i != 0) && (i != 2) && (i != 4)) {
13089 continue;
13090 }
13091
13092 sc->bar[i].rid = PCIR_BAR(i);
13093
13094 flags = RF_ACTIVE;
13095 if (i == 0) {
13096 flags |= RF_SHAREABLE;
13097 }
13098
13099 if ((sc->bar[i].resource =
13100 bus_alloc_resource_any(sc->dev,
13101 SYS_RES_MEMORY,
13102 &sc->bar[i].rid,
13103 flags)) == NULL) {
13104 return (0);
13105 }
13106
13107 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
13108 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13109 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13110
13111 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13112 i, PCIR_BAR(i),
13113 rman_get_start(sc->bar[i].resource),
13114 rman_get_end(sc->bar[i].resource),
13115 rman_get_size(sc->bar[i].resource),
13116 (uintmax_t)sc->bar[i].kva);
13117 }
13118
13119 return (0);
13120}
13121
13122static void
13124{
13125 uint32_t val = 0;
13126
13127 /*
13128 * Read the ME register to get the function number. The ME register
13129 * holds the relative-function number and absolute-function number. The
13130 * absolute-function number appears only in E2 and above. Before that
13131 * these bits always contained zero, therefore we cannot blindly use them.
13132 */
13133
13134 val = REG_RD(sc, BAR_ME_REGISTER);
13135
13136 sc->pfunc_rel =
13137 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13138 sc->path_id =
13139 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13140
13141 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13142 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13143 } else {
13144 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13145 }
13146
13147 BLOGD(sc, DBG_LOAD,
13148 "Relative function %d, Absolute function %d, Path %d\n",
13149 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13150}
13151
13152static uint32_t
13154{
13155 uint32_t shmem2_size;
13156 uint32_t offset;
13157 uint32_t mf_cfg_offset_value;
13158
13159 /* Non 57712 */
13160 offset = (SHMEM_RD(sc, func_mb) +
13161 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13162
13163 /* 57712 plus */
13164 if (sc->devinfo.shmem2_base != 0) {
13165 shmem2_size = SHMEM2_RD(sc, size);
13166 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13167 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13168 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13169 offset = mf_cfg_offset_value;
13170 }
13171 }
13172 }
13173
13174 return (offset);
13175}
13176
13177static uint32_t
13179 int reg,
13180 int width)
13181{
13182 int pcie_reg;
13183
13184 /* ensure PCIe capability is enabled */
13185 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13186 if (pcie_reg != 0) {
13187 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13188 return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13189 }
13190 }
13191
13192 BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13193
13194 return (0);
13195}
13196
13197static uint8_t
13199{
13200 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13201 PCIEM_STA_TRANSACTION_PND);
13202}
13203
13204/*
13205 * Walk the PCI capabiites list for the device to find what features are
13206 * supported. These capabilites may be enabled/disabled by firmware so it's
13207 * best to walk the list rather than make assumptions.
13208 */
13209static void
13211{
13212 uint16_t link_status;
13213 int reg;
13214
13215 /* check if PCI Power Management is enabled */
13216 if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13217 if (reg != 0) {
13218 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13219
13221 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13222 }
13223 }
13224
13225 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13226
13227 /* handle PCIe 2.0 workarounds for 57710 */
13228 if (CHIP_IS_E1(sc)) {
13229 /* workaround for 57710 errata E4_57710_27462 */
13231 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13232
13233 /* workaround for 57710 errata E4_57710_27488 */
13235 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13236 if (sc->devinfo.pcie_link_speed > 1) {
13238 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13239 }
13240 } else {
13242 (link_status & PCIEM_LINK_STA_SPEED);
13244 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13245 }
13246
13247 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13249
13251 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13252
13253 /* check if MSI capability is enabled */
13254 if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13255 if (reg != 0) {
13256 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13257
13259 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13260 }
13261 }
13262
13263 /* check if MSI-X capability is enabled */
13264 if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13265 if (reg != 0) {
13266 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13267
13269 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13270 }
13271 }
13272}
13273
13274static int
13276{
13277 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13278 uint32_t val;
13279
13280 /* get the outer vlan if we're in switch-dependent mode */
13281
13282 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13283 mf_info->ext_id = (uint16_t)val;
13284
13285 mf_info->multi_vnics_mode = 1;
13286
13287 if (!VALID_OVLAN(mf_info->ext_id)) {
13288 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13289 return (1);
13290 }
13291
13292 /* get the capabilities */
13293 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13296 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13299 } else {
13301 }
13302
13303 mf_info->vnics_per_port =
13304 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13305
13306 return (0);
13307}
13308
13309static uint32_t
13311{
13312 uint32_t retval = 0;
13313 uint32_t val;
13314
13315 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13316
13317 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13318 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13319 retval |= MF_PROTO_SUPPORT_ETHERNET;
13320 }
13322 retval |= MF_PROTO_SUPPORT_ISCSI;
13323 }
13325 retval |= MF_PROTO_SUPPORT_FCOE;
13326 }
13327 }
13328
13329 return (retval);
13330}
13331
13332static int
13334{
13335 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13336 uint32_t val;
13337
13338 /*
13339 * There is no outer vlan if we're in switch-independent mode.
13340 * If the mac is valid then assume multi-function.
13341 */
13342
13343 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13344
13345 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13346
13348
13349 mf_info->vnics_per_port =
13350 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13351
13352 return (0);
13353}
13354
13355static int
13357{
13358 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13359 uint32_t e1hov_tag;
13360 uint32_t func_config;
13361 uint32_t niv_config;
13362
13363 mf_info->multi_vnics_mode = 1;
13364
13365 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13366 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13367 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13368
13369 mf_info->ext_id =
13370 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13372
13373 mf_info->default_vlan =
13374 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13376
13377 mf_info->niv_allowed_priorities =
13378 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13380
13381 mf_info->niv_default_cos =
13382 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13384
13385 mf_info->afex_vlan_mode =
13386 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13388
13389 mf_info->niv_mba_enabled =
13390 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13392
13394
13395 mf_info->vnics_per_port =
13396 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13397
13398 return (0);
13399}
13400
13401static int
13403{
13404 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13405 uint32_t mf_cfg1;
13406 uint32_t mf_cfg2;
13407 uint32_t ovlan1;
13408 uint32_t ovlan2;
13409 uint8_t i, j;
13410
13411 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13412 SC_PORT(sc));
13413 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13414 mf_info->mf_config[SC_VN(sc)]);
13415 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13416 mf_info->multi_vnics_mode);
13417 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13418 mf_info->vnics_per_port);
13419 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13420 mf_info->ext_id);
13421 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13422 mf_info->min_bw[0], mf_info->min_bw[1],
13423 mf_info->min_bw[2], mf_info->min_bw[3]);
13424 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13425 mf_info->max_bw[0], mf_info->max_bw[1],
13426 mf_info->max_bw[2], mf_info->max_bw[3]);
13427 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13428 sc->mac_addr_str);
13429
13430 /* various MF mode sanity checks... */
13431
13432 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13433 BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13434 SC_PORT(sc));
13435 return (1);
13436 }
13437
13438 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13439 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13440 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13441 return (1);
13442 }
13443
13444 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13445 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13446 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13447 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13448 SC_VN(sc), OVLAN(sc));
13449 return (1);
13450 }
13451
13452 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13453 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13454 mf_info->multi_vnics_mode, OVLAN(sc));
13455 return (1);
13456 }
13457
13458 /*
13459 * Verify all functions are either MF or SF mode. If MF, make sure
13460 * sure that all non-hidden functions have a valid ovlan. If SF,
13461 * make sure that all non-hidden functions have an invalid ovlan.
13462 */
13464 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13465 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13466 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13467 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13468 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13469 BLOGE(sc, "mf_mode=SD function %d MF config "
13470 "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13471 i, mf_info->multi_vnics_mode, ovlan1);
13472 return (1);
13473 }
13474 }
13475
13476 /* Verify all funcs on the same port each have a different ovlan. */
13478 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13479 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13480 /* iterate from the next function on the port to the max func */
13481 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13482 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13483 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13484 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13485 VALID_OVLAN(ovlan1) &&
13486 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13487 VALID_OVLAN(ovlan2) &&
13488 (ovlan1 == ovlan2)) {
13489 BLOGE(sc, "mf_mode=SD functions %d and %d "
13490 "have the same ovlan (%d)\n",
13491 i, j, ovlan1);
13492 return (1);
13493 }
13494 }
13495 }
13496 } /* MULTI_FUNCTION_SD */
13497
13498 return (0);
13499}
13500
13501static int
13503{
13504 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13505 uint32_t val, mac_upper;
13506 uint8_t i, vnic;
13507
13508 /* initialize mf_info defaults */
13509 mf_info->vnics_per_port = 1;
13510 mf_info->multi_vnics_mode = FALSE;
13511 mf_info->path_has_ovlan = FALSE;
13512 mf_info->mf_mode = SINGLE_FUNCTION;
13513
13514 if (!CHIP_IS_MF_CAP(sc)) {
13515 return (0);
13516 }
13517
13519 BLOGE(sc, "Invalid mf_cfg_base!\n");
13520 return (1);
13521 }
13522
13523 /* get the MF mode (switch dependent / independent / single-function) */
13524
13525 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13526
13528 {
13530
13531 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13532
13533 /* check for legal upper mac bytes */
13534 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13535 mf_info->mf_mode = MULTI_FUNCTION_SI;
13536 } else {
13537 BLOGE(sc, "Invalid config for Switch Independent mode\n");
13538 }
13539
13540 break;
13541
13544
13545 /* get outer vlan configuration */
13546 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13547
13548 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13550 mf_info->mf_mode = MULTI_FUNCTION_SD;
13551 } else {
13552 BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13553 }
13554
13555 break;
13556
13558
13559 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13560 return (0);
13561
13563
13564 /*
13565 * Mark MF mode as NIV if MCP version includes NPAR-SD support
13566 * and the MAC address is valid.
13567 */
13568 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13569
13570 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13571 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13572 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13573 } else {
13574 BLOGE(sc, "Invalid config for AFEX mode\n");
13575 }
13576
13577 break;
13578
13579 default:
13580
13581 BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13583
13584 return (1);
13585 }
13586
13587 /* set path mf_mode (which could be different than function mf_mode) */
13588 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13589 mf_info->path_has_ovlan = TRUE;
13590 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13591 /*
13592 * Decide on path multi vnics mode. If we're not in MF mode and in
13593 * 4-port mode, this is good enough to check vnic-0 of the other port
13594 * on the same path
13595 */
13596 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13597 uint8_t other_port = !(PORT_ID(sc) & 1);
13598 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13599
13600 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13601
13602 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13603 }
13604 }
13605
13606 if (mf_info->mf_mode == SINGLE_FUNCTION) {
13607 /* invalid MF config */
13608 if (SC_VN(sc) >= 1) {
13609 BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13610 return (1);
13611 }
13612
13613 return (0);
13614 }
13615
13616 /* get the MF configuration */
13617 mf_info->mf_config[SC_VN(sc)] =
13618 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13619
13620 switch(mf_info->mf_mode)
13621 {
13622 case MULTI_FUNCTION_SD:
13623
13625 break;
13626
13627 case MULTI_FUNCTION_SI:
13628
13630 break;
13631
13633
13635 break;
13636
13637 default:
13638
13639 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13640 mf_info->mf_mode);
13641 return (1);
13642 }
13643
13644 /* get the congestion management parameters */
13645
13646 vnic = 0;
13648 /* get min/max bw */
13649 val = MFCFG_RD(sc, func_mf_config[i].config);
13650 mf_info->min_bw[vnic] =
13652 mf_info->max_bw[vnic] =
13654 vnic++;
13655 }
13656
13657 return (bxe_check_valid_mf_cfg(sc));
13658}
13659
13660static int
13662{
13663 int port;
13664 uint32_t mac_hi, mac_lo, val;
13665
13666 port = SC_PORT(sc);
13667 mac_hi = mac_lo = 0;
13668
13669 sc->link_params.sc = sc;
13670 sc->link_params.port = port;
13671
13672 /* get the hardware config info */
13673 sc->devinfo.hw_config =
13674 SHMEM_RD(sc, dev_info.shared_hw_config.config);
13675 sc->devinfo.hw_config2 =
13676 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13677
13681
13682 /* get the port feature config */
13683 sc->port.config =
13684 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13685
13686 /* get the link params */
13688 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13690 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13691
13692 /* get the lane config */
13694 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13695
13696 /* get the link config */
13697 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13698 sc->port.link_config[ELINK_INT_PHY] = val;
13701 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13702
13703 /* get the override preemphasis flag and enable it or turn it off */
13704 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13708 } else {
13710 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13711 }
13712
13713 /* get the initial value of the link params */
13715 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13716
13717 /* get external phy info */
13718 sc->port.ext_phy_config =
13719 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13720
13721 /* get the multifunction configuration */
13723
13724 /* get the mac address */
13725 if (IS_MF(sc)) {
13726 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13727 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13728 } else {
13729 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13730 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13731 }
13732
13733 if ((mac_lo == 0) && (mac_hi == 0)) {
13734 *sc->mac_addr_str = 0;
13735 BLOGE(sc, "No Ethernet address programmed!\n");
13736 } else {
13737 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13738 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13739 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13740 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13741 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13742 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13743 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13744 "%02x:%02x:%02x:%02x:%02x:%02x",
13747 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13748 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13749 }
13750
13751 return (0);
13752}
13753
13754static void
13756{
13757 /* sanity checks */
13758
13762 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13764 }
13765
13767 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13768 bxe_queue_count = 0;
13769 }
13770
13771 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13772 if (bxe_max_rx_bufs == 0) {
13774 } else {
13775 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13776 bxe_max_rx_bufs = 2048;
13777 }
13778 }
13779
13780 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13781 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13782 bxe_hc_rx_ticks = 25;
13783 }
13784
13785 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13786 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13787 bxe_hc_tx_ticks = 50;
13788 }
13789
13790 if (bxe_max_aggregation_size == 0) {
13792 }
13793
13794 if (bxe_max_aggregation_size > 0xffff) {
13795 BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13798 }
13799
13800 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13801 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13802 bxe_mrrs = -1;
13803 }
13804
13805 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13806 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13807 bxe_autogreeen = 0;
13808 }
13809
13810 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13811 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13812 bxe_udp_rss = 0;
13813 }
13814
13815 /* pull in user settings */
13816
13822 sc->mrrs = bxe_mrrs;
13824 sc->udp_rss = bxe_udp_rss;
13825
13827 sc->num_queues = 1;
13828 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13829 sc->num_queues =
13830 min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13832 if (sc->num_queues > mp_ncpus) {
13833 sc->num_queues = mp_ncpus;
13834 }
13835 }
13836
13837 BLOGD(sc, DBG_LOAD,
13838 "User Config: "
13839 "debug=0x%lx "
13840 "interrupt_mode=%d "
13841 "queue_count=%d "
13842 "hc_rx_ticks=%d "
13843 "hc_tx_ticks=%d "
13844 "rx_budget=%d "
13845 "max_aggregation_size=%d "
13846 "mrrs=%d "
13847 "autogreeen=%d "
13848 "udp_rss=%d\n",
13849 bxe_debug,
13850 sc->interrupt_mode,
13851 sc->num_queues,
13852 sc->hc_rx_ticks,
13853 sc->hc_tx_ticks,
13856 sc->mrrs,
13857 sc->autogreeen,
13858 sc->udp_rss);
13859}
13860
13861static int
13863{
13864 int port_type;
13865 uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13866
13867 switch (sc->link_params.phy[phy_idx].media_type) {
13870 BLOGI(sc, "Found 10Gb Fiber media.\n");
13871 sc->media = IFM_10G_SR;
13872 port_type = PORT_FIBRE;
13873 break;
13875 BLOGI(sc, "Found 1Gb Fiber media.\n");
13876 sc->media = IFM_1000_SX;
13877 port_type = PORT_FIBRE;
13878 break;
13879 case ELINK_ETH_PHY_KR:
13880 case ELINK_ETH_PHY_CX4:
13881 BLOGI(sc, "Found 10GBase-CX4 media.\n");
13882 sc->media = IFM_10G_CX4;
13883 port_type = PORT_FIBRE;
13884 break;
13886 BLOGI(sc, "Found 10Gb Twinax media.\n");
13887 sc->media = IFM_10G_TWINAX;
13888 port_type = PORT_DA;
13889 break;
13891 if (sc->link_params.speed_cap_mask[0] &
13893 BLOGI(sc, "Found 10GBase-T media.\n");
13894 sc->media = IFM_10G_T;
13895 port_type = PORT_TP;
13896 } else {
13897 BLOGI(sc, "Found 1000Base-T media.\n");
13898 sc->media = IFM_1000_T;
13899 port_type = PORT_TP;
13900 }
13901 break;
13903 BLOGI(sc, "Media not present.\n");
13904 sc->media = 0;
13905 port_type = PORT_OTHER;
13906 break;
13908 default:
13909 BLOGI(sc, "Unknown media!\n");
13910 sc->media = 0;
13911 port_type = PORT_OTHER;
13912 break;
13913 }
13914 return port_type;
13915}
13916
13917#define GET_FIELD(value, fname) \
13918 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13919#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13920#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13921
13922static int
13924{
13925 int pfid = SC_FUNC(sc);
13926 int igu_sb_id;
13927 uint32_t val;
13928 uint8_t fid, igu_sb_cnt = 0;
13929
13930 sc->igu_base_sb = 0xff;
13931
13932 if (CHIP_INT_MODE_IS_BC(sc)) {
13933 int vn = SC_VN(sc);
13934 igu_sb_cnt = sc->igu_sb_cnt;
13935 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13938 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13939 return (0);
13940 }
13941
13942 /* IGU in normal mode - read CAM */
13943 for (igu_sb_id = 0;
13944 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13945 igu_sb_id++) {
13946 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13947 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13948 continue;
13949 }
13950 fid = IGU_FID(val);
13951 if ((fid & IGU_FID_ENCODE_IS_PF)) {
13952 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13953 continue;
13954 }
13955 if (IGU_VEC(val) == 0) {
13956 /* default status block */
13957 sc->igu_dsb_id = igu_sb_id;
13958 } else {
13959 if (sc->igu_base_sb == 0xff) {
13960 sc->igu_base_sb = igu_sb_id;
13961 }
13962 igu_sb_cnt++;
13963 }
13964 }
13965 }
13966
13967 /*
13968 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13969 * that number of CAM entries will not be equal to the value advertised in
13970 * PCI. Driver should use the minimal value of both as the actual status
13971 * block count
13972 */
13973 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13974
13975 if (igu_sb_cnt == 0) {
13976 BLOGE(sc, "CAM configuration error\n");
13977 return (-1);
13978 }
13979
13980 return (0);
13981}
13982
13983/*
13984 * Gather various information from the device config space, the device itself,
13985 * shmem, and the user input.
13986 */
13987static int
13989{
13990 uint32_t val;
13991 int rc;
13992
13993 /* Get the data for the device */
13994 sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
13995 sc->devinfo.device_id = pci_get_device(sc->dev);
13996 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13997 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13998
13999 /* get the chip revision (chip metal comes from pci config space) */
14000 sc->devinfo.chip_id =
14001 sc->link_params.chip_id =
14002 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
14003 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
14004 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
14005 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
14006
14007 /* force 57811 according to MISC register */
14009 if (CHIP_IS_57810(sc)) {
14010 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14011 (sc->devinfo.chip_id & 0x0000ffff));
14012 } else if (CHIP_IS_57810_MF(sc)) {
14013 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14014 (sc->devinfo.chip_id & 0x0000ffff));
14015 }
14016 sc->devinfo.chip_id |= 0x1;
14017 }
14018
14019 BLOGD(sc, DBG_LOAD,
14020 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14021 sc->devinfo.chip_id,
14022 ((sc->devinfo.chip_id >> 16) & 0xffff),
14023 ((sc->devinfo.chip_id >> 12) & 0xf),
14024 ((sc->devinfo.chip_id >> 4) & 0xff),
14025 ((sc->devinfo.chip_id >> 0) & 0xf));
14026
14027 val = (REG_RD(sc, 0x2874) & 0x55);
14028 if ((sc->devinfo.chip_id & 0x1) ||
14029 (CHIP_IS_E1(sc) && val) ||
14030 (CHIP_IS_E1H(sc) && (val == 0x55))) {
14031 sc->flags |= BXE_ONE_PORT_FLAG;
14032 BLOGD(sc, DBG_LOAD, "single port device\n");
14033 }
14034
14035 /* set the doorbell size */
14036 sc->doorbell_size = (1 << BXE_DB_SHIFT);
14037
14038 /* determine whether the device is in 2 port or 4 port mode */
14039 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14040 if (CHIP_IS_E2E3(sc)) {
14041 /*
14042 * Read port4mode_en_ovwr[0]:
14043 * If 1, four port mode is in port4mode_en_ovwr[1].
14044 * If 0, four port mode is in port4mode_en[0].
14045 */
14047 if (val & 1) {
14048 val = ((val >> 1) & 1);
14049 } else {
14050 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14051 }
14052
14055
14056 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14057 }
14058
14059 /* get the function and path info for the device */
14061
14062 /* get the shared memory base address */
14063 sc->devinfo.shmem_base =
14066 sc->devinfo.shmem2_base =
14069
14070 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14072
14073 if (!sc->devinfo.shmem_base) {
14074 /* this should ONLY prevent upcoming shmem reads */
14075 BLOGI(sc, "MCP not active\n");
14076 sc->flags |= BXE_NO_MCP_FLAG;
14077 return (0);
14078 }
14079
14080 /* make sure the shared memory contents are valid */
14081 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14084 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14085 return (0);
14086 }
14087 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14088
14089 /* get the bootcode version */
14090 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14091 snprintf(sc->devinfo.bc_ver_str,
14092 sizeof(sc->devinfo.bc_ver_str),
14093 "%d.%d.%d",
14094 ((sc->devinfo.bc_ver >> 24) & 0xff),
14095 ((sc->devinfo.bc_ver >> 16) & 0xff),
14096 ((sc->devinfo.bc_ver >> 8) & 0xff));
14097 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14098
14099 /* get the bootcode shmem address */
14101 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14102
14103 /* clean indirect addresses as they're not used */
14104 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14105 if (IS_PF(sc)) {
14110 if (CHIP_IS_E1x(sc)) {
14115 }
14116
14117 /*
14118 * Enable internal target-read (in case we are probed after PF
14119 * FLR). Must be done prior to any BAR read access. Only for
14120 * 57712 and up
14121 */
14122 if (!CHIP_IS_E1x(sc)) {
14124 }
14125 }
14126
14127 /* get the nvram size */
14128 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14129 sc->devinfo.flash_size =
14131 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14132
14133 /* get PCI capabilites */
14135
14137
14138 /* get various configuration parameters from shmem */
14140
14141 if (sc->devinfo.pcie_msix_cap_reg != 0) {
14142 val = pci_read_config(sc->dev,
14144 PCIR_MSIX_CTRL),
14145 2);
14146 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14147 } else {
14148 sc->igu_sb_cnt = 1;
14149 }
14150
14152
14153 /* initialize IGU parameters */
14154 if (CHIP_IS_E1x(sc)) {
14157 sc->igu_base_sb = 0;
14158 } else {
14160
14161 /* do not allow device reset during IGU info preocessing */
14163
14165
14167 int tout = 5000;
14168
14169 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14170
14173 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14174
14175 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14176 tout--;
14177 DELAY(1000);
14178 }
14179
14180 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14181 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14183 return (-1);
14184 }
14185 }
14186
14188 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14190 } else {
14191 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14192 }
14193
14194 rc = bxe_get_igu_cam_info(sc);
14195
14197
14198 if (rc) {
14199 return (rc);
14200 }
14201 }
14202
14203 /*
14204 * Get base FW non-default (fast path) status block ID. This value is
14205 * used to initialize the fw_sb_id saved on the fp/queue structure to
14206 * determine the id used by the FW.
14207 */
14208 if (CHIP_IS_E1x(sc)) {
14209 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14210 } else {
14211 /*
14212 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14213 * the same queue are indicated on the same IGU SB). So we prefer
14214 * FW and IGU SBs to be the same value.
14215 */
14216 sc->base_fw_ndsb = sc->igu_base_sb;
14217 }
14218
14219 BLOGD(sc, DBG_LOAD,
14220 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14221 sc->igu_dsb_id, sc->igu_base_sb,
14222 sc->igu_sb_cnt, sc->base_fw_ndsb);
14223
14225
14226 return (0);
14227}
14228
14229static void
14231 uint32_t switch_cfg)
14232{
14233 uint32_t cfg_size = 0;
14234 uint32_t idx;
14235 uint8_t port = SC_PORT(sc);
14236
14237 /* aggregation of supported attributes of all external phys */
14238 sc->port.supported[0] = 0;
14239 sc->port.supported[1] = 0;
14240
14241 switch (sc->link_params.num_phys) {
14242 case 1:
14244 cfg_size = 1;
14245 break;
14246 case 2:
14248 cfg_size = 1;
14249 break;
14250 case 3:
14253 sc->port.supported[1] =
14255 sc->port.supported[0] =
14257 } else {
14258 sc->port.supported[0] =
14260 sc->port.supported[1] =
14262 }
14263 cfg_size = 2;
14264 break;
14265 }
14266
14267 if (!(sc->port.supported[0] || sc->port.supported[1])) {
14268 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14269 SHMEM_RD(sc,
14270 dev_info.port_hw_config[port].external_phy_config),
14271 SHMEM_RD(sc,
14272 dev_info.port_hw_config[port].external_phy_config2));
14273 return;
14274 }
14275
14276 if (CHIP_IS_E3(sc))
14278 else {
14279 switch (switch_cfg) {
14281 sc->port.phy_addr =
14282 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14283 break;
14285 sc->port.phy_addr =
14286 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14287 break;
14288 default:
14289 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14290 sc->port.link_config[0]);
14291 return;
14292 }
14293 }
14294
14295 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14296
14297 /* mask what we support according to speed_cap_mask per configuration */
14298 for (idx = 0; idx < cfg_size; idx++) {
14299 if (!(sc->link_params.speed_cap_mask[idx] &
14301 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14302 }
14303
14304 if (!(sc->link_params.speed_cap_mask[idx] &
14306 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14307 }
14308
14309 if (!(sc->link_params.speed_cap_mask[idx] &
14311 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14312 }
14313
14314 if (!(sc->link_params.speed_cap_mask[idx] &
14316 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14317 }
14318
14319 if (!(sc->link_params.speed_cap_mask[idx] &
14321 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14322 }
14323
14324 if (!(sc->link_params.speed_cap_mask[idx] &
14326 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14327 }
14328
14329 if (!(sc->link_params.speed_cap_mask[idx] &
14331 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14332 }
14333
14334 if (!(sc->link_params.speed_cap_mask[idx] &
14336 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14337 }
14338 }
14339
14340 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14341 sc->port.supported[0], sc->port.supported[1]);
14342 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14343 sc->port.supported[0], sc->port.supported[1]);
14344}
14345
14346static void
14348{
14349 uint32_t link_config;
14350 uint32_t idx;
14351 uint32_t cfg_size = 0;
14352
14353 sc->port.advertising[0] = 0;
14354 sc->port.advertising[1] = 0;
14355
14356 switch (sc->link_params.num_phys) {
14357 case 1:
14358 case 2:
14359 cfg_size = 1;
14360 break;
14361 case 3:
14362 cfg_size = 2;
14363 break;
14364 }
14365
14366 for (idx = 0; idx < cfg_size; idx++) {
14368 link_config = sc->port.link_config[idx];
14369
14370 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14372 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14374 sc->port.advertising[idx] |= sc->port.supported[idx];
14377 sc->port.advertising[idx] |=
14380 } else {
14381 /* force 10G, no AN */
14383 sc->port.advertising[idx] |=
14385 continue;
14386 }
14387 break;
14388
14394 } else {
14395 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14396 "speed_cap_mask=0x%08x\n",
14397 link_config, sc->link_params.speed_cap_mask[idx]);
14398 return;
14399 }
14400 break;
14401
14408 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14409 sc->link_params.req_duplex[idx]);
14410 } else {
14411 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14412 "speed_cap_mask=0x%08x\n",
14413 link_config, sc->link_params.speed_cap_mask[idx]);
14414 return;
14415 }
14416 break;
14417
14423 } else {
14424 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14425 "speed_cap_mask=0x%08x\n",
14426 link_config, sc->link_params.speed_cap_mask[idx]);
14427 return;
14428 }
14429 break;
14430
14437 } else {
14438 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14439 "speed_cap_mask=0x%08x\n",
14440 link_config, sc->link_params.speed_cap_mask[idx]);
14441 return;
14442 }
14443 break;
14444
14450 } else {
14451 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14452 "speed_cap_mask=0x%08x\n",
14453 link_config, sc->link_params.speed_cap_mask[idx]);
14454 return;
14455 }
14456 break;
14457
14463 } else {
14464 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14465 "speed_cap_mask=0x%08x\n",
14466 link_config, sc->link_params.speed_cap_mask[idx]);
14467 return;
14468 }
14469 break;
14470
14476 } else {
14477 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14478 "speed_cap_mask=0x%08x\n",
14479 link_config, sc->link_params.speed_cap_mask[idx]);
14480 return;
14481 }
14482 break;
14483
14486 break;
14487
14488 default:
14489 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14490 "speed_cap_mask=0x%08x\n",
14491 link_config, sc->link_params.speed_cap_mask[idx]);
14493 sc->port.advertising[idx] = sc->port.supported[idx];
14494 break;
14495 }
14496
14497 sc->link_params.req_flow_ctrl[idx] =
14498 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14499
14501 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14503 } else {
14505 }
14506 }
14507
14508 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14509 "req_flow_ctrl=0x%x advertising=0x%x\n",
14510 sc->link_params.req_line_speed[idx],
14511 sc->link_params.req_duplex[idx],
14512 sc->link_params.req_flow_ctrl[idx],
14513 sc->port.advertising[idx]);
14514 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14515 "advertising=0x%x\n",
14516 sc->link_params.req_line_speed[idx],
14517 sc->link_params.req_duplex[idx],
14518 sc->port.advertising[idx]);
14519 }
14520}
14521
14522static void
14524{
14525 uint8_t port = SC_PORT(sc);
14526 uint32_t config = sc->port.config;
14527 uint32_t eee_mode;
14528
14529 /* shmem data already read in bxe_get_shmem_info() */
14530
14531 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14532 "link_config0=0x%08x\n",
14535 sc->port.link_config[0]);
14536
14537
14540
14541 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14544 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14546 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14547 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14550 }
14551
14552 /* configure link feature according to nvram value */
14553 eee_mode =
14554 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14557 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14561 } else {
14562 sc->link_params.eee_mode = 0;
14563 }
14564
14565 /* get the media type */
14566 bxe_media_detect(sc);
14567 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14568}
14569
14570static void
14572{
14573 /* get user tunable params */
14575
14576 /* select the RX and TX ring sizes */
14579
14580 /* XXX disable WoL */
14581 sc->wol = 0;
14582}
14583
14584static void
14586{
14587 uint32_t flags = 0;
14588
14589 if (CHIP_REV_IS_FPGA(sc)) {
14591 } else if (CHIP_REV_IS_EMUL(sc)) {
14593 } else {
14595 }
14596
14597 if (CHIP_IS_MODE_4_PORT(sc)) {
14599 } else {
14601 }
14602
14603 if (CHIP_IS_E2(sc)) {
14605 } else if (CHIP_IS_E3(sc)) {
14607 if (CHIP_REV(sc) == CHIP_REV_Ax) {
14609 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14611 }
14612 }
14613
14614 if (IS_MF(sc)) {
14616 switch (sc->devinfo.mf_info.mf_mode) {
14617 case MULTI_FUNCTION_SD:
14619 break;
14620 case MULTI_FUNCTION_SI:
14622 break;
14625 break;
14626 }
14627 } else {
14629 }
14630
14631#if defined(__LITTLE_ENDIAN)
14633#else /* __BIG_ENDIAN */
14635#endif
14636
14637 INIT_MODE_FLAGS(sc) = flags;
14638}
14639
14640static int
14642{
14643 struct bxe_fastpath *fp;
14644 bus_addr_t busaddr;
14645 int max_agg_queues;
14646 int max_segments;
14647 bus_size_t max_size;
14648 bus_size_t max_seg_size;
14649 char buf[32];
14650 int rc;
14651 int i, j;
14652
14653 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14654
14655 /* allocate the parent bus DMA tag */
14656 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14657 1, /* alignment */
14658 0, /* boundary limit */
14659 BUS_SPACE_MAXADDR, /* restricted low */
14660 BUS_SPACE_MAXADDR, /* restricted hi */
14661 NULL, /* addr filter() */
14662 NULL, /* addr filter() arg */
14663 BUS_SPACE_MAXSIZE_32BIT, /* max map size */
14664 BUS_SPACE_UNRESTRICTED, /* num discontinuous */
14665 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
14666 0, /* flags */
14667 NULL, /* lock() */
14668 NULL, /* lock() arg */
14669 &sc->parent_dma_tag); /* returned dma tag */
14670 if (rc != 0) {
14671 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14672 return (1);
14673 }
14674
14675 /************************/
14676 /* DEFAULT STATUS BLOCK */
14677 /************************/
14678
14679 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14680 &sc->def_sb_dma, "default status block") != 0) {
14681 /* XXX */
14682 bus_dma_tag_destroy(sc->parent_dma_tag);
14683 return (1);
14684 }
14685
14687
14688 /***************/
14689 /* EVENT QUEUE */
14690 /***************/
14691
14693 &sc->eq_dma, "event queue") != 0) {
14694 /* XXX */
14695 bxe_dma_free(sc, &sc->def_sb_dma);
14696 sc->def_sb = NULL;
14697 bus_dma_tag_destroy(sc->parent_dma_tag);
14698 return (1);
14699 }
14700
14701 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14702
14703 /*************/
14704 /* SLOW PATH */
14705 /*************/
14706
14707 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14708 &sc->sp_dma, "slow path") != 0) {
14709 /* XXX */
14710 bxe_dma_free(sc, &sc->eq_dma);
14711 sc->eq = NULL;
14712 bxe_dma_free(sc, &sc->def_sb_dma);
14713 sc->def_sb = NULL;
14714 bus_dma_tag_destroy(sc->parent_dma_tag);
14715 return (1);
14716 }
14717
14718 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14719
14720 /*******************/
14721 /* SLOW PATH QUEUE */
14722 /*******************/
14723
14725 &sc->spq_dma, "slow path queue") != 0) {
14726 /* XXX */
14727 bxe_dma_free(sc, &sc->sp_dma);
14728 sc->sp = NULL;
14729 bxe_dma_free(sc, &sc->eq_dma);
14730 sc->eq = NULL;
14731 bxe_dma_free(sc, &sc->def_sb_dma);
14732 sc->def_sb = NULL;
14733 bus_dma_tag_destroy(sc->parent_dma_tag);
14734 return (1);
14735 }
14736
14737 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14738
14739 /***************************/
14740 /* FW DECOMPRESSION BUFFER */
14741 /***************************/
14742
14743 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14744 "fw decompression buffer") != 0) {
14745 /* XXX */
14746 bxe_dma_free(sc, &sc->spq_dma);
14747 sc->spq = NULL;
14748 bxe_dma_free(sc, &sc->sp_dma);
14749 sc->sp = NULL;
14750 bxe_dma_free(sc, &sc->eq_dma);
14751 sc->eq = NULL;
14752 bxe_dma_free(sc, &sc->def_sb_dma);
14753 sc->def_sb = NULL;
14754 bus_dma_tag_destroy(sc->parent_dma_tag);
14755 return (1);
14756 }
14757
14758 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14759
14760 if ((sc->gz_strm =
14761 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14762 /* XXX */
14763 bxe_dma_free(sc, &sc->gz_buf_dma);
14764 sc->gz_buf = NULL;
14765 bxe_dma_free(sc, &sc->spq_dma);
14766 sc->spq = NULL;
14767 bxe_dma_free(sc, &sc->sp_dma);
14768 sc->sp = NULL;
14769 bxe_dma_free(sc, &sc->eq_dma);
14770 sc->eq = NULL;
14771 bxe_dma_free(sc, &sc->def_sb_dma);
14772 sc->def_sb = NULL;
14773 bus_dma_tag_destroy(sc->parent_dma_tag);
14774 return (1);
14775 }
14776
14777 /*************/
14778 /* FASTPATHS */
14779 /*************/
14780
14781 /* allocate DMA memory for each fastpath structure */
14782 for (i = 0; i < sc->num_queues; i++) {
14783 fp = &sc->fp[i];
14784 fp->sc = sc;
14785 fp->index = i;
14786
14787 /*******************/
14788 /* FP STATUS BLOCK */
14789 /*******************/
14790
14791 snprintf(buf, sizeof(buf), "fp %d status block", i);
14792 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14793 &fp->sb_dma, buf) != 0) {
14794 /* XXX unwind and free previous fastpath allocations */
14795 BLOGE(sc, "Failed to alloc %s\n", buf);
14796 return (1);
14797 } else {
14798 if (CHIP_IS_E2E3(sc)) {
14799 fp->status_block.e2_sb =
14800 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14801 } else {
14802 fp->status_block.e1x_sb =
14804 }
14805 }
14806
14807 /******************/
14808 /* FP TX BD CHAIN */
14809 /******************/
14810
14811 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14813 &fp->tx_dma, buf) != 0) {
14814 /* XXX unwind and free previous fastpath allocations */
14815 BLOGE(sc, "Failed to alloc %s\n", buf);
14816 return (1);
14817 } else {
14818 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14819 }
14820
14821 /* link together the tx bd chain pages */
14822 for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14823 /* index into the tx bd chain array to last entry per page */
14824 struct eth_tx_next_bd *tx_next_bd =
14826 /* point to the next page and wrap from last page */
14827 busaddr = (fp->tx_dma.paddr +
14828 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14829 tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14830 tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14831 }
14832
14833 /******************/
14834 /* FP RX BD CHAIN */
14835 /******************/
14836
14837 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14839 &fp->rx_dma, buf) != 0) {
14840 /* XXX unwind and free previous fastpath allocations */
14841 BLOGE(sc, "Failed to alloc %s\n", buf);
14842 return (1);
14843 } else {
14844 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14845 }
14846
14847 /* link together the rx bd chain pages */
14848 for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14849 /* index into the rx bd chain array to last entry per page */
14850 struct eth_rx_bd *rx_bd =
14851 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14852 /* point to the next page and wrap from last page */
14853 busaddr = (fp->rx_dma.paddr +
14854 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14855 rx_bd->addr_hi = htole32(U64_HI(busaddr));
14856 rx_bd->addr_lo = htole32(U64_LO(busaddr));
14857 }
14858
14859 /*******************/
14860 /* FP RX RCQ CHAIN */
14861 /*******************/
14862
14863 snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14865 &fp->rcq_dma, buf) != 0) {
14866 /* XXX unwind and free previous fastpath allocations */
14867 BLOGE(sc, "Failed to alloc %s\n", buf);
14868 return (1);
14869 } else {
14870 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14871 }
14872
14873 /* link together the rcq chain pages */
14874 for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14875 /* index into the rcq chain array to last entry per page */
14876 struct eth_rx_cqe_next_page *rx_cqe_next =
14877 (struct eth_rx_cqe_next_page *)
14878 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14879 /* point to the next page and wrap from last page */
14880 busaddr = (fp->rcq_dma.paddr +
14881 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14882 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14883 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14884 }
14885
14886 /*******************/
14887 /* FP RX SGE CHAIN */
14888 /*******************/
14889
14890 snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14892 &fp->rx_sge_dma, buf) != 0) {
14893 /* XXX unwind and free previous fastpath allocations */
14894 BLOGE(sc, "Failed to alloc %s\n", buf);
14895 return (1);
14896 } else {
14897 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14898 }
14899
14900 /* link together the sge chain pages */
14901 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14902 /* index into the rcq chain array to last entry per page */
14903 struct eth_rx_sge *rx_sge =
14904 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14905 /* point to the next page and wrap from last page */
14906 busaddr = (fp->rx_sge_dma.paddr +
14908 rx_sge->addr_hi = htole32(U64_HI(busaddr));
14909 rx_sge->addr_lo = htole32(U64_LO(busaddr));
14910 }
14911
14912 /***********************/
14913 /* FP TX MBUF DMA MAPS */
14914 /***********************/
14915
14916 /* set required sizes before mapping to conserve resources */
14917 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14918 max_size = BXE_TSO_MAX_SIZE;
14919 max_segments = BXE_TSO_MAX_SEGMENTS;
14920 max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14921 } else {
14922 max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
14923 max_segments = BXE_MAX_SEGMENTS;
14924 max_seg_size = MCLBYTES;
14925 }
14926
14927 /* create a dma tag for the tx mbufs */
14928 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14929 1, /* alignment */
14930 0, /* boundary limit */
14931 BUS_SPACE_MAXADDR, /* restricted low */
14932 BUS_SPACE_MAXADDR, /* restricted hi */
14933 NULL, /* addr filter() */
14934 NULL, /* addr filter() arg */
14935 max_size, /* max map size */
14936 max_segments, /* num discontinuous */
14937 max_seg_size, /* max seg size */
14938 0, /* flags */
14939 NULL, /* lock() */
14940 NULL, /* lock() arg */
14941 &fp->tx_mbuf_tag); /* returned dma tag */
14942 if (rc != 0) {
14943 /* XXX unwind and free previous fastpath allocations */
14944 BLOGE(sc, "Failed to create dma tag for "
14945 "'fp %d tx mbufs' (%d)\n", i, rc);
14946 return (1);
14947 }
14948
14949 /* create dma maps for each of the tx mbuf clusters */
14950 for (j = 0; j < TX_BD_TOTAL; j++) {
14951 if (bus_dmamap_create(fp->tx_mbuf_tag,
14952 BUS_DMA_NOWAIT,
14953 &fp->tx_mbuf_chain[j].m_map)) {
14954 /* XXX unwind and free previous fastpath allocations */
14955 BLOGE(sc, "Failed to create dma map for "
14956 "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14957 return (1);
14958 }
14959 }
14960
14961 /***********************/
14962 /* FP RX MBUF DMA MAPS */
14963 /***********************/
14964
14965 /* create a dma tag for the rx mbufs */
14966 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14967 1, /* alignment */
14968 0, /* boundary limit */
14969 BUS_SPACE_MAXADDR, /* restricted low */
14970 BUS_SPACE_MAXADDR, /* restricted hi */
14971 NULL, /* addr filter() */
14972 NULL, /* addr filter() arg */
14973 MJUM9BYTES, /* max map size */
14974 1, /* num discontinuous */
14975 MJUM9BYTES, /* max seg size */
14976 0, /* flags */
14977 NULL, /* lock() */
14978 NULL, /* lock() arg */
14979 &fp->rx_mbuf_tag); /* returned dma tag */
14980 if (rc != 0) {
14981 /* XXX unwind and free previous fastpath allocations */
14982 BLOGE(sc, "Failed to create dma tag for "
14983 "'fp %d rx mbufs' (%d)\n", i, rc);
14984 return (1);
14985 }
14986
14987 /* create dma maps for each of the rx mbuf clusters */
14988 for (j = 0; j < RX_BD_TOTAL; j++) {
14989 if (bus_dmamap_create(fp->rx_mbuf_tag,
14990 BUS_DMA_NOWAIT,
14991 &fp->rx_mbuf_chain[j].m_map)) {
14992 /* XXX unwind and free previous fastpath allocations */
14993 BLOGE(sc, "Failed to create dma map for "
14994 "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14995 return (1);
14996 }
14997 }
14998
14999 /* create dma map for the spare rx mbuf cluster */
15000 if (bus_dmamap_create(fp->rx_mbuf_tag,
15001 BUS_DMA_NOWAIT,
15002 &fp->rx_mbuf_spare_map)) {
15003 /* XXX unwind and free previous fastpath allocations */
15004 BLOGE(sc, "Failed to create dma map for "
15005 "'fp %d spare rx mbuf' (%d)\n", i, rc);
15006 return (1);
15007 }
15008
15009 /***************************/
15010 /* FP RX SGE MBUF DMA MAPS */
15011 /***************************/
15012
15013 /* create a dma tag for the rx sge mbufs */
15014 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15015 1, /* alignment */
15016 0, /* boundary limit */
15017 BUS_SPACE_MAXADDR, /* restricted low */
15018 BUS_SPACE_MAXADDR, /* restricted hi */
15019 NULL, /* addr filter() */
15020 NULL, /* addr filter() arg */
15021 BCM_PAGE_SIZE, /* max map size */
15022 1, /* num discontinuous */
15023 BCM_PAGE_SIZE, /* max seg size */
15024 0, /* flags */
15025 NULL, /* lock() */
15026 NULL, /* lock() arg */
15027 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15028 if (rc != 0) {
15029 /* XXX unwind and free previous fastpath allocations */
15030 BLOGE(sc, "Failed to create dma tag for "
15031 "'fp %d rx sge mbufs' (%d)\n", i, rc);
15032 return (1);
15033 }
15034
15035 /* create dma maps for the rx sge mbuf clusters */
15036 for (j = 0; j < RX_SGE_TOTAL; j++) {
15037 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15038 BUS_DMA_NOWAIT,
15039 &fp->rx_sge_mbuf_chain[j].m_map)) {
15040 /* XXX unwind and free previous fastpath allocations */
15041 BLOGE(sc, "Failed to create dma map for "
15042 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15043 return (1);
15044 }
15045 }
15046
15047 /* create dma map for the spare rx sge mbuf cluster */
15048 if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15049 BUS_DMA_NOWAIT,
15050 &fp->rx_sge_mbuf_spare_map)) {
15051 /* XXX unwind and free previous fastpath allocations */
15052 BLOGE(sc, "Failed to create dma map for "
15053 "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15054 return (1);
15055 }
15056
15057 /***************************/
15058 /* FP RX TPA MBUF DMA MAPS */
15059 /***************************/
15060
15061 /* create dma maps for the rx tpa mbuf clusters */
15062 max_agg_queues = MAX_AGG_QS(sc);
15063
15064 for (j = 0; j < max_agg_queues; j++) {
15065 if (bus_dmamap_create(fp->rx_mbuf_tag,
15066 BUS_DMA_NOWAIT,
15067 &fp->rx_tpa_info[j].bd.m_map)) {
15068 /* XXX unwind and free previous fastpath allocations */
15069 BLOGE(sc, "Failed to create dma map for "
15070 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15071 return (1);
15072 }
15073 }
15074
15075 /* create dma map for the spare rx tpa mbuf cluster */
15076 if (bus_dmamap_create(fp->rx_mbuf_tag,
15077 BUS_DMA_NOWAIT,
15079 /* XXX unwind and free previous fastpath allocations */
15080 BLOGE(sc, "Failed to create dma map for "
15081 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15082 return (1);
15083 }
15084
15086 }
15087
15088 return (0);
15089}
15090
15091static void
15093{
15094 struct bxe_fastpath *fp;
15095 int max_agg_queues;
15096 int i, j;
15097
15098 if (sc->parent_dma_tag == NULL) {
15099 return; /* assume nothing was allocated */
15100 }
15101
15102 for (i = 0; i < sc->num_queues; i++) {
15103 fp = &sc->fp[i];
15104
15105 /*******************/
15106 /* FP STATUS BLOCK */
15107 /*******************/
15108
15109 bxe_dma_free(sc, &fp->sb_dma);
15110 memset(&fp->status_block, 0, sizeof(fp->status_block));
15111
15112 /******************/
15113 /* FP TX BD CHAIN */
15114 /******************/
15115
15116 bxe_dma_free(sc, &fp->tx_dma);
15117 fp->tx_chain = NULL;
15118
15119 /******************/
15120 /* FP RX BD CHAIN */
15121 /******************/
15122
15123 bxe_dma_free(sc, &fp->rx_dma);
15124 fp->rx_chain = NULL;
15125
15126 /*******************/
15127 /* FP RX RCQ CHAIN */
15128 /*******************/
15129
15130 bxe_dma_free(sc, &fp->rcq_dma);
15131 fp->rcq_chain = NULL;
15132
15133 /*******************/
15134 /* FP RX SGE CHAIN */
15135 /*******************/
15136
15137 bxe_dma_free(sc, &fp->rx_sge_dma);
15138 fp->rx_sge_chain = NULL;
15139
15140 /***********************/
15141 /* FP TX MBUF DMA MAPS */
15142 /***********************/
15143
15144 if (fp->tx_mbuf_tag != NULL) {
15145 for (j = 0; j < TX_BD_TOTAL; j++) {
15146 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15147 bus_dmamap_unload(fp->tx_mbuf_tag,
15148 fp->tx_mbuf_chain[j].m_map);
15149 bus_dmamap_destroy(fp->tx_mbuf_tag,
15150 fp->tx_mbuf_chain[j].m_map);
15151 }
15152 }
15153
15154 bus_dma_tag_destroy(fp->tx_mbuf_tag);
15155 fp->tx_mbuf_tag = NULL;
15156 }
15157
15158 /***********************/
15159 /* FP RX MBUF DMA MAPS */
15160 /***********************/
15161
15162 if (fp->rx_mbuf_tag != NULL) {
15163 for (j = 0; j < RX_BD_TOTAL; j++) {
15164 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15165 bus_dmamap_unload(fp->rx_mbuf_tag,
15166 fp->rx_mbuf_chain[j].m_map);
15167 bus_dmamap_destroy(fp->rx_mbuf_tag,
15168 fp->rx_mbuf_chain[j].m_map);
15169 }
15170 }
15171
15172 if (fp->rx_mbuf_spare_map != NULL) {
15173 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15174 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15175 }
15176
15177 /***************************/
15178 /* FP RX TPA MBUF DMA MAPS */
15179 /***************************/
15180
15181 max_agg_queues = MAX_AGG_QS(sc);
15182
15183 for (j = 0; j < max_agg_queues; j++) {
15184 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15185 bus_dmamap_unload(fp->rx_mbuf_tag,
15186 fp->rx_tpa_info[j].bd.m_map);
15187 bus_dmamap_destroy(fp->rx_mbuf_tag,
15188 fp->rx_tpa_info[j].bd.m_map);
15189 }
15190 }
15191
15192 if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15193 bus_dmamap_unload(fp->rx_mbuf_tag,
15195 bus_dmamap_destroy(fp->rx_mbuf_tag,
15197 }
15198
15199 bus_dma_tag_destroy(fp->rx_mbuf_tag);
15200 fp->rx_mbuf_tag = NULL;
15201 }
15202
15203 /***************************/
15204 /* FP RX SGE MBUF DMA MAPS */
15205 /***************************/
15206
15207 if (fp->rx_sge_mbuf_tag != NULL) {
15208 for (j = 0; j < RX_SGE_TOTAL; j++) {
15209 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15210 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15211 fp->rx_sge_mbuf_chain[j].m_map);
15212 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15213 fp->rx_sge_mbuf_chain[j].m_map);
15214 }
15215 }
15216
15217 if (fp->rx_sge_mbuf_spare_map != NULL) {
15218 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15220 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15222 }
15223
15224 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15225 fp->rx_sge_mbuf_tag = NULL;
15226 }
15227 }
15228
15229 /***************************/
15230 /* FW DECOMPRESSION BUFFER */
15231 /***************************/
15232
15234 sc->gz_buf = NULL;
15235 free(sc->gz_strm, M_DEVBUF);
15236 sc->gz_strm = NULL;
15237
15238 /*******************/
15239 /* SLOW PATH QUEUE */
15240 /*******************/
15241
15243 sc->spq = NULL;
15244
15245 /*************/
15246 /* SLOW PATH */
15247 /*************/
15248
15250 sc->sp = NULL;
15251
15252 /***************/
15253 /* EVENT QUEUE */
15254 /***************/
15255
15257 sc->eq = NULL;
15258
15259 /************************/
15260 /* DEFAULT STATUS BLOCK */
15261 /************************/
15262
15264 sc->def_sb = NULL;
15265
15266 bus_dma_tag_destroy(sc->parent_dma_tag);
15267 sc->parent_dma_tag = NULL;
15268}
15269
15270/*
15271 * Previous driver DMAE transaction may have occurred when pre-boot stage
15272 * ended and boot began. This would invalidate the addresses of the
15273 * transaction, resulting in was-error bit set in the PCI causing all
15274 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15275 * the interrupt which detected this from the pglueb and the was-done bit
15276 */
15277static void
15279{
15280 uint32_t val;
15281
15282 if (!CHIP_IS_E1x(sc)) {
15285 BLOGD(sc, DBG_LOAD,
15286 "Clearing 'was-error' bit that was set in pglueb");
15288 }
15289 }
15290}
15291
15292static int
15294{
15297 if (!rc) {
15298 BLOGE(sc, "MCP response failure, aborting\n");
15299 return (-1);
15300 }
15301
15302 return (0);
15303}
15304
15305static struct bxe_prev_list_node *
15307{
15308 struct bxe_prev_list_node *tmp;
15309
15310 LIST_FOREACH(tmp, &bxe_prev_list, node) {
15311 if ((sc->pcie_bus == tmp->bus) &&
15312 (sc->pcie_device == tmp->slot) &&
15313 (SC_PATH(sc) == tmp->path)) {
15314 return (tmp);
15315 }
15316 }
15317
15318 return (NULL);
15319}
15320
15321static uint8_t
15323{
15324 struct bxe_prev_list_node *tmp;
15325 int rc = FALSE;
15326
15327 mtx_lock(&bxe_prev_mtx);
15328
15329 tmp = bxe_prev_path_get_entry(sc);
15330 if (tmp) {
15331 if (tmp->aer) {
15332 BLOGD(sc, DBG_LOAD,
15333 "Path %d/%d/%d was marked by AER\n",
15334 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15335 } else {
15336 rc = TRUE;
15337 BLOGD(sc, DBG_LOAD,
15338 "Path %d/%d/%d was already cleaned from previous drivers\n",
15339 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15340 }
15341 }
15342
15343 mtx_unlock(&bxe_prev_mtx);
15344
15345 return (rc);
15346}
15347
15348static int
15350 uint8_t after_undi)
15351{
15352 struct bxe_prev_list_node *tmp;
15353
15354 mtx_lock(&bxe_prev_mtx);
15355
15356 /* Check whether the entry for this path already exists */
15357 tmp = bxe_prev_path_get_entry(sc);
15358 if (tmp) {
15359 if (!tmp->aer) {
15360 BLOGD(sc, DBG_LOAD,
15361 "Re-marking AER in path %d/%d/%d\n",
15362 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15363 } else {
15364 BLOGD(sc, DBG_LOAD,
15365 "Removing AER indication from path %d/%d/%d\n",
15366 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15367 tmp->aer = 0;
15368 }
15369
15370 mtx_unlock(&bxe_prev_mtx);
15371 return (0);
15372 }
15373
15374 mtx_unlock(&bxe_prev_mtx);
15375
15376 /* Create an entry for this path and add it */
15377 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15378 (M_NOWAIT | M_ZERO));
15379 if (!tmp) {
15380 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15381 return (-1);
15382 }
15383
15384 tmp->bus = sc->pcie_bus;
15385 tmp->slot = sc->pcie_device;
15386 tmp->path = SC_PATH(sc);
15387 tmp->aer = 0;
15388 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15389
15390 mtx_lock(&bxe_prev_mtx);
15391
15392 BLOGD(sc, DBG_LOAD,
15393 "Marked path %d/%d/%d - finished previous unload\n",
15394 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15395 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15396
15397 mtx_unlock(&bxe_prev_mtx);
15398
15399 return (0);
15400}
15401
15402static int
15404{
15405 int i;
15406
15407 /* only E2 and onwards support FLR */
15408 if (CHIP_IS_E1x(sc)) {
15409 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15410 return (-1);
15411 }
15412
15413 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15415 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15416 sc->devinfo.bc_ver);
15417 return (-1);
15418 }
15419
15420 /* Wait for Transaction Pending bit clean */
15421 for (i = 0; i < 4; i++) {
15422 if (i) {
15423 DELAY(((1 << (i - 1)) * 100) * 1000);
15424 }
15425
15426 if (!bxe_is_pcie_pending(sc)) {
15427 goto clear;
15428 }
15429 }
15430
15431 BLOGE(sc, "PCIE transaction is not cleared, "
15432 "proceeding with reset anyway\n");
15433
15434clear:
15435
15436 BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15438
15439 return (0);
15440}
15441
15443 uint32_t xmac_addr;
15444 uint32_t xmac_val;
15445 uint32_t emac_addr;
15446 uint32_t emac_val;
15447 uint32_t umac_addr;
15448 uint32_t umac_val;
15449 uint32_t bmac_addr;
15450 uint32_t bmac_val[2];
15451};
15452
15453static void
15455 struct bxe_mac_vals *vals)
15456{
15457 uint32_t val, base_addr, offset, mask, reset_reg;
15458 uint8_t mac_stopped = FALSE;
15459 uint8_t port = SC_PORT(sc);
15460 uint32_t wb_data[2];
15461
15462 /* reset addresses as they also mark which values were changed */
15463 vals->bmac_addr = 0;
15464 vals->umac_addr = 0;
15465 vals->xmac_addr = 0;
15466 vals->emac_addr = 0;
15467
15468 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15469
15470 if (!CHIP_IS_E3(sc)) {
15471 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15473 if ((mask & reset_reg) && val) {
15474 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15475 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15479
15480 /*
15481 * use rd/wr since we cannot use dmae. This is safe
15482 * since MCP won't access the bus due to the request
15483 * to unload, and no function on the path can be
15484 * loaded at this time.
15485 */
15486 wb_data[0] = REG_RD(sc, base_addr + offset);
15487 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15488 vals->bmac_addr = base_addr + offset;
15489 vals->bmac_val[0] = wb_data[0];
15490 vals->bmac_val[1] = wb_data[1];
15491 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15492 REG_WR(sc, vals->bmac_addr, wb_data[0]);
15493 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15494 }
15495
15496 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15497 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15498 vals->emac_val = REG_RD(sc, vals->emac_addr);
15499 REG_WR(sc, vals->emac_addr, 0);
15500 mac_stopped = TRUE;
15501 } else {
15502 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15503 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15504 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15505 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15506 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15507 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15508 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15509 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15510 REG_WR(sc, vals->xmac_addr, 0);
15511 mac_stopped = TRUE;
15512 }
15513
15514 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15515 if (mask & reset_reg) {
15516 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15517 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15518 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15519 vals->umac_val = REG_RD(sc, vals->umac_addr);
15520 REG_WR(sc, vals->umac_addr, 0);
15521 mac_stopped = TRUE;
15522 }
15523 }
15524
15525 if (mac_stopped) {
15526 DELAY(20000);
15527 }
15528}
15529
15530#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15531#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
15532#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
15533#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15534
15535static void
15537 uint8_t port,
15538 uint8_t inc)
15539{
15540 uint16_t rcq, bd;
15541 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15542
15543 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15544 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15545
15546 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15547 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15548
15549 BLOGD(sc, DBG_LOAD,
15550 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15551 port, bd, rcq);
15552}
15553
15554static int
15556{
15557 uint32_t reset_reg, tmp_reg = 0, rc;
15558 uint8_t prev_undi = FALSE;
15559 struct bxe_mac_vals mac_vals;
15560 uint32_t timer_count = 1000;
15561 uint32_t prev_brb;
15562
15563 /*
15564 * It is possible a previous function received 'common' answer,
15565 * but hasn't loaded yet, therefore creating a scenario of
15566 * multiple functions receiving 'common' on the same path.
15567 */
15568 BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15569
15570 memset(&mac_vals, 0, sizeof(mac_vals));
15571
15572 if (bxe_prev_is_path_marked(sc)) {
15573 return (bxe_prev_mcp_done(sc));
15574 }
15575
15576 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15577
15578 /* Reset should be performed after BRB is emptied */
15579 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15580 /* Close the MAC Rx to prevent BRB from filling up */
15581 bxe_prev_unload_close_mac(sc, &mac_vals);
15582
15583 /* close LLH filters towards the BRB */
15585
15586 /*
15587 * Check if the UNDI driver was previously loaded.
15588 * UNDI driver initializes CID offset for normal bell to 0x7
15589 */
15590 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15591 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15592 if (tmp_reg == 0x7) {
15593 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15594 prev_undi = TRUE;
15595 /* clear the UNDI indication */
15597 /* clear possible idle check errors */
15599 }
15600 }
15601
15602 /* wait until BRB is empty */
15603 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15604 while (timer_count) {
15605 prev_brb = tmp_reg;
15606
15607 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15608 if (!tmp_reg) {
15609 break;
15610 }
15611
15612 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15613
15614 /* reset timer as long as BRB actually gets emptied */
15615 if (prev_brb > tmp_reg) {
15616 timer_count = 1000;
15617 } else {
15618 timer_count--;
15619 }
15620
15621 /* If UNDI resides in memory, manually increment it */
15622 if (prev_undi) {
15624 }
15625
15626 DELAY(10);
15627 }
15628
15629 if (!timer_count) {
15630 BLOGE(sc, "Failed to empty BRB\n");
15631 }
15632 }
15633
15634 /* No packets are in the pipeline, path is ready for reset */
15635 bxe_reset_common(sc);
15636
15637 if (mac_vals.xmac_addr) {
15638 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15639 }
15640 if (mac_vals.umac_addr) {
15641 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15642 }
15643 if (mac_vals.emac_addr) {
15644 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15645 }
15646 if (mac_vals.bmac_addr) {
15647 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15648 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15649 }
15650
15651 rc = bxe_prev_mark_path(sc, prev_undi);
15652 if (rc) {
15654 return (rc);
15655 }
15656
15657 return (bxe_prev_mcp_done(sc));
15658}
15659
15660static int
15662{
15663 int rc;
15664
15665 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15666
15667 /* Test if previous unload process was already finished for this path */
15668 if (bxe_prev_is_path_marked(sc)) {
15669 return (bxe_prev_mcp_done(sc));
15670 }
15671
15672 BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15673
15674 /*
15675 * If function has FLR capabilities, and existing FW version matches
15676 * the one required, then FLR will be sufficient to clean any residue
15677 * left by previous driver
15678 */
15680 if (!rc) {
15681 /* fw version is good */
15682 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15683 rc = bxe_do_flr(sc);
15684 }
15685
15686 if (!rc) {
15687 /* FLR was performed */
15688 BLOGD(sc, DBG_LOAD, "FLR successful\n");
15689 return (0);
15690 }
15691
15692 BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15693
15694 /* Close the MCP request, return failure*/
15695 rc = bxe_prev_mcp_done(sc);
15696 if (!rc) {
15698 }
15699
15700 return (rc);
15701}
15702
15703static int
15705{
15706 int time_counter = 10;
15707 uint32_t fw, hw_lock_reg, hw_lock_val;
15708 uint32_t rc = 0;
15709
15710 /*
15711 * Clear HW from errors which may have resulted from an interrupted
15712 * DMAE transaction.
15713 */
15715
15716 /* Release previously held locks */
15717 hw_lock_reg =
15718 (SC_FUNC(sc) <= 5) ?
15720 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15721
15722 hw_lock_val = (REG_RD(sc, hw_lock_reg));
15723 if (hw_lock_val) {
15724 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15725 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15728 }
15729 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15730 REG_WR(sc, hw_lock_reg, 0xffffffff);
15731 } else {
15732 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15733 }
15734
15736 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15738 }
15739
15740 do {
15741 /* Lock MCP using an unload request */
15743 if (!fw) {
15744 BLOGE(sc, "MCP response failure, aborting\n");
15745 rc = -1;
15746 break;
15747 }
15748
15750 rc = bxe_prev_unload_common(sc);
15751 break;
15752 }
15753
15754 /* non-common reply from MCP night require looping */
15755 rc = bxe_prev_unload_uncommon(sc);
15756 if (rc != BXE_PREV_WAIT_NEEDED) {
15757 break;
15758 }
15759
15760 DELAY(20000);
15761 } while (--time_counter);
15762
15763 if (!time_counter || rc) {
15764 BLOGE(sc, "Failed to unload previous driver!"
15765 " time_counter %d rc %d\n", time_counter, rc);
15766 rc = -1;
15767 }
15768
15769 return (rc);
15770}
15771
15772void
15774 uint8_t dcb_on,
15775 uint32_t dcbx_enabled)
15776{
15777 if (!CHIP_IS_E1x(sc)) {
15778 sc->dcb_state = dcb_on;
15779 sc->dcbx_enabled = dcbx_enabled;
15780 } else {
15781 sc->dcb_state = FALSE;
15783 }
15784 BLOGD(sc, DBG_LOAD,
15785 "DCB state [%s:%s]\n",
15786 dcb_on ? "ON" : "OFF",
15787 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15788 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15789 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15790 "on-chip with negotiation" : "invalid");
15791}
15792
15793/* must be called after sriov-enable */
15794static int
15796{
15797 int cid_count = BXE_L2_MAX_CID(sc);
15798
15799 if (IS_SRIOV(sc)) {
15800 cid_count += BXE_VF_CIDS;
15801 }
15802
15803 if (CNIC_SUPPORT(sc)) {
15804 cid_count += CNIC_CID_MAX;
15805 }
15806
15807 return (roundup(cid_count, QM_CID_ROUND));
15808}
15809
15810static void
15812{
15813 int pri, cos;
15814
15815 uint32_t pri_map = 0; /* XXX change to user config */
15816
15817 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15818 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15819 if (cos < sc->max_cos) {
15820 sc->prio_to_cos[pri] = cos;
15821 } else {
15822 BLOGW(sc, "Invalid COS %d for priority %d "
15823 "(max COS is %d), setting to 0\n",
15824 cos, pri, (sc->max_cos - 1));
15825 sc->prio_to_cos[pri] = 0;
15826 }
15827 }
15828}
15829
15830static int
15831bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15832{
15833 struct bxe_softc *sc;
15834 int error, result;
15835
15836 result = 0;
15837 error = sysctl_handle_int(oidp, &result, 0, req);
15838
15839 if (error || !req->newptr) {
15840 return (error);
15841 }
15842
15843 if (result == 1) {
15844 uint32_t temp;
15845 sc = (struct bxe_softc *)arg1;
15846
15847 BLOGI(sc, "... dumping driver state ...\n");
15848 temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15849 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15850 }
15851
15852 return (error);
15853}
15854
15855static int
15856bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15857{
15858 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15859 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15860 uint32_t *offset;
15861 uint64_t value = 0;
15862 int index = (int)arg2;
15863
15864 if (index >= BXE_NUM_ETH_STATS) {
15865 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15866 return (-1);
15867 }
15868
15869 offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15870
15871 switch (bxe_eth_stats_arr[index].size) {
15872 case 4:
15873 value = (uint64_t)*offset;
15874 break;
15875 case 8:
15876 value = HILO_U64(*offset, *(offset + 1));
15877 break;
15878 default:
15879 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15880 index, bxe_eth_stats_arr[index].size);
15881 return (-1);
15882 }
15883
15884 return (sysctl_handle_64(oidp, &value, 0, req));
15885}
15886
15887static int
15888bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15889{
15890 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15891 uint32_t *eth_stats;
15892 uint32_t *offset;
15893 uint64_t value = 0;
15894 uint32_t q_stat = (uint32_t)arg2;
15895 uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15896 uint32_t index = (q_stat & 0xffff);
15897
15898 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15899
15900 if (index >= BXE_NUM_ETH_Q_STATS) {
15901 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15902 return (-1);
15903 }
15904
15905 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15906
15907 switch (bxe_eth_q_stats_arr[index].size) {
15908 case 4:
15909 value = (uint64_t)*offset;
15910 break;
15911 case 8:
15912 value = HILO_U64(*offset, *(offset + 1));
15913 break;
15914 default:
15915 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15916 index, bxe_eth_q_stats_arr[index].size);
15917 return (-1);
15918 }
15919
15920 return (sysctl_handle_64(oidp, &value, 0, req));
15921}
15922
15923static void bxe_force_link_reset(struct bxe_softc *sc)
15924{
15925
15927 elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15929}
15930
15931static int
15932bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15933{
15934 struct bxe_softc *sc = (struct bxe_softc *)arg1;
15935 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15936 int rc = 0;
15937 int error;
15938 int result;
15939
15940
15941 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15942
15943 if (error || !req->newptr) {
15944 return (error);
15945 }
15946 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) {
15947 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15948 sc->bxe_pause_param = 8;
15949 }
15950
15952
15953
15954 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) {
15955 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15956 return -EINVAL;
15957 }
15958
15959 if(IS_MF(sc))
15960 return 0;
15962 if(result & ELINK_FLOW_CTRL_RX)
15964
15965 if(result & ELINK_FLOW_CTRL_TX)
15969
15970 if(result & 0x400) {
15971 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15972 sc->link_params.req_flow_ctrl[cfg_idx] =
15974 }
15976 if (result & ELINK_FLOW_CTRL_RX)
15978
15979 if (result & ELINK_FLOW_CTRL_TX)
15983 }
15984 if (IS_PF(sc)) {
15985 if (sc->link_vars.link_up) {
15987 }
15988 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15991
15992 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15993
15995
15996 bxe_calc_fc_adv(sc);
15997 }
15998 }
15999 return rc;
16000}
16001
16002
16003static void
16005{
16006 struct sysctl_ctx_list *ctx;
16007 struct sysctl_oid_list *children;
16008 struct sysctl_oid *queue_top, *queue;
16009 struct sysctl_oid_list *queue_top_children, *queue_children;
16010 char queue_num_buf[32];
16011 uint32_t q_stat;
16012 int i, j;
16013
16014 ctx = device_get_sysctl_ctx(sc->dev);
16015 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16016
16017 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16018 CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16019 "version");
16020
16021 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16026
16027 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16028 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
16029 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
16030 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
16031 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16032 "Unknown"));
16033 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16034 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16035 "multifunction vnics per port");
16036
16037 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16038 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16039 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16040 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16041 "???GT/s"),
16043
16044 sc->debug = bxe_debug;
16045
16046 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16047 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16048 "bootcode version");
16049 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16050 CTLFLAG_RD, sc->fw_ver_str, 0,
16051 "firmware version");
16052 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16053 CTLFLAG_RD, sc->mf_mode_str, 0,
16054 "multifunction mode");
16055 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16056 CTLFLAG_RD, sc->mac_addr_str, 0,
16057 "mac address");
16058 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16059 CTLFLAG_RD, sc->pci_link_str, 0,
16060 "pci link status");
16061 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16062 CTLFLAG_RW, &sc->debug,
16063 "debug logging mode");
16064
16065 sc->trigger_grcdump = 0;
16066 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16067 CTLFLAG_RW, &sc->trigger_grcdump, 0,
16068 "trigger grcdump should be invoked"
16069 " before collecting grcdump");
16070
16071 sc->grcdump_started = 0;
16072 sc->grcdump_done = 0;
16073 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16074 CTLFLAG_RD, &sc->grcdump_done, 0,
16075 "set by driver when grcdump is done");
16076
16078 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16079 CTLFLAG_RW, &sc->rx_budget, 0,
16080 "rx processing budget");
16081
16082 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16083 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16085 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16086
16087
16088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16089 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16090 bxe_sysctl_state, "IU", "dump driver state");
16091
16092 for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16094 bxe_eth_stats_arr[i].string,
16095 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16096 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16097 }
16098
16099 /* add a new parent node for all queues "dev.bxe.#.queue" */
16100 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16101 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16102 queue_top_children = SYSCTL_CHILDREN(queue_top);
16103
16104 for (i = 0; i < sc->num_queues; i++) {
16105 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16106 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16107 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16108 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16109 queue_children = SYSCTL_CHILDREN(queue);
16110
16111 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16112 q_stat = ((i << 16) | j);
16113 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16114 bxe_eth_q_stats_arr[j].string,
16115 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16117 }
16118 }
16119}
16120
16121static int
16123{
16124 int i;
16125 struct bxe_fastpath *fp;
16126
16127 for (i = 0; i < sc->num_queues; i++) {
16128
16129 fp = &sc->fp[i];
16130
16131 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16132 M_NOWAIT, &fp->tx_mtx);
16133 if (fp->tx_br == NULL)
16134 return (-1);
16135 }
16136
16137 return (0);
16138}
16139
16140static void
16142{
16143 int i;
16144 struct bxe_fastpath *fp;
16145
16146 for (i = 0; i < sc->num_queues; i++) {
16147
16148 fp = &sc->fp[i];
16149
16150 if (fp->tx_br) {
16151 buf_ring_free(fp->tx_br, M_DEVBUF);
16152 fp->tx_br = NULL;
16153 }
16154 }
16155}
16156
16157static void
16159{
16160 int i;
16161 struct bxe_fastpath *fp;
16162
16163 for (i = 0; i < sc->num_queues; i++) {
16164
16165 fp = &sc->fp[i];
16166
16167 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16168 "bxe%d_fp%d_tx_lock", sc->unit, i);
16169 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16170
16171 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16172 "bxe%d_fp%d_rx_lock", sc->unit, i);
16173 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16174 }
16175}
16176
16177static void
16179{
16180 int i;
16181 struct bxe_fastpath *fp;
16182
16183 for (i = 0; i < sc->num_queues; i++) {
16184
16185 fp = &sc->fp[i];
16186
16187 if (mtx_initialized(&fp->tx_mtx)) {
16188 mtx_destroy(&fp->tx_mtx);
16189 }
16190
16191 if (mtx_initialized(&fp->rx_mtx)) {
16192 mtx_destroy(&fp->rx_mtx);
16193 }
16194 }
16195}
16196
16197
16198/*
16199 * Device attach function.
16200 *
16201 * Allocates device resources, performs secondary chip identification, and
16202 * initializes driver instance variables. This function is called from driver
16203 * load after a successful probe.
16204 *
16205 * Returns:
16206 * 0 = Success, >0 = Failure
16207 */
16208static int
16209bxe_attach(device_t dev)
16210{
16211 struct bxe_softc *sc;
16212
16213 sc = device_get_softc(dev);
16214
16215 BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16216
16217 sc->state = BXE_STATE_CLOSED;
16218
16219 sc->dev = dev;
16220 sc->unit = device_get_unit(dev);
16221
16222 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16223
16224 sc->pcie_bus = pci_get_bus(dev);
16225 sc->pcie_device = pci_get_slot(dev);
16226 sc->pcie_func = pci_get_function(dev);
16227
16228 /* enable bus master capability */
16229 pci_enable_busmaster(dev);
16230
16231 /* get the BARs */
16232 if (bxe_allocate_bars(sc) != 0) {
16233 return (ENXIO);
16234 }
16235
16236 /* initialize the mutexes */
16237 bxe_init_mutexes(sc);
16238
16239 /* prepare the periodic callout */
16240 callout_init(&sc->periodic_callout, 1);
16241
16242 /* prepare the chip taskqueue */
16244 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16245 "bxe%d_chip_tq", sc->unit);
16246 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16247 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16248 taskqueue_thread_enqueue,
16249 &sc->chip_tq);
16250 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16251 "%s", sc->chip_tq_name);
16252
16253 TIMEOUT_TASK_INIT(taskqueue_thread,
16255
16256
16257 /* get device info and set params */
16258 if (bxe_get_device_info(sc) != 0) {
16259 BLOGE(sc, "getting device info\n");
16261 pci_disable_busmaster(dev);
16262 return (ENXIO);
16263 }
16264
16265 /* get final misc params */
16266 bxe_get_params(sc);
16267
16268 /* set the default MTU (changed via ifconfig) */
16269 sc->mtu = ETHERMTU;
16270
16272
16273 /* XXX
16274 * If in AFEX mode and the function is configured for FCoE
16275 * then bail... no L2 allowed.
16276 */
16277
16278 /* get phy settings from shmem and 'and' against admin settings */
16279 bxe_get_phy_info(sc);
16280
16281 /* initialize the FreeBSD ifnet interface */
16282 if (bxe_init_ifnet(sc) != 0) {
16285 pci_disable_busmaster(dev);
16286 return (ENXIO);
16287 }
16288
16289 if (bxe_add_cdev(sc) != 0) {
16290 if (sc->ifp != NULL) {
16291 ether_ifdetach(sc->ifp);
16292 }
16293 ifmedia_removeall(&sc->ifmedia);
16296 pci_disable_busmaster(dev);
16297 return (ENXIO);
16298 }
16299
16300 /* allocate device interrupts */
16301 if (bxe_interrupt_alloc(sc) != 0) {
16302 bxe_del_cdev(sc);
16303 if (sc->ifp != NULL) {
16304 ether_ifdetach(sc->ifp);
16305 }
16306 ifmedia_removeall(&sc->ifmedia);
16309 pci_disable_busmaster(dev);
16310 return (ENXIO);
16311 }
16312
16314
16315 if (bxe_alloc_buf_rings(sc) != 0) {
16318 bxe_del_cdev(sc);
16319 if (sc->ifp != NULL) {
16320 ether_ifdetach(sc->ifp);
16321 }
16322 ifmedia_removeall(&sc->ifmedia);
16325 pci_disable_busmaster(dev);
16326 return (ENXIO);
16327 }
16328
16329 /* allocate ilt */
16330 if (bxe_alloc_ilt_mem(sc) != 0) {
16333 bxe_del_cdev(sc);
16334 if (sc->ifp != NULL) {
16335 ether_ifdetach(sc->ifp);
16336 }
16337 ifmedia_removeall(&sc->ifmedia);
16340 pci_disable_busmaster(dev);
16341 return (ENXIO);
16342 }
16343
16344 /* allocate the host hardware/software hsi structures */
16345 if (bxe_alloc_hsi_mem(sc) != 0) {
16346 bxe_free_ilt_mem(sc);
16349 bxe_del_cdev(sc);
16350 if (sc->ifp != NULL) {
16351 ether_ifdetach(sc->ifp);
16352 }
16353 ifmedia_removeall(&sc->ifmedia);
16356 pci_disable_busmaster(dev);
16357 return (ENXIO);
16358 }
16359
16360 /* need to reset chip if UNDI was active */
16361 if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16362 /* init fw_seq */
16363 sc->fw_seq =
16364 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16366 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16367 bxe_prev_unload(sc);
16368 }
16369
16370#if 1
16371 /* XXX */
16373#else
16374 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16375 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16376 SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16377 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16380 } else {
16382 }
16383#endif
16384
16385 /* calculate qm_cid_count */
16387 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16388
16389 sc->max_cos = 1;
16391
16392 bxe_add_sysctls(sc);
16393
16394 return (0);
16395}
16396
16397/*
16398 * Device detach function.
16399 *
16400 * Stops the controller, resets the controller, and releases resources.
16401 *
16402 * Returns:
16403 * 0 = Success, >0 = Failure
16404 */
16405static int
16407{
16408 struct bxe_softc *sc;
16409 if_t ifp;
16410
16411 sc = device_get_softc(dev);
16412
16413 BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16414
16415 ifp = sc->ifp;
16416 if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16417 BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16418 return(EBUSY);
16419 }
16420
16421 bxe_del_cdev(sc);
16422
16423 /* stop the periodic callout */
16425
16426 /* stop the chip taskqueue */
16427 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16428 if (sc->chip_tq) {
16429 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16430 taskqueue_free(sc->chip_tq);
16431 sc->chip_tq = NULL;
16432 taskqueue_drain_timeout(taskqueue_thread,
16433 &sc->sp_err_timeout_task);
16434 }
16435
16436 /* stop and reset the controller if it was open */
16437 if (sc->state != BXE_STATE_CLOSED) {
16438 BXE_CORE_LOCK(sc);
16439 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16441 BXE_CORE_UNLOCK(sc);
16442 }
16443
16444 /* release the network interface */
16445 if (ifp != NULL) {
16446 ether_ifdetach(ifp);
16447 }
16448 ifmedia_removeall(&sc->ifmedia);
16449
16450 /* XXX do the following based on driver state... */
16451
16452 /* free the host hardware/software hsi structures */
16453 bxe_free_hsi_mem(sc);
16454
16455 /* free ilt */
16456 bxe_free_ilt_mem(sc);
16457
16459
16460 /* release the interrupts */
16462
16463 /* Release the mutexes*/
16466
16467
16468 /* Release the PCIe BAR mapped memory */
16470
16471 /* Release the FreeBSD interface. */
16472 if (sc->ifp != NULL) {
16473 if_free(sc->ifp);
16474 }
16475
16476 pci_disable_busmaster(dev);
16477
16478 return (0);
16479}
16480
16481/*
16482 * Device shutdown function.
16483 *
16484 * Stops and resets the controller.
16485 *
16486 * Returns:
16487 * Nothing
16488 */
16489static int
16491{
16492 struct bxe_softc *sc;
16493
16494 sc = device_get_softc(dev);
16495
16496 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16497
16498 /* stop the periodic callout */
16500
16501 if (sc->state != BXE_STATE_CLOSED) {
16502 BXE_CORE_LOCK(sc);
16503 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16504 BXE_CORE_UNLOCK(sc);
16505 }
16506
16507 return (0);
16508}
16509
16510void
16512 uint8_t igu_sb_id,
16513 uint8_t segment,
16514 uint16_t index,
16515 uint8_t op,
16516 uint8_t update)
16517{
16518 uint32_t igu_addr = sc->igu_base_addr;
16519 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16520 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16521}
16522
16523static void
16525 uint8_t func,
16526 uint8_t idu_sb_id,
16527 uint8_t is_pf)
16528{
16529 uint32_t data, ctl, cnt = 100;
16530 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16531 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16532 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16533 uint32_t sb_bit = 1 << (idu_sb_id%32);
16534 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16535 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16536
16537 /* Not supported in BC mode */
16538 if (CHIP_INT_MODE_IS_BC(sc)) {
16539 return;
16540 }
16541
16546
16547 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16548 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16550
16551 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16552 data, igu_addr_data);
16553 REG_WR(sc, igu_addr_data, data);
16554
16555 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16556 BUS_SPACE_BARRIER_WRITE);
16557 mb();
16558
16559 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16560 ctl, igu_addr_ctl);
16561 REG_WR(sc, igu_addr_ctl, ctl);
16562
16563 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16564 BUS_SPACE_BARRIER_WRITE);
16565 mb();
16566
16567 /* wait for clean up to finish */
16568 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16569 DELAY(20000);
16570 }
16571
16572 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16573 BLOGD(sc, DBG_LOAD,
16574 "Unable to finish IGU cleanup: "
16575 "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16576 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16577 }
16578}
16579
16580static void
16582 uint8_t idu_sb_id)
16583{
16584 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16585}
16586
16587
16588
16589
16590
16591
16592
16593/*******************/
16594/* ECORE CALLBACKS */
16595/*******************/
16596
16597static void
16599{
16600 uint32_t val = 0x1400;
16601
16602 /* reset_common */
16604
16605 if (CHIP_IS_E3(sc)) {
16608 }
16609
16611}
16612
16613static void
16615{
16616 uint32_t shmem_base[2];
16617 uint32_t shmem2_base[2];
16618
16619 /* Avoid common init in case MFW supports LFA */
16620 if (SHMEM2_RD(sc, size) >
16621 (uint32_t)offsetof(struct shmem2_region,
16622 lfa_host_addr[SC_PORT(sc)])) {
16623 return;
16624 }
16625
16626 shmem_base[0] = sc->devinfo.shmem_base;
16627 shmem2_base[0] = sc->devinfo.shmem2_base;
16628
16629 if (!CHIP_IS_E1x(sc)) {
16630 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
16631 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16632 }
16633
16635 elink_common_init_phy(sc, shmem_base, shmem2_base,
16636 sc->devinfo.chip_id, 0);
16638}
16639
16640static void
16642{
16643 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16644
16645 val &= ~IGU_PF_CONF_FUNC_EN;
16646
16650}
16651
16652static void
16654{
16655 uint16_t devctl;
16656 int r_order, w_order;
16657
16658 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16659
16660 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16661
16662 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16663
16664 if (sc->mrrs == -1) {
16665 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16666 } else {
16667 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16668 r_order = sc->mrrs;
16669 }
16670
16671 ecore_init_pxp_arb(sc, r_order, w_order);
16672}
16673
16674static uint32_t
16676{
16677 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16678 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16679 return (base + (SC_ABS_FUNC(sc)) * stride);
16680}
16681
16682/*
16683 * Called only on E1H or E2.
16684 * When pretending to be PF, the pretend value is the function number 0..7.
16685 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16686 * combination.
16687 */
16688static int
16690 uint16_t pretend_func_val)
16691{
16692 uint32_t pretend_reg;
16693
16694 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16695 return (-1);
16696 }
16697
16698 /* get my own pretend register */
16699 pretend_reg = bxe_get_pretend_reg(sc);
16700 REG_WR(sc, pretend_reg, pretend_func_val);
16701 REG_RD(sc, pretend_reg);
16702 return (0);
16703}
16704
16705static void
16707{
16708 return;
16709}
16710
16711static void
16713{
16714 return;
16715}
16716
16717/* send a NIG loopback debug packet */
16718static void
16720{
16721 uint32_t wb_write[3];
16722
16723 /* Ethernet source and destination addresses */
16724 wb_write[0] = 0x55555555;
16725 wb_write[1] = 0x55555555;
16726 wb_write[2] = 0x20; /* SOP */
16727 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16728
16729 /* NON-IP protocol */
16730 wb_write[0] = 0x09000000;
16731 wb_write[1] = 0x55555555;
16732 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
16733 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16734}
16735
16736/*
16737 * Some of the internal memories are not directly readable from the driver.
16738 * To test them we send debug packets.
16739 */
16740static int
16742{
16743 int factor;
16744 int count, i;
16745 uint32_t val = 0;
16746
16747 if (CHIP_REV_IS_FPGA(sc)) {
16748 factor = 120;
16749 } else if (CHIP_REV_IS_EMUL(sc)) {
16750 factor = 200;
16751 } else {
16752 factor = 1;
16753 }
16754
16755 /* disable inputs of parser neighbor blocks */
16756 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16757 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16758 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16759 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16760
16761 /* write 0 to parser credits for CFC search request */
16763
16764 /* send Ethernet packet */
16765 bxe_lb_pckt(sc);
16766
16767 /* TODO do i reset NIG statistic? */
16768 /* Wait until NIG register shows 1 packet of size 0x10 */
16769 count = 1000 * factor;
16770 while (count) {
16772 val = *BXE_SP(sc, wb_data[0]);
16773 if (val == 0x10) {
16774 break;
16775 }
16776
16777 DELAY(10000);
16778 count--;
16779 }
16780
16781 if (val != 0x10) {
16782 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16783 return (-1);
16784 }
16785
16786 /* wait until PRS register shows 1 packet */
16787 count = (1000 * factor);
16788 while (count) {
16789 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16790 if (val == 1) {
16791 break;
16792 }
16793
16794 DELAY(10000);
16795 count--;
16796 }
16797
16798 if (val != 0x1) {
16799 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16800 return (-2);
16801 }
16802
16803 /* Reset and init BRB, PRS */
16805 DELAY(50000);
16807 DELAY(50000);
16810
16811 /* Disable inputs of parser neighbor blocks */
16812 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16813 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16814 REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16815 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16816
16817 /* Write 0 to parser credits for CFC search request */
16819
16820 /* send 10 Ethernet packets */
16821 for (i = 0; i < 10; i++) {
16822 bxe_lb_pckt(sc);
16823 }
16824
16825 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16826 count = (1000 * factor);
16827 while (count) {
16829 val = *BXE_SP(sc, wb_data[0]);
16830 if (val == 0xb0) {
16831 break;
16832 }
16833
16834 DELAY(10000);
16835 count--;
16836 }
16837
16838 if (val != 0xb0) {
16839 BLOGE(sc, "NIG timeout val=0x%x\n", val);
16840 return (-3);
16841 }
16842
16843 /* Wait until PRS register shows 2 packets */
16844 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16845 if (val != 2) {
16846 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16847 }
16848
16849 /* Write 1 to parser credits for CFC search request */
16851
16852 /* Wait until PRS register shows 3 packets */
16853 DELAY(10000 * factor);
16854
16855 /* Wait until NIG register shows 1 packet of size 0x10 */
16856 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16857 if (val != 3) {
16858 BLOGE(sc, "PRS timeout val=0x%x\n", val);
16859 }
16860
16861 /* clear NIG EOP FIFO */
16862 for (i = 0; i < 11; i++) {
16864 }
16865
16867 if (val != 1) {
16868 BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16869 return (-4);
16870 }
16871
16872 /* Reset and init BRB, PRS, NIG */
16874 DELAY(50000);
16876 DELAY(50000);
16879 if (!CNIC_SUPPORT(sc)) {
16880 /* set NIC mode */
16881 REG_WR(sc, PRS_REG_NIC_MODE, 1);
16882 }
16883
16884 /* Enable inputs of parser neighbor blocks */
16885 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16886 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16887 REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16888 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16889
16890 return (0);
16891}
16892
16893static void
16895{
16896 int is_required;
16897 uint32_t val;
16898 int port;
16899
16900 is_required = 0;
16901 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16903
16905 is_required = 1;
16906 }
16907 /*
16908 * The fan failure mechanism is usually related to the PHY type since
16909 * the power consumption of the board is affected by the PHY. Currently,
16910 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16911 */
16912 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16913 for (port = PORT_0; port < PORT_MAX; port++) {
16914 is_required |= elink_fan_failure_det_req(sc,
16915 sc->devinfo.shmem_base,
16916 sc->devinfo.shmem2_base,
16917 port);
16918 }
16919 }
16920
16921 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16922
16923 if (is_required == 0) {
16924 return;
16925 }
16926
16927 /* Fan failure is indicated by SPIO 5 */
16929
16930 /* set to active low mode */
16931 val = REG_RD(sc, MISC_REG_SPIO_INT);
16933 REG_WR(sc, MISC_REG_SPIO_INT, val);
16934
16935 /* enable interrupt to signal the IGU */
16936 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16937 val |= MISC_SPIO_SPIO5;
16939}
16940
16941static void
16943{
16944 uint32_t val;
16945
16947 if (!CHIP_IS_E1x(sc)) {
16948 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16949 } else {
16951 }
16954 /*
16955 * mask read length error interrupts in brb for parser
16956 * (parsing unit and 'checksum and crc' unit)
16957 * these errors are legal (PU reads fixed length and CAC can cause
16958 * read length error on truncated packets)
16959 */
16960 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16961 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16962 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16966/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16967/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16971/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16972/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16977/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16978/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16979
16983 if (!CHIP_IS_E1x(sc)) {
16986 }
16988
16992/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16993
16994 if (!CHIP_IS_E1x(sc)) {
16995 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16996 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16997 }
16998
17001/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17002 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
17003}
17004
17010static int
17012{
17013 uint8_t abs_func_id;
17014 uint32_t val;
17015
17016 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17017 SC_ABS_FUNC(sc));
17018
17019 /*
17020 * take the RESET lock to protect undi_unload flow from accessing
17021 * registers while we are resetting the chip
17022 */
17024
17025 bxe_reset_common(sc);
17026
17028
17029 val = 0xfffc;
17030 if (CHIP_IS_E3(sc)) {
17033 }
17034
17036
17038
17040 BLOGD(sc, DBG_LOAD, "after misc block init\n");
17041
17042 if (!CHIP_IS_E1x(sc)) {
17043 /*
17044 * 4-port mode or 2-port mode we need to turn off master-enable for
17045 * everyone. After that we turn it back on for self. So, we disregard
17046 * multi-function, and always disable all functions on the given path,
17047 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17048 */
17049 for (abs_func_id = SC_PATH(sc);
17050 abs_func_id < (E2_FUNC_MAX * 2);
17051 abs_func_id += 2) {
17052 if (abs_func_id == SC_ABS_FUNC(sc)) {
17054 continue;
17055 }
17056
17057 bxe_pretend_func(sc, abs_func_id);
17058
17059 /* clear pf enable */
17060 bxe_pf_disable(sc);
17061
17063 }
17064 }
17065
17066 BLOGD(sc, DBG_LOAD, "after pf disable\n");
17067
17069
17070 if (CHIP_IS_E1(sc)) {
17071 /*
17072 * enable HW interrupt from PXP on USDM overflow
17073 * bit 16 on INT_MASK_0
17074 */
17076 }
17077
17079 bxe_init_pxp(sc);
17080
17081#ifdef __BIG_ENDIAN
17087 /* make sure this value is 0 */
17089
17090 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17095#endif
17096
17098
17099 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17101 }
17102
17103 /* let the HW do it's magic... */
17104 DELAY(100000);
17105
17106 /* finish PXP init */
17107 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17108 if (val != 1) {
17109 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17110 val);
17111 return (-1);
17112 }
17113 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17114 if (val != 1) {
17115 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17116 return (-1);
17117 }
17118
17119 BLOGD(sc, DBG_LOAD, "after pxp init\n");
17120
17121 /*
17122 * Timer bug workaround for E2 only. We need to set the entire ILT to have
17123 * entries with value "0" and valid bit on. This needs to be done by the
17124 * first PF that is loaded in a path (i.e. common phase)
17125 */
17126 if (!CHIP_IS_E1x(sc)) {
17127/*
17128 * In E2 there is a bug in the timers block that can cause function 6 / 7
17129 * (i.e. vnic3) to start even if it is marked as "scan-off".
17130 * This occurs when a different function (func2,3) is being marked
17131 * as "scan-off". Real-life scenario for example: if a driver is being
17132 * load-unloaded while func6,7 are down. This will cause the timer to access
17133 * the ilt, translate to a logical address and send a request to read/write.
17134 * Since the ilt for the function that is down is not valid, this will cause
17135 * a translation error which is unrecoverable.
17136 * The Workaround is intended to make sure that when this happens nothing
17137 * fatal will occur. The workaround:
17138 * 1. First PF driver which loads on a path will:
17139 * a. After taking the chip out of reset, by using pretend,
17140 * it will write "0" to the following registers of
17141 * the other vnics.
17142 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17143 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17144 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17145 * And for itself it will write '1' to
17146 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17147 * dmae-operations (writing to pram for example.)
17148 * note: can be done for only function 6,7 but cleaner this
17149 * way.
17150 * b. Write zero+valid to the entire ILT.
17151 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
17152 * VNIC3 (of that port). The range allocated will be the
17153 * entire ILT. This is needed to prevent ILT range error.
17154 * 2. Any PF driver load flow:
17155 * a. ILT update with the physical addresses of the allocated
17156 * logical pages.
17157 * b. Wait 20msec. - note that this timeout is needed to make
17158 * sure there are no requests in one of the PXP internal
17159 * queues with "old" ILT addresses.
17160 * c. PF enable in the PGLC.
17161 * d. Clear the was_error of the PF in the PGLC. (could have
17162 * occurred while driver was down)
17163 * e. PF enable in the CFC (WEAK + STRONG)
17164 * f. Timers scan enable
17165 * 3. PF driver unload flow:
17166 * a. Clear the Timers scan_en.
17167 * b. Polling for scan_on=0 for that PF.
17168 * c. Clear the PF enable bit in the PXP.
17169 * d. Clear the PF enable in the CFC (WEAK + STRONG)
17170 * e. Write zero+valid to all ILT entries (The valid bit must
17171 * stay set)
17172 * f. If this is VNIC 3 of a port then also init
17173 * first_timers_ilt_entry to zero and last_timers_ilt_entry
17174 * to the last entry in the ILT.
17175 *
17176 * Notes:
17177 * Currently the PF error in the PGLC is non recoverable.
17178 * In the future the there will be a recovery routine for this error.
17179 * Currently attention is masked.
17180 * Having an MCP lock on the load/unload process does not guarantee that
17181 * there is no Timer disable during Func6/7 enable. This is because the
17182 * Timers scan is currently being cleared by the MCP on FLR.
17183 * Step 2.d can be done only for PF6/7 and the driver can also check if
17184 * there is error before clearing it. But the flow above is simpler and
17185 * more general.
17186 * All ILT entries are written by zero+valid and not just PF6/7
17187 * ILT entries since in the future the ILT entries allocation for
17188 * PF-s might be dynamic.
17189 */
17190 struct ilt_client_info ilt_cli;
17191 struct ecore_ilt ilt;
17192
17193 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17194 memset(&ilt, 0, sizeof(struct ecore_ilt));
17195
17196 /* initialize dummy TM client */
17197 ilt_cli.start = 0;
17198 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
17199 ilt_cli.client_num = ILT_CLIENT_TM;
17200
17201 /*
17202 * Step 1: set zeroes to all ilt page entries with valid bit on
17203 * Step 2: set the timers first/last ilt entry to point
17204 * to the entire range to prevent ILT range error for 3rd/4th
17205 * vnic (this code assumes existence of the vnic)
17206 *
17207 * both steps performed by call to ecore_ilt_client_init_op()
17208 * with dummy TM client
17209 *
17210 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17211 * and his brother are split registers
17212 */
17213
17214 bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17215 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17217
17221 }
17222
17225
17226 if (!CHIP_IS_E1x(sc)) {
17227 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17228 (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17229
17232
17233 /* let the HW do it's magic... */
17234 do {
17235 DELAY(200000);
17236 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17237 } while (factor-- && (val != 1));
17238
17239 if (val != 1) {
17240 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17241 return (-1);
17242 }
17243 }
17244
17245 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17246
17248
17250
17251 /* clean the DMAE memory */
17252 sc->dmae_ready = 1;
17253 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17254
17256
17258
17260
17262
17267
17269
17270 /* QM queues pointers table */
17272
17273 /* soft reset pulse */
17274 REG_WR(sc, QM_REG_SOFT_RESET, 1);
17275 REG_WR(sc, QM_REG_SOFT_RESET, 0);
17276
17277 if (CNIC_SUPPORT(sc))
17279
17282 if (!CHIP_REV_IS_SLOW(sc)) {
17283 /* enable hw interrupt from doorbell Q */
17285 }
17286
17288
17290 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17291
17292 if (!CHIP_IS_E1(sc)) {
17294 }
17295
17296 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17297 if (IS_MF_AFEX(sc)) {
17298 /*
17299 * configure that AFEX and VLAN headers must be
17300 * received in AFEX mode
17301 */
17305 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17306 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17307 } else {
17308 /*
17309 * Bit-map indicating which L2 hdrs may appear
17310 * after the basic Ethernet header
17311 */
17313 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17314 }
17315 }
17316
17321
17322 if (!CHIP_IS_E1x(sc)) {
17323 /* reset VFC memories */
17330
17331 DELAY(20000);
17332 }
17333
17338
17339 /* sync semi rtc */
17341 0x80000000);
17343 0x80000000);
17344
17348
17349 if (!CHIP_IS_E1x(sc)) {
17350 if (IS_MF_AFEX(sc)) {
17351 /*
17352 * configure that AFEX and VLAN headers must be
17353 * sent in AFEX mode
17354 */
17358 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17359 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17360 } else {
17362 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17363 }
17364 }
17365
17366 REG_WR(sc, SRC_REG_SOFT_RST, 1);
17367
17369
17370 if (CNIC_SUPPORT(sc)) {
17371 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17372 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17373 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17374 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17375 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17376 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17377 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17378 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17379 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17380 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17381 }
17382 REG_WR(sc, SRC_REG_SOFT_RST, 0);
17383
17384 if (sizeof(union cdu_context) != 1024) {
17385 /* we currently assume that a context is 1024 bytes */
17386 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17387 (long)sizeof(union cdu_context));
17388 }
17389
17391 val = (4 << 24) + (0 << 12) + 1024;
17393
17395
17396 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17397 /* enable context validation interrupt from CFC */
17399
17400 /* set the thresholds to prevent CFC/CDU race */
17401 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17403
17404 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17405 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17406 }
17407
17410
17411 /* Reset PCIE errors for debug */
17412 REG_WR(sc, 0x2814, 0xffffffff);
17413 REG_WR(sc, 0x3820, 0xffffffff);
17414
17415 if (!CHIP_IS_E1x(sc)) {
17427 }
17428
17430
17431 if (!CHIP_IS_E1(sc)) {
17432 /* in E3 this done in per-port section */
17433 if (!CHIP_IS_E3(sc))
17435 }
17436
17437 if (CHIP_IS_E1H(sc)) {
17438 /* not applicable for E2 (and above ...) */
17440 }
17441
17442 if (CHIP_REV_IS_SLOW(sc)) {
17443 DELAY(200000);
17444 }
17445
17446 /* finish CFC init */
17447 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17448 if (val != 1) {
17449 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17450 return (-1);
17451 }
17452 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17453 if (val != 1) {
17454 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17455 return (-1);
17456 }
17457 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17458 if (val != 1) {
17459 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17460 return (-1);
17461 }
17462 REG_WR(sc, CFC_REG_DEBUG0, 0);
17463
17464 if (CHIP_IS_E1(sc)) {
17465 /* read NIG statistic to see if this is our first up since powerup */
17467 val = *BXE_SP(sc, wb_data[0]);
17468
17469 /* do internal memory self test */
17470 if ((val == 0) && bxe_int_mem_test(sc)) {
17471 BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17472 return (-1);
17473 }
17474 }
17475
17477
17478 /* clear PXP2 attentions */
17480
17482
17483 if (!CHIP_REV_IS_SLOW(sc)) {
17485 }
17486
17487 if (!BXE_NOMCP(sc)) {
17488 if (CHIP_IS_E1x(sc)) {
17490 }
17491 }
17492
17493 return (0);
17494}
17495
17501static int
17503{
17504 int rc = bxe_init_hw_common(sc);
17505
17506 if (rc) {
17507 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17508 return (rc);
17509 }
17510
17511 /* In E2 2-PORT mode, same ext phy is used for the two paths */
17512 if (!BXE_NOMCP(sc)) {
17514 }
17515
17516 return (0);
17517}
17518
17519static int
17521{
17522 int port = SC_PORT(sc);
17523 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17524 uint32_t low, high;
17525 uint32_t val;
17526
17527 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17528
17529 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17530
17531 ecore_init_block(sc, BLOCK_MISC, init_phase);
17532 ecore_init_block(sc, BLOCK_PXP, init_phase);
17533 ecore_init_block(sc, BLOCK_PXP2, init_phase);
17534
17535 /*
17536 * Timers bug workaround: disables the pf_master bit in pglue at
17537 * common phase, we need to enable it here before any dmae access are
17538 * attempted. Therefore we manually added the enable-master to the
17539 * port phase (it also happens in the function phase)
17540 */
17541 if (!CHIP_IS_E1x(sc)) {
17543 }
17544
17545 ecore_init_block(sc, BLOCK_ATC, init_phase);
17546 ecore_init_block(sc, BLOCK_DMAE, init_phase);
17547 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17548 ecore_init_block(sc, BLOCK_QM, init_phase);
17549
17550 ecore_init_block(sc, BLOCK_TCM, init_phase);
17551 ecore_init_block(sc, BLOCK_UCM, init_phase);
17552 ecore_init_block(sc, BLOCK_CCM, init_phase);
17553 ecore_init_block(sc, BLOCK_XCM, init_phase);
17554
17555 /* QM cid (connection) count */
17557
17558 if (CNIC_SUPPORT(sc)) {
17559 ecore_init_block(sc, BLOCK_TM, init_phase);
17560 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17561 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17562 }
17563
17564 ecore_init_block(sc, BLOCK_DORQ, init_phase);
17565
17566 ecore_init_block(sc, BLOCK_BRB1, init_phase);
17567
17568 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17569 if (IS_MF(sc)) {
17570 low = (BXE_ONE_PORT(sc) ? 160 : 246);
17571 } else if (sc->mtu > 4096) {
17572 if (BXE_ONE_PORT(sc)) {
17573 low = 160;
17574 } else {
17575 val = sc->mtu;
17576 /* (24*1024 + val*4)/256 */
17577 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17578 }
17579 } else {
17580 low = (BXE_ONE_PORT(sc) ? 80 : 160);
17581 }
17582 high = (low + 56); /* 14*1024/256 */
17583 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17584 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17585 }
17586
17587 if (CHIP_IS_MODE_4_PORT(sc)) {
17588 REG_WR(sc, SC_PORT(sc) ?
17591 }
17592
17593 ecore_init_block(sc, BLOCK_PRS, init_phase);
17594 if (CHIP_IS_E3B0(sc)) {
17595 if (IS_MF_AFEX(sc)) {
17596 /* configure headers for AFEX mode */
17597 REG_WR(sc, SC_PORT(sc) ?
17600 REG_WR(sc, SC_PORT(sc) ?
17603 REG_WR(sc, SC_PORT(sc) ?
17606 } else {
17607 /* Ovlan exists only if we are in multi-function +
17608 * switch-dependent mode, in switch-independent there
17609 * is no ovlan headers
17610 */
17611 REG_WR(sc, SC_PORT(sc) ?
17614 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17615 }
17616 }
17617
17618 ecore_init_block(sc, BLOCK_TSDM, init_phase);
17619 ecore_init_block(sc, BLOCK_CSDM, init_phase);
17620 ecore_init_block(sc, BLOCK_USDM, init_phase);
17621 ecore_init_block(sc, BLOCK_XSDM, init_phase);
17622
17623 ecore_init_block(sc, BLOCK_TSEM, init_phase);
17624 ecore_init_block(sc, BLOCK_USEM, init_phase);
17625 ecore_init_block(sc, BLOCK_CSEM, init_phase);
17626 ecore_init_block(sc, BLOCK_XSEM, init_phase);
17627
17628 ecore_init_block(sc, BLOCK_UPB, init_phase);
17629 ecore_init_block(sc, BLOCK_XPB, init_phase);
17630
17631 ecore_init_block(sc, BLOCK_PBF, init_phase);
17632
17633 if (CHIP_IS_E1x(sc)) {
17634 /* configure PBF to work without PAUSE mtu 9000 */
17635 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17636
17637 /* update threshold */
17638 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17639 /* update init credit */
17640 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17641
17642 /* probe changes */
17643 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17644 DELAY(50);
17645 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17646 }
17647
17648 if (CNIC_SUPPORT(sc)) {
17649 ecore_init_block(sc, BLOCK_SRC, init_phase);
17650 }
17651
17652 ecore_init_block(sc, BLOCK_CDU, init_phase);
17653 ecore_init_block(sc, BLOCK_CFC, init_phase);
17654
17655 if (CHIP_IS_E1(sc)) {
17656 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17657 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17658 }
17659 ecore_init_block(sc, BLOCK_HC, init_phase);
17660
17661 ecore_init_block(sc, BLOCK_IGU, init_phase);
17662
17663 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17664 /* init aeu_mask_attn_func_0/1:
17665 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17666 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17667 * bits 4-7 are used for "per vn group attention" */
17668 val = IS_MF(sc) ? 0xF7 : 0x7;
17669 /* Enable DCBX attention for all but E1 */
17670 val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17671 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17672
17673 ecore_init_block(sc, BLOCK_NIG, init_phase);
17674
17675 if (!CHIP_IS_E1x(sc)) {
17676 /* Bit-map indicating which L2 hdrs may appear after the
17677 * basic Ethernet header
17678 */
17679 if (IS_MF_AFEX(sc)) {
17680 REG_WR(sc, SC_PORT(sc) ?
17683 } else {
17684 REG_WR(sc, SC_PORT(sc) ?
17687 IS_MF_SD(sc) ? 7 : 6);
17688 }
17689
17690 if (CHIP_IS_E3(sc)) {
17691 REG_WR(sc, SC_PORT(sc) ?
17694 }
17695 }
17696 if (!CHIP_IS_E3(sc)) {
17697 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17698 }
17699
17700 if (!CHIP_IS_E1(sc)) {
17701 /* 0x2 disable mf_ov, 0x1 enable */
17703 (IS_MF_SD(sc) ? 0x1 : 0x2));
17704
17705 if (!CHIP_IS_E1x(sc)) {
17706 val = 0;
17707 switch (sc->devinfo.mf_info.mf_mode) {
17708 case MULTI_FUNCTION_SD:
17709 val = 1;
17710 break;
17711 case MULTI_FUNCTION_SI:
17713 val = 2;
17714 break;
17715 }
17716
17718 NIG_REG_LLH0_CLS_TYPE), val);
17719 }
17720 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17721 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17722 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17723 }
17724
17725 /* If SPIO5 is set to generate interrupts, enable it for this port */
17726 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17727 if (val & MISC_SPIO_SPIO5) {
17728 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17730 val = REG_RD(sc, reg_addr);
17732 REG_WR(sc, reg_addr, val);
17733 }
17734
17735 return (0);
17736}
17737
17738static uint32_t
17740 uint32_t reg,
17741 uint32_t expected,
17742 uint32_t poll_count)
17743{
17744 uint32_t cur_cnt = poll_count;
17745 uint32_t val;
17746
17747 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17748 DELAY(FLR_WAIT_INTERVAL);
17749 }
17750
17751 return (val);
17752}
17753
17754static int
17756 uint32_t reg,
17757 char *msg,
17758 uint32_t poll_cnt)
17759{
17760 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17761
17762 if (val != 0) {
17763 BLOGE(sc, "%s usage count=%d\n", msg, val);
17764 return (1);
17765 }
17766
17767 return (0);
17768}
17769
17770/* Common routines with VF FLR cleanup */
17771static uint32_t
17773{
17774 /* adjust polling timeout */
17775 if (CHIP_REV_IS_EMUL(sc)) {
17776 return (FLR_POLL_CNT * 2000);
17777 }
17778
17779 if (CHIP_REV_IS_FPGA(sc)) {
17780 return (FLR_POLL_CNT * 120);
17781 }
17782
17783 return (FLR_POLL_CNT);
17784}
17785
17786static int
17788 uint32_t poll_cnt)
17789{
17790 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17793 "CFC PF usage counter timed out",
17794 poll_cnt)) {
17795 return (1);
17796 }
17797
17798 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17801 "DQ PF usage counter timed out",
17802 poll_cnt)) {
17803 return (1);
17804 }
17805
17806 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17809 "QM PF usage counter timed out",
17810 poll_cnt)) {
17811 return (1);
17812 }
17813
17814 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17817 "Timers VNIC usage counter timed out",
17818 poll_cnt)) {
17819 return (1);
17820 }
17821
17824 "Timers NUM_SCANS usage counter timed out",
17825 poll_cnt)) {
17826 return (1);
17827 }
17828
17829 /* Wait DMAE PF usage counter to zero */
17832 "DMAE dommand register timed out",
17833 poll_cnt)) {
17834 return (1);
17835 }
17836
17837 return (0);
17838}
17839
17840#define OP_GEN_PARAM(param) \
17841 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17842#define OP_GEN_TYPE(type) \
17843 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17844#define OP_GEN_AGG_VECT(index) \
17845 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17846
17847static int
17849 uint8_t clnup_func,
17850 uint32_t poll_cnt)
17851{
17852 uint32_t op_gen_command = 0;
17853 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17855 int ret = 0;
17856
17857 if (REG_RD(sc, comp_addr)) {
17858 BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17859 return (1);
17860 }
17861
17864 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17865 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17866
17867 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17868 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17869
17870 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17871 BLOGE(sc, "FW final cleanup did not succeed\n");
17872 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17873 (REG_RD(sc, comp_addr)));
17874 bxe_panic(sc, ("FLR cleanup failed\n"));
17875 return (1);
17876 }
17877
17878 /* Zero completion for nxt FLR */
17879 REG_WR(sc, comp_addr, 0);
17880
17881 return (ret);
17882}
17883
17884static void
17886 struct pbf_pN_buf_regs *regs,
17887 uint32_t poll_count)
17888{
17889 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17890 uint32_t cur_cnt = poll_count;
17891
17892 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17893 crd = crd_start = REG_RD(sc, regs->crd);
17894 init_crd = REG_RD(sc, regs->init_crd);
17895
17896 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17897 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
17898 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17899
17900 while ((crd != init_crd) &&
17901 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17902 (init_crd - crd_start))) {
17903 if (cur_cnt--) {
17904 DELAY(FLR_WAIT_INTERVAL);
17905 crd = REG_RD(sc, regs->crd);
17906 crd_freed = REG_RD(sc, regs->crd_freed);
17907 } else {
17908 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17909 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
17910 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17911 break;
17912 }
17913 }
17914
17915 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17916 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17917}
17918
17919static void
17921 struct pbf_pN_cmd_regs *regs,
17922 uint32_t poll_count)
17923{
17924 uint32_t occup, to_free, freed, freed_start;
17925 uint32_t cur_cnt = poll_count;
17926
17927 occup = to_free = REG_RD(sc, regs->lines_occup);
17928 freed = freed_start = REG_RD(sc, regs->lines_freed);
17929
17930 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17931 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17932
17933 while (occup &&
17934 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17935 if (cur_cnt--) {
17936 DELAY(FLR_WAIT_INTERVAL);
17937 occup = REG_RD(sc, regs->lines_occup);
17938 freed = REG_RD(sc, regs->lines_freed);
17939 } else {
17940 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17941 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17942 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17943 break;
17944 }
17945 }
17946
17947 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17948 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17949}
17950
17951static void
17952bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17953{
17954 struct pbf_pN_cmd_regs cmd_regs[] = {
17955 {0, (CHIP_IS_E3B0(sc)) ?
17958 (CHIP_IS_E3B0(sc)) ?
17961 {1, (CHIP_IS_E3B0(sc)) ?
17964 (CHIP_IS_E3B0(sc)) ?
17967 {4, (CHIP_IS_E3B0(sc)) ?
17970 (CHIP_IS_E3B0(sc)) ?
17973 };
17974
17975 struct pbf_pN_buf_regs buf_regs[] = {
17976 {0, (CHIP_IS_E3B0(sc)) ?
17979 (CHIP_IS_E3B0(sc)) ?
17982 (CHIP_IS_E3B0(sc)) ?
17985 {1, (CHIP_IS_E3B0(sc)) ?
17988 (CHIP_IS_E3B0(sc)) ?
17991 (CHIP_IS_E3B0(sc)) ?
17994 {4, (CHIP_IS_E3B0(sc)) ?
17997 (CHIP_IS_E3B0(sc)) ?
18000 (CHIP_IS_E3B0(sc)) ?
18003 };
18004
18005 int i;
18006
18007 /* Verify the command queues are flushed P0, P1, P4 */
18008 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18009 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18010 }
18011
18012 /* Verify the transmission buffers are flushed P0, P1, P4 */
18013 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18014 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18015 }
18016}
18017
18018static void
18020{
18021 uint32_t val;
18022
18023 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18024 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18025
18026 val = REG_RD(sc, PBF_REG_DISABLE_PF);
18027 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18028
18029 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18030 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18031
18032 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18033 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18034
18036 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18037
18039 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18040
18042 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18043
18045 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18046}
18047
18048static int
18050{
18051 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18052
18053 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18054
18055 /* Re-enable PF target read access */
18057
18058 /* Poll HW usage counters */
18059 BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18060 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18061 return (-1);
18062 }
18063
18064 /* Zero the igu 'trailing edge' and 'leading edge' */
18065
18066 /* Send the FW cleanup command */
18067 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18068 return (-1);
18069 }
18070
18071 /* ATC cleanup */
18072
18073 /* Verify TX hw is flushed */
18074 bxe_tx_hw_flushed(sc, poll_cnt);
18075
18076 /* Wait 100ms (not adjusted according to platform) */
18077 DELAY(100000);
18078
18079 /* Verify no pending pci transactions */
18080 if (bxe_is_pcie_pending(sc)) {
18081 BLOGE(sc, "PCIE Transactions still pending\n");
18082 }
18083
18084 /* Debug */
18086
18087 /*
18088 * Master enable - Due to WB DMAE writes performed before this
18089 * register is re-initialized as part of the regular function init
18090 */
18092
18093 return (0);
18094}
18095
18096static int
18098{
18099 int port = SC_PORT(sc);
18100 int func = SC_FUNC(sc);
18101 int init_phase = PHASE_PF0 + func;
18102 struct ecore_ilt *ilt = sc->ilt;
18103 uint16_t cdu_ilt_start;
18104 uint32_t addr, val;
18105 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18106 int i, main_mem_width, rc;
18107
18108 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18109
18110 /* FLR cleanup */
18111 if (!CHIP_IS_E1x(sc)) {
18112 rc = bxe_pf_flr_clnup(sc);
18113 if (rc) {
18114 BLOGE(sc, "FLR cleanup failed!\n");
18115 // XXX bxe_fw_dump(sc);
18116 // XXX bxe_idle_chk(sc);
18117 return (rc);
18118 }
18119 }
18120
18121 /* set MSI reconfigure capability */
18122 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18124 val = REG_RD(sc, addr);
18126 REG_WR(sc, addr, val);
18127 }
18128
18129 ecore_init_block(sc, BLOCK_PXP, init_phase);
18130 ecore_init_block(sc, BLOCK_PXP2, init_phase);
18131
18132 ilt = sc->ilt;
18133 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18134
18135 for (i = 0; i < L2_ILT_LINES(sc); i++) {
18136 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18137 ilt->lines[cdu_ilt_start + i].page_mapping =
18138 sc->context[i].vcxt_dma.paddr;
18139 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18140 }
18142
18143 /* Set NIC mode */
18144 REG_WR(sc, PRS_REG_NIC_MODE, 1);
18145 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18146
18147 if (!CHIP_IS_E1x(sc)) {
18148 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18149
18150 /* Turn on a single ISR mode in IGU if driver is going to use
18151 * INT#x or MSI
18152 */
18153 if (sc->interrupt_mode != INTR_MODE_MSIX) {
18154 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18155 }
18156
18157 /*
18158 * Timers workaround bug: function init part.
18159 * Need to wait 20msec after initializing ILT,
18160 * needed to make sure there are no requests in
18161 * one of the PXP internal queues with "old" ILT addresses
18162 */
18163 DELAY(20000);
18164
18165 /*
18166 * Master enable - Due to WB DMAE writes performed before this
18167 * register is re-initialized as part of the regular function
18168 * init
18169 */
18171 /* Enable the function in IGU */
18172 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18173 }
18174
18175 sc->dmae_ready = 1;
18176
18177 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18178
18179 if (!CHIP_IS_E1x(sc))
18181
18182 ecore_init_block(sc, BLOCK_ATC, init_phase);
18183 ecore_init_block(sc, BLOCK_DMAE, init_phase);
18184 ecore_init_block(sc, BLOCK_NIG, init_phase);
18185 ecore_init_block(sc, BLOCK_SRC, init_phase);
18186 ecore_init_block(sc, BLOCK_MISC, init_phase);
18187 ecore_init_block(sc, BLOCK_TCM, init_phase);
18188 ecore_init_block(sc, BLOCK_UCM, init_phase);
18189 ecore_init_block(sc, BLOCK_CCM, init_phase);
18190 ecore_init_block(sc, BLOCK_XCM, init_phase);
18191 ecore_init_block(sc, BLOCK_TSEM, init_phase);
18192 ecore_init_block(sc, BLOCK_USEM, init_phase);
18193 ecore_init_block(sc, BLOCK_CSEM, init_phase);
18194 ecore_init_block(sc, BLOCK_XSEM, init_phase);
18195
18196 if (!CHIP_IS_E1x(sc))
18197 REG_WR(sc, QM_REG_PF_EN, 1);
18198
18199 if (!CHIP_IS_E1x(sc)) {
18204 }
18205 ecore_init_block(sc, BLOCK_QM, init_phase);
18206
18207 ecore_init_block(sc, BLOCK_TM, init_phase);
18208 ecore_init_block(sc, BLOCK_DORQ, init_phase);
18209
18210 bxe_iov_init_dq(sc);
18211
18212 ecore_init_block(sc, BLOCK_BRB1, init_phase);
18213 ecore_init_block(sc, BLOCK_PRS, init_phase);
18214 ecore_init_block(sc, BLOCK_TSDM, init_phase);
18215 ecore_init_block(sc, BLOCK_CSDM, init_phase);
18216 ecore_init_block(sc, BLOCK_USDM, init_phase);
18217 ecore_init_block(sc, BLOCK_XSDM, init_phase);
18218 ecore_init_block(sc, BLOCK_UPB, init_phase);
18219 ecore_init_block(sc, BLOCK_XPB, init_phase);
18220 ecore_init_block(sc, BLOCK_PBF, init_phase);
18221 if (!CHIP_IS_E1x(sc))
18222 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18223
18224 ecore_init_block(sc, BLOCK_CDU, init_phase);
18225
18226 ecore_init_block(sc, BLOCK_CFC, init_phase);
18227
18228 if (!CHIP_IS_E1x(sc))
18230
18231 if (IS_MF(sc)) {
18232 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18233 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18234 }
18235
18236 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18237
18238 /* HC init per function */
18239 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18240 if (CHIP_IS_E1H(sc)) {
18241 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18242
18243 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18244 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18245 }
18246 ecore_init_block(sc, BLOCK_HC, init_phase);
18247
18248 } else {
18249 int num_segs, sb_idx, prod_offset;
18250
18251 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18252
18253 if (!CHIP_IS_E1x(sc)) {
18256 }
18257
18258 ecore_init_block(sc, BLOCK_IGU, init_phase);
18259
18260 if (!CHIP_IS_E1x(sc)) {
18261 int dsb_idx = 0;
18282 /* non-default-status-blocks */
18283 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18285 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18286 prod_offset = (sc->igu_base_sb + sb_idx) *
18287 num_segs;
18288
18289 for (i = 0; i < num_segs; i++) {
18291 (prod_offset + i) * 4;
18292 REG_WR(sc, addr, 0);
18293 }
18294 /* send consumer update with value 0 */
18295 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18296 USTORM_ID, 0, IGU_INT_NOP, 1);
18297 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18298 }
18299
18300 /* default-status-blocks */
18301 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18303
18304 if (CHIP_IS_MODE_4_PORT(sc))
18305 dsb_idx = SC_FUNC(sc);
18306 else
18307 dsb_idx = SC_VN(sc);
18308
18309 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18310 IGU_BC_BASE_DSB_PROD + dsb_idx :
18311 IGU_NORM_BASE_DSB_PROD + dsb_idx);
18312
18313 /*
18314 * igu prods come in chunks of E1HVN_MAX (4) -
18315 * does not matters what is the current chip mode
18316 */
18317 for (i = 0; i < (num_segs * E1HVN_MAX);
18318 i += E1HVN_MAX) {
18320 (prod_offset + i)*4;
18321 REG_WR(sc, addr, 0);
18322 }
18323 /* send consumer update with 0 */
18324 if (CHIP_INT_MODE_IS_BC(sc)) {
18325 bxe_ack_sb(sc, sc->igu_dsb_id,
18326 USTORM_ID, 0, IGU_INT_NOP, 1);
18327 bxe_ack_sb(sc, sc->igu_dsb_id,
18328 CSTORM_ID, 0, IGU_INT_NOP, 1);
18329 bxe_ack_sb(sc, sc->igu_dsb_id,
18330 XSTORM_ID, 0, IGU_INT_NOP, 1);
18331 bxe_ack_sb(sc, sc->igu_dsb_id,
18332 TSTORM_ID, 0, IGU_INT_NOP, 1);
18333 bxe_ack_sb(sc, sc->igu_dsb_id,
18334 ATTENTION_ID, 0, IGU_INT_NOP, 1);
18335 } else {
18336 bxe_ack_sb(sc, sc->igu_dsb_id,
18337 USTORM_ID, 0, IGU_INT_NOP, 1);
18338 bxe_ack_sb(sc, sc->igu_dsb_id,
18339 ATTENTION_ID, 0, IGU_INT_NOP, 1);
18340 }
18342
18343 /* !!! these should become driver const once
18344 rf-tool supports split-68 const */
18351 }
18352 }
18353
18354 /* Reset PCIE errors for debug */
18355 REG_WR(sc, 0x2114, 0xffffffff);
18356 REG_WR(sc, 0x2120, 0xffffffff);
18357
18358 if (CHIP_IS_E1x(sc)) {
18359 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18360 main_mem_base = HC_REG_MAIN_MEMORY +
18361 SC_PORT(sc) * (main_mem_size * 4);
18362 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18363 main_mem_width = 8;
18364
18365 val = REG_RD(sc, main_mem_prty_clr);
18366 if (val) {
18367 BLOGD(sc, DBG_LOAD,
18368 "Parity errors in HC block during function init (0x%x)!\n",
18369 val);
18370 }
18371
18372 /* Clear "false" parity errors in MSI-X table */
18373 for (i = main_mem_base;
18374 i < main_mem_base + main_mem_size * 4;
18375 i += main_mem_width) {
18376 bxe_read_dmae(sc, i, main_mem_width / 4);
18377 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18378 i, main_mem_width / 4);
18379 }
18380 /* Clear HC parity attention */
18381 REG_RD(sc, main_mem_prty_clr);
18382 }
18383
18384#if 1
18385 /* Enable STORMs SP logging */
18394#endif
18395
18397
18398 return (0);
18399}
18400
18401static void
18403{
18404 if (!BXE_NOMCP(sc)) {
18408 } else {
18409 if (!CHIP_REV_IS_SLOW(sc)) {
18410 BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18411 }
18412 }
18413}
18414
18415static void
18417{
18418 int port = SC_PORT(sc);
18419 uint32_t val;
18420
18421 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18422 /* reset physical Link */
18423 bxe_link_reset(sc);
18424
18425 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18426
18427 /* Do not rcv packets to BRB */
18428 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18429 /* Do not direct rcv packets that are not for MCP to the BRB */
18430 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18432
18433 /* Configure AEU */
18434 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18435
18436 DELAY(100000);
18437
18438 /* Check for BRB port occupancy */
18439 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18440 if (val) {
18441 BLOGD(sc, DBG_LOAD,
18442 "BRB1 is not empty, %d blocks are occupied\n", val);
18443 }
18444
18445 /* TODO: Close Doorbell port? */
18446}
18447
18448static void
18450 uint32_t index,
18451 bus_addr_t addr)
18452{
18453 int reg;
18454 uint32_t wb_write[2];
18455
18456 if (CHIP_IS_E1(sc)) {
18457 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18458 } else {
18459 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18460 }
18461
18462 wb_write[0] = ONCHIP_ADDR1(addr);
18463 wb_write[1] = ONCHIP_ADDR2(addr);
18464 REG_WR_DMAE(sc, reg, wb_write, 2);
18465}
18466
18467static void
18469 uint32_t func)
18470{
18471 uint32_t i, base = FUNC_ILT_BASE(func);
18472 for (i = base; i < base + ILT_PER_FUNC; i++) {
18473 bxe_ilt_wr(sc, i, 0);
18474 }
18475}
18476
18477static void
18479{
18480 struct bxe_fastpath *fp;
18481 int port = SC_PORT(sc);
18482 int func = SC_FUNC(sc);
18483 int i;
18484
18485 /* Disable the function in the FW */
18490
18491 /* FP SBs */
18493 fp = &sc->fp[i];
18496 SB_DISABLED);
18497 }
18498
18499 /* SP SB */
18502 SB_DISABLED);
18503
18504 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18506 }
18507
18508 /* Configure IGU */
18509 if (sc->devinfo.int_block == INT_BLOCK_HC) {
18510 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18511 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18512 } else {
18515 }
18516
18517 if (CNIC_LOADED(sc)) {
18518 /* Disable Timer scan */
18519 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18520 /*
18521 * Wait for at least 10ms and up to 2 second for the timers
18522 * scan to complete
18523 */
18524 for (i = 0; i < 200; i++) {
18525 DELAY(10000);
18526 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18527 break;
18528 }
18529 }
18530
18531 /* Clear ILT */
18532 bxe_clear_func_ilt(sc, func);
18533
18534 /*
18535 * Timers workaround bug for E2: if this is vnic-3,
18536 * we need to set the entire ilt range for this timers.
18537 */
18538 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18539 struct ilt_client_info ilt_cli;
18540 /* use dummy TM client */
18541 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18542 ilt_cli.start = 0;
18543 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18544 ilt_cli.client_num = ILT_CLIENT_TM;
18545
18546 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18547 }
18548
18549 /* this assumes that reset_port() called before reset_func()*/
18550 if (!CHIP_IS_E1x(sc)) {
18551 bxe_pf_disable(sc);
18552 }
18553
18554 sc->dmae_ready = 0;
18555}
18556
18557static int
18559{
18560 return (0);
18561}
18562
18563static void
18565{
18566 return;
18567}
18568
18569static int
18571{
18572 if (CHIP_IS_E1(sc)) {
18574 sc->iro_array = e1_iro_arr;
18575 } else if (CHIP_IS_E1H(sc)) {
18577 sc->iro_array = e1h_iro_arr;
18578 } else if (!CHIP_IS_E1x(sc)) {
18580 sc->iro_array = e2_iro_arr;
18581 } else {
18582 BLOGE(sc, "Unsupported chip revision\n");
18583 return (-1);
18584 }
18585
18586 return (0);
18587}
18588
18589static void
18591{
18592 /* Do nothing */
18593 return;
18594}
18595
18596static int
18598 const uint8_t *zbuf,
18599 int len)
18600{
18601 /* XXX : Implement... */
18602 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18603 return (FALSE);
18604}
18605
18606static void
18608 uint32_t addr,
18609 uint32_t val)
18610{
18611 bxe_reg_wr_ind(sc, addr, val);
18612}
18613
18614static void
18616 bus_addr_t phys_addr,
18617 uint32_t addr,
18618 uint32_t len)
18619{
18620 bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18621}
18622
18623void
18625 uint32_t addr,
18626 size_t size,
18627 uint32_t *data)
18628{
18629 uint8_t i;
18630 for (i = 0; i < size/4; i++) {
18631 REG_WR(sc, addr + (i * 4), data[i]);
18632 }
18633}
18634
18635
18636/*
18637 * character device - ioctl interface definitions
18638 */
18639
18640
18641#include "bxe_dump.h"
18642#include "bxe_ioctl.h"
18643#include <sys/conf.h>
18644
18645static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18646 struct thread *td);
18647
18648static struct cdevsw bxe_cdevsw = {
18649 .d_version = D_VERSION,
18650 .d_ioctl = bxe_eioctl,
18651 .d_name = "bxecnic",
18652};
18653
18654#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18655
18656
18657#define DUMP_ALL_PRESETS 0x1FFF
18658#define DUMP_MAX_PRESETS 13
18659#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18660#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18661#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18662#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18663#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18664
18665#define IS_REG_IN_PRESET(presets, idx) \
18666 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18667
18668
18669static int
18670bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18671{
18672 if (CHIP_IS_E1(sc))
18673 return dump_num_registers[0][preset-1];
18674 else if (CHIP_IS_E1H(sc))
18675 return dump_num_registers[1][preset-1];
18676 else if (CHIP_IS_E2(sc))
18677 return dump_num_registers[2][preset-1];
18678 else if (CHIP_IS_E3A0(sc))
18679 return dump_num_registers[3][preset-1];
18680 else if (CHIP_IS_E3B0(sc))
18681 return dump_num_registers[4][preset-1];
18682 else
18683 return 0;
18684}
18685
18686static int
18688{
18689 uint32_t preset_idx;
18690 int regdump_len32 = 0;
18691
18692
18693 /* Calculate the total preset regs length */
18694 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18695 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18696 }
18697
18698 return regdump_len32;
18699}
18700
18701static const uint32_t *
18703{
18704 if (CHIP_IS_E2(sc))
18705 return page_vals_e2;
18706 else if (CHIP_IS_E3(sc))
18707 return page_vals_e3;
18708 else
18709 return NULL;
18710}
18711
18712static uint32_t
18714{
18715 if (CHIP_IS_E2(sc))
18716 return PAGE_MODE_VALUES_E2;
18717 else if (CHIP_IS_E3(sc))
18718 return PAGE_MODE_VALUES_E3;
18719 else
18720 return 0;
18721}
18722
18723static const uint32_t *
18725{
18726 if (CHIP_IS_E2(sc))
18727 return page_write_regs_e2;
18728 else if (CHIP_IS_E3(sc))
18729 return page_write_regs_e3;
18730 else
18731 return NULL;
18732}
18733
18734static uint32_t
18736{
18737 if (CHIP_IS_E2(sc))
18738 return PAGE_WRITE_REGS_E2;
18739 else if (CHIP_IS_E3(sc))
18740 return PAGE_WRITE_REGS_E3;
18741 else
18742 return 0;
18743}
18744
18745static const struct reg_addr *
18747{
18748 if (CHIP_IS_E2(sc))
18749 return page_read_regs_e2;
18750 else if (CHIP_IS_E3(sc))
18751 return page_read_regs_e3;
18752 else
18753 return NULL;
18754}
18755
18756static uint32_t
18758{
18759 if (CHIP_IS_E2(sc))
18760 return PAGE_READ_REGS_E2;
18761 else if (CHIP_IS_E3(sc))
18762 return PAGE_READ_REGS_E3;
18763 else
18764 return 0;
18765}
18766
18767static bool
18768bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18769{
18770 if (CHIP_IS_E1(sc))
18771 return IS_E1_REG(reg_info->chips);
18772 else if (CHIP_IS_E1H(sc))
18773 return IS_E1H_REG(reg_info->chips);
18774 else if (CHIP_IS_E2(sc))
18775 return IS_E2_REG(reg_info->chips);
18776 else if (CHIP_IS_E3A0(sc))
18777 return IS_E3A0_REG(reg_info->chips);
18778 else if (CHIP_IS_E3B0(sc))
18779 return IS_E3B0_REG(reg_info->chips);
18780 else
18781 return 0;
18782}
18783
18784static bool
18785bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18786{
18787 if (CHIP_IS_E1(sc))
18788 return IS_E1_REG(wreg_info->chips);
18789 else if (CHIP_IS_E1H(sc))
18790 return IS_E1H_REG(wreg_info->chips);
18791 else if (CHIP_IS_E2(sc))
18792 return IS_E2_REG(wreg_info->chips);
18793 else if (CHIP_IS_E3A0(sc))
18794 return IS_E3A0_REG(wreg_info->chips);
18795 else if (CHIP_IS_E3B0(sc))
18796 return IS_E3B0_REG(wreg_info->chips);
18797 else
18798 return 0;
18799}
18800
18812static void
18813bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18814{
18815 uint32_t i, j, k, n;
18816
18817 /* addresses of the paged registers */
18818 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18819 /* number of paged registers */
18820 int num_pages = __bxe_get_page_reg_num(sc);
18821 /* write addresses */
18822 const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18823 /* number of write addresses */
18824 int write_num = __bxe_get_page_write_num(sc);
18825 /* read addresses info */
18826 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18827 /* number of read addresses */
18828 int read_num = __bxe_get_page_read_num(sc);
18829 uint32_t addr, size;
18830
18831 for (i = 0; i < num_pages; i++) {
18832 for (j = 0; j < write_num; j++) {
18833 REG_WR(sc, write_addr[j], page_addr[i]);
18834
18835 for (k = 0; k < read_num; k++) {
18836 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18837 size = read_addr[k].size;
18838 for (n = 0; n < size; n++) {
18839 addr = read_addr[k].addr + n*4;
18840 *p++ = REG_RD(sc, addr);
18841 }
18842 }
18843 }
18844 }
18845 }
18846 return;
18847}
18848
18849
18850static int
18851bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18852{
18853 uint32_t i, j, addr;
18854 const struct wreg_addr *wreg_addr_p = NULL;
18855
18856 if (CHIP_IS_E1(sc))
18857 wreg_addr_p = &wreg_addr_e1;
18858 else if (CHIP_IS_E1H(sc))
18859 wreg_addr_p = &wreg_addr_e1h;
18860 else if (CHIP_IS_E2(sc))
18861 wreg_addr_p = &wreg_addr_e2;
18862 else if (CHIP_IS_E3A0(sc))
18863 wreg_addr_p = &wreg_addr_e3;
18864 else if (CHIP_IS_E3B0(sc))
18865 wreg_addr_p = &wreg_addr_e3b0;
18866 else
18867 return (-1);
18868
18869 /* Read the idle_chk registers */
18870 for (i = 0; i < IDLE_REGS_COUNT; i++) {
18871 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18873 for (j = 0; j < idle_reg_addrs[i].size; j++)
18874 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18875 }
18876 }
18877
18878 /* Read the regular registers */
18879 for (i = 0; i < REGS_COUNT; i++) {
18880 if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18881 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18882 for (j = 0; j < reg_addrs[i].size; j++)
18883 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18884 }
18885 }
18886
18887 /* Read the CAM registers */
18888 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18889 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18890 for (i = 0; i < wreg_addr_p->size; i++) {
18891 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18892
18893 /* In case of wreg_addr register, read additional
18894 registers from read_regs array
18895 */
18896 for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18897 addr = *(wreg_addr_p->read_regs);
18898 *p++ = REG_RD(sc, addr + j*4);
18899 }
18900 }
18901 }
18902
18903 /* Paged registers are supported in E2 & E3 only */
18904 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18905 /* Read "paged" registers */
18906 bxe_read_pages_regs(sc, p, preset);
18907 }
18908
18909 return 0;
18910}
18911
18912int
18914{
18915 int rval = 0;
18916 uint32_t preset_idx;
18917 uint8_t *buf;
18918 uint32_t size;
18919 struct dump_header *d_hdr;
18920 uint32_t i;
18921 uint32_t reg_val;
18922 uint32_t reg_addr;
18923 uint32_t cmd_offset;
18924 struct ecore_ilt *ilt = SC_ILT(sc);
18925 struct bxe_fastpath *fp;
18926 struct ilt_client_info *ilt_cli;
18927 int grc_dump_size;
18928
18929
18930 if (sc->grcdump_done || sc->grcdump_started)
18931 return (rval);
18932
18933 sc->grcdump_started = 1;
18934 BLOGI(sc, "Started collecting grcdump\n");
18935
18936 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18937 sizeof(struct dump_header);
18938
18939 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18940
18941 if (sc->grc_dump == NULL) {
18942 BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18943 return(ENOMEM);
18944 }
18945
18946
18947
18948 /* Disable parity attentions as long as following dump may
18949 * cause false alarms by reading never written registers. We
18950 * will re-enable parity attentions right after the dump.
18951 */
18952
18953 /* Disable parity on path 0 */
18954 bxe_pretend_func(sc, 0);
18955
18957
18958 /* Disable parity on path 1 */
18959 bxe_pretend_func(sc, 1);
18961
18962 /* Return to current function */
18964
18965 buf = sc->grc_dump;
18966 d_hdr = sc->grc_dump;
18967
18968 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
18969 d_hdr->version = BNX2X_DUMP_VERSION;
18970 d_hdr->preset = DUMP_ALL_PRESETS;
18971
18972 if (CHIP_IS_E1(sc)) {
18974 } else if (CHIP_IS_E1H(sc)) {
18976 } else if (CHIP_IS_E2(sc)) {
18977 d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18979 } else if (CHIP_IS_E3A0(sc)) {
18982 } else if (CHIP_IS_E3B0(sc)) {
18985 }
18986
18987 buf += sizeof(struct dump_header);
18988
18989 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18990
18991 /* Skip presets with IOR */
18992 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18993 (preset_idx == 11))
18994 continue;
18995
18996 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18997
18998 if (rval)
18999 break;
19000
19001 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
19002
19003 buf += size;
19004 }
19005
19006 bxe_pretend_func(sc, 0);
19009
19010 bxe_pretend_func(sc, 1);
19013
19014 /* Return to current function */
19016
19017
19018
19019 if(sc->state == BXE_STATE_OPEN) {
19020 if(sc->fw_stats_req != NULL) {
19021 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
19022 (uintmax_t)sc->fw_stats_req_mapping,
19023 (uintmax_t)sc->fw_stats_data_mapping,
19025 }
19026 if(sc->def_sb != NULL) {
19027 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19028 (void *)sc->def_sb_dma.paddr, sc->def_sb,
19029 sizeof(struct host_sp_status_block));
19030 }
19031 if(sc->eq_dma.vaddr != NULL) {
19032 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19033 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19034 }
19035 if(sc->sp_dma.vaddr != NULL) {
19036 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19037 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19038 sizeof(struct bxe_slowpath));
19039 }
19040 if(sc->spq_dma.vaddr != NULL) {
19041 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19042 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19043 }
19044 if(sc->gz_buf_dma.vaddr != NULL) {
19045 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19046 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19047 FW_BUF_SIZE);
19048 }
19049 for (i = 0; i < sc->num_queues; i++) {
19050 fp = &sc->fp[i];
19051 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19052 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19053 fp->rx_sge_dma.vaddr != NULL) {
19054
19055 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19056 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19057 sizeof(union bxe_host_hc_status_block));
19058 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19059 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19061 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19062 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19064 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19065 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19067 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19068 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19070 }
19071 }
19072 if(ilt != NULL ) {
19073 ilt_cli = &ilt->clients[1];
19074 if(ilt->lines != NULL) {
19075 for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19076 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19077 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19078 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19079 }
19080 }
19081 }
19082
19083
19084 cmd_offset = DMAE_REG_CMD_MEM;
19085 for (i = 0; i < 224; i++) {
19086 reg_addr = (cmd_offset +(i * 4));
19087 reg_val = REG_RD(sc, reg_addr);
19088 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19089 reg_addr, reg_val);
19090 }
19091 }
19092
19093 BLOGI(sc, "Collection of grcdump done\n");
19094 sc->grcdump_done = 1;
19095 return(rval);
19096}
19097
19098static int
19100{
19101 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19102
19103 if (sc->eeprom == NULL) {
19104 BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19105 return (-1);
19106 }
19107
19108 sc->ioctl_dev = make_dev(&bxe_cdevsw,
19109 sc->ifp->if_dunit,
19110 UID_ROOT,
19111 GID_WHEEL,
19112 0600,
19113 "%s",
19114 if_name(sc->ifp));
19115
19116 if (sc->ioctl_dev == NULL) {
19117 free(sc->eeprom, M_DEVBUF);
19118 sc->eeprom = NULL;
19119 return (-1);
19120 }
19121
19122 sc->ioctl_dev->si_drv1 = sc;
19123
19124 return (0);
19125}
19126
19127static void
19129{
19130 if (sc->ioctl_dev != NULL)
19131 destroy_dev(sc->ioctl_dev);
19132
19133 if (sc->eeprom != NULL) {
19134 free(sc->eeprom, M_DEVBUF);
19135 sc->eeprom = NULL;
19136 }
19137 sc->ioctl_dev = NULL;
19138
19139 return;
19140}
19141
19142static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19143{
19144
19145 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19146 return FALSE;
19147
19148 return TRUE;
19149}
19150
19151
19152static int
19153bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19154{
19155 int rval = 0;
19156
19157 if(!bxe_is_nvram_accessible(sc)) {
19158 BLOGW(sc, "Cannot access eeprom when interface is down\n");
19159 return (-EAGAIN);
19160 }
19161 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19162
19163
19164 return (rval);
19165}
19166
19167static int
19168bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19169{
19170 int rval = 0;
19171
19172 if(!bxe_is_nvram_accessible(sc)) {
19173 BLOGW(sc, "Cannot access eeprom when interface is down\n");
19174 return (-EAGAIN);
19175 }
19176 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19177
19178 return (rval);
19179}
19180
19181static int
19183{
19184 int rval = 0;
19185
19186 switch (eeprom->eeprom_cmd) {
19187
19189
19190 rval = copyin(eeprom->eeprom_data, sc->eeprom,
19191 eeprom->eeprom_data_len);
19192
19193 if (rval)
19194 break;
19195
19196 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19197 eeprom->eeprom_data_len);
19198 break;
19199
19201
19202 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19203 eeprom->eeprom_data_len);
19204
19205 if (rval) {
19206 break;
19207 }
19208
19209 rval = copyout(sc->eeprom, eeprom->eeprom_data,
19210 eeprom->eeprom_data_len);
19211 break;
19212
19213 default:
19214 rval = EINVAL;
19215 break;
19216 }
19217
19218 if (rval) {
19219 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
19220 }
19221
19222 return (rval);
19223}
19224
19225static int
19227{
19228 uint32_t ext_phy_config;
19229 int port = SC_PORT(sc);
19230 int cfg_idx = bxe_get_link_cfg_idx(sc);
19231
19232 dev_p->supported = sc->port.supported[cfg_idx] |
19233 (sc->port.supported[cfg_idx ^ 1] &
19235 dev_p->advertising = sc->port.advertising[cfg_idx];
19240 }
19241 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19242 !(sc->flags & BXE_MF_FUNC_DIS)) {
19243 dev_p->duplex = sc->link_vars.duplex;
19244 if (IS_MF(sc) && !BXE_NOMCP(sc))
19245 dev_p->speed = bxe_get_mf_speed(sc);
19246 else
19247 dev_p->speed = sc->link_vars.line_speed;
19248 } else {
19249 dev_p->duplex = DUPLEX_UNKNOWN;
19250 dev_p->speed = SPEED_UNKNOWN;
19251 }
19252
19253 dev_p->port = bxe_media_detect(sc);
19254
19255 ext_phy_config = SHMEM_RD(sc,
19256 dev_info.port_hw_config[port].external_phy_config);
19257 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19259 dev_p->phy_address = sc->port.phy_addr;
19260 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19262 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19264 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19265 else
19266 dev_p->phy_address = 0;
19267
19269 dev_p->autoneg = AUTONEG_ENABLE;
19270 else
19271 dev_p->autoneg = AUTONEG_DISABLE;
19272
19273
19274 return 0;
19275}
19276
19277static int
19278bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19279 struct thread *td)
19280{
19281 struct bxe_softc *sc;
19282 int rval = 0;
19283 bxe_grcdump_t *dump = NULL;
19284 int grc_dump_size;
19285 bxe_drvinfo_t *drv_infop = NULL;
19286 bxe_dev_setting_t *dev_p;
19287 bxe_dev_setting_t dev_set;
19288 bxe_get_regs_t *reg_p;
19289 bxe_reg_rdw_t *reg_rdw_p;
19290 bxe_pcicfg_rdw_t *cfg_rdw_p;
19291 bxe_perm_mac_addr_t *mac_addr_p;
19292
19293
19294 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19295 return ENXIO;
19296
19297 dump = (bxe_grcdump_t *)data;
19298
19299 switch(cmd) {
19300
19301 case BXE_GRC_DUMP_SIZE:
19302 dump->pci_func = sc->pcie_func;
19303 dump->grcdump_size =
19304 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19305 sizeof(struct dump_header);
19306 break;
19307
19308 case BXE_GRC_DUMP:
19309
19310 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19311 sizeof(struct dump_header);
19312 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19313 (dump->grcdump_size < grc_dump_size)) {
19314 rval = EINVAL;
19315 break;
19316 }
19317
19318 if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19319 (!sc->grcdump_started)) {
19320 rval = bxe_grc_dump(sc);
19321 }
19322
19323 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19324 (sc->grc_dump != NULL)) {
19325 dump->grcdump_dwords = grc_dump_size >> 2;
19326 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19327 free(sc->grc_dump, M_DEVBUF);
19328 sc->grc_dump = NULL;
19329 sc->grcdump_started = 0;
19330 sc->grcdump_done = 0;
19331 }
19332
19333 break;
19334
19335 case BXE_DRV_INFO:
19336 drv_infop = (bxe_drvinfo_t *)data;
19337 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19338 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19340 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19341 sc->devinfo.bc_ver_str);
19342 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19343 "%s", sc->fw_ver_str);
19344 drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19345 drv_infop->reg_dump_len =
19346 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19347 + sizeof(struct dump_header);
19348 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19349 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19350 break;
19351
19352 case BXE_DEV_SETTING:
19353 dev_p = (bxe_dev_setting_t *)data;
19354 bxe_get_settings(sc, &dev_set);
19355 dev_p->supported = dev_set.supported;
19356 dev_p->advertising = dev_set.advertising;
19357 dev_p->speed = dev_set.speed;
19358 dev_p->duplex = dev_set.duplex;
19359 dev_p->port = dev_set.port;
19360 dev_p->phy_address = dev_set.phy_address;
19361 dev_p->autoneg = dev_set.autoneg;
19362
19363 break;
19364
19365 case BXE_GET_REGS:
19366
19367 reg_p = (bxe_get_regs_t *)data;
19368 grc_dump_size = reg_p->reg_buf_len;
19369
19370 if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19371 bxe_grc_dump(sc);
19372 }
19373 if((sc->grcdump_done) && (sc->grcdump_started) &&
19374 (sc->grc_dump != NULL)) {
19375 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19376 free(sc->grc_dump, M_DEVBUF);
19377 sc->grc_dump = NULL;
19378 sc->grcdump_started = 0;
19379 sc->grcdump_done = 0;
19380 }
19381
19382 break;
19383
19384 case BXE_RDW_REG:
19385 reg_rdw_p = (bxe_reg_rdw_t *)data;
19386 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19387 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19388 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19389
19390 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19391 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19392 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19393
19394 break;
19395
19396 case BXE_RDW_PCICFG:
19397 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19398 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19399
19400 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19401 cfg_rdw_p->cfg_width);
19402
19403 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19404 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19405 cfg_rdw_p->cfg_width);
19406 } else {
19407 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19408 }
19409 break;
19410
19411 case BXE_MAC_ADDR:
19412 mac_addr_p = (bxe_perm_mac_addr_t *)data;
19413 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19414 sc->mac_addr_str);
19415 break;
19416
19417 case BXE_EEPROM:
19418 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19419 break;
19420
19421
19422 default:
19423 break;
19424 }
19425
19426 return (rval);
19427}
19428
19429#ifdef DEBUGNET
19430static void
19431bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
19432{
19433 struct bxe_softc *sc;
19434
19435 sc = if_getsoftc(ifp);
19436 BXE_CORE_LOCK(sc);
19437 *nrxr = sc->num_queues;
19438 *ncl = DEBUGNET_MAX_IN_FLIGHT;
19439 *clsize = sc->fp[0].mbuf_alloc_size;
19440 BXE_CORE_UNLOCK(sc);
19441}
19442
19443static void
19444bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused)
19445{
19446}
19447
19448static int
19449bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
19450{
19451 struct bxe_softc *sc;
19452 int error;
19453
19454 sc = if_getsoftc(ifp);
19455 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19456 IFF_DRV_RUNNING || !sc->link_vars.link_up)
19457 return (ENOENT);
19458
19459 error = bxe_tx_encap(&sc->fp[0], &m);
19460 if (error != 0 && m != NULL)
19461 m_freem(m);
19462 return (error);
19463}
19464
19465static int
19466bxe_debugnet_poll(struct ifnet *ifp, int count)
19467{
19468 struct bxe_softc *sc;
19469 int i;
19470
19471 sc = if_getsoftc(ifp);
19472 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19473 !sc->link_vars.link_up)
19474 return (ENOENT);
19475
19476 for (i = 0; i < sc->num_queues; i++)
19477 (void)bxe_rxeof(sc, &sc->fp[i]);
19478 (void)bxe_txeof(sc, &sc->fp[0]);
19479 return (0);
19480}
19481#endif /* DEBUGNET */
void ecore_init_e1_firmware(struct bxe_softc *sc)
static const struct iro e1_iro_arr[385]
void ecore_init_e1h_firmware(struct bxe_softc *sc)
static const struct iro e1h_iro_arr[385]
void ecore_init_e2_firmware(struct bxe_softc *sc)
static const struct iro e2_iro_arr[385]
static void bxe_task_fp(struct bxe_fastpath *fp)
Definition: bxe.c:8734
static int bxe_init_hw_port(struct bxe_softc *sc)
Definition: bxe.c:17520
static int bxe_gpio_write(struct bxe_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
Definition: bxe.c:1938
static int bxe_nic_load_request(struct bxe_softc *sc, uint32_t *load_code)
Definition: bxe.c:6786
static void bxe_set_requested_fc(struct bxe_softc *sc)
Definition: bxe.c:11688
static void bxe_update_sge_prod(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t sge_len, union eth_sgl_or_raw_data *cqe)
Definition: bxe.c:2982
static void bxe_init_pxp(struct bxe_softc *sc)
Definition: bxe.c:16653
static void bxe_set_reset_in_progress(struct bxe_softc *sc)
Definition: bxe.c:6669
static void bxe_drv_info_ether_stat(struct bxe_softc *sc)
Definition: bxe.c:7688
#define IS_E3A0_REG(chips)
Definition: bxe.c:18662
static void bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, struct pbf_pN_cmd_regs *regs, uint32_t poll_count)
Definition: bxe.c:17920
static int bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
Definition: bxe.c:19226
static int bxe_set_eth_mac(struct bxe_softc *sc, uint8_t set)
Definition: bxe.c:11618
void elink_cb_reg_wb_read(struct bxe_softc *sc, uint32_t offset, uint32_t *wb_write, uint16_t len)
Definition: bxe.c:1838
static u_int bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
Definition: bxe.c:12019
#define BXE_DEVDESC_MAX
Definition: bxe.c:89
static uint8_t bxe_set_pbd_csum(struct bxe_fastpath *fp, struct mbuf *m, struct eth_tx_parse_bd_e1x *pbd)
Definition: bxe.c:4914
#define BXE_NUM_ETH_Q_STATS
Definition: bxe.c:647
static void bxe_init_func_obj(struct bxe_softc *sc)
Definition: bxe.c:9326
static int bxe_init_mcast_macs_list(struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p)
Definition: bxe.c:12030
static uint32_t bxe_fw_command(struct bxe_softc *sc, uint32_t command, uint32_t param)
Definition: bxe.c:2192
static void bxe_prev_interrupted_dmae(struct bxe_softc *sc)
Definition: bxe.c:15278
static int bxe_set_storm_rx_mode(struct bxe_softc *sc)
Definition: bxe.c:3732
static void bxe_link_settings_requested(struct bxe_softc *sc)
Definition: bxe.c:14347
static void bxe_hc_int_enable(struct bxe_softc *sc)
Definition: bxe.c:10239
static void bxe_get_phy_info(struct bxe_softc *sc)
Definition: bxe.c:14523
static void bxe_pf_rx_q_prep(struct bxe_softc *sc, struct bxe_fastpath *fp, struct rxq_pause_params *pause, struct ecore_rxq_setup_params *rxq_init)
Definition: bxe.c:11296
static int bxe_gpio_int_write(struct bxe_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
Definition: bxe.c:2050
#define IS_E1_REG(chips)
Definition: bxe.c:18659
static devclass_t bxe_devclass
Definition: bxe.c:226
uint32_t calc_crc32(uint8_t *crc32_packet, uint32_t crc32_length, uint32_t crc32_seed, uint8_t complement)
Definition: bxe.c:722
static int bxe_init_rss_pf(struct bxe_softc *sc)
Definition: bxe.c:11548
#define BXE_PREV_UNDI_PROD(rcq, bd)
Definition: bxe.c:15533
static int bxe_fill_accept_flags(struct bxe_softc *sc, uint32_t rx_mode, unsigned long *rx_accept_flags, unsigned long *tx_accept_flags)
Definition: bxe.c:3607
static void ecore_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, uint32_t addr, uint32_t len)
Definition: bxe.c:18615
static void bxe_acquire_phy_lock(struct bxe_softc *sc)
Definition: bxe.c:1091
static int bxe_init_hw_common(struct bxe_softc *sc)
Definition: bxe.c:17011
static const uint32_t * __bxe_get_page_addr_ar(struct bxe_softc *sc)
Definition: bxe.c:18702
static struct ecore_queue_sp_obj * bxe_cid_to_q_obj(struct bxe_softc *sc, uint32_t cid)
Definition: bxe.c:8365
static int bxe_stop_queue(struct bxe_softc *sc, int index)
Definition: bxe.c:3898
static u_int bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
Definition: bxe.c:12130
static void bxe_calc_fc_adv(struct bxe_softc *sc)
Definition: bxe.c:11703
uint32_t elink_cb_gpio_read(struct bxe_softc *sc, uint16_t gpio_num, uint8_t port)
Definition: bxe.c:2105
MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer")
static void bxe_prev_unload_close_mac(struct bxe_softc *sc, struct bxe_mac_vals *vals)
Definition: bxe.c:15454
static void bxe_release_mutexes(struct bxe_softc *sc)
Definition: bxe.c:2582
uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
Definition: bxe.c:1531
#define BXE_PREV_UNDI_PROD_ADDR(p)
Definition: bxe.c:15530
static int bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
Definition: bxe.c:18851
static int bxe_fill_frag_mbuf(struct bxe_softc *sc, struct bxe_fastpath *fp, struct bxe_sw_tpa_info *tpa_info, uint16_t queue, uint16_t pages, struct mbuf *m, struct eth_end_agg_rx_cqe *cqe, uint16_t cqe_idx)
Definition: bxe.c:2858
static int bxe_prev_unload_common(struct bxe_softc *sc)
Definition: bxe.c:15555
void elink_cb_reg_wb_write(struct bxe_softc *sc, uint32_t offset, uint32_t *wb_write, uint16_t len)
Definition: bxe.c:1829
static void bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
Definition: bxe.c:6083
#define STATS_FLAGS_BOTH
Definition: bxe.c:326
static void bxe_init_sp_ring(struct bxe_softc *sc)
Definition: bxe.c:9877
#define Q_STATS_OFFSET32(stat_name)
Definition: bxe.c:317
static uint8_t bxe_trylock_hw_lock(struct bxe_softc *sc, uint32_t resource)
Definition: bxe.c:10649
static void bxe_storm_memset_hc_timeout(struct bxe_softc *sc, uint8_t port, uint8_t fw_sb_id, uint8_t sb_index, uint8_t ticks)
Definition: bxe.c:1748
static int bxe_alloc_buf_rings(struct bxe_softc *sc)
Definition: bxe.c:16122
#define DUMP_MAX_PRESETS
Definition: bxe.c:18658
static void bxe_handle_rx_mode_eqe(struct bxe_softc *sc, union event_ring_elem *elem)
Definition: bxe.c:8442
static int bxe_prev_unload_uncommon(struct bxe_softc *sc)
Definition: bxe.c:15661
static void bxe_cmng_fns_init(struct bxe_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
Definition: bxe.c:10088
static int bxe_poll_hw_usage_counters(struct bxe_softc *sc, uint32_t poll_cnt)
Definition: bxe.c:17787
static void bxe_int_disable_sync(struct bxe_softc *sc, int disable_hw)
Definition: bxe.c:4012
static int bxe_detach(device_t)
Definition: bxe.c:16406
static uint8_t bxe_has_tx_work(struct bxe_fastpath *fp)
Definition: bxe.c:2666
static void bxe_calc_vn_max(struct bxe_softc *sc, int vn, struct cmng_init_input *input)
Definition: bxe.c:10060
static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
Definition: bxe.c:6523
static uint16_t bxe_extract_max_cfg(struct bxe_softc *sc, uint32_t mf_cfg)
Definition: bxe.c:10045
static int bxe_nvram_write(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf, int buf_size)
Definition: bxe.c:1436
static struct ecore_func_sp_drv_ops bxe_func_sp_drv
Definition: bxe.c:9308
static void bxe_nic_init(struct bxe_softc *sc, int load_code)
Definition: bxe.c:10455
static uint16_t bxe_tx_avail(struct bxe_softc *sc, struct bxe_fastpath *fp)
Definition: bxe.c:2640
static int bxe_tx_mq_start_locked(struct bxe_softc *sc, if_t ifp, struct bxe_fastpath *fp, struct mbuf *m)
Definition: bxe.c:5638
#define IS_E3B0_REG(chips)
Definition: bxe.c:18663
static int bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
Definition: bxe.c:13275
static void bxe_wr_fp_sb_data(struct bxe_softc *sc, int fw_sb_id, uint32_t *sb_data_p, uint32_t data_size)
Definition: bxe.c:9384
int bxe_grc_dump(struct bxe_softc *sc)
Definition: bxe.c:18913
static uint8_t bxe_parity_attn(struct bxe_softc *sc, uint8_t *global, uint8_t print, uint32_t *sig)
Definition: bxe.c:7481
static void bxe_reset_mcp_prep(struct bxe_softc *sc, uint32_t *magic_val)
Definition: bxe.c:10807
static uint8_t bxe_fp_qzone_id(struct bxe_fastpath *fp)
Definition: bxe.c:9579
static int bxe_udp_rss
Definition: bxe.c:307
static int bxe_send_final_clnup(struct bxe_softc *sc, uint8_t clnup_func, uint32_t poll_cnt)
Definition: bxe.c:17848
static void bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
Definition: bxe.c:4434
static int bxe_release_leader_lock(struct bxe_softc *sc)
Definition: bxe.c:10709
static void bxe_pf_disable(struct bxe_softc *sc)
Definition: bxe.c:16641
static void bxe_zero_sp_sb(struct bxe_softc *sc)
Definition: bxe.c:9451
static void bxe_chip_cleanup(struct bxe_softc *sc, uint32_t unload_mode, uint8_t keep_link)
Definition: bxe.c:4028
static void bxe_update_eq_prod(struct bxe_softc *sc, uint16_t prod)
Definition: bxe.c:8455
static int bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
Definition: bxe.c:19153
#define SHARED_MF_CLP_MAGIC
Definition: bxe.c:10782
static void bxe_init_internal(struct bxe_softc *sc, uint32_t load_code)
Definition: bxe.c:9934
static void bxe_tx_start(if_t ifp)
Definition: bxe.c:5608
static void bxe_get_params(struct bxe_softc *sc)
Definition: bxe.c:14571
static int bxe_set_spio(struct bxe_softc *sc, int spio, uint32_t mode)
Definition: bxe.c:1862
static void bxe_handle_drv_info_req(struct bxe_softc *sc)
Definition: bxe.c:7718
static int bxe_get_mf_cfg_info(struct bxe_softc *sc)
Definition: bxe.c:13502
static void bxe_clear_func_ilt(struct bxe_softc *sc, uint32_t func)
Definition: bxe.c:18468
static int bxe_check_blocks_with_parity3(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t *global, uint8_t print)
Definition: bxe.c:7403
static struct bxe_prev_list_node * bxe_prev_path_get_entry(struct bxe_softc *sc)
Definition: bxe.c:15306
#define BXE_PATH0_LOAD_CNT_MASK
Definition: bxe.c:6610
static int bxe_media_detect(struct bxe_softc *sc)
Definition: bxe.c:13862
static void bxe_ilt_wr(struct bxe_softc *sc, uint32_t index, bus_addr_t addr)
Definition: bxe.c:18449
static int bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, uint32_t reg, char *msg, uint32_t poll_cnt)
Definition: bxe.c:17755
static void bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id, int igu_seg_id)
Definition: bxe.c:9473
#define IGU_FID(val)
Definition: bxe.c:13919
#define CSUM_UDP_IPV6
Definition: bxe.c:59
static void bxe_init_internal_common(struct bxe_softc *sc)
Definition: bxe.c:9913
int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size, struct bxe_dma *dma, const char *msg)
Definition: bxe.c:898
static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, struct mbuf *m, uint8_t contents)
Definition: bxe.c:4722
static int bxe_has_rx_work(struct bxe_fastpath *fp)
Definition: bxe.c:2673
static uint32_t bxe_flr_clnup_poll_count(struct bxe_softc *sc)
Definition: bxe.c:17772
static void bxe_update_drv_flags(struct bxe_softc *sc, uint32_t flags, uint32_t set)
Definition: bxe.c:12226
static uint32_t bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
Definition: bxe.c:13153
static int bxe_attach(device_t)
Definition: bxe.c:16209
static int bxe_func_stop(struct bxe_softc *sc)
Definition: bxe.c:3967
static uint8_t bxe_clear_pf_load(struct bxe_softc *sc)
Definition: bxe.c:6755
#define BXE_PATH1_RST_IN_PROG_BIT
Definition: bxe.c:6615
uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr)
Definition: bxe.c:998
static void bxe_clp_reset_prep(struct bxe_softc *sc, uint32_t *magic_val)
Definition: bxe.c:10785
static int bxe_get_link_cfg_idx(struct bxe_softc *sc)
Definition: bxe.c:11667
static void __storm_memset_dma_mapping(struct bxe_softc *sc, uint32_t addr, bus_addr_t mapping)
Definition: bxe.c:2200
static int bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
Definition: bxe.c:15932
static void bxe_handle_eee_event(struct bxe_softc *sc)
Definition: bxe.c:7679
static void bxe_drv_pulse(struct bxe_softc *sc)
Definition: bxe.c:2633
static void bxe_pxp_prep(struct bxe_softc *sc)
Definition: bxe.c:10885
static void bxe_intr_fp(void *xfp)
Definition: bxe.c:8853
#define BXE_PREV_UNDI_BD(val)
Definition: bxe.c:15532
static int bxe_nvram_read(struct bxe_softc *sc, uint32_t offset, uint8_t *ret_buf, int buf_size)
Definition: bxe.c:1276
static void bxe_attn_int_deasserted2(struct bxe_softc *sc, uint32_t attn)
Definition: bxe.c:8021
#define AEU_PXP2_HW_INT_BIT
DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0)
static void bxe_del_cdev(struct bxe_softc *sc)
Definition: bxe.c:19128
static void bxe_config_mf_bw(struct bxe_softc *sc)
Definition: bxe.c:7661
static void bxe_calc_vn_min(struct bxe_softc *sc, struct cmng_init_input *input)
Definition: bxe.c:10005
static int bxe_mrrs
Definition: bxe.c:297
static void bxe_init_def_sb(struct bxe_softc *sc)
Definition: bxe.c:9789
static struct bxe_device_type bxe_devs[]
Definition: bxe.c:90
static uint16_t bxe_cid_ilt_lines(struct bxe_softc *sc)
Definition: bxe.c:5825
static void bxe_clear_reset_global(struct bxe_softc *sc)
Definition: bxe.c:6631
static void bxe_tx_start_locked(struct bxe_softc *sc, if_t ifp, struct bxe_fastpath *fp)
Definition: bxe.c:5537
#define IGU_VEC(val)
Definition: bxe.c:13920
uint32_t elink_cb_reg_read(struct bxe_softc *sc, uint32_t reg_addr)
Definition: bxe.c:1814
static int bxe_get_leader_lock_resource(struct bxe_softc *sc)
Definition: bxe.c:10692
static int bxe_init_locked(struct bxe_softc *sc)
Definition: bxe.c:12872
static void bxe_common_init_phy(struct bxe_softc *sc)
Definition: bxe.c:16614
static unsigned long bxe_get_common_flags(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t zero_stats)
Definition: bxe.c:11223
static void bxe_wr_sp_sb_data(struct bxe_softc *sc, struct hc_sp_status_block_data *sp_sb_data)
Definition: bxe.c:9434
static void bxe_map_sb_state_machines(struct hc_index_data *index_data)
Definition: bxe.c:9484
static int bxe_is_contextless_ramrod(int cmd, int cmd_type)
Definition: bxe.c:2368
static void bxe_gunzip_end(struct bxe_softc *sc)
Definition: bxe.c:18564
static void bxe_setup_fan_failure_detection(struct bxe_softc *sc)
Definition: bxe.c:16894
static void bxe_init_tx_ring_one(struct bxe_fastpath *fp)
Definition: bxe.c:9765
static void storm_memset_cmng(struct bxe_softc *sc, struct cmng_init *cmng, uint8_t port)
Definition: bxe.c:10141
static int bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
Definition: bxe.c:19182
static int bxe_func_wait_started(struct bxe_softc *sc)
Definition: bxe.c:3840
uint8_t elink_cb_gpio_mult_write(struct bxe_softc *sc, uint8_t pins, uint8_t mode)
Definition: bxe.c:2122
static int bxe_mc_assert(struct bxe_softc *sc)
Definition: bxe.c:7828
#define OP_GEN_TYPE(type)
Definition: bxe.c:17842
static int bxe_init_hw_common_chip(struct bxe_softc *sc)
Definition: bxe.c:17502
static void bxe_release_phy_lock(struct bxe_softc *sc)
Definition: bxe.c:1097
static void bxe_force_link_reset(struct bxe_softc *sc)
Definition: bxe.c:15923
#define CSUM_TCP_IPV6
Definition: bxe.c:58
static int bxe_get_cur_phy_idx(struct bxe_softc *sc)
Definition: bxe.c:11634
static void bxe_init_mutexes(struct bxe_softc *sc)
Definition: bxe.c:2540
static void bxe_attn_int_deasserted3(struct bxe_softc *sc, uint32_t attn)
Definition: bxe.c:7929
static void bxe_free_sge_chain(struct bxe_fastpath *fp)
Definition: bxe.c:6142
static int bxe_reset_mcp_comp(struct bxe_softc *sc, uint32_t magic_val)
Definition: bxe.c:10871
static int bxe_del_all_macs(struct bxe_softc *sc, struct ecore_vlan_mac_obj *mac_obj, int mac_type, uint8_t wait_for_comp)
Definition: bxe.c:3581
static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, uint16_t prev_index, uint16_t index)
Definition: bxe.c:6219
static void bxe_fan_failure(struct bxe_softc *sc)
Definition: bxe.c:6962
static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val)
Definition: bxe.c:18607
#define IS_E1H_REG(chips)
Definition: bxe.c:18660
static void bxe_link_report(struct bxe_softc *sc)
Definition: bxe.c:11866
static void bxe_handle_classification_eqe(struct bxe_softc *sc, union event_ring_elem *elem)
Definition: bxe.c:8400
static int bxe_check_blocks_with_parity4(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print)
Definition: bxe.c:7450
static void bxe_free_fw_stats_mem(struct bxe_softc *sc)
Definition: bxe.c:6507
static int bxe_check_blocks_with_parity1(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t *global, uint8_t print)
Definition: bxe.c:7260
static void bxe_set_234_gates(struct bxe_softc *sc, uint8_t close)
Definition: bxe.c:10716
void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt, uint32_t cid)
Definition: bxe.c:1733
static uint32_t bxe_send_unload_req(struct bxe_softc *sc, int unload_mode)
Definition: bxe.c:3803
static void bxe_free_ilt_lines_mem(struct bxe_softc *sc)
Definition: bxe.c:5992
MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF)
static void bxe_pmf_update(struct bxe_softc *sc)
Definition: bxe.c:7795
void elink_cb_notify_link_changed(struct bxe_softc *sc)
Definition: bxe.c:2139
static int bxe_alloc_ilt_mem(struct bxe_softc *sc)
Definition: bxe.c:5953
static void bxe_send_unload_done(struct bxe_softc *sc, uint8_t keep_link)
Definition: bxe.c:3827
void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32)
Definition: bxe.c:1633
static void bxe_prev_unload_undi_inc(struct bxe_softc *sc, uint8_t port, uint8_t inc)
Definition: bxe.c:15536
static int bxe_check_blocks_with_parity0(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print)
Definition: bxe.c:7209
static void bxe_pf_q_prep_init(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_queue_init_params *init_params)
Definition: bxe.c:11179
static void bxe_tpa_stop(struct bxe_softc *sc, struct bxe_fastpath *fp, struct bxe_sw_tpa_info *tpa_info, uint16_t queue, uint16_t pages, struct eth_end_agg_rx_cqe *cqe, uint16_t cqe_idx)
Definition: bxe.c:3046
static int bxe_alloc_hsi_mem(struct bxe_softc *sc)
Definition: bxe.c:14641
static void bxe_intr_sp(void *xsc)
Definition: bxe.c:8838
static int bxe_acquire_nvram_lock(struct bxe_softc *sc)
Definition: bxe.c:1117
static uint8_t bxe_rxeof(struct bxe_softc *sc, struct bxe_fastpath *fp)
Definition: bxe.c:3169
static int bxe_prev_mark_path(struct bxe_softc *sc, uint8_t after_undi)
Definition: bxe.c:15349
#define BXE_RECOVERY_GLOB_REG
Definition: bxe.c:6609
static __noinline int bxe_alloc_fp_buffers(struct bxe_softc *sc)
Definition: bxe.c:6426
static int bxe_acquire_alr(struct bxe_softc *sc)
Definition: bxe.c:6933
void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val)
Definition: bxe.c:988
static void bxe_update_rx_prod(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t rx_bd_prod, uint16_t rx_cq_prod, uint16_t rx_sge_prod)
Definition: bxe.c:9689
static void bxe_free_hsi_mem(struct bxe_softc *sc)
Definition: bxe.c:15092
DEBUGNET_DEFINE(bxe)
static int bxe_rx_budget
Definition: bxe.c:287
#define OP_GEN_PARAM(param)
Definition: bxe.c:17840
static void bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
Definition: bxe.c:12071
static void bxe_link_settings_supported(struct bxe_softc *sc, uint32_t switch_cfg)
Definition: bxe.c:14230
static void bxe_sp_event(struct bxe_softc *sc, struct bxe_fastpath *fp, union eth_rx_cqe *rr_cqe)
Definition: bxe.c:2685
#define STAT_NAME_LEN
Definition: bxe.c:312
static uint16_t bxe_update_dsb_idx(struct bxe_softc *sc)
Definition: bxe.c:8342
static int bxe_initial_phy_init(struct bxe_softc *sc, int load_mode)
Definition: bxe.c:11943
static void bxe_lb_pckt(struct bxe_softc *sc)
Definition: bxe.c:16719
static uint32_t bxe_pcie_capability_read(struct bxe_softc *sc, int reg, int width)
Definition: bxe.c:13178
#define PXP2_EOP_ERROR_BIT
static void bxe_attn_int(struct bxe_softc *sc)
Definition: bxe.c:8312
int bxe_test_bit(int nr, volatile unsigned long *addr)
Definition: bxe.c:804
static void storm_memset_spq_addr(struct bxe_softc *sc, bus_addr_t mapping, uint16_t abs_fid)
Definition: bxe.c:2209
#define MCP_TIMEOUT
Definition: bxe.c:10829
static int bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
Definition: bxe.c:5107
void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, uint32_t addr, uint32_t len)
Definition: bxe.c:1709
static int bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
Definition: bxe.c:13356
static void bxe_disable_close_the_gate(struct bxe_softc *sc)
Definition: bxe.c:4142
static void storm_memset_eq_data(struct bxe_softc *sc, struct event_ring_data *eq_data, uint16_t pfid)
Definition: bxe.c:2241
static void bxe_link_reset(struct bxe_softc *sc)
Definition: bxe.c:18402
#define STATS_FLAGS_PORT
Definition: bxe.c:324
static const uint32_t * __bxe_get_page_write_ar(struct bxe_softc *sc)
Definition: bxe.c:18724
static uint32_t bxe_get_pretend_reg(struct bxe_softc *sc)
Definition: bxe.c:16675
static int bxe_watchdog(struct bxe_softc *sc, struct bxe_fastpath *fp)
Definition: bxe.c:3471
#define STATS_OFFSET32(stat_name)
Definition: bxe.c:314
static void bxe_sp_err_timeout_task(void *arg, int pending)
Definition: bxe.c:12579
uint8_t elink_cb_gpio_write(struct bxe_softc *sc, uint16_t gpio_num, uint8_t mode, uint8_t port)
Definition: bxe.c:2113
static uint8_t bxe_is_pcie_pending(struct bxe_softc *sc)
Definition: bxe.c:13198
#define sysctl_handle_64
Definition: bxe.c:49
uint32_t flags
Definition: bxe.c:323
static int bxe_gpio_mult_write(struct bxe_softc *sc, uint8_t pins, uint32_t mode)
Definition: bxe.c:2001
static int bxe_max_rx_bufs
Definition: bxe.c:272
static void bxe_fill(struct bxe_softc *sc, uint32_t addr, int fill, uint32_t len)
Definition: bxe.c:9364
static void bxe_free_fp_buffers(struct bxe_softc *sc)
Definition: bxe.c:6169
static void bxe_attn_int_deasserted0(struct bxe_softc *sc, uint32_t attn)
Definition: bxe.c:8164
static int bxe_hc_tx_ticks
Definition: bxe.c:282
static void bxe_disable_nvram_access(struct bxe_softc *sc)
Definition: bxe.c:1207
#define OP_GEN_AGG_VECT(index)
Definition: bxe.c:17844
static void bxe_set_reset_global(struct bxe_softc *sc)
Definition: bxe.c:6620
static uint16_t bxe_get_mf_speed(struct bxe_softc *sc)
Definition: bxe.c:11730
static int bxe_interrupt_alloc(struct bxe_softc *sc)
Definition: bxe.c:8934
int bxe_cmpxchg(volatile int *addr, int old, int new)
Definition: bxe.c:851
static void bxe_reset_common(struct bxe_softc *sc)
Definition: bxe.c:16598
#define BXE_GLOBAL_RESET_BIT
Definition: bxe.c:6616
static void bxe_func_init(struct bxe_softc *sc, struct bxe_func_init_params *p)
Definition: bxe.c:9972
static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, uint16_t index)
Definition: bxe.c:6364
#define MCP_ONE_TIMEOUT
Definition: bxe.c:10830
static int bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
Definition: bxe.c:15856
static int bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
Definition: bxe.c:15831
static uint32_t __bxe_get_page_read_num(struct bxe_softc *sc)
Definition: bxe.c:18757
uint8_t elink_cb_gpio_int_write(struct bxe_softc *sc, uint16_t gpio_num, uint8_t mode, uint8_t port)
Definition: bxe.c:2130
static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, int queue)
Definition: bxe.c:6303
SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode")
static void bxe_int_enable(struct bxe_softc *sc)
Definition: bxe.c:10375
static void bxe_init_multi_cos(struct bxe_softc *sc)
Definition: bxe.c:15811
static void bxe_init_fp_mutexs(struct bxe_softc *sc)
Definition: bxe.c:16158
uint32_t offset
Definition: bxe.c:321
static void bxe_pf_q_prep_general(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_general_setup_params *gen_init, uint8_t cos)
Definition: bxe.c:11284
static int bxe_set_mc_list(struct bxe_softc *sc)
Definition: bxe.c:12084
void bxe_set_bit(unsigned int nr, volatile unsigned long *addr)
Definition: bxe.c:811
static unsigned long bxe_get_q_flags(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t leading)
Definition: bxe.c:11257
#define BXE_PATH1_LOAD_CNT_MASK
Definition: bxe.c:6612
static void bxe_mq_flush(struct ifnet *ifp)
Definition: bxe.c:5795
uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type, uint8_t dst_type, uint8_t with_comp, uint8_t comp_type)
Definition: bxe.c:1537
__FBSDID("$FreeBSD$")
static void bxe_igu_int_enable(struct bxe_softc *sc)
Definition: bxe.c:10311
static void bxe_enable_nvram_access(struct bxe_softc *sc)
Definition: bxe.c:1195
static int bxe_tx_queue_has_work(struct bxe_fastpath *fp)
Definition: bxe.c:2656
static void bxe_free_tpa_pool(struct bxe_fastpath *fp)
Definition: bxe.c:6110
static bool bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
Definition: bxe.c:18785
static int bxe_nic_load_analyze_req(struct bxe_softc *sc, uint32_t load_code)
Definition: bxe.c:6829
static int bxe_issue_dmae_with_comp(struct bxe_softc *sc, struct dmae_cmd *dmae)
Definition: bxe.c:1590
static int bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
Definition: bxe.c:13333
#define BXE_PATH(sc)
Definition: bxe.c:18654
static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, uint8_t *global, uint8_t print)
Definition: bxe.c:7539
static int bxe_nvram_write_dword(struct bxe_softc *sc, uint32_t offset, uint32_t val, uint32_t cmd_flags)
Definition: bxe.c:1334
static void bxe_e1h_disable(struct bxe_softc *sc)
Definition: bxe.c:7635
#define BXE_PATH0_LOAD_CNT_SHIFT
Definition: bxe.c:6611
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
Definition: bxe.c:7685
static void bxe_reset_port(struct bxe_softc *sc)
Definition: bxe.c:18416
static int bxe_init_hw(struct bxe_softc *sc, uint32_t load_code)
Definition: bxe.c:9340
static void storm_memset_eq_prod(struct bxe_softc *sc, uint16_t eq_prod, uint16_t pfid)
Definition: bxe.c:2254
static void bxe_fill_report_data(struct bxe_softc *sc, struct bxe_link_report_data *data)
Definition: bxe.c:11753
static void bxe_storm_memset_hc_disable(struct bxe_softc *sc, uint8_t port, uint16_t fw_sb_id, uint8_t sb_index, uint8_t disable)
Definition: bxe.c:1766
static int bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
Definition: bxe.c:18670
static void bxe_clp_reset_done(struct bxe_softc *sc, uint32_t magic_val)
Definition: bxe.c:10796
#define BXE_DEF_SB_IDX
Definition: bxe.c:63
static driver_t bxe_driver
Definition: bxe.c:216
#define BXE_DRIVER_VERSION
Definition: bxe.c:32
static void bxe_free_ilt_mem(struct bxe_softc *sc)
Definition: bxe.c:5983
static void bxe_link_attn(struct bxe_softc *sc)
Definition: bxe.c:6997
static void bxe_iov_init_dq(struct bxe_softc *sc)
Definition: bxe.c:16712
void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx)
Definition: bxe.c:1507
static void bxe_set_pbd_lso_e2(struct mbuf *m, uint32_t *parsing_data)
Definition: bxe.c:5040
static void bxe_prep_dmae_with_comp(struct bxe_softc *sc, struct dmae_cmd *dmae, uint8_t src_type, uint8_t dst_type)
Definition: bxe.c:1571
static void bxe_link_status_update(struct bxe_softc *sc)
Definition: bxe.c:11874
static int bxe_init_shmem(struct bxe_softc *sc)
Definition: bxe.c:10845
#define CTLTYPE_U64
Definition: bxe.c:48
static uint8_t bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, struct mbuf *m, uint32_t *parsing_data)
Definition: bxe.c:4832
static const struct @1 bxe_eth_q_stats_arr[]
void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma)
Definition: bxe.c:966
static int bxe_gunzip_init(struct bxe_softc *sc)
Definition: bxe.c:18558
int bxe_sp_post(struct bxe_softc *sc, int command, int cid, uint32_t data_hi, uint32_t data_lo, int cmd_type)
Definition: bxe.c:2399
static void bxe_dcc_event(struct bxe_softc *sc, uint32_t dcc_event)
Definition: bxe.c:7759
static int bxe_ioctl(if_t ifp, u_long command, caddr_t data)
Definition: bxe.c:4507
static int bxe_set_q_rx_mode(struct bxe_softc *sc, uint8_t cl_id, unsigned long rx_mode_flags, unsigned long rx_accept_flags, unsigned long tx_accept_flags, unsigned long ramrod_flags)
Definition: bxe.c:3686
static __noinline int bxe_nic_load(struct bxe_softc *sc, int load_mode)
Definition: bxe.c:12608
static int bxe_do_flr(struct bxe_softc *sc)
Definition: bxe.c:15403
static int bxe_shutdown(device_t)
Definition: bxe.c:16490
static int bxe_chktso_window(struct bxe_softc *sc, int nsegs, bus_dma_segment_t *segs, struct mbuf *m)
Definition: bxe.c:4789
static int bxe_pretend_func(struct bxe_softc *sc, uint16_t pretend_func_val)
Definition: bxe.c:16689
static uint8_t bxe_wait_sp_comp(struct bxe_softc *sc, unsigned long mask)
Definition: bxe.c:3938
static int bxe_nic_load_no_mcp(struct bxe_softc *sc)
Definition: bxe.c:3755
#define BYTE_OFFSET(offset)
Definition: bxe.c:1383
static void bxe_tx_mq_start_deferred(void *arg, int pending)
Definition: bxe.c:5748
static int bxe_probe(device_t)
Definition: bxe.c:2497
static void storm_memset_func_cfg(struct bxe_softc *sc, struct tstorm_eth_function_common_config *tcfg, uint16_t abs_fid)
Definition: bxe.c:9958
static void bxe_handle_sp_tq(void *context, int pending)
Definition: bxe.c:8636
static int bxe_init_firmware(struct bxe_softc *sc)
Definition: bxe.c:18570
static void bxe_init_tx_rings(struct bxe_softc *sc)
Definition: bxe.c:9779
static void bxe_init_rx_rings(struct bxe_softc *sc)
Definition: bxe.c:9727
static uint8_t bxe_reset_is_done(struct bxe_softc *sc, int engine)
Definition: bxe.c:6687
static int bxe_nvram_read_dword(struct bxe_softc *sc, uint32_t offset, uint32_t *ret_val, uint32_t cmd_flags)
Definition: bxe.c:1220
static void bxe_hc_int_disable(struct bxe_softc *sc)
Definition: bxe.c:10385
static void bxe_interrupt_free(struct bxe_softc *sc)
Definition: bxe.c:8872
static void bxe_igu_clear_sb_gen(struct bxe_softc *sc, uint8_t func, uint8_t idu_sb_id, uint8_t is_pf)
Definition: bxe.c:16524
static int bxe_er_poll_igu_vq(struct bxe_softc *sc)
Definition: bxe.c:10759
static void bxe_attn_int_deasserted4(struct bxe_softc *sc, uint32_t attn)
Definition: bxe.c:7571
static LIST_HEAD(bxe_prev_list_node)
Definition: bxe.c:247
static void bxe_enable_blocks_attention(struct bxe_softc *sc)
Definition: bxe.c:16942
void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, uint32_t dst_addr, uint32_t len32)
Definition: bxe.c:1672
static void bxe_init_eq_ring(struct bxe_softc *sc)
Definition: bxe.c:9887
static const struct @0 bxe_eth_stats_arr[]
static void bxe_get_function_num(struct bxe_softc *sc)
Definition: bxe.c:13123
static void bxe_init_objs(struct bxe_softc *sc)
Definition: bxe.c:10502
static void bxe_set_mf_bw(struct bxe_softc *sc)
Definition: bxe.c:7672
static void bxe_reset_func(struct bxe_softc *sc)
Definition: bxe.c:18478
static void bxe_pf_init(struct bxe_softc *sc)
Definition: bxe.c:10173
static void bxe_sp_prod_update(struct bxe_softc *sc)
Definition: bxe.c:2343
static int bxe_gpio_read(struct bxe_softc *sc, int gpio_num, uint8_t port)
Definition: bxe.c:1911
static void bxe_print_next_block(struct bxe_softc *sc, int idx, const char *blk)
Definition: bxe.c:7201
static int bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
Definition: bxe.c:5968
void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr, size_t size, uint32_t *data)
Definition: bxe.c:18624
static void bxe_nic_load_pmf(struct bxe_softc *sc, uint32_t load_code)
Definition: bxe.c:6861
static int bxe_get_igu_cam_info(struct bxe_softc *sc)
Definition: bxe.c:13923
static void bxe_attn_int_deasserted1(struct bxe_softc *sc, uint32_t attn)
Definition: bxe.c:8124
static const struct reg_addr * __bxe_get_page_read_ar(struct bxe_softc *sc)
Definition: bxe.c:18746
static void bxe_iov_init_dmae(struct bxe_softc *sc)
Definition: bxe.c:16706
static uint32_t __bxe_get_page_reg_num(struct bxe_softc *sc)
Definition: bxe.c:18713
static void bxe_periodic_callout_func(void *xsc)
Definition: bxe.c:12252
uint32_t size
Definition: bxe.c:322
static void bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
Definition: bxe.c:18813
static void bxe_get_tunable_params(struct bxe_softc *sc)
Definition: bxe.c:13755
struct mtx bxe_prev_mtx
Definition: bxe.c:237
static int bxe_nvram_write1(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf, int buf_size)
Definition: bxe.c:1386
void elink_cb_event_log(struct bxe_softc *sc, const elink_log_id_t elink_log_id,...)
Definition: bxe.c:1853
static bool bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
Definition: bxe.c:18768
static void bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
Definition: bxe.c:2942
static void bxe_ilt_set_info(struct bxe_softc *sc)
Definition: bxe.c:5834
static int bxe_leader_reset(struct bxe_softc *sc)
Definition: bxe.c:11106
static int bxe_set_qm_cid_count(struct bxe_softc *sc)
Definition: bxe.c:15795
static uint32_t __bxe_get_page_write_num(struct bxe_softc *sc)
Definition: bxe.c:18735
static void bxe_hw_enable_status(struct bxe_softc *sc)
Definition: bxe.c:18019
static void bxe_periodic_start(struct bxe_softc *sc)
Definition: bxe.c:12340
static void bxe_tpa_start(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t queue, uint16_t cons, uint16_t prod, struct eth_fast_path_rx_cqe *cqe)
Definition: bxe.c:2760
static void bxe_free_mem(struct bxe_softc *sc)
Definition: bxe.c:6001
unsigned long bxe_debug
Definition: bxe.c:257
#define DUMP_ALL_PRESETS
Definition: bxe.c:18657
static int bxe_setup_queue(struct bxe_softc *sc, struct bxe_fastpath *fp, uint8_t leading)
Definition: bxe.c:11422
static void bxe_init_sb(struct bxe_softc *sc, bus_addr_t busaddr, int vfid, uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
Definition: bxe.c:9515
static int bxe_config_rss_eth(struct bxe_softc *sc, uint8_t config_hash)
Definition: bxe.c:11541
static int bxe_reset_hw(struct bxe_softc *sc, uint32_t load_code)
Definition: bxe.c:3995
static void bxe_link_report_locked(struct bxe_softc *sc)
Definition: bxe.c:11786
static uint8_t bxe_get_load_status(struct bxe_softc *sc, int engine)
Definition: bxe.c:6700
#define BXE_DEF_SB_ATT_IDX
Definition: bxe.c:62
static int bxe_alloc_mem(struct bxe_softc *sc)
Definition: bxe.c:6018
static int bxe_max_aggregation_size
Definition: bxe.c:292
static int bxe_setup_leading(struct bxe_softc *sc)
Definition: bxe.c:11487
static uint32_t bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, struct bxe_fastpath *fp)
Definition: bxe.c:9589
static void bxe_add_sysctls(struct bxe_softc *sc)
Definition: bxe.c:16004
MODULE_DEPEND(bxe, pci, 1, 1, 1)
static void bxe_attn_int_asserted(struct bxe_softc *sc, uint32_t asserted)
Definition: bxe.c:7063
static int bxe_release_nvram_lock(struct bxe_softc *sc)
Definition: bxe.c:1156
#define IS_REG_IN_PRESET(presets, idx)
Definition: bxe.c:18665
#define BXE_PATH1_LOAD_CNT_SHIFT
Definition: bxe.c:6613
static void bxe_int_disable(struct bxe_softc *sc)
Definition: bxe.c:10445
static int bxe_func_start(struct bxe_softc *sc)
Definition: bxe.c:10556
static int bxe_get_device_info(struct bxe_softc *sc)
Definition: bxe.c:13988
static int bxe_check_valid_mf_cfg(struct bxe_softc *sc)
Definition: bxe.c:13402
static int bxe_get_shmem_info(struct bxe_softc *sc)
Definition: bxe.c:13661
static int bxe_init_ifnet(struct bxe_softc *sc)
Definition: bxe.c:12987
static void bxe_igu_int_disable(struct bxe_softc *sc)
Definition: bxe.c:10425
#define BXE_PREV_WAIT_NEEDED
Definition: bxe.c:236
static int bxe_add_cdev(struct bxe_softc *sc)
Definition: bxe.c:19099
static void bxe_free_buf_rings(struct bxe_softc *sc)
Definition: bxe.c:16141
static int bxe_init_hw_func(struct bxe_softc *sc)
Definition: bxe.c:18097
#define BXE_PREV_UNDI_RCQ(val)
Definition: bxe.c:15531
static void bxe_deallocate_bars(struct bxe_softc *sc)
Definition: bxe.c:13060
static int bxe_set_power_state(struct bxe_softc *sc, uint8_t state)
Definition: bxe.c:10584
static int bxe_prev_mcp_done(struct bxe_softc *sc)
Definition: bxe.c:15293
static int bxe_process_kill(struct bxe_softc *sc, uint8_t global)
Definition: bxe.c:11005
static void bxe_handle_mcast_eqe(struct bxe_softc *sc)
Definition: bxe.c:8373
int bxe_test_and_set_bit(int nr, volatile unsigned long *addr)
Definition: bxe.c:825
#define STATS_FLAGS_FUNC
Definition: bxe.c:325
SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD|CTLFLAG_MPSAFE, 0, "bxe driver parameters")
#define BXE_NUM_ETH_STATS
Definition: bxe.c:646
#define FLR_POLL_CNT
Definition: bxe.c:71
static void storm_memset_func_en(struct bxe_softc *sc, uint16_t abs_fid, uint8_t enable)
Definition: bxe.c:2230
SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, &bxe_debug, 0, "Debug logging mode")
static void bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
Definition: bxe.c:17952
static int bxe_allocate_bars(struct bxe_softc *sc)
Definition: bxe.c:13077
uint8_t elink_cb_path_id(struct bxe_softc *sc)
Definition: bxe.c:1847
static int bxe_pf_flr_clnup(struct bxe_softc *sc)
Definition: bxe.c:18049
static __noinline int bxe_nic_unload(struct bxe_softc *sc, uint32_t unload_mode, uint8_t keep_link)
Definition: bxe.c:4226
static void storm_memset_vf_to_pf(struct bxe_softc *sc, uint16_t abs_fid, uint16_t pf_id)
Definition: bxe.c:2219
static struct eth_spe * bxe_sp_get_next(struct bxe_softc *sc)
Definition: bxe.c:2325
static void bxe_update_last_max_sge(struct bxe_fastpath *fp, uint16_t idx)
Definition: bxe.c:2971
static void bxe_set_modes_bitmap(struct bxe_softc *sc)
Definition: bxe.c:14585
static void bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
Definition: bxe.c:2957
static int bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
Definition: bxe.c:19168
static void bxe_zero_fp_sb(struct bxe_softc *sc, int fw_sb_id)
Definition: bxe.c:9401
uint32_t elink_cb_fw_command(struct bxe_softc *sc, uint32_t command, uint32_t param)
Definition: bxe.c:2147
static device_method_t bxe_methods[]
Definition: bxe.c:201
static uint8_t bxe_reset_is_global(struct bxe_softc *sc)
Definition: bxe.c:6642
void bxe_parity_recover(struct bxe_softc *sc)
Definition: bxe.c:12354
static void bxe_e1h_enable(struct bxe_softc *sc)
Definition: bxe.c:7645
static uint8_t bxe_txeof(struct bxe_softc *sc, struct bxe_fastpath *fp)
Definition: bxe.c:3493
uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
Definition: bxe.c:1523
static void bxe_set_pf_load(struct bxe_softc *sc)
Definition: bxe.c:6721
static void bxe_init_eth_fp(struct bxe_softc *sc, int idx)
Definition: bxe.c:9604
#define BXE_PATH0_RST_IN_PROG_BIT
Definition: bxe.c:6614
static uint8_t bxe_trylock_leader_lock(struct bxe_softc *sc)
Definition: bxe.c:10703
#define FLR_WAIT_INTERVAL
Definition: bxe.c:70
static void bxe_set_pbd_lso(struct mbuf *m, struct eth_tx_parse_bd_e1x *pbd)
Definition: bxe.c:5051
static int bxe_hc_rx_ticks
Definition: bxe.c:277
void bxe_dcbx_set_state(struct bxe_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
Definition: bxe.c:15773
static void bxe_release_alr(struct bxe_softc *sc)
Definition: bxe.c:6956
static uint32_t bxe_flr_clnup_reg_poll(struct bxe_softc *sc, uint32_t reg, uint32_t expected, uint32_t poll_count)
Definition: bxe.c:17739
static void bxe_drain_tx_queues(struct bxe_softc *sc)
Definition: bxe.c:3547
static int bxe_interrupt_mode
Definition: bxe.c:262
static void bxe_release_firmware(struct bxe_softc *sc)
Definition: bxe.c:18590
static void bxe_attn_int_deasserted(struct bxe_softc *sc, uint32_t deasserted)
Definition: bxe.c:8208
static struct cdevsw bxe_cdevsw
Definition: bxe.c:18648
#define IS_E2_REG(chips)
Definition: bxe.c:18661
static void bxe_periodic_stop(struct bxe_softc *sc)
Definition: bxe.c:12347
void bxe_clear_bit(int nr, volatile unsigned long *addr)
Definition: bxe.c:818
static void bxe_read_mf_cfg(struct bxe_softc *sc)
Definition: bxe.c:6896
static int bxe_get_cmng_fns_mode(struct bxe_softc *sc)
Definition: bxe.c:10127
static void bxe_probe_pci_caps(struct bxe_softc *sc)
Definition: bxe.c:13210
static void bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, struct pbf_pN_buf_regs *regs, uint32_t poll_count)
Definition: bxe.c:17885
static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len)
Definition: bxe.c:18597
static int bxe_acquire_hw_lock(struct bxe_softc *sc, uint32_t resource)
Definition: bxe.c:1011
static void bxe_tx_disable(struct bxe_softc *sc)
Definition: bxe.c:2622
void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id, uint8_t sb_index, uint8_t disable, uint16_t usec)
Definition: bxe.c:1791
void bxe_handle_error(struct bxe_softc *sc)
Definition: bxe.c:12558
static void bxe_process_kill_chip_reset(struct bxe_softc *sc, uint8_t global)
Definition: bxe.c:10904
static void bxe_handle_fp_tq(void *context, int pending)
Definition: bxe.c:8686
MALLOC_DECLARE(M_BXE_ILT)
static void bxe_squeeze_objects(struct bxe_softc *sc)
Definition: bxe.c:4169
static void bxe_mcp_wait_one(struct bxe_softc *sc)
Definition: bxe.c:10833
static int bxe_ifmedia_update(struct ifnet *ifp)
Definition: bxe.c:4401
static void bxe_destroy_fp_mutexs(struct bxe_softc *sc)
Definition: bxe.c:16178
static int bxe_tx_mq_start(struct ifnet *ifp, struct mbuf *m)
Definition: bxe.c:5762
static uint8_t bxe_service_rxsgl(struct bxe_fastpath *fp, uint16_t len, uint16_t lenonbd, struct mbuf *m, struct eth_fast_path_rx_cqe *cqe_fp)
Definition: bxe.c:3122
static void bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
Definition: bxe.c:5925
static int bxe_set_uc_list(struct bxe_softc *sc)
Definition: bxe.c:12154
static int bxe_config_rss_pf(struct bxe_softc *sc, struct ecore_rss_config_obj *rss_obj, uint8_t config_hash)
Definition: bxe.c:11493
void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update)
Definition: bxe.c:16511
static int bxe_nic_unload_no_mcp(struct bxe_softc *sc)
Definition: bxe.c:3779
static int bxe_int_mem_test(struct bxe_softc *sc)
Definition: bxe.c:16741
static int bxe_set_mac_one(struct bxe_softc *sc, uint8_t *mac, struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type, unsigned long *ramrod_flags)
Definition: bxe.c:11577
static int bxe_check_blocks_with_parity2(struct bxe_softc *sc, uint32_t sig, int par_num, uint8_t print)
Definition: bxe.c:7348
static int bxe_release_hw_lock(struct bxe_softc *sc, uint32_t resource)
Definition: bxe.c:1058
static int bxe_stop_locked(struct bxe_softc *sc)
Definition: bxe.c:12963
void elink_cb_reg_write(struct bxe_softc *sc, uint32_t reg_addr, uint32_t val)
Definition: bxe.c:1821
static uint16_t bxe_free_tx_pkt(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t idx)
Definition: bxe.c:3437
static void bxe_igu_clear_sb(struct bxe_softc *sc, uint8_t idu_sb_id)
Definition: bxe.c:16581
static int bxe_get_total_regs_len32(struct bxe_softc *sc)
Definition: bxe.c:18687
static void bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
Definition: bxe.c:875
static int bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
Definition: bxe.c:15888
static uint32_t bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
Definition: bxe.c:13310
static int bxe_interrupt_attach(struct bxe_softc *sc)
Definition: bxe.c:9176
static void bxe_handle_chip_tq(void *context, int pending)
Definition: bxe.c:4474
static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
Definition: bxe.c:19278
static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
Definition: bxe.c:19142
static uint8_t bxe_prev_is_path_marked(struct bxe_softc *sc)
Definition: bxe.c:15322
static void bxe_eq_int(struct bxe_softc *sc)
Definition: bxe.c:8463
static void bxe_set_rx_mode(struct bxe_softc *sc)
Definition: bxe.c:12179
static int bxe_prev_unload(struct bxe_softc *sc)
Definition: bxe.c:15704
int bxe_test_and_clear_bit(int nr, volatile unsigned long *addr)
Definition: bxe.c:838
static void bxe_intr_legacy(void *xsc)
Definition: bxe.c:8782
static void bxe_init(void *xsc)
Definition: bxe.c:12977
static int bxe_queue_count
Definition: bxe.c:267
void elink_cb_udelay(struct bxe_softc *sc, uint32_t usecs)
Definition: bxe.c:1807
static void bxe_set_reset_done(struct bxe_softc *sc)
Definition: bxe.c:6651
static void bxe_interrupt_detach(struct bxe_softc *sc)
Definition: bxe.c:9127
static void bxe_pf_tx_q_prep(struct bxe_softc *sc, struct bxe_fastpath *fp, struct ecore_txq_setup_params *txq_init, uint8_t cos)
Definition: bxe.c:11394
static int bxe_autogreeen
Definition: bxe.c:302
#define BXE_ONE_PORT_FLAG
Definition: bxe.h:1329
#define CHIP_NUM_57810
Definition: bxe.h:1128
#define ATTN_GENERAL_ATTN_6
Definition: bxe.h:2018
#define NUM_EQ_PAGES
Definition: bxe.h:1583
#define CHIP_4_PORT_MODE
Definition: bxe.h:1238
#define IS_MF(sc)
Definition: bxe.h:1078
#define BXE_RX_MODE_PROMISC
Definition: bxe.h:1517
#define BXE_MAX_NUM_OF_VFS
Definition: bxe.h:688
#define SM_RX_ID
Definition: bxe.h:747
#define CQE_TYPE_START(cqe_type)
Definition: bxe.h:2071
#define BXE_SP_MAPPING(sc, var)
Definition: bxe.h:1881
#define CHIP_IS_57810(sc)
Definition: bxe.h:1179
#define BXE_ERR_MISC
Definition: bxe.h:1504
#define ATTN_GENERAL_ATTN_3
Definition: bxe.h:2015
#define TX_BD_TOTAL
Definition: bxe.h:271
#define BXE_RX_MODE_NONE
Definition: bxe.h:1514
#define CMNG_FNS_MINMAX
Definition: bxe.h:765
#define TX_BD(x)
Definition: bxe.h:278
#define ETH_OVERHEAD
Definition: bxe.h:438
#define PCI_PM_D0
Definition: bxe.h:2086
#define BXE_STATE_OPEN
Definition: bxe.h:1320
#define MAX_IGU_ATTN_ACK_TO
Definition: bxe.h:2025
#define BXE_NUM_ETH_QUEUES(sc)
Definition: bxe.h:813
#define CHIP_NUM_57840_MF
Definition: bxe.h:1138
#define SHMEM2_RD(sc, field)
Definition: bxe.h:1938
#define DMAE_PCI_ERR_FLAG
Definition: bxe.h:1952
#define CHIP_PORT_MODE_NONE
Definition: bxe.h:1240
#define ADVERTISED_1000baseT_Full
Definition: bxe.h:1006
#define HC_INDEX_ETH_TX_CQ_CONS_COS2
Definition: bxe.h:760
#define CNIC_LOADED(sc)
Definition: bxe.h:1750
#define BXE_SP_OBJ(sc, fp)
Definition: bxe.h:1885
#define BXE_CORE_UNLOCK(sc)
Definition: bxe.h:1436
#define MAX_BARS
Definition: bxe.h:1347
#define VALID_OVLAN(ovlan)
Definition: bxe.h:1053
#define PCI_ANY_ID
Definition: bxe.h:147
#define BXE_TSO_MAX_SEGMENTS
Definition: bxe.h:189
#define SGE_PAGE_SIZE
Definition: bxe.h:258
#define PORT_ID(sc)
Definition: bxe.h:1394
#define RCQ_TOTAL_PER_PAGE
Definition: bxe.h:347
#define FW_PREFETCH_CNT
Definition: bxe.h:199
#define DOORBELL(sc, cid, val)
Definition: bxe.h:1920
#define ATTN_NIG_FOR_FUNC
Definition: bxe.h:2008
#define FW_BUF_SIZE
Definition: bxe.h:1626
#define MAX_AGG_QS(sc)
Definition: bxe.h:195
#define BXE_MAX_PRIORITY
Definition: bxe.h:1754
#define RCQ_NUM_PAGES
Definition: bxe.h:346
#define PORT_FIBRE
Definition: bxe.h:2105
#define BXE_TX_CLEANUP_THRESHOLD
Definition: bxe.h:286
#define CHIP_NUM_57712_MF
Definition: bxe.h:1123
#define ADVERTISED_Pause
Definition: bxe.h:1011
#define BXE_MCAST_UNLOCK(sc)
Definition: bxe.h:1466
#define CHIP_2_PORT_MODE
Definition: bxe.h:1239
#define BXE_ERR_TXQ_STUCK
Definition: bxe.h:1503
#define SGE_TH_HI(sc)
Definition: bxe.h:253
#define CHIP_REV_IS_EMUL(sc)
Definition: bxe.h:1153
#define ILT_NUM_PAGE_ENTRIES
Definition: bxe.h:419
#define CHIP_NUM_57710
Definition: bxe.h:1119
#define RX_BD_TOTAL
Definition: bxe.h:298
#define BXE_DB_SHIFT
Definition: bxe.h:1915
#define BXE_RECOVERY_NIC_LOADING
Definition: bxe.h:1501
#define FOR_EACH_ETH_QUEUE(sc, var)
Definition: bxe.h:823
#define QM_ILT_PAGE_SZ
Definition: bxe.h:720
#define ADVERTISED_10000baseT_Full
Definition: bxe.h:1013
#define SRC_ILT_PAGE_SZ
Definition: bxe.h:733
#define DMAE_LEN32_WR_MAX(sc)
Definition: bxe.h:1993
#define BAR0
Definition: bxe.h:1818
#define DMAE_DST_PCI
Definition: bxe.h:1958
#define BXE_FWMB_UNLOCK(sc)
Definition: bxe.h:1454
#define RX_SGE_TOTAL_PER_PAGE
Definition: bxe.h:207
#define SGE_TH_LO(sc)
Definition: bxe.h:251
#define ATTN_GENERAL_ATTN_5
Definition: bxe.h:2017
#define CHIP_IS_E1(sc)
Definition: bxe.h:1161
#define U64_LO(addr)
Definition: bxe.h:171
#define BXE_DMAE_UNLOCK(sc)
Definition: bxe.h:1450
#define BXE_ERR_GLOBAL
Definition: bxe.h:1510
static void bxe_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t storm, uint16_t index, uint8_t op, uint8_t update)
Definition: bxe.h:2363
#define BXE_NO_PULSE
Definition: bxe.h:1343
#define BXE_SET_ERROR_BIT(sc, error)
Definition: bxe.h:453
#define CHIP_IS_E2E3(sc)
Definition: bxe.h:1210
#define BXE_STATE_DIAG
Definition: bxe.h:1325
#define TX_BD_IDX(x)
Definition: bxe.h:280
#define OVLAN(sc)
Definition: bxe.h:1055
#define CHIP_INT_MODE_IS_BC(sc)
Definition: bxe.h:1252
#define BXE_FP(sc, nr, var)
Definition: bxe.h:1884
#define FUNC_FLG_STATS
Definition: bxe.h:1801
#define CID_TO_FP(cid, sc)
Definition: bxe.h:754
#define CHIP_IS_E1H(sc)
Definition: bxe.h:1165
#define DEF_MIN_RATE
Definition: bxe.h:769
#define MFCFG_RD(sc, field)
Definition: bxe.h:1943
#define BXE_PM_CAPABLE_FLAG
Definition: bxe.h:1268
#define RCQ_TH_LO(sc)
Definition: bxe.h:371
#define BXE_MCAST_LOCK(sc)
Definition: bxe.h:1465
#define CHIP_IS_MF_CAP(sc)
Definition: bxe.h:1213
#define TM_ILT_LINES
Definition: bxe.h:729
#define BXE_STATE_CLOSING_WAITING_HALT
Definition: bxe.h:1321
#define AUTONEG_DISABLE
Definition: bxe.h:2098
#define DEF_SB_IGU_ID
Definition: bxe.h:1552
#define EQ_DESC_MAX_PAGE
Definition: bxe.h:1585
#define RX_SGE(x)
Definition: bxe.h:214
#define INTR_MODE_MSIX
Definition: bxe.h:1539
#define AUTONEG_ENABLE
Definition: bxe.h:2099
#define RCQ_USABLE_PER_PAGE
Definition: bxe.h:349
#define SRC_ILT_LINES
Definition: bxe.h:738
#define BXE_PXP_DRAM_ALIGN
Definition: bxe.h:452
#define BXE_MSIX_CAPABLE_FLAG
Definition: bxe.h:1271
#define L2_ILT_LINES(sc)
Definition: bxe.h:1680
#define INT_BLOCK_IGU
Definition: bxe.h:1246
#define SC_VN(sc)
Definition: bxe.h:1392
#define CHIP_BOND_ID(sc)
Definition: bxe.h:1159
#define BXE_GRC_TIMEOUT
Definition: bxe.h:2041
#define GPIO_4_FUNC
Definition: bxe.h:2012
#define DBG_RX
Definition: bxe.h:2169
#define CHIP_PORT_MODE(sc)
Definition: bxe.h:1241
#define DMAE_SRC_GRC
Definition: bxe.h:1955
#define SGE_PAGE_SHIFT
Definition: bxe.h:259
#define BAR2
Definition: bxe.h:1820
#define DMAE_SRC_PCI
Definition: bxe.h:1954
#define RX_SGE_NEXT_MASK_ELEM(el)
Definition: bxe.h:236
#define DBG_LRO
Definition: bxe.h:2174
#define BXE_GRC_RSV
Definition: bxe.h:2042
#define CHIP_IS_E3A0(sc)
Definition: bxe.h:1204
#define FP_SB_MAX_E1x
Definition: bxe.h:701
#define BLOGW(sc, format, args...)
Definition: bxe.h:2218
#define BXE_BR_SIZE
Definition: bxe.h:683
#define INT_BLOCK_HC
Definition: bxe.h:1245
#define BXE_STATE_DISABLED
Definition: bxe.h:1324
#define BXE_RX_MODE_ALLMULTI
Definition: bxe.h:1516
#define MAX_DYNAMIC_ATTN_GRPS
Definition: bxe.h:486
#define LOAD_NORMAL
Definition: bxe.h:400
static void bxe_igu_ack_sb_gen(struct bxe_softc *sc, uint8_t igu_sb_id, uint8_t segment, uint16_t index, uint8_t op, uint8_t update, uint32_t igu_addr)
Definition: bxe.h:2309
#define FOR_EACH_QUEUE(sc, var)
Definition: bxe.h:817
#define MAX_FUNC_NUM
Definition: bxe.h:414
#define ilog2(x)
Definition: bxe.h:140
#define BXE_MAX_SEGMENTS
Definition: bxe.h:188
#define BXE_SP_UNLOCK(sc)
Definition: bxe.h:1446
#define SC_FW_MB_IDX(sc)
Definition: bxe.h:1402
#define SHMEM2_WR(sc, field, val)
Definition: bxe.h:1939
#define BXE_TSO_MAX_SEG_SIZE
Definition: bxe.h:191
#define INIT_MODE_FLAGS(sc)
Definition: bxe.h:1632
#define BXE_FP_TX_LOCK(fp)
Definition: bxe.h:551
#define CHIP_REV_Ax
Definition: bxe.h:1145
#define RCQ(x)
Definition: bxe.h:357
#define ADVERTISED_FIBRE
Definition: bxe.h:1008
#define EQ_DESC_CNT_PAGE
Definition: bxe.h:1584
#define SC_L_ID(sc)
Definition: bxe.h:1393
#define RX_BD_USABLE
Definition: bxe.h:299
#define CHIP_TQ_NONE
Definition: bxe.h:1359
#define SUB_S16(a, b)
Definition: bxe.h:379
#define IS_VF(sc)
Definition: bxe.h:1217
#define DEF_SB_ID
Definition: bxe.h:1553
#define IS_SRIOV(sc)
Definition: bxe.h:695
#define BXE_CORE_LOCK(sc)
Definition: bxe.h:1435
#define BRCM_VENDORID
Definition: bxe.h:145
#define BXE_STATE_ERROR
Definition: bxe.h:1326
#define BD_TH_HI(sc)
Definition: bxe.h:323
#define BXE_MSI_CAPABLE_FLAG
Definition: bxe.h:1270
#define BXE_FP_TX_UNLOCK(fp)
Definition: bxe.h:552
#define CHIP_IS_MODE_4_PORT(sc)
Definition: bxe.h:1242
#define TX_BD_NUM_PAGES
Definition: bxe.h:268
void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag, struct mbuf *m, uint8_t contents)
Definition: bxe_debug.c:230
#define BXE_SP(sc, var)
Definition: bxe.h:1880
#define BXE_FP_TX_LOCK_ASSERT(fp)
Definition: bxe.h:553
#define CHIP_NUM_57711E
Definition: bxe.h:1121
#define SGE_PAGES
Definition: bxe.h:261
#define ATTN_HARD_WIRED_MASK
Definition: bxe.h:2019
#define ATTN_GENERAL_ATTN_1
Definition: bxe.h:2013
static uint8_t bxe_stats_id(struct bxe_fastpath *fp)
Definition: bxe.h:2434
#define SGE_PAGE_ALIGN(addr)
Definition: bxe.h:260
#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)
Definition: bxe.h:826
#define BXE_TX_SWITCHING
Definition: bxe.h:1342
#define ONCHIP_ADDR2(x)
Definition: bxe.h:434
#define SPEED_UNKNOWN
Definition: bxe.h:2094
#define CHIP_IS_E1x(sc)
Definition: bxe.h:1167
#define BLOGI(sc, format, args...)
Definition: bxe.h:2201
#define BXE_STATE_OPENING_WAITING_LOAD
Definition: bxe.h:1318
#define NVRAM_TIMEOUT_COUNT
Definition: bxe.h:1263
#define DMAE_CMD_PORT_1
Definition: bxe.h:1981
#define ADVERTISED_100baseT_Half
Definition: bxe.h:1003
#define BXE_STATE_CLOSED
Definition: bxe.h:1317
#define FUNC_ILT_BASE(func)
Definition: bxe.h:426
#define FUNC_FLG_LEADING
Definition: bxe.h:1805
static const uint32_t dmae_reg_go_c[]
Definition: bxe.h:2001
#define CMNG_FNS_NONE
Definition: bxe.h:764
#define BXE_FWMB_LOCK(sc)
Definition: bxe.h:1453
#define BXE_SWCID_SHIFT
Definition: bxe.h:2064
#define CHIP_NUM_57712
Definition: bxe.h:1122
static void bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
Definition: bxe.h:2302
#define BXE_TPA_STATE_STOP
Definition: bxe.h:531
#define NUM_EQ_DESC
Definition: bxe.h:1586
#define ADVERTISED_100baseT_Full
Definition: bxe.h:1004
#define STORM_ASSERT_ARRAY_SIZE
Definition: bxe.h:2027
#define UNLOAD_RECOVERY
Definition: bxe.h:406
#define BXE_PMF_LINK_ASSERT(sc)
Definition: bxe.h:2029
#define DUPLEX_UNKNOWN
Definition: bxe.h:2090
#define SHMEM_WR(sc, field, val)
Definition: bxe.h:1931
#define CNIC_SUPPORT(sc)
Definition: bxe.h:1748
#define CDU_ILT_PAGE_SZ
Definition: bxe.h:711
#define EQ_DESC(x)
Definition: bxe.h:1594
#define BXE_L2_MAX_CID(sc)
Definition: bxe.h:1667
#define HC_INDEX_ETH_TX_CQ_CONS_COS0
Definition: bxe.h:758
#define RX_BD_NEXT(x)
Definition: bxe.h:302
#define PORT_DA
Definition: bxe.h:2107
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
Definition: bxe.h:2022
#define ILT_PAGE_CIDS
Definition: bxe.h:712
#define MAX_RSS_CHAINS
Definition: bxe.h:416
#define CHIP_NUM_57811_MF
Definition: bxe.h:1132
#define BXE_MAX_MULTICAST
Definition: bxe.h:1518
#define AUTO_GREEN_FORCE_OFF
Definition: bxe.h:1535
#define BXE_DCBX_ENABLED_ON_NEG_OFF
Definition: bxe.h:1737
#define BXE_TX_TIMEOUT
Definition: bxe.h:287
#define SET_FLAG(value, mask, flag)
Definition: bxe.h:176
#define HC_SP_INDEX_ETH_DEF_CONS
Definition: bxe.h:1567
#define VNICS_PER_PORT(sc)
Definition: bxe.h:1044
#define RCQ_MAX
Definition: bxe.h:352
#define BXE_ONE_PORT(sc)
Definition: bxe.h:1332
#define BXE_DCBX_ENABLED_OFF
Definition: bxe.h:1736
#define INTR_MODE_INTX
Definition: bxe.h:1537
#define CHIP_IS_E3B0(sc)
Definition: bxe.h:1206
#define BXE_RECOVERY_FAILED
Definition: bxe.h:1500
#define LOAD_OPEN
Definition: bxe.h:401
#define ATTN_GENERAL_ATTN_4
Definition: bxe.h:2016
#define PAGES_PER_SGE_SHIFT
Definition: bxe.h:256
#define TX_BD_NEXT(x)
Definition: bxe.h:275
#define BXE_DCBX_ENABLED_ON_NEG_ON
Definition: bxe.h:1738
#define BXE_PHY_LOCK(sc)
Definition: bxe.h:1021
#define SPEED_10000
Definition: bxe.h:2084
#define CHIP_REV(sc)
Definition: bxe.h:1143
#define FOREACH_ABS_FUNC_IN_PORT(sc, i)
Definition: bxe.h:2059
#define REG_RD8(sc, offset)
Definition: bxe.h:1857
#define RX_BD(x)
Definition: bxe.h:305
#define BXE_VF_ID_INVALID
Definition: bxe.h:694
#define HC_INDEX_OOO_TX_CQ_CONS
Definition: bxe.h:757
#define SHMEM2_HAS(sc, field)
Definition: bxe.h:1935
#define RX_SGE_USABLE
Definition: bxe.h:212
#define PERIODIC_GO
Definition: bxe.h:1354
#define HW_CID(sc, x)
Definition: bxe.h:2077
#define ADVERTISED_10baseT_Full
Definition: bxe.h:1002
#define BCM_PAGE_SIZE
Definition: bxe.h:159
#define MAX_SPQ_PENDING
Definition: bxe.h:1606
#define DMAE_COMP_VAL
Definition: bxe.h:1995
#define SC_MAX_VN_NUM(sc)
Definition: bxe.h:2053
#define BXE_RX_ALIGN_SHIFT
Definition: bxe.h:447
#define BXE_RX_MODE_NORMAL
Definition: bxe.h:1515
#define BXE_CORE_LOCK_ASSERT(sc)
Definition: bxe.h:1437
#define BXE_ERR_MC_ASSERT
Definition: bxe.h:1507
#define NVRAM_1MB_SIZE
Definition: bxe.h:1262
#define SC_PORT(sc)
Definition: bxe.h:1389
#define SC_PATH(sc)
Definition: bxe.h:1388
#define BXE_FP_RX_LOCK(fp)
Definition: bxe.h:556
#define ILT_MAX_LINES
Definition: bxe.h:1661
#define SW_CID(x)
Definition: bxe.h:2067
#define BXE_FP_TX_TRYLOCK(fp)
Definition: bxe.h:554
#define BXE_RECOVERY_INIT
Definition: bxe.h:1498
#define RCQ_NEXT(x)
Definition: bxe.h:354
#define CHIP_REV_IS_FPGA(sc)
Definition: bxe.h:1151
#define SM_TX_ID
Definition: bxe.h:748
#define HILO_U64(hi, lo)
Definition: bxe.h:174
#define PERIODIC_STOP
Definition: bxe.h:1353
#define DBG_SP
Definition: bxe.h:2166
#define BXE_IGU_STAS_MSG_PF_CNT
Definition: bxe.h:894
#define DBASSERT(sc, exp, msg)
Definition: bxe.h:2178
#define HC_SEG_ACCESS_NORM
Definition: bxe.h:787
#define DMAE_COM_SET_ERR
Definition: bxe.h:1965
#define CHIP_NUM_57811
Definition: bxe.h:1131
#define IS_PF(sc)
Definition: bxe.h:1221
#define DBG_TX
Definition: bxe.h:2168
#define DBG_PHY
Definition: bxe.h:2170
#define DMAE_DST_GRC
Definition: bxe.h:1959
#define INT_BLOCK_MODE_BW_COMP
Definition: bxe.h:1248
#define RCQ_TH_HI(sc)
Definition: bxe.h:375
#define BXE_PCIE_CAPABLE_FLAG
Definition: bxe.h:1269
#define FIRST_TX_COS_INDEX
Definition: bxe.h:752
static uint16_t bxe_ack_int(struct bxe_softc *sc)
Definition: bxe.h:2412
#define MF_PROTO_SUPPORT_FCOE
Definition: bxe.h:1097
#define SC_FUNC(sc)
Definition: bxe.h:1390
#define U64_HI(addr)
Definition: bxe.h:172
#define TM_ILT_PAGE_SZ
Definition: bxe.h:725
#define CNIC_CID_MAX
Definition: bxe.h:716
#define MF_PROTO_SUPPORT_ISCSI
Definition: bxe.h:1096
#define DBG_LOAD
Definition: bxe.h:2164
#define TX_BD_TOTAL_PER_PAGE
Definition: bxe.h:269
#define ATTN_GENERAL_ATTN_2
Definition: bxe.h:2014
#define BXE_NO_MCP_FLAG
Definition: bxe.h:1338
#define HC_INDEX_ETH_RX_CQ_CONS
Definition: bxe.h:756
#define DBG_MBUF
Definition: bxe.h:2172
#define IS_MF_SI(sc)
Definition: bxe.h:1084
#define DBG_INTR
Definition: bxe.h:2165
#define CHIP_REV_IS_SLOW(sc)
Definition: bxe.h:1149
#define GPIO_3_FUNC
Definition: bxe.h:2011
#define SC_ABS_FUNC(sc)
Definition: bxe.h:1391
#define ILT_PER_FUNC
Definition: bxe.h:425
#define BXE_VF_CIDS
Definition: bxe.h:693
#define PORT_OTHER
Definition: bxe.h:2109
#define BXE_ERR_MCP_ASSERT
Definition: bxe.h:1509
#define FUNC_FLG_SPQ
Definition: bxe.h:1804
#define MULTI_MASK
Definition: bxe.h:2049
#define MAX_SP_DESC_CNT
Definition: bxe.h:1605
#define LOAD_DIAG
Definition: bxe.h:402
#define AUTO_GREEN_FORCE_ON
Definition: bxe.h:1534
#define REG_WR16(sc, offset, val)
Definition: bxe.h:1847
#define DMAE_PCI_ERROR
Definition: bxe.h:1950
#define BD_TH_LO(sc)
Definition: bxe.h:319
#define RX_BD_TOTAL_PER_PAGE
Definition: bxe.h:294
#define CHIP_IS_E2(sc)
Definition: bxe.h:1173
#define NEXT_EQ_IDX(x)
Definition: bxe.h:1590
#define DMAE_CMD_ENDIANITY_B_DW_SWAP
Definition: bxe.h:1978
#define VNICS_PER_PATH(sc)
Definition: bxe.h:1045
#define IS_MF_SD(sc)
Definition: bxe.h:1081
#define PAGES_PER_SGE
Definition: bxe.h:257
#define QM_CID_ROUND
Definition: bxe.h:721
#define ADVERTISED_10baseT_Half
Definition: bxe.h:1001
#define RX_SGE_TOTAL
Definition: bxe.h:211
#define ONCHIP_ADDR1(x)
Definition: bxe.h:433
#define BXE_DCBX_ENABLED_INVALID
Definition: bxe.h:1739
#define DMAE_CMD_ENDIANITY_DW_SWAP
Definition: bxe.h:1977
#define GPIO_2_FUNC
Definition: bxe.h:2010
#define HC_INDEX_ETH_TX_CQ_CONS_COS1
Definition: bxe.h:759
#define RX_SGE_NEXT(x)
Definition: bxe.h:216
#define BXE_MC_ASSERT_BITS
Definition: bxe.h:2032
#define BXE_RECOVERY_WAIT
Definition: bxe.h:1499
#define BXE_TSO_MAX_SIZE
Definition: bxe.h:190
#define bxe_panic(sc, msg)
Definition: bxe.h:2260
static int func_by_vn(struct bxe_softc *sc, int vn)
Definition: bxe.h:2423
#define MFCFG_WR(sc, field, val)
Definition: bxe.h:1945
#define BXE_CORE_TRYLOCK(sc)
Definition: bxe.h:1434
#define ADVERTISED_2500baseX_Full
Definition: bxe.h:1012
#define RX_BD_NUM_PAGES
Definition: bxe.h:293
#define CHIP_IS_E3(sc)
Definition: bxe.h:1192
static uint32_t reg_poll(struct bxe_softc *sc, uint32_t reg, uint32_t expected, int ms, int wait)
Definition: bxe.h:2281
#define PCI_PM_D3hot
Definition: bxe.h:2087
#define CQE_CMD(x)
Definition: bxe.h:2068
#define DMAE_TIMEOUT
Definition: bxe.h:1949
#define BXE_ERR_PARITY
Definition: bxe.h:1505
#define UNLOAD_NORMAL
Definition: bxe.h:404
#define REG_RD(sc, offset)
Definition: bxe.h:1874
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS
Definition: bxe.h:761
#define BXE_FP_STATE_IRQ
Definition: bxe.h:612
#define CHIP_NUM_57711
Definition: bxe.h:1120
#define UNLOAD_CLOSE
Definition: bxe.h:405
#define INIT_DMAE_C(sc)
Definition: bxe.h:1998
#define BLOGE(sc, format, args...)
Definition: bxe.h:2235
#define BLOGD(sc, codepath, format, args...)
Definition: bxe.h:2188
#define BXE_SWCID_MASK
Definition: bxe.h:2065
#define CQE_TYPE_STOP(cqe_type)
Definition: bxe.h:2072
@ BXE_LINK_REPORT_FULL_DUPLEX
Definition: bxe.h:1300
@ BXE_LINK_REPORT_LINK_DOWN
Definition: bxe.h:1301
@ BXE_LINK_REPORT_TX_FC_ON
Definition: bxe.h:1303
@ BXE_LINK_REPORT_RX_FC_ON
Definition: bxe.h:1302
#define CQE_TYPE(cqe_fp_flags)
Definition: bxe.h:2070
#define BXE_DMAE_LOCK(sc)
Definition: bxe.h:1449
#define HC_SEG_ACCESS_DEF
Definition: bxe.h:785
#define MF_PROTO_SUPPORT_ETHERNET
Definition: bxe.h:1095
#define ETH_HLEN
Definition: bxe.h:437
#define BXE_VALID_FLOWID(m)
Definition: bxe.h:2274
#define CHIP_NUM_57840_4_10
Definition: bxe.h:1136
#define CHIP_NUM_57800
Definition: bxe.h:1125
#define BXE_MF_FUNC_DIS
Definition: bxe.h:1341
#define CHIP_TQ_REINIT
Definition: bxe.h:1362
#define BXE_NOMCP(sc)
Definition: bxe.h:1339
#define BXE_SP_LOCK(sc)
Definition: bxe.h:1445
#define DBG_IOCTL
Definition: bxe.h:2171
#define DIV_ROUND_UP(n, d)
Definition: bxe.h:127
#define CNIC_ILT_LINES
Definition: bxe.h:717
#define BXE_RECOVERY_DONE
Definition: bxe.h:1497
#define BXE_PHY_UNLOCK(sc)
Definition: bxe.h:1022
#define IS_MF_AFEX(sc)
Definition: bxe.h:1087
#define ADVERTISED_TP
Definition: bxe.h:1007
#define DMAE_CMD_PORT_0
Definition: bxe.h:1980
#define RX_SGE_NUM_PAGES
Definition: bxe.h:206
#define REG_WR(sc, offset, val)
Definition: bxe.h:1875
#define CHIP_IS_57810_MF(sc)
Definition: bxe.h:1180
#define LOAD_LOOPBACK_EXT
Definition: bxe.h:403
#define REG_WR8(sc, offset, val)
Definition: bxe.h:1842
#define ATTN_SW_TIMER_4_FUNC
Definition: bxe.h:2009
#define roundup(x, y)
Definition: bxe.h:130
#define TPA_AGG_SIZE
Definition: bxe.h:262
#define BXE_TPA_STATE_START
Definition: bxe.h:530
#define HC_SP_INDEX_EQ_CONS
Definition: bxe.h:1569
#define ADVERTISED_Asym_Pause
Definition: bxe.h:1010
#define TX_BD_USABLE
Definition: bxe.h:272
#define bxe_fwd_sp_obj(sc, var)
Definition: bxe.h:860
#define SHMEM_RD(sc, field)
Definition: bxe.h:1929
#define CHIP_NUM_57800_MF
Definition: bxe.h:1126
#define CQE_TYPE_SLOW(cqe_type)
Definition: bxe.h:2073
#define CQE_TYPE_FAST(cqe_type)
Definition: bxe.h:2074
#define BXE_FIRST_VF_CID
Definition: bxe.h:692
#define BXE_SET_FLOWID(m)
Definition: bxe.h:2273
#define BXE_L2_CID_COUNT(sc)
Definition: bxe.h:1674
#define BXE_FP_RX_UNLOCK(fp)
Definition: bxe.h:557
#define RX_SGE_USABLE_PER_PAGE
Definition: bxe.h:209
#define ETH_MIN_PACKET_SIZE
Definition: bxe.h:439
#define INTR_MODE_MSI
Definition: bxe.h:1538
#define REG_WR_DMAE(sc, offset, valp, len32)
Definition: bxe.h:1893
#define REG_RD_DMAE(sc, offset, valp, len32)
Definition: bxe.h:1887
#define CHIP_NUM_57840_2_20
Definition: bxe.h:1137
#define DMAE_COMP_PCI
Definition: bxe.h:1961
#define FUNC_FLG_TPA
Definition: bxe.h:1803
#define QLOGIC_VENDORID
Definition: bxe.h:146
#define BXE_MCP_ASSERT
Definition: bxe.h:2038
#define PORT_TP
Definition: bxe.h:2102
#define BXE_STATE_OPENING_WAITING_PORT
Definition: bxe.h:1319
#define CHIP_NUM_57810_MF
Definition: bxe.h:1129
#define NVRAM_PAGE_SIZE
Definition: bxe.h:1264
#define BXE_IGU_STAS_MSG_VF_CNT
Definition: bxe.h:893
void bxe_dcbx_init_params(struct bxe_softc *sc)
#define BXE_IS_ETS_ENABLED(sc)
Definition: bxe_dcb.h:82
#define SET_FLAGS(flags, bits)
Definition: bxe_dcb.h:200
#define RESET_FLAGS(flags, bits)
Definition: bxe_dcb.h:201
#define DUMP_PATH_0
Definition: bxe_dump.h:46
static const uint32_t page_vals_e3[]
Definition: bxe_dump.h:87
static const struct wreg_addr wreg_addr_e3
Definition: bxe_dump.h:2210
static const struct wreg_addr wreg_addr_e3b0
Definition: bxe_dump.h:2216
#define DUMP_CHIP_E1
Definition: bxe_dump.h:41
static const struct reg_addr page_read_regs_e3[]
Definition: bxe_dump.h:89
static const struct reg_addr page_read_regs_e2[]
Definition: bxe_dump.h:80
static const uint32_t page_vals_e2[]
Definition: bxe_dump.h:78
#define PAGE_MODE_VALUES_E2
Definition: bxe_dump.h:75
static const struct reg_addr reg_addrs[]
Definition: bxe_dump.h:93
static const struct wreg_addr wreg_addr_e1
Definition: bxe_dump.h:2192
#define PAGE_MODE_VALUES_E3
Definition: bxe_dump.h:84
#define IDLE_REGS_COUNT
Definition: bxe_dump.h:2187
static const uint32_t page_write_regs_e2[]
Definition: bxe_dump.h:79
#define DUMP_PATH_1
Definition: bxe_dump.h:47
#define PAGE_WRITE_REGS_E3
Definition: bxe_dump.h:86
static const unsigned int dump_num_registers[NUM_CHIPS][NUM_PRESETS]
Definition: bxe_dump.h:2219
static const struct wreg_addr wreg_addr_e2
Definition: bxe_dump.h:2204
#define BNX2X_DUMP_VERSION
Definition: bxe_dump.h:58
#define REGS_COUNT
Definition: bxe_dump.h:1912
#define DUMP_CHIP_E1H
Definition: bxe_dump.h:42
static const uint32_t page_write_regs_e3[]
Definition: bxe_dump.h:88
#define PAGE_WRITE_REGS_E2
Definition: bxe_dump.h:77
static const struct wreg_addr wreg_addr_e1h
Definition: bxe_dump.h:2198
static const struct reg_addr idle_reg_addrs[]
Definition: bxe_dump.h:1914
#define DUMP_CHIP_E3B0
Definition: bxe_dump.h:45
#define PAGE_READ_REGS_E3
Definition: bxe_dump.h:85
#define PAGE_READ_REGS_E2
Definition: bxe_dump.h:76
#define DUMP_CHIP_E2
Definition: bxe_dump.h:43
#define DUMP_CHIP_E3A0
Definition: bxe_dump.h:44
#define BXE_WRITE_PCICFG
Definition: bxe_ioctl.h:111
#define BXE_DRV_NAME_LENGTH
Definition: bxe_ioctl.h:45
#define BXE_MFW_VERSION_LENGTH
Definition: bxe_ioctl.h:47
#define BXE_BUS_INFO_LENGTH
Definition: bxe_ioctl.h:49
#define BXE_GRC_DUMP_SIZE
Definition: bxe_ioctl.h:129
#define BXE_WRITE_REG_CMD
Definition: bxe_ioctl.h:97
#define BXE_REG_ACCESS_DIRECT
Definition: bxe_ioctl.h:102
#define BXE_EEPROM_CMD_GET_EEPROM
Definition: bxe_ioctl.h:85
#define BXE_READ_REG_CMD
Definition: bxe_ioctl.h:96
#define BXE_STORMFW_VERSION_LENGTH
Definition: bxe_ioctl.h:48
#define BXE_GET_REGS
Definition: bxe_ioctl.h:149
#define BXE_GRC_DUMP
Definition: bxe_ioctl.h:134
#define BXE_DEV_SETTING
Definition: bxe_ioctl.h:144
#define BXE_DRV_INFO
Definition: bxe_ioctl.h:139
#define BXE_RDW_REG
Definition: bxe_ioctl.h:159
#define BXE_MAC_ADDR
Definition: bxe_ioctl.h:170
#define BXE_DRV_VERSION_LENGTH
Definition: bxe_ioctl.h:46
#define BXE_EEPROM
Definition: bxe_ioctl.h:154
#define BXE_EEPROM_CMD_SET_EEPROM
Definition: bxe_ioctl.h:84
#define BXE_READ_PCICFG
Definition: bxe_ioctl.h:110
#define BXE_EEPROM_MAX_DATA_LEN
Definition: bxe_ioctl.h:80
#define BXE_RDW_PCICFG
Definition: bxe_ioctl.h:164
void bxe_save_statistics(struct bxe_softc *sc)
Definition: bxe_stats.c:1680
uint64_t bxe_get_counter(if_t ifp, ift_counter cnt)
Definition: bxe_stats.c:1182
void bxe_stats_init(struct bxe_softc *sc)
Definition: bxe_stats.c:1596
void bxe_stats_handle(struct bxe_softc *sc, enum bxe_stats_event event)
Definition: bxe_stats.c:1453
@ STATS_EVENT_LINK_UP
Definition: bxe_stats.h:61
@ STATS_EVENT_UPDATE
Definition: bxe_stats.h:62
@ STATS_EVENT_STOP
Definition: bxe_stats.h:63
@ STATS_EVENT_PMF
Definition: bxe_stats.h:60
#define TSTORM_ASSERT_LIST_INDEX_OFFSET
#define CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(sbId)
Definition: ecore_fw_defs.h:97
#define XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE
#define CSTORM_SP_SYNC_BLOCK_OFFSET(pfId)
Definition: ecore_fw_defs.h:90
#define CSTORM_SYNC_BLOCK_SIZE
#define TSTORM_ASSERT_LIST_OFFSET(assertListEntry)
#define XSTORM_SPQ_PAGE_BASE_OFFSET(funcId)
#define CSTORM_STATUS_BLOCK_DATA_OFFSET(sbId)
Definition: ecore_fw_defs.h:95
#define ETH_MAX_RX_CLIENTS_E1H
#define CSTORM_STATUS_BLOCK_SIZE
#define CSTORM_RECORD_SLOW_PATH_OFFSET(funcId)
Definition: ecore_fw_defs.h:81
#define USTORM_VF_TO_PF_OFFSET(funcId)
#define TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(pfId)
#define CSTORM_SP_STATUS_BLOCK_OFFSET(pfId)
Definition: ecore_fw_defs.h:87
#define USTORM_AGG_DATA_OFFSET
#define TSTORM_VF_TO_PF_OFFSET(funcId)
#define TSTORM_FUNC_EN_OFFSET(funcId)
#define TSTORM_RECORD_SLOW_PATH_OFFSET(funcId)
#define CSTORM_EVENT_RING_DATA_OFFSET(pfId)
Definition: ecore_fw_defs.h:39
#define XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(pfId)
#define XSTORM_FUNC_EN_OFFSET(funcId)
#define CSTORM_SP_SYNC_BLOCK_SIZE
Definition: ecore_fw_defs.h:92
#define XSTORM_CMNG_PER_PORT_VARS_OFFSET(portId)
#define CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(sbId, hcIndex)
Definition: ecore_fw_defs.h:93
#define XSTORM_SPQ_DATA_SIZE
#define STATS_QUERY_CMD_COUNT
#define CSTORM_STATUS_BLOCK_OFFSET(sbId)
#define CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(sbId, hcIndex)
Definition: ecore_fw_defs.h:99
#define COMMON_ASM_INVALID_ASSERT_OPCODE
#define XSTORM_RECORD_SLOW_PATH_OFFSET(funcId)
#define CSTORM_ASSERT_LIST_OFFSET(assertListEntry)
Definition: ecore_fw_defs.h:37
#define USTORM_RX_PRODS_E2_OFFSET(qzoneId)
#define IP_HEADER_ALIGNMENT_PADDING
#define USTORM_RECORD_SLOW_PATH_OFFSET(funcId)
#define USTORM_RX_PRODS_E1X_OFFSET(portId, clientId)
#define USTORM_FUNC_EN_OFFSET(funcId)
#define USTORM_ASSERT_LIST_INDEX_OFFSET
#define CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(funcId)
Definition: ecore_fw_defs.h:45
#define CSTORM_SYNC_BLOCK_OFFSET(sbId)
#define CSTORM_EVENT_RING_PROD_OFFSET(pfId)
Definition: ecore_fw_defs.h:42
#define XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(pfId)
#define CSTORM_FUNC_EN_OFFSET(funcId)
Definition: ecore_fw_defs.h:47
#define CSTORM_VF_TO_PF_OFFSET(funcId)
#define USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(pfId)
#define CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(pfId)
Definition: ecore_fw_defs.h:85
#define XSTORM_ASSERT_LIST_INDEX_OFFSET
#define USTORM_ETH_PAUSE_ENABLED_OFFSET(portId)
#define CSTORM_SP_STATUS_BLOCK_SIZE
Definition: ecore_fw_defs.h:89
#define XSTORM_VF_TO_PF_OFFSET(funcId)
#define XSTORM_SPQ_PROD_OFFSET(funcId)
#define USTORM_ASSERT_LIST_OFFSET(assertListEntry)
#define CSTORM_IGU_MODE_OFFSET
Definition: ecore_fw_defs.h:54
#define USTORM_AGG_DATA_SIZE
#define XSTORM_SPQ_DATA_OFFSET(funcId)
#define CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(pfId)
Definition: ecore_fw_defs.h:83
#define CSTORM_ASSERT_LIST_INDEX_OFFSET
Definition: ecore_fw_defs.h:36
#define XSTORM_AGG_INT_FINAL_CLEANUP_INDEX
#define XSTORM_ASSERT_LIST_OFFSET(assertListEntry)
#define ETH_TX_BD_FLAGS_L4_CSUM
Definition: ecore_hsi.h:7568
#define DRV_STATUS_EEE_NEGOTIATION_RESULTS
Definition: ecore_hsi.h:1903
#define SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED
Definition: ecore_hsi.h:885
#define DRV_STATUS_DRV_INFO_REQ
Definition: ecore_hsi.h:1901
#define ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
Definition: ecore_hsi.h:7657
#define BCM_5710_FW_REVISION_VERSION
Definition: ecore_hsi.h:3545
#define DRV_MSG_CODE_DRV_INFO_ACK
Definition: ecore_hsi.h:1720
#define DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET
Definition: ecore_hsi.h:1756
#define ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG
Definition: ecore_hsi.h:7047
#define FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK
Definition: ecore_hsi.h:2006
#define DRV_MSG_CODE_EEE_RESULTS_ACK
Definition: ecore_hsi.h:1723
#define FUNC_MF_CFG_FUNC_DISABLED
Definition: ecore_hsi.h:1964
#define IGU_CTRL_REG_ADDRESS_SHIFT
Definition: ecore_hsi.h:4046
#define PORT_HW_CFG_PHY_SELECTION_SECOND_PHY
Definition: ecore_hsi.h:729
#define FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT
Definition: ecore_hsi.h:2010
#define SPE_HDR_T_CONN_TYPE
Definition: ecore_hsi.h:7445
#define FUNC_MF_CFG_AFEX_VLAN_MASK
Definition: ecore_hsi.h:2000
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_1G
Definition: ecore_hsi.h:859
#define ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG
Definition: ecore_hsi.h:7064
#define ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT
Definition: ecore_hsi.h:7663
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL
Definition: ecore_hsi.h:858
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF
Definition: ecore_hsi.h:856
#define BCM_5710_FW_MINOR_VERSION
Definition: ecore_hsi.h:3544
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_20G
Definition: ecore_hsi.h:862
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL
Definition: ecore_hsi.h:855
#define DRV_STATUS_SET_MF_BW
Definition: ecore_hsi.h:1875
#define ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE
Definition: ecore_hsi.h:7664
#define DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
Definition: ecore_hsi.h:1676
#define MCP_PULSE_SEQ_MASK
Definition: ecore_hsi.h:1862
#define SHR_MEM_VALIDITY_MB
Definition: ecore_hsi.h:2080
#define PORT_HW_CFG_PHY_SELECTION_FIRST_PHY
Definition: ecore_hsi.h:728
#define PORT_FEATURE_LINK_SPEED_10M_FULL
Definition: ecore_hsi.h:1125
#define MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD
Definition: ecore_hsi.h:2031
#define FUNC_MF_CFG_UPPERMAC_DEFAULT
Definition: ecore_hsi.h:1990
#define PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT
Definition: ecore_hsi.h:727
#define DRV_FLAGS_CAPABILITIES_LOADED_L2
Definition: ecore_hsi.h:2700
#define FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT
Definition: ecore_hsi.h:2005
@ RAMROD_CMD_ID_ETH_CLIENT_SETUP
Definition: ecore_hsi.h:7484
@ RAMROD_CMD_ID_ETH_FILTER_RULES
Definition: ecore_hsi.h:7493
@ RAMROD_CMD_ID_ETH_CLIENT_UPDATE
Definition: ecore_hsi.h:7488
@ RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
Definition: ecore_hsi.h:7487
@ RAMROD_CMD_ID_ETH_MULTICAST_RULES
Definition: ecore_hsi.h:7494
@ RAMROD_CMD_ID_ETH_EMPTY
Definition: ecore_hsi.h:7489
@ RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
Definition: ecore_hsi.h:7492
@ RAMROD_CMD_ID_ETH_FORWARD_SETUP
Definition: ecore_hsi.h:7486
@ RAMROD_CMD_ID_ETH_HALT
Definition: ecore_hsi.h:7485
@ RAMROD_CMD_ID_ETH_SET_MAC
Definition: ecore_hsi.h:7496
@ RAMROD_CMD_ID_ETH_TERMINATE
Definition: ecore_hsi.h:7490
@ RAMROD_CMD_ID_ETH_RSS_UPDATE
Definition: ecore_hsi.h:7495
#define DRV_MSG_CODE_LOAD_REQ
Definition: ecore_hsi.h:1672
#define DMAE_CMD_DST_RESET
Definition: ecore_hsi.h:3755
#define PORT_FEATURE_FLOW_CONTROL_SHIFT
Definition: ecore_hsi.h:1111
#define ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
Definition: ecore_hsi.h:7571
#define FUNC_MF_CFG_FUNC_HIDE
Definition: ecore_hsi.h:1954
#define DMAE_CMD_C_TYPE_ENABLE
Definition: ecore_hsi.h:3741
#define ETH_TX_BD_FLAGS_IPV6
Definition: ecore_hsi.h:7578
#define PORT_FEATURE_LINK_SPEED_10M_HALF
Definition: ecore_hsi.h:1124
#define ETH_TX_BD_FLAGS_START_BD
Definition: ecore_hsi.h:7572
#define IGU_CTRL_REG_FID_SHIFT
Definition: ecore_hsi.h:4048
#define PORT_FEATURE_LINK_SPEED_100M_HALF
Definition: ecore_hsi.h:1126
#define DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
Definition: ecore_hsi.h:1675
#define SHARED_FEAT_CFG_FORCE_SF_MODE_MASK
Definition: ecore_hsi.h:897
#define PORT_FEAT_CFG_EEE_POWER_MODE_MASK
Definition: ecore_hsi.h:1158
#define PORT_FEATURE_LINK_SPEED_1G
Definition: ecore_hsi.h:1128
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF
Definition: ecore_hsi.h:857
#define DOORBELL_HDR_T_DB_TYPE
Definition: ecore_hsi.h:3839
#define REQ_BC_VER_4_INITIATE_FLR
Definition: ecore_hsi.h:1735
#define DRV_INFO_CONTROL_VER_MASK
Definition: ecore_hsi.h:2719
#define FUNC_MF_CFG_PROTOCOL_MASK
Definition: ecore_hsi.h:1956
#define IGU_REGULAR_BCLEANUP
Definition: ecore_hsi.h:4014
@ IGU_SEG_ACCESS_DEF
Definition: ecore_hsi.h:4076
@ IGU_SEG_ACCESS_NORM
Definition: ecore_hsi.h:4075
#define FW_MSG_CODE_DRV_LOAD_PORT
Definition: ecore_hsi.h:1774
#define SPE_HDR_T_CONN_TYPE_SHIFT
Definition: ecore_hsi.h:7446
#define SHARED_HW_CFG_FAN_FAILURE_ENABLED
Definition: ecore_hsi.h:252
#define DRV_MSG_CODE_DCC_FAILURE
Definition: ecore_hsi.h:1679
#define FW_MSG_CODE_DRV_LOAD_COMMON
Definition: ecore_hsi.h:1773
#define DRV_INFO_CONTROL_OP_CODE_SHIFT
Definition: ecore_hsi.h:2722
#define ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
Definition: ecore_hsi.h:7656
@ MULTI_FUNCTION_SD
Definition: ecore_hsi.h:12004
@ MULTI_FUNCTION_SI
Definition: ecore_hsi.h:12005
@ SINGLE_FUNCTION
Definition: ecore_hsi.h:12003
@ MULTI_FUNCTION_AFEX
Definition: ecore_hsi.h:12006
@ USTORM_ID
Definition: ecore_hsi.h:12261
@ XSTORM_ID
Definition: ecore_hsi.h:12263
@ TSTORM_ID
Definition: ecore_hsi.h:12264
@ ATTENTION_ID
Definition: ecore_hsi.h:12265
@ CSTORM_ID
Definition: ecore_hsi.h:12262
#define E1H_FUNC_MAX
Definition: ecore_hsi.h:1561
#define LINK_STATUS_SERDES_LINK
Definition: ecore_hsi.h:1646
#define SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4
Definition: ecore_hsi.h:901
#define SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT
Definition: ecore_hsi.h:902
@ HC_IGU_BC_MODE
Definition: ecore_hsi.h:11949
@ HC_IGU_NBC_MODE
Definition: ecore_hsi.h:11950
#define IGU_REGULAR_CLEANUP_TYPE_SHIFT
Definition: ecore_hsi.h:4011
#define ETH_TX_BD_FLAGS_IP_CSUM
Definition: ecore_hsi.h:7566
#define PORT_FEAT_CFG_AUTOGREEEN_ENABLED
Definition: ecore_hsi.h:982
#define FUNC_MF_CFG_AFEX_COS_FILTER_MASK
Definition: ecore_hsi.h:2004
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G
Definition: ecore_hsi.h:860
#define DMAE_CMD_SRC_RESET
Definition: ecore_hsi.h:3753
#define E1HVN_MAX
Definition: ecore_hsi.h:1569
#define FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
Definition: ecore_hsi.h:1778
#define DRV_FLAGS_PORT_MASK
Definition: ecore_hsi.h:2669
#define ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE
Definition: ecore_hsi.h:7614
#define PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT
Definition: ecore_hsi.h:1159
#define PORT_FEATURE_LINK_SPEED_20G
Definition: ecore_hsi.h:1131
#define SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE
Definition: ecore_hsi.h:250
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT
Definition: ecore_hsi.h:807
#define FUNC_MF_CFG_AFEX_VLAN_MODE_MASK
Definition: ecore_hsi.h:2009
#define SHARED_HW_CFG_LED_MODE_SHIFT
Definition: ecore_hsi.h:189
#define ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT
Definition: ecore_hsi.h:7619
#define SHARED_HW_CFG_LED_MODE_MASK
Definition: ecore_hsi.h:188
#define PORT_FEATURE_LINK_SPEED_MASK
Definition: ecore_hsi.h:1121
#define DRV_MSG_CODE_LOAD_REQ_WITH_LFA
Definition: ecore_hsi.h:1758
@ IGU_INT_NOP
Definition: ecore_hsi.h:4065
@ IGU_INT_ENABLE
Definition: ecore_hsi.h:4063
@ IGU_INT_DISABLE
Definition: ecore_hsi.h:4064
#define DRV_STATUS_DCC_EVENT_MASK
Definition: ecore_hsi.h:1885
@ FW_WRR
Definition: ecore_hsi.h:11351
@ STATIC_COS
Definition: ecore_hsi.h:11350
#define ETH_FAST_PATH_RX_CQE_TYPE
Definition: ecore_hsi.h:7039
#define SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED
Definition: ecore_hsi.h:899
#define MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
Definition: ecore_hsi.h:2032
#define PORT_FEATURE_LINK_SPEED_2_5G
Definition: ecore_hsi.h:1129
@ EVENT_RING_OPCODE_START_TRAFFIC
Definition: ecore_hsi.h:11643
@ EVENT_RING_OPCODE_FUNCTION_START
Definition: ecore_hsi.h:11637
@ EVENT_RING_OPCODE_CFC_DEL
Definition: ecore_hsi.h:11639
@ EVENT_RING_OPCODE_SET_MAC
Definition: ecore_hsi.h:11650
@ EVENT_RING_OPCODE_FILTERS_RULES
Definition: ecore_hsi.h:11652
@ EVENT_RING_OPCODE_FUNCTION_STOP
Definition: ecore_hsi.h:11638
@ EVENT_RING_OPCODE_MULTICAST_RULES
Definition: ecore_hsi.h:11653
@ EVENT_RING_OPCODE_RSS_UPDATE_RULES
Definition: ecore_hsi.h:11647
@ EVENT_RING_OPCODE_FUNCTION_UPDATE
Definition: ecore_hsi.h:11648
@ EVENT_RING_OPCODE_STAT_QUERY
Definition: ecore_hsi.h:11641
@ EVENT_RING_OPCODE_CLASSIFICATION_RULES
Definition: ecore_hsi.h:11651
@ EVENT_RING_OPCODE_FORWARD_SETUP
Definition: ecore_hsi.h:11646
@ EVENT_RING_OPCODE_STOP_TRAFFIC
Definition: ecore_hsi.h:11642
#define DRV_MSG_CODE_LOAD_DONE
Definition: ecore_hsi.h:1673
#define DRV_PULSE_SEQ_MASK
Definition: ecore_hsi.h:1848
#define DMAE_CMD_DST_SHIFT
Definition: ecore_hsi.h:3738
#define DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
Definition: ecore_hsi.h:1887
@ LLFC_TRAFFIC_TYPE_NW
Definition: ecore_hsi.h:12274
#define FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT
Definition: ecore_hsi.h:2007
#define FW_MSG_SEQ_NUMBER_MASK
Definition: ecore_hsi.h:1841
#define SPE_HDR_T_FUNCTION_ID
Definition: ecore_hsi.h:7447
#define PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY
Definition: ecore_hsi.h:731
#define SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT
Definition: ecore_hsi.h:4201
#define PORT_FEATURE_LINK_SPEED_100M_FULL
Definition: ecore_hsi.h:1127
#define SPE_HDR_T_CMD_ID_SHIFT
Definition: ecore_hsi.h:7443
#define DRV_PULSE_ALWAYS_ALIVE
Definition: ecore_hsi.h:1854
#define FUNC_MF_CFG_E1HOV_TAG_MASK
Definition: ecore_hsi.h:1995
#define E2_FUNC_MAX
Definition: ecore_hsi.h:1562
#define LINK_STATUS_LINK_UP
Definition: ecore_hsi.h:1600
#define FUNC_MF_CFG_E1HOV_TAG_DEFAULT
Definition: ecore_hsi.h:1997
#define FW_MSG_CODE_DRV_UNLOAD_COMMON
Definition: ecore_hsi.h:1782
#define ETH_TX_START_BD_HDR_NBDS_SHIFT
Definition: ecore_hsi.h:7595
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833
Definition: ecore_hsi.h:820
#define VN_0
Definition: ecore_hsi.h:1564
#define SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE
Definition: ecore_hsi.h:903
#define PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED
Definition: ecore_hsi.h:1160
#define CMNG_FLAGS_PER_PORT_FAIRNESS_VN
Definition: ecore_hsi.h:11179
#define PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY
Definition: ecore_hsi.h:730
#define DRV_MSG_CODE_INITIATE_FLR
Definition: ecore_hsi.h:1734
#define ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
Definition: ecore_hsi.h:7043
#define SHR_MEM_VALIDITY_DEV_INFO
Definition: ecore_hsi.h:2081
#define PARSING_FLAGS_INNER_VLAN_EXIST
Definition: ecore_hsi.h:4118
#define SHARED_HW_CFG_FAN_FAILURE_MASK
Definition: ecore_hsi.h:248
#define ETH_TX_PARSE_BD_E2_LSO_MSS
Definition: ecore_hsi.h:7662
#define ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN
Definition: ecore_hsi.h:7616
#define FUNC_MF_CFG_MAX_BW_MASK
Definition: ecore_hsi.h:1983
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK
Definition: ecore_hsi.h:805
#define DMAE_CMD_E1HVN_SHIFT
Definition: ecore_hsi.h:3758
#define IGU_CTRL_REG_TYPE_SHIFT
Definition: ecore_hsi.h:4052
#define FUNC_MF_CFG_AFEX_VLAN_SHIFT
Definition: ecore_hsi.h:2001
#define MACP_FUNC_CFG_FLAGS_MASK
Definition: ecore_hsi.h:2027
eth_rx_cqe_type
Definition: ecore_hsi.h:7406
#define FUNC_MF_CFG_MIN_BW_MASK
Definition: ecore_hsi.h:1980
#define CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN
Definition: ecore_hsi.h:11181
#define DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED
Definition: ecore_hsi.h:2699
#define FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT
Definition: ecore_hsi.h:1975
#define BCM_5710_FW_ENGINEERING_VERSION
Definition: ecore_hsi.h:3546
#define ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
Definition: ecore_hsi.h:7659
#define IGU_REGULAR_CLEANUP_SET
Definition: ecore_hsi.h:4012
#define FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK
Definition: ecore_hsi.h:1974
#define DRV_MSG_CODE_SET_MF_BW_ACK
Definition: ecore_hsi.h:1730
#define FW_MSG_CODE_DRV_LOAD_REFUSED
Definition: ecore_hsi.h:1780
#define DRV_STATUS_DCC_DISABLE_ENABLE_PF
Definition: ecore_hsi.h:1886
@ SB_DISABLED
Definition: ecore_hsi.h:12250
@ SB_ENABLED
Definition: ecore_hsi.h:12251
#define PORT_HW_CFG_PHY_SWAPPED_ENABLED
Definition: ecore_hsi.h:738
#define PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
Definition: ecore_hsi.h:861
#define FUNC_MF_CFG_PROTOCOL_ISCSI
Definition: ecore_hsi.h:1960
#define DMAE_CMD_ERR_POLICY_SHIFT
Definition: ecore_hsi.h:3764
#define FW_MSG_CODE_MASK
Definition: ecore_hsi.h:1772
#define DRV_MSG_SEQ_NUMBER_MASK
Definition: ecore_hsi.h:1747
#define MACP_FUNC_CFG_FLAGS_ENABLED
Definition: ecore_hsi.h:2029
#define ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
Definition: ecore_hsi.h:7658
@ X_ETH_OUTBAND_VLAN
Definition: ecore_hsi.h:7757
@ NONE_CONNECTION_TYPE
Definition: ecore_hsi.h:11340
@ ETH_CONNECTION_TYPE
Definition: ecore_hsi.h:11332
#define PORT_FEATURE_LINK_SPEED_AUTO
Definition: ecore_hsi.h:1123
#define BCM_5710_FW_MAJOR_VERSION
Definition: ecore_hsi.h:3543
@ IGU_CTRL_CMD_TYPE_WR
Definition: ecore_hsi.h:4035
#define MACP_FUNC_CFG_FLAGS_ETHERNET
Definition: ecore_hsi.h:2030
#define LINK_STATUS_SPEED_AND_DUPLEX_10GTFD
Definition: ecore_hsi.h:1614
#define DRV_STATUS_PMF
Definition: ecore_hsi.h:1873
#define DRV_INFO_CONTROL_OP_CODE_MASK
Definition: ecore_hsi.h:2721
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN
Definition: ecore_hsi.h:828
@ UNICAST_ADDRESS
Definition: ecore_hsi.h:6830
@ BROADCAST_ADDRESS
Definition: ecore_hsi.h:6832
@ MULTICAST_ADDRESS
Definition: ecore_hsi.h:6831
#define SHMEM_MF_CFG_ADDR_NONE
Definition: ecore_hsi.h:2589
#define DMAE_CMD_SRC_SHIFT
Definition: ecore_hsi.h:3736
#define PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
Definition: ecore_hsi.h:827
#define ETH_TX_START_BD_HDR_NBDS
Definition: ecore_hsi.h:7594
#define ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG
Definition: ecore_hsi.h:7045
#define FW_MSG_CODE_DRV_UNLOAD_PORT
Definition: ecore_hsi.h:1783
#define FW_MSG_CODE_DRV_UNLOAD_FUNCTION
Definition: ecore_hsi.h:1784
#define LINK_STATUS_SPEED_AND_DUPLEX_1000TFD
Definition: ecore_hsi.h:1609
#define FW_MSG_CODE_DRV_LOAD_FUNCTION
Definition: ecore_hsi.h:1775
#define FUNC_MF_CFG_MIN_BW_SHIFT
Definition: ecore_hsi.h:1981
#define DMAE_CMD_C_DST_SHIFT
Definition: ecore_hsi.h:3740
#define ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG
Definition: ecore_hsi.h:7062
#define FUNC_MF_CFG_MAX_BW_SHIFT
Definition: ecore_hsi.h:1984
#define ETH_TX_BD_FLAGS_SW_LSO
Definition: ecore_hsi.h:7576
#define PORT_FEATURE_LINK_SPEED_10G_CX4
Definition: ecore_hsi.h:1130
#define FUNC_MF_CFG_E1HOV_TAG_SHIFT
Definition: ecore_hsi.h:1996
#define PORT_FEATURE_FLOW_CONTROL_MASK
Definition: ecore_hsi.h:1110
#define PORT_FEATURE_CONNECTED_SWITCH_MASK
Definition: ecore_hsi.h:1133
#define SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF
Definition: ecore_hsi.h:900
#define DRV_MSG_CODE_DCC_OK
Definition: ecore_hsi.h:1678
#define FUNC_MF_CFG_PROTOCOL_FCOE
Definition: ecore_hsi.h:1957
#define DRV_MSG_CODE_UNLOAD_DONE
Definition: ecore_hsi.h:1677
#define SPE_HDR_T_FUNCTION_ID_SHIFT
Definition: ecore_hsi.h:7448
#define DRV_MSG_CODE_DRV_INFO_NACK
Definition: ecore_hsi.h:1721
#define DMAE_CMD_DST_VN_SHIFT
Definition: ecore_hsi.h:3760
#define ETH_TX_BD_FLAGS_IS_UDP
Definition: ecore_hsi.h:7574
#define MISC_AEU_ENABLE_MCP_PRTY_BITS
Definition: ecore_init.h:720
#define ILT_CLIENT_CDU
Definition: ecore_init.h:593
#define ILT_CLIENT_SKIP_MEM
Definition: ecore_init.h:586
@ BLOCK_CDU
Definition: ecore_init.h:177
@ BLOCK_CFC
Definition: ecore_init.h:178
@ BLOCK_PXP
Definition: ecore_init.h:192
@ BLOCK_PXP2
Definition: ecore_init.h:191
@ BLOCK_XSDM
Definition: ecore_init.h:205
@ BLOCK_MISC
Definition: ecore_init.h:186
@ BLOCK_CCM
Definition: ecore_init.h:176
@ BLOCK_TM
Definition: ecore_init.h:196
@ BLOCK_NIG
Definition: ecore_init.h:187
@ BLOCK_QM
Definition: ecore_init.h:193
@ BLOCK_BRB1
Definition: ecore_init.h:175
@ BLOCK_IGU
Definition: ecore_init.h:185
@ BLOCK_CSDM
Definition: ecore_init.h:179
@ BLOCK_XCM
Definition: ecore_init.h:203
@ BLOCK_DORQ
Definition: ecore_init.h:183
@ BLOCK_DMAE
Definition: ecore_init.h:182
@ BLOCK_XSEM
Definition: ecore_init.h:206
@ BLOCK_PBF
Definition: ecore_init.h:188
@ BLOCK_PGLUE_B
Definition: ecore_init.h:189
@ BLOCK_USDM
Definition: ecore_init.h:201
@ BLOCK_TSDM
Definition: ecore_init.h:197
@ BLOCK_TCM
Definition: ecore_init.h:195
@ BLOCK_HC
Definition: ecore_init.h:184
@ BLOCK_ATC
Definition: ecore_init.h:174
@ BLOCK_UPB
Definition: ecore_init.h:200
@ BLOCK_UCM
Definition: ecore_init.h:199
@ BLOCK_MISC_AEU
Definition: ecore_init.h:207
@ BLOCK_XPB
Definition: ecore_init.h:204
@ BLOCK_TSEM
Definition: ecore_init.h:198
@ BLOCK_CSEM
Definition: ecore_init.h:180
@ BLOCK_USEM
Definition: ecore_init.h:202
@ BLOCK_SRC
Definition: ecore_init.h:194
@ BLOCK_PRS
Definition: ecore_init.h:190
#define ILT_CLIENT_SRC
Definition: ecore_init.h:595
#define INITOP_SET
Definition: ecore_init.h:566
static void ecore_clear_blocks_parity(struct bxe_softc *sc)
Definition: ecore_init.h:798
#define ILT_CLIENT_TM
Definition: ecore_init.h:596
static void ecore_enable_blocks_parity(struct bxe_softc *sc)
Definition: ecore_init.h:842
#define INITOP_CLEAR
Definition: ecore_init.h:567
@ MODE_COS3
Definition: ecore_init.h:166
@ MODE_LITTLE_ENDIAN
Definition: ecore_init.h:168
@ MODE_E3_B0
Definition: ecore_init.h:165
@ MODE_E2
Definition: ecore_init.h:155
@ MODE_MF
Definition: ecore_init.h:160
@ MODE_PORT2
Definition: ecore_init.h:157
@ MODE_EMUL
Definition: ecore_init.h:154
@ MODE_ASIC
Definition: ecore_init.h:152
@ MODE_E3_A0
Definition: ecore_init.h:164
@ MODE_E3
Definition: ecore_init.h:156
@ MODE_MF_AFEX
Definition: ecore_init.h:163
@ MODE_MF_SD
Definition: ecore_init.h:161
@ MODE_PORT4
Definition: ecore_init.h:158
@ MODE_BIG_ENDIAN
Definition: ecore_init.h:169
@ MODE_MF_SI
Definition: ecore_init.h:162
@ MODE_FPGA
Definition: ecore_init.h:153
@ MODE_SF
Definition: ecore_init.h:159
uint32_t addr
Definition: ecore_init.h:729
static void ecore_init_cmng(const struct cmng_init_input *input_data, struct cmng_init *ram_data)
Definition: ecore_init.h:539
@ PHASE_PORT1
Definition: ecore_init.h:138
@ PHASE_PF0
Definition: ecore_init.h:139
@ PHASE_COMMON
Definition: ecore_init.h:136
@ PHASE_PORT0
Definition: ecore_init.h:137
static void ecore_disable_blocks_parity(struct bxe_softc *sc)
Definition: ecore_init.h:775
#define ILT_CLIENT_QM
Definition: ecore_init.h:594
static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len)
static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc, struct ecore_ilt *ilt, struct ilt_client_info *ilt_cli, uint8_t initop)
static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill, uint32_t len, uint8_t wb)
static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count, uint8_t initop)
#define QM_INIT(cid_cnt)
#define QM_QUEUES_PER_FUNC
static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len)
static void ecore_ilt_boundry_init_op(struct bxe_softc *sc, struct ilt_client_info *ilt_cli, uint32_t ilt_start, uint8_t initop)
static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
#define ILT_MEMOP_ALLOC
#define ILT_MEMOP_FREE
static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order, int w_order)
static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count, uint8_t initop)
#define PORT_MAX
Definition: ecore_mfw_req.h:39
#define PORT_0
Definition: ecore_mfw_req.h:37
#define FEATURE_ETH_CHKSUM_OFFLOAD_MASK
#define DRV_INFO_CUR_VER
Definition: ecore_mfw_req.h:82
#define ETH_STAT_INFO_VERSION_LEN
Definition: ecore_mfw_req.h:91
drv_info_opcode
Definition: ecore_mfw_req.h:85
@ ETH_STATS_OPCODE
Definition: ecore_mfw_req.h:86
@ FCOE_STATS_OPCODE
Definition: ecore_mfw_req.h:87
@ ISCSI_STATS_OPCODE
Definition: ecore_mfw_req.h:88
#define FEATURE_ETH_LSO_MASK
#define PXP2_REG_RQ_ONCHIP_AT
Definition: ecore_reg.h:1366
#define CCM_REG_CCM_INT_MASK
Definition: ecore_reg.h:74
#define PRS_REG_MUST_HAVE_HDRS_PORT_1
Definition: ecore_reg.h:1058
#define PBF_REG_INIT_P0
Definition: ecore_reg.h:922
#define PRS_REG_HDRS_AFTER_BASIC_PORT_0
Definition: ecore_reg.h:1044
#define CFC_REG_AC_INIT_DONE
Definition: ecore_reg.h:88
#define CDU_REG_CDU_GLOBAL_PARAMS
Definition: ecore_reg.h:80
#define PXP2_REG_PXP2_INT_STS_CLR_0
Definition: ecore_reg.h:1190
#define PXP2_REG_RD_SR_CNT
Definition: ecore_reg.h:1218
#define PBF_REG_P1_TQ_LINES_FREED_CNT
Definition: ecore_reg.h:954
#define PCICFG_GRC_ADDRESS
Definition: ecore_reg.h:2283
#define BRB1_REG_BRB1_INT_MASK
Definition: ecore_reg.h:56
#define ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU
Definition: ecore_reg.h:40
#define AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR
Definition: ecore_reg.h:2000
#define HC_CONFIG_0_REG_MSI_ATTN_EN_0
Definition: ecore_reg.h:206
#define MISC_REG_GPIO_INT
Definition: ecore_reg.h:448
#define NIG_REG_DEBUG_PACKET_LB
Definition: ecore_reg.h:524
#define TSEM_REG_VFPF_ERR_NUM
Definition: ecore_reg.h:1564
#define IGU_CMD_ATTN_BIT_SET_UPPER
Definition: ecore_reg.h:3476
#define NIG_REG_NIG_INT_STS_CLR_0
Definition: ecore_reg.h:628
#define NIG_REG_LLFC_OUT_EN_0
Definition: ecore_reg.h:580
#define MISC_REGISTERS_GPIO_INPUT_HI_Z
Definition: ecore_reg.h:1860
#define MISC_REG_UNPREPARED
Definition: ecore_reg.h:486
#define ATC_ATC_INT_STS_REG_ADDRESS_ERROR
Definition: ecore_reg.h:36
#define HW_PRTY_ASSERT_SET_3
Definition: ecore_reg.h:2054
#define MISC_REGISTERS_RESET_REG_2_RST_EMAC0
Definition: ecore_reg.h:1894
#define NIG_REG_LLH0_BRB1_DRV_MASK
Definition: ecore_reg.h:584
#define TM_REG_LIN0_SCAN_TIME
Definition: ecore_reg.h:1524
#define ATC_REG_ATC_INT_STS_CLR
Definition: ecore_reg.h:50
#define MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU
Definition: ecore_reg.h:1903
#define AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR
Definition: ecore_reg.h:1982
#define AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR
Definition: ecore_reg.h:2002
#define MISC_REGISTERS_RESET_REG_1_SET
Definition: ecore_reg.h:1882
#define TM_REG_LIN0_NUM_SCANS
Definition: ecore_reg.h:1520
#define AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR
Definition: ecore_reg.h:1958
#define AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY
Definition: ecore_reg.h:1979
#define MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE
Definition: ecore_reg.h:1895
#define IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
Definition: ecore_reg.h:240
#define DMAE_REG_DMAE_INT_MASK
Definition: ecore_reg.h:148
#define AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT
Definition: ecore_reg.h:1972
#define IGU_REG_LEADING_EDGE_LATCH
Definition: ecore_reg.h:260
#define AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR
Definition: ecore_reg.h:2017
#define PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
Definition: ecore_reg.h:1074
#define TCM_REG_TCM_INT_MASK
Definition: ecore_reg.h:1510
#define AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR
Definition: ecore_reg.h:1975
#define HW_LOCK_RESOURCE_RESET
Definition: ecore_reg.h:1951
#define DORQ_REG_NORM_CID_OFST
Definition: ecore_reg.h:196
#define CFC_REG_INIT_REG
Definition: ecore_reg.h:102
#define AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR
Definition: ecore_reg.h:1994
#define PBF_REG_P4_INIT_CRD
Definition: ecore_reg.h:960
#define MISC_REGISTERS_RESET_REG_2_UMAC1
Definition: ecore_reg.h:1915
#define PXP2_REG_PGL_ADDR_90_F1
Definition: ecore_reg.h:1096
#define MISC_REGISTERS_GPIO_FLOAT_POS
Definition: ecore_reg.h:1858
#define MISC_REG_CHIP_REV
Definition: ecore_reg.h:404
#define BRB1_REG_NUM_OF_FULL_BLOCKS
Definition: ecore_reg.h:66
#define PGLUE_B_REG_PGLUE_B_INT_STS
Definition: ecore_reg.h:1022
#define IGU_REG_ATTN_MSG_ADDR_L
Definition: ecore_reg.h:246
#define PRS_REG_HDRS_AFTER_TAG_0_PORT_1
Definition: ecore_reg.h:1052
#define PBF_REG_P4_CREDIT
Definition: ecore_reg.h:958
#define HW_LOCK_MAX_RESOURCE_VALUE
Definition: ecore_reg.h:1942
#define PXP2_REG_PGL_PRETEND_FUNC_F0
Definition: ecore_reg.h:1104
#define MISC_SPIO_SET_POS
Definition: ecore_reg.h:1939
#define MISC_REG_AEU_GENERAL_ATTN_6
Definition: ecore_reg.h:386
#define PXP2_REG_RD_PORT_IS_IDLE_1
Definition: ecore_reg.h:1212
#define PRS_REG_A_PRSU_20
Definition: ecore_reg.h:1036
#define PXP2_REG_RQ_CFG_DONE
Definition: ecore_reg.h:1352
#define HW_LOCK_RESOURCE_RECOVERY_LEADER_0
Definition: ecore_reg.h:1948
#define SRC_REG_KEYSEARCH_1
Definition: ecore_reg.h:1482
#define AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT
Definition: ecore_reg.h:1955
#define NIG_REG_LLH1_BRB1_NOT_MCP
Definition: ecore_reg.h:602
#define CDU_REGION_NUMBER_UCM_AG
Definition: ecore_reg.h:3527
#define HC_REG_LEADING_EDGE_0
Definition: ecore_reg.h:230
#define MISC_REG_WC0_CTRL_PHY_ADDR
Definition: ecore_reg.h:488
#define HW_LOCK_RESOURCE_PORT0_ATT_MASK
Definition: ecore_reg.h:1947
#define NIG_REG_LLH0_CLS_TYPE
Definition: ecore_reg.h:590
#define PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q
Definition: ecore_reg.h:924
#define MCPR_NVM_COMMAND_DONE
Definition: ecore_reg.h:1748
#define MISC_REG_SPIO_INT
Definition: ecore_reg.h:480
#define AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
Definition: ecore_reg.h:1988
#define MISC_REG_CHIP_TYPE_57811_MASK
Definition: ecore_reg.h:408
#define HW_LOCK_RESOURCE_RECOVERY_REG
Definition: ecore_reg.h:1950
#define AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR
Definition: ecore_reg.h:1971
#define BAR_ME_REGISTER
Definition: ecore_reg.h:2585
#define PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN
Definition: ecore_reg.h:1002
#define TM_REG_LIN0_SCAN_ON
Definition: ecore_reg.h:1522
#define PXP2_REG_RD_START_INIT
Definition: ecore_reg.h:1220
#define PCICFG_GRC_DATA
Definition: ecore_reg.h:2284
#define IGU_REG_MAPPING_MEMORY
Definition: ecore_reg.h:262
#define NIG_REG_LLH0_FUNC_VLAN_ID
Definition: ecore_reg.h:598
#define GRCBASE_XMAC0
Definition: ecore_reg.h:2198
#define SRC_REG_SOFT_RST
Definition: ecore_reg.h:1502
#define PRS_REG_MUST_HAVE_HDRS
Definition: ecore_reg.h:1054
#define AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR
Definition: ecore_reg.h:2006
#define NIG_REG_BMAC0_REGS_OUT_EN
Definition: ecore_reg.h:518
#define BAR_IGU_INTMEM
Definition: ecore_reg.h:2581
#define CFC_REG_NUM_LCIDS_INSIDE_PF
Definition: ecore_reg.h:106
#define MISC_REGISTERS_GPIO_INT_CLR_POS
Definition: ecore_reg.h:1861
#define MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
Definition: ecore_reg.h:348
#define AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR
Definition: ecore_reg.h:1968
#define HW_PRTY_ASSERT_SET_1
Definition: ecore_reg.h:2028
#define NIG_REG_EGRESS_DRAIN0_MODE
Definition: ecore_reg.h:526
#define PRS_REG_TAG_ETHERTYPE_0
Definition: ecore_reg.h:1068
#define AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR
Definition: ecore_reg.h:1998
#define HW_LOCK_RESOURCE_SPIO
Definition: ecore_reg.h:1952
#define MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE
Definition: ecore_reg.h:1904
#define HC_REG_CONFIG_0
Definition: ecore_reg.h:220
#define PCI_ID_VAL3
Definition: ecore_reg.h:2407
#define MISC_REGISTERS_RESET_REG_1_RST_BRB1
Definition: ecore_reg.h:1871
#define MISC_REGISTERS_RESET_REG_1_RST_PXP
Definition: ecore_reg.h:1876
#define BIGMAC_REGISTER_BMAC_CONTROL
Definition: ecore_reg.h:1757
#define PXP2_REG_RD_SRC_SWAP_MODE
Definition: ecore_reg.h:1216
#define MISC_REGISTERS_RESET_REG_2_XMAC_SOFT
Definition: ecore_reg.h:1919
#define SRC_REG_KEYSEARCH_7
Definition: ecore_reg.h:1494
#define MCPR_NVM_CFG4_FLASH_SIZE
Definition: ecore_reg.h:1746
#define BRB1_REG_PAUSE_LOW_THRESHOLD_0
Definition: ecore_reg.h:70
#define HW_LOCK_RESOURCE_RECOVERY_LEADER_1
Definition: ecore_reg.h:1949
#define MCPR_NVM_SW_ARB_ARB_ARB1
Definition: ecore_reg.h:1752
#define PXP2_REG_RD_QM_SWAP_MODE
Definition: ecore_reg.h:1214
#define UMAC_REG_COMMAND_CONFIG
Definition: ecore_reg.h:1592
#define MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
Definition: ecore_reg.h:330
#define MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE
Definition: ecore_reg.h:1902
#define COMMAND_REG_ATTN_BITS_CLR
Definition: ecore_reg.h:3447
#define NIG_REG_LLH1_CLS_TYPE
Definition: ecore_reg.h:604
#define BAR_TSTRORM_INTMEM
Definition: ecore_reg.h:2578
#define MISC_REG_GRC_TIMEOUT_ATTN
Definition: ecore_reg.h:452
#define USDM_REG_USDM_INT_MASK_1
Definition: ecore_reg.h:1608
#define CSEM_REG_VFPF_ERR_NUM
Definition: ecore_reg.h:140
#define CFC_REG_WEAK_ENABLE_PF
Definition: ecore_reg.h:110
#define NIG_REG_P1_HDRS_AFTER_BASIC
Definition: ecore_reg.h:722
#define MISC_REGISTERS_GPIO_OUTPUT_LOW
Definition: ecore_reg.h:1867
#define PXP2_REG_RQ_TM_ENDIAN_M
Definition: ecore_reg.h:1394
#define DORQ_REG_DORQ_INT_MASK
Definition: ecore_reg.h:186
#define QM_REG_QM_INT_MASK
Definition: ecore_reg.h:1462
#define PXPCS_TL_CONTROL_5
Definition: ecore_reg.h:2422
#define PBF_REG_TQ_LINES_FREED_CNT_LB_Q
Definition: ecore_reg.h:978
#define XSEM_REG_PASSIVE_BUFFER
Definition: ecore_reg.h:1720
#define PXP2_REG_RQ_DRAM_ALIGN
Definition: ecore_reg.h:1358
#define IGU_NORM_NDSB_NUM_SEGS
Definition: ecore_reg.h:3508
#define PBF_REG_P1_INIT_CRD
Definition: ecore_reg.h:950
#define PBF_REG_P4_TQ_LINES_FREED_CNT
Definition: ecore_reg.h:964
#define MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
Definition: ecore_reg.h:354
#define MISC_SPIO_CLR_POS
Definition: ecore_reg.h:1932
#define BIGMAC2_REGISTER_BMAC_CONTROL
Definition: ecore_reg.h:1772
#define MCP_REG_MCPR_NVM_ADDR
Definition: ecore_reg.h:312
#define MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE
Definition: ecore_reg.h:1905
#define IGU_FID_PF_NUM_MASK
Definition: ecore_reg.h:3517
#define PXPCS_TL_CONTROL_5_ERR_UNSPPORT1
Definition: ecore_reg.h:2434
#define HW_LOCK_RESOURCE_MDIO
Definition: ecore_reg.h:1945
#define MISC_REG_AEU_GENERAL_ATTN_11
Definition: ecore_reg.h:374
#define MISC_REG_GENERIC_CR_0
Definition: ecore_reg.h:436
#define PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6
Definition: ecore_reg.h:2536
#define MCPR_NVM_SW_ARB_ARB_REQ_SET1
Definition: ecore_reg.h:1754
#define MCP_REG_MCPR_NVM_COMMAND
Definition: ecore_reg.h:316
#define PCICFG_OFFSET
Definition: ecore_reg.h:2219
#define PRS_REG_TAG_LEN_0
Definition: ecore_reg.h:1070
#define HW_INTERRUT_ASSERT_SET_0
Definition: ecore_reg.h:2062
#define TM_REG_LIN0_VNIC_UC
Definition: ecore_reg.h:1526
#define AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR
Definition: ecore_reg.h:1986
#define IGU_REG_SB_INT_BEFORE_MASK_MSB
Definition: ecore_reg.h:286
#define AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR
Definition: ecore_reg.h:1995
#define IGU_REG_SB_MASK_LSB
Definition: ecore_reg.h:288
#define MISC_REGISTERS_RESET_REG_2_RST_BMAC0
Definition: ecore_reg.h:1892
#define PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
Definition: ecore_reg.h:1016
#define IGU_REG_ATTENTION_ACK_BITS
Definition: ecore_reg.h:242
#define PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
Definition: ecore_reg.h:1072
#define PRS_REG_MUST_HAVE_HDRS_PORT_0
Definition: ecore_reg.h:1056
#define HC_CONFIG_0_REG_BLOCK_DISABLE_0
Definition: ecore_reg.h:202
#define MISC_REGISTERS_RESET_REG_2_RST_ATC
Definition: ecore_reg.h:1890
#define TCM_REG_PRS_IFEN
Definition: ecore_reg.h:1508
#define PXP2_REG_PGL_ADDR_88_F1
Definition: ecore_reg.h:1088
#define MCP_REG_MCPR_ACCESS_LOCK
Definition: ecore_reg.h:296
#define IGU_REG_PCI_PF_MSI_EN
Definition: ecore_reg.h:274
#define USEM_REG_PASSIVE_BUFFER
Definition: ecore_reg.h:1618
#define MISC_REGISTERS_RESET_REG_2_CLEAR
Definition: ecore_reg.h:1883
#define MISC_REGISTERS_RESET_REG_2_XMAC
Definition: ecore_reg.h:1917
#define SRC_REG_KEYSEARCH_8
Definition: ecore_reg.h:1496
#define PBF_REG_INTERNAL_CRD_FREED_CNT_Q0
Definition: ecore_reg.h:926
#define MCP_REG_MCPR_NVM_ACCESS_ENABLE
Definition: ecore_reg.h:310
#define PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7
Definition: ecore_reg.h:2517
#define NIG_REG_NIG_EMAC0_EN
Definition: ecore_reg.h:624
#define IGU_BC_DSB_NUM_SEGS
Definition: ecore_reg.h:3505
#define MISC_REG_AEU_MASK_ATTN_FUNC_1
Definition: ecore_reg.h:398
#define MISC_REG_AEU_GENERAL_ATTN_7
Definition: ecore_reg.h:388
#define QM_REG_PF_EN
Definition: ecore_reg.h:1454
#define PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR
Definition: ecore_reg.h:996
#define IGU_REG_STATISTIC_NUM_MESSAGE_SENT
Definition: ecore_reg.h:292
#define HW_LOCK_RESOURCE_NVRAM
Definition: ecore_reg.h:1946
#define NIG_REG_XGXS_SERDES0_MODE_SEL
Definition: ecore_reg.h:836
#define MCPR_NVM_COMMAND_WR
Definition: ecore_reg.h:1751
#define PBF_REG_P4_TQ_OCCUPANCY
Definition: ecore_reg.h:966
#define MISC_REG_AEU_GENERAL_MASK
Definition: ecore_reg.h:394
#define PRS_REG_HDRS_AFTER_TAG_0
Definition: ecore_reg.h:1048
#define IGU_REG_PROD_CONS_MEMORY
Definition: ecore_reg.h:280
#define IGU_REG_MAPPING_MEMORY_SIZE
Definition: ecore_reg.h:264
#define PXP2_REG_PGL_ADDR_88_F0
Definition: ecore_reg.h:1086
#define MISC_REGISTERS_GPIO_INT_OUTPUT_CLR
Definition: ecore_reg.h:1862
#define PBF_REG_P0_PAUSE_ENABLE
Definition: ecore_reg.h:942
#define PB_REG_PB_INT_MASK
Definition: ecore_reg.h:990
#define HC_REG_TRAILING_EDGE_0
Definition: ecore_reg.h:236
#define MISC_REG_AEU_CLR_LATCH_SIGNAL
Definition: ecore_reg.h:340
#define HC_CONFIG_0_REG_INT_LINE_EN_0
Definition: ecore_reg.h:204
#define MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B
Definition: ecore_reg.h:1901
#define PBF_REG_TQ_OCCUPANCY_Q1
Definition: ecore_reg.h:988
#define MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
Definition: ecore_reg.h:338
#define AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY
Definition: ecore_reg.h:1976
#define DMAE_REG_CMD_MEM
Definition: ecore_reg.h:146
#define HC_CONFIG_1_REG_BLOCK_DISABLE_1
Definition: ecore_reg.h:212
#define AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR
Definition: ecore_reg.h:1966
#define BAR_CSTRORM_INTMEM
Definition: ecore_reg.h:2576
#define IGU_BC_NDSB_NUM_SEGS
Definition: ecore_reg.h:3506
#define MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0
Definition: ecore_reg.h:368
#define PXP2_REG_RQ_SRC_ENDIAN_M
Definition: ecore_reg.h:1386
#define IGU_PF_CONF_INT_LINE_EN
Definition: ecore_reg.h:3492
#define MISC_REG_DRIVER_CONTROL_7
Definition: ecore_reg.h:426
#define MISC_REGISTERS_RESET_REG_2_RST_EMAC1
Definition: ecore_reg.h:1897
#define MISC_REG_GRC_RSV_ATTN
Definition: ecore_reg.h:450
#define PXP2_REG_PXP2_INT_MASK_1
Definition: ecore_reg.h:1184
#define MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK
Definition: ecore_reg.h:326
#define IGU_REG_CSTORM_TYPE_0_SB_CLEANUP
Definition: ecore_reg.h:254
#define PRS_REG_NIC_MODE
Definition: ecore_reg.h:1060
#define MISC_SPIO_INT_OLD_SET_POS
Definition: ecore_reg.h:1936
#define PXP2_REG_PGL_ADDR_8C_F1
Definition: ecore_reg.h:1092
#define PXP2_REG_RQ_HC_ENDIAN_M
Definition: ecore_reg.h:1364
#define PRS_REG_CFC_SEARCH_INITIAL_CREDIT
Definition: ecore_reg.h:1038
#define MISC_REGISTERS_GPIO_3
Definition: ecore_reg.h:1855
#define MISC_REGISTERS_GPIO_CLR_POS
Definition: ecore_reg.h:1856
#define MCPR_NVM_ACCESS_ENABLE_EN
Definition: ecore_reg.h:1743
#define PGLUE_B_REG_LATCHED_ERRORS_CLR
Definition: ecore_reg.h:1020
#define AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR
Definition: ecore_reg.h:1983
#define MISC_SPIO_SPIO4
Definition: ecore_reg.h:1940
#define HW_PRTY_ASSERT_SET_4
Definition: ecore_reg.h:2059
#define MISC_REGISTERS_GPIO_INT_OUTPUT_SET
Definition: ecore_reg.h:1863
#define CSEM_REG_PASSIVE_BUFFER
Definition: ecore_reg.h:136
#define DORQ_REG_DORQ_INT_STS_CLR
Definition: ecore_reg.h:188
#define MISC_REGISTERS_RESET_REG_2_SET
Definition: ecore_reg.h:1912
#define PXP2_REG_PXP2_INT_STS_1
Definition: ecore_reg.h:1188
#define TM_REG_LIN0_MAX_ACTIVE_CID
Definition: ecore_reg.h:1518
#define AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR
Definition: ecore_reg.h:2019
#define IGU_REG_PBA_STATUS_MSB
Definition: ecore_reg.h:268
#define AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT
Definition: ecore_reg.h:1991
#define IGU_REG_PBA_STATUS_LSB
Definition: ecore_reg.h:266
#define VFC_REG_MEMORIES_RST
Definition: ecore_reg.h:1640
#define PXP2_REG_RD_INIT_DONE
Definition: ecore_reg.h:1206
#define PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3
Definition: ecore_reg.h:2476
#define PBF_REG_PBF_INT_MASK
Definition: ecore_reg.h:968
#define BAR_XSTRORM_INTMEM
Definition: ecore_reg.h:2577
#define PXPCS_TL_CONTROL_5_ERR_UNSPPORT
Definition: ecore_reg.h:2444
#define TSDM_REG_ENABLE_IN1
Definition: ecore_reg.h:1534
#define MCP_REG_MCPR_NVM_READ
Definition: ecore_reg.h:318
#define PXP2_REG_PGL_ADDR_8C_F0
Definition: ecore_reg.h:1090
#define BRB1_REG_MAC_GUARANTIED_0
Definition: ecore_reg.h:62
#define ME_REG_ABS_PF_NUM
Definition: ecore_reg.h:2594
#define HC_REG_CONFIG_1
Definition: ecore_reg.h:222
#define PBF_REG_P0_TQ_OCCUPANCY
Definition: ecore_reg.h:946
#define MISC_REG_AEU_GENERAL_ATTN_1
Definition: ecore_reg.h:370
#define MISC_REG_BOND_ID
Definition: ecore_reg.h:400
#define PBF_REG_TQ_OCCUPANCY_LB_Q
Definition: ecore_reg.h:984
#define PBF_REG_INIT_CRD_LB_Q
Definition: ecore_reg.h:916
#define USEM_REG_VFPF_ERR_NUM
Definition: ecore_reg.h:1634
#define PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW
Definition: ecore_reg.h:998
#define IGU_PF_CONF_ATTN_BIT_EN
Definition: ecore_reg.h:3493
#define CFC_REG_LL_INIT_DONE
Definition: ecore_reg.h:104
#define PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5
Definition: ecore_reg.h:2555
#define NIG_REG_MASK_INTERRUPT_PORT0
Definition: ecore_reg.h:620
#define MISC_REGISTERS_GPIO_OUTPUT_HIGH
Definition: ecore_reg.h:1866
#define MISC_REGISTERS_RESET_REG_1_RST_HC
Definition: ecore_reg.h:1874
#define MISC_SPIO_OUTPUT_HIGH
Definition: ecore_reg.h:1937
#define AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR
Definition: ecore_reg.h:1960
#define XSEM_REG_FAST_MEMORY
Definition: ecore_reg.h:1716
#define NIG_REG_MASK_INTERRUPT_PORT1
Definition: ecore_reg.h:622
#define NIG_REG_STAT2_BRB_OCTET
Definition: ecore_reg.h:814
#define MISC_REGISTERS_RESET_REG_1_RST_PXPV
Definition: ecore_reg.h:1878
#define CFC_REG_CFC_INT_MASK
Definition: ecore_reg.h:92
#define AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
Definition: ecore_reg.h:1956
#define TSDM_REG_TSDM_INT_MASK_1
Definition: ecore_reg.h:1538
#define PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN
Definition: ecore_reg.h:1008
#define GRCBASE_UMAC1
Definition: ecore_reg.h:2194
#define PRS_REG_HDRS_AFTER_TAG_0_PORT_0
Definition: ecore_reg.h:1050
#define NIG_REG_INGRESS_BMAC0_MEM
Definition: ecore_reg.h:538
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type)
Definition: ecore_reg.h:3538
#define EVEREST_GEN_ATTN_IN_USE_MASK
Definition: ecore_reg.h:2092
#define AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR
Definition: ecore_reg.h:1964
#define ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR
Definition: ecore_reg.h:44
#define SRC_REG_KEYSEARCH_4
Definition: ecore_reg.h:1488
#define IGU_REG_COMMAND_REG_32LSB_DATA
Definition: ecore_reg.h:250
#define PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR
Definition: ecore_reg.h:1014
#define PBF_REG_INIT_CRD_Q0
Definition: ecore_reg.h:918
#define HC_CONFIG_0_REG_SINGLE_ISR_EN_0
Definition: ecore_reg.h:210
#define IGU_PF_CONF_FUNC_EN
Definition: ecore_reg.h:3490
#define NIG_REG_PORT_SWAP
Definition: ecore_reg.h:784
#define ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS
Definition: ecore_reg.h:38
#define PXP_REG_HST_DISCARD_INTERNAL_WRITES
Definition: ecore_reg.h:1432
#define ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT
Definition: ecore_reg.h:42
#define NIG_REG_PAUSE_ENABLE_0
Definition: ecore_reg.h:780
#define TM_REG_EN_LINEAR0_TIMER
Definition: ecore_reg.h:1516
#define PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN
Definition: ecore_reg.h:1006
#define MISC_REGISTERS_RESET_REG_2_RST_BMAC1
Definition: ecore_reg.h:1893
#define PRS_REG_HDRS_AFTER_BASIC
Definition: ecore_reg.h:1042
#define PXP_REG_HST_DISCARD_DOORBELLS
Definition: ecore_reg.h:1430
#define TSEM_REG_PASSIVE_BUFFER
Definition: ecore_reg.h:1548
#define TSEM_REG_FAST_MEMORY
Definition: ecore_reg.h:1544
#define PXP2_REG_RQ_QM_ENDIAN_M
Definition: ecore_reg.h:1372
#define IGU_REG_MAPPING_MEMORY_VALID
Definition: ecore_reg.h:3519
#define SRC_REG_KEYSEARCH_5
Definition: ecore_reg.h:1490
#define PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
Definition: ecore_reg.h:1034
#define PXP2_REG_RD_CDURD_SWAP_MODE
Definition: ecore_reg.h:1202
#define PXP_REG_PXP_INT_STS_CLR_0
Definition: ecore_reg.h:1438
#define PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR
Definition: ecore_reg.h:1030
#define HC_REG_ATTN_MSG1_ADDR_L
Definition: ecore_reg.h:216
#define XSDM_REG_OPERATION_GEN
Definition: ecore_reg.h:1706
#define PXP2_REG_PXP2_INT_STS_0
Definition: ecore_reg.h:1186
#define CSDM_REG_CSDM_INT_MASK_1
Definition: ecore_reg.h:114
#define HW_INTERRUT_ASSERT_SET_1
Definition: ecore_reg.h:2068
#define CDU_REGION_NUMBER_XCM_AG
Definition: ecore_reg.h:3526
#define IGU_NORM_DSB_NUM_SEGS
Definition: ecore_reg.h:3507
#define AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR
Definition: ecore_reg.h:2013
#define NIG_REG_XGXS0_CTRL_PHY_ADDR
Definition: ecore_reg.h:828
#define AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
Definition: ecore_reg.h:1977
#define PGLUE_B_REG_TAGS_63_32
Definition: ecore_reg.h:1032
#define IGU_PF_CONF_SINGLE_ISR_EN
Definition: ecore_reg.h:3494
#define MISC_REG_AEU_GENERAL_ATTN_9
Definition: ecore_reg.h:392
#define PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
Definition: ecore_reg.h:1076
#define PXPCS_TL_FUNC678_STAT
Definition: ecore_reg.h:2515
#define MISC_REG_SPIO
Definition: ecore_reg.h:476
#define HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
Definition: ecore_reg.h:208
#define SRC_REG_KEYSEARCH_6
Definition: ecore_reg.h:1492
#define PBF_REG_P1_TQ_OCCUPANCY
Definition: ecore_reg.h:956
#define XSEM_REG_PRAM
Definition: ecore_reg.h:1722
#define PXP2_REG_RD_DISABLE_INPUTS
Definition: ecore_reg.h:1204
#define SRC_REG_KEYSEARCH_3
Definition: ecore_reg.h:1486
#define MISC_REG_PORT4MODE_EN
Definition: ecore_reg.h:466
#define PXP2_REG_PGL_EXP_ROM2
Definition: ecore_reg.h:1102
#define PBF_REG_TQ_LINES_FREED_CNT_Q0
Definition: ecore_reg.h:980
#define PXP2_REG_RQ_DBG_ENDIAN_M
Definition: ecore_reg.h:1354
#define PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4
Definition: ecore_reg.h:2457
#define HW_PRTY_ASSERT_SET_2
Definition: ecore_reg.h:2045
#define NIG_REG_LLH0_BRB1_DRV_MASK_MF
Definition: ecore_reg.h:586
#define IGU_CMD_INT_ACK_BASE
Definition: ecore_reg.h:3465
#define PXP2_REG_RQ_DRAM_ALIGN_SEL
Definition: ecore_reg.h:1362
#define PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN
Definition: ecore_reg.h:1004
#define AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR
Definition: ecore_reg.h:1962
#define MISC_REG_AEU_GENERAL_ATTN_4
Definition: ecore_reg.h:382
#define TM_REG_TM_INT_MASK
Definition: ecore_reg.h:1528
#define PXP2_REG_PGL_ADDR_94_F1
Definition: ecore_reg.h:1100
#define IGU_FID_ENCODE_IS_PF
Definition: ecore_reg.h:3514
#define MISC_REGISTERS_RESET_REG_2_MSTAT1
Definition: ecore_reg.h:1886
#define PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
Definition: ecore_reg.h:1018
#define MISC_REGISTERS_RESET_REG_1_RST_DORQ
Definition: ecore_reg.h:1872
#define MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
Definition: ecore_reg.h:334
#define HW_PRTY_ASSERT_SET_0
Definition: ecore_reg.h:2020
#define VFC_MEMORIES_RST_REG_CAM_RST
Definition: ecore_reg.h:1636
#define HC_REG_MAIN_MEMORY_SIZE
Definition: ecore_reg.h:234
#define IGU_REG_RESET_MEMORIES
Definition: ecore_reg.h:282
#define QM_REG_SOFT_RESET
Definition: ecore_reg.h:1470
#define BRB1_REG_MAC_GUARANTIED_1
Definition: ecore_reg.h:64
#define XSEM_REG_VFPF_ERR_NUM
Definition: ecore_reg.h:1724
#define IGU_NORM_BASE_DSB_PROD
Definition: ecore_reg.h:3510
#define PBF_REG_MUST_HAVE_HDRS
Definition: ecore_reg.h:930
#define BAR_USTRORM_INTMEM
Definition: ecore_reg.h:2575
#define PXP2_REG_RQ_DRAM_ALIGN_RD
Definition: ecore_reg.h:1360
#define CFC_REG_DEBUG0
Definition: ecore_reg.h:100
#define PXP_REG_PXP_INT_MASK_0
Definition: ecore_reg.h:1434
#define MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0
Definition: ecore_reg.h:366
#define MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
Definition: ecore_reg.h:328
#define AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR
Definition: ecore_reg.h:2010
#define PXP_REG_PXP_INT_STS_CLR_1
Definition: ecore_reg.h:1440
#define PBF_REG_P0_ARB_THRSH
Definition: ecore_reg.h:934
#define MISC_REG_AEU_GENERAL_ATTN_3
Definition: ecore_reg.h:380
#define MCPR_NVM_COMMAND_FIRST
Definition: ecore_reg.h:1749
#define ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND
Definition: ecore_reg.h:46
#define MCP_REG_MCPR_NVM_WRITE
Definition: ecore_reg.h:322
#define ME_REG_PF_NUM_SHIFT
Definition: ecore_reg.h:2586
#define IGU_REG_PCI_PF_MSIX_EN
Definition: ecore_reg.h:270
#define IGU_REG_ATTN_MSG_ADDR_H
Definition: ecore_reg.h:244
#define MISC_REG_GPIO
Definition: ecore_reg.h:444
#define XMAC_REG_CTRL
Definition: ecore_reg.h:1678
#define MISC_SPIO_FLOAT_POS
Definition: ecore_reg.h:1934
#define PBF_REG_TQ_OCCUPANCY_Q0
Definition: ecore_reg.h:986
#define IGU_BC_BASE_DSB_PROD
Definition: ecore_reg.h:3509
#define ME_REG_ABS_PF_NUM_SHIFT
Definition: ecore_reg.h:2593
#define NIG_REG_LLH1_MF_MODE
Definition: ecore_reg.h:612
#define SRC_REG_KEYSEARCH_2
Definition: ecore_reg.h:1484
#define AEU_INPUTS_ATTN_BITS_SPIO5
Definition: ecore_reg.h:1996
#define USDM_REG_USDM_INT_MASK_0
Definition: ecore_reg.h:1606
#define MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1
Definition: ecore_reg.h:344
#define PXP2_REG_RQ_CDU_ENDIAN_M
Definition: ecore_reg.h:1344
#define CFC_REG_CAM_INIT_DONE
Definition: ecore_reg.h:90
#define NIG_REG_P0_HDRS_AFTER_BASIC
Definition: ecore_reg.h:642
#define MISC_REGISTERS_GPIO_INT_SET_POS
Definition: ecore_reg.h:1864
#define MCPR_ACCESS_LOCK_LOCK
Definition: ecore_reg.h:1738
#define PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
Definition: ecore_reg.h:1012
#define PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED
Definition: ecore_reg.h:1080
#define SRC_REG_KEYSEARCH_0
Definition: ecore_reg.h:1480
#define MISC_REG_AEU_MASK_ATTN_FUNC_0
Definition: ecore_reg.h:396
#define MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE
Definition: ecore_reg.h:1898
#define IGU_PF_CONF_MSI_MSIX_EN
Definition: ecore_reg.h:3491
#define XMAC_REG_PFC_CTRL_HI
Definition: ecore_reg.h:1692
#define COMMAND_REG_ATTN_BITS_SET
Definition: ecore_reg.h:3446
#define PBF_REG_P4_INTERNAL_CRD_FREED_CNT
Definition: ecore_reg.h:962
#define PBF_REG_P0_TQ_LINES_FREED_CNT
Definition: ecore_reg.h:944
#define PXP2_REG_RQ_DISABLE_INPUTS
Definition: ecore_reg.h:1356
#define PXP2_REG_RD_BLK_CNT
Definition: ecore_reg.h:1200
#define MISC_REG_RESET_REG_2
Definition: ecore_reg.h:472
#define PXP2_REG_PGL_ADDR_90_F0
Definition: ecore_reg.h:1094
#define IGU_REG_PENDING_BITS_STATUS
Definition: ecore_reg.h:276
#define MISC_REG_RESET_REG_1
Definition: ecore_reg.h:470
#define MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0
Definition: ecore_reg.h:356
#define PXP2_REG_PXP2_INT_MASK_0
Definition: ecore_reg.h:1182
#define IGU_REG_SB_MASK_MSB
Definition: ecore_reg.h:290
#define CDU_REG_CDU_INT_MASK
Definition: ecore_reg.h:82
#define PXP2_REG_RQ_ONCHIP_AT_B0
Definition: ecore_reg.h:1368
#define PXP2_REG_PGL_PRETEND_FUNC_F1
Definition: ecore_reg.h:1106
#define DORQ_REG_DPM_CID_OFST
Definition: ecore_reg.h:194
#define MISC_SPIO_SPIO5
Definition: ecore_reg.h:1941
#define NIG_REG_STRAP_OVERRIDE
Definition: ecore_reg.h:818
#define PBF_REG_TAG_LEN_0
Definition: ecore_reg.h:976
#define PBF_REG_DISABLE_PF
Definition: ecore_reg.h:886
#define NIG_REG_PRS_REQ_IN_EN
Definition: ecore_reg.h:790
#define PXP2_REG_RD_TM_SWAP_MODE
Definition: ecore_reg.h:1222
#define XSDM_REG_XSDM_INT_MASK_0
Definition: ecore_reg.h:1708
#define PBF_REG_P1_INTERNAL_CRD_FREED_CNT
Definition: ecore_reg.h:952
#define MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2
Definition: ecore_reg.h:346
#define MISC_REG_GENERIC_CR_1
Definition: ecore_reg.h:438
#define VFC_MEMORIES_RST_REG_RAM_RST
Definition: ecore_reg.h:1638
#define IGU_REG_COMMAND_REG_CTRL
Definition: ecore_reg.h:252
#define MISC_REG_SHARED_MEM_ADDR
Definition: ecore_reg.h:474
#define PBF_REG_INIT_CRD_Q1
Definition: ecore_reg.h:920
#define PBF_REG_HDRS_AFTER_TAG_0
Definition: ecore_reg.h:912
#define MISC_REGISTERS_RESET_REG_2_RST_GRC
Definition: ecore_reg.h:1900
#define NIG_REG_LLH0_FUNC_EN
Definition: ecore_reg.h:592
#define PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN
Definition: ecore_reg.h:1010
#define MISC_REG_AEU_GENERAL_ATTN_12
Definition: ecore_reg.h:376
#define MISC_REG_AEU_GENERAL_ATTN_5
Definition: ecore_reg.h:384
#define HW_INTERRUT_ASSERT_SET_2
Definition: ecore_reg.h:2080
#define IGU_REG_SB_INT_BEFORE_MASK_LSB
Definition: ecore_reg.h:284
#define ME_REG_PF_NUM
Definition: ecore_reg.h:2587
#define MISC_REGISTERS_GPIO_FLOAT
Definition: ecore_reg.h:1857
#define PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
Definition: ecore_reg.h:1078
#define PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR
Definition: ecore_reg.h:1000
#define MCPR_NVM_ACCESS_ENABLE_WR_EN
Definition: ecore_reg.h:1744
#define MISC_SPIO_INPUT_HI_Z
Definition: ecore_reg.h:1935
#define TSEM_REG_TSEM_INT_MASK_1
Definition: ecore_reg.h:1554
#define MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK
Definition: ecore_reg.h:324
#define GRCBASE_UMAC0
Definition: ecore_reg.h:2193
#define SRC_REG_KEYSEARCH_9
Definition: ecore_reg.h:1498
#define AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT
Definition: ecore_reg.h:1987
#define HC_REG_INT_MASK
Definition: ecore_reg.h:228
#define NIG_REG_SERDES0_CTRL_PHY_ADDR
Definition: ecore_reg.h:796
#define QM_REG_PF_USG_CNT_0
Definition: ecore_reg.h:1456
#define MCP_REG_MCPR_NVM_CFG4
Definition: ecore_reg.h:314
#define PBF_REG_TAG_ETHERTYPE_0
Definition: ecore_reg.h:974
#define MCPR_NVM_COMMAND_DOIT
Definition: ecore_reg.h:1747
#define PGLUE_B_REG_PGLUE_B_INT_STS_CLR
Definition: ecore_reg.h:1024
#define MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2
Definition: ecore_reg.h:352
#define NIG_REG_LLH0_BRB1_NOT_MCP
Definition: ecore_reg.h:588
#define AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR
Definition: ecore_reg.h:1981
#define NIG_REG_LLH_MF_MODE
Definition: ecore_reg.h:618
#define MISC_REGISTERS_GPIO_SET_POS
Definition: ecore_reg.h:1869
#define HC_REG_ATTN_MSG0_ADDR_L
Definition: ecore_reg.h:214
#define XCM_REG_XCM_INT_MASK
Definition: ecore_reg.h:1642
#define PXP_REG_PXP_INT_MASK_1
Definition: ecore_reg.h:1436
#define PXP2_REG_RQ_RBC_DONE
Definition: ecore_reg.h:1380
#define MISC_REG_CHIP_NUM
Definition: ecore_reg.h:402
#define PBF_REG_CREDIT_LB_Q
Definition: ecore_reg.h:878
#define PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2
Definition: ecore_reg.h:2495
#define MISC_REGISTERS_GPIO_PORT_SHIFT
Definition: ecore_reg.h:1868
#define PXP2_REG_PGL_TAGS_LIMIT
Definition: ecore_reg.h:1108
#define MCPR_NVM_SW_ARB_ARB_REQ_CLR1
Definition: ecore_reg.h:1753
#define GRCBASE_MCP
Definition: ecore_reg.h:2178
#define MCPR_NVM_ADDR_NVM_ADDR_VALUE
Definition: ecore_reg.h:1745
#define PRS_REG_NUM_OF_PACKETS
Definition: ecore_reg.h:1062
#define GRCBASE_UPB
Definition: ecore_reg.h:2179
#define PRS_REG_E1HOV_MODE
Definition: ecore_reg.h:1040
#define CFC_REG_CFC_INT_STS_CLR
Definition: ecore_reg.h:94
#define MISC_SPIO_OUTPUT_LOW
Definition: ecore_reg.h:1938
#define MISC_REGISTERS_RESET_REG_2_RST_RBCN
Definition: ecore_reg.h:1911
#define PBF_REG_P0_INTERNAL_CRD_FREED_CNT
Definition: ecore_reg.h:940
#define AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR
Definition: ecore_reg.h:1969
#define UCM_REG_UCM_INT_MASK
Definition: ecore_reg.h:1566
#define MISC_REGISTERS_RESET_REG_2_PGLC
Definition: ecore_reg.h:1888
#define AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR
Definition: ecore_reg.h:1985
#define PRS_REG_HDRS_AFTER_BASIC_PORT_1
Definition: ecore_reg.h:1046
#define HW_LOCK_RESOURCE_GPIO
Definition: ecore_reg.h:1944
#define IGU_CMD_ATTN_BIT_CLR_UPPER
Definition: ecore_reg.h:3477
#define IGU_REG_BLOCK_CONFIGURATION
Definition: ecore_reg.h:248
#define AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR
Definition: ecore_reg.h:2015
#define TSEM_REG_PRAM
Definition: ecore_reg.h:1550
#define AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY
Definition: ecore_reg.h:1978
#define PXPCS_TL_FUNC345_STAT
Definition: ecore_reg.h:2455
#define MISC_REGISTERS_RESET_REG_1_CLEAR
Definition: ecore_reg.h:1870
#define TSDM_REG_TSDM_INT_MASK_0
Definition: ecore_reg.h:1536
#define PXP2_REG_PGL_ADDR_94_F0
Definition: ecore_reg.h:1098
#define IGU_REG_PF_CONFIGURATION
Definition: ecore_reg.h:278
#define IGU_REG_PCI_PF_MSIX_FUNC_MASK
Definition: ecore_reg.h:272
#define MISC_REGISTERS_RESET_REG_2_UMAC0
Definition: ecore_reg.h:1913
#define IGU_FID_ENCODE_IS_PF_SHIFT
Definition: ecore_reg.h:3515
#define BRB1_REG_PAUSE_HIGH_THRESHOLD_0
Definition: ecore_reg.h:68
#define PBF_REG_P1_CREDIT
Definition: ecore_reg.h:948
#define IGU_CMD_E2_PROD_UPD_BASE
Definition: ecore_reg.h:3470
#define PBF_REG_P0_CREDIT
Definition: ecore_reg.h:936
#define AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR
Definition: ecore_reg.h:2008
#define NIG_REG_LLFC_ENABLE_0
Definition: ecore_reg.h:568
#define MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO
Definition: ecore_reg.h:1907
#define MISC_REG_SPIO_EVENT_EN
Definition: ecore_reg.h:478
#define AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT
Definition: ecore_reg.h:1963
#define AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR
Definition: ecore_reg.h:2012
#define BRB1_REG_PORT_NUM_OCC_BLOCKS_0
Definition: ecore_reg.h:72
#define MISC_REG_PORT4MODE_EN_OVWR
Definition: ecore_reg.h:468
#define MISC_REG_CHIP_TYPE
Definition: ecore_reg.h:406
#define IGU_REG_TRAILING_EDGE_LATCH
Definition: ecore_reg.h:294
#define NIG_REG_INGRESS_EOP_LB_FIFO
Definition: ecore_reg.h:544
#define MISC_SPIO_FLOAT
Definition: ecore_reg.h:1933
#define MISC_REGISTERS_RESET_REG_2_MSTAT0
Definition: ecore_reg.h:1884
#define PBF_REG_P0_INIT_CRD
Definition: ecore_reg.h:938
#define GRCBASE_XMAC1
Definition: ecore_reg.h:2199
#define NIG_REG_LLH_E1HOV_MODE
Definition: ecore_reg.h:616
#define XSDM_REG_XSDM_INT_MASK_1
Definition: ecore_reg.h:1710
#define PBF_REG_HDRS_AFTER_BASIC
Definition: ecore_reg.h:910
#define MCP_REG_MCPR_NVM_SW_ARB
Definition: ecore_reg.h:320
#define MISC_REG_DRIVER_CONTROL_1
Definition: ecore_reg.h:424
#define MISC_REG_AEU_GENERAL_ATTN_10
Definition: ecore_reg.h:372
#define AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR
Definition: ecore_reg.h:2004
#define GRCBASE_MISC
Definition: ecore_reg.h:2169
#define DORQ_REG_PF_USAGE_CNT
Definition: ecore_reg.h:198
#define EVEREST_LATCHED_ATTN_IN_USE_MASK
Definition: ecore_reg.h:2093
#define HC_REG_MAIN_MEMORY
Definition: ecore_reg.h:232
#define MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
Definition: ecore_reg.h:332
#define MISC_REG_AEU_GENERAL_ATTN_8
Definition: ecore_reg.h:390
#define AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR
Definition: ecore_reg.h:1992
#define NIG_REG_INGRESS_BMAC1_MEM
Definition: ecore_reg.h:540
#define HW_LOCK_RESOURCE_DRV_FLAGS
Definition: ecore_reg.h:1943
#define PBF_REG_TQ_LINES_FREED_CNT_Q1
Definition: ecore_reg.h:982
#define MCPR_NVM_COMMAND_LAST
Definition: ecore_reg.h:1750
#define PXP2_REG_RD_PORT_IS_IDLE_0
Definition: ecore_reg.h:1210
#define PBF_REG_CREDIT_Q0
Definition: ecore_reg.h:880
#define MISC_REG_AEU_GENERAL_ATTN_2
Definition: ecore_reg.h:378
#define CSDM_REG_CSDM_INT_MASK_0
Definition: ecore_reg.h:112
#define ATC_REG_ATC_INIT_DONE
Definition: ecore_reg.h:48
#define HC_CONFIG_0_REG_ATTN_BIT_EN_0
Definition: ecore_reg.h:200
#define IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
Definition: ecore_reg.h:238
#define HC_REG_HC_PRTY_STS_CLR
Definition: ecore_reg.h:226
#define AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR
Definition: ecore_reg.h:1973
#define IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
Definition: ecore_reg.h:3440
#define NIG_REG_INGRESS_EOP_LB_EMPTY
Definition: ecore_reg.h:542
#define PBF_REG_INTERNAL_CRD_FREED_CNT_Q1
Definition: ecore_reg.h:928
#define PBF_REG_CREDIT_Q1
Definition: ecore_reg.h:882
#define HC_REG_COMMAND_REG
Definition: ecore_reg.h:218
#define MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
Definition: ecore_reg.h:342
#define MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1
Definition: ecore_reg.h:350
int ecore_config_rx_mode(struct bxe_softc *sc, struct ecore_rx_mode_ramrod_params *p)
Definition: ecore_sp.c:2793
void ecore_init_queue_obj(struct bxe_softc *sc, struct ecore_queue_sp_obj *obj, uint8_t cl_id, uint32_t *cids, uint8_t cid_cnt, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, unsigned long type)
Definition: ecore_sp.c:5744
void ecore_init_rss_config_obj(struct bxe_softc *sc, struct ecore_rss_config_obj *rss_obj, uint8_t cl_id, uint32_t cid, uint8_t func_id, uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state, unsigned long *pstate, ecore_obj_type type)
Definition: ecore_sp.c:4615
int ecore_config_vlan_mac(struct bxe_softc *sc, struct ecore_vlan_mac_ramrod_params *p)
Definition: ecore_sp.c:2118
void ecore_init_mac_obj(struct bxe_softc *sc, struct ecore_vlan_mac_obj *mac_obj, uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state, unsigned long *pstate, ecore_obj_type type, struct ecore_credit_pool_obj *macs_pool)
Definition: ecore_sp.c:2321
int ecore_func_state_change(struct bxe_softc *sc, struct ecore_func_state_params *params)
Definition: ecore_sp.c:6588
void ecore_init_vlan_credit_pool(struct bxe_softc *sc, struct ecore_credit_pool_obj *p, uint8_t func_id, uint8_t func_num)
Definition: ecore_sp.c:4445
void ecore_init_mac_credit_pool(struct bxe_softc *sc, struct ecore_credit_pool_obj *p, uint8_t func_id, uint8_t func_num)
Definition: ecore_sp.c:4391
void ecore_init_rx_mode_obj(struct bxe_softc *sc, struct ecore_rx_mode_obj *o)
Definition: ecore_sp.c:2813
int ecore_queue_state_change(struct bxe_softc *sc, struct ecore_queue_state_params *params)
Definition: ecore_sp.c:4644
void ecore_init_mcast_obj(struct bxe_softc *sc, struct ecore_mcast_obj *mcast_obj, uint8_t mcast_cl_id, uint32_t mcast_cid, uint8_t func_id, uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state, unsigned long *pstate, ecore_obj_type type)
Definition: ecore_sp.c:4093
enum ecore_func_state ecore_func_get_state(struct bxe_softc *sc, struct ecore_func_sp_obj *o)
Definition: ecore_sp.c:5801
void ecore_init_func_obj(struct bxe_softc *sc, struct ecore_func_sp_obj *obj, void *rdata, ecore_dma_addr_t rdata_mapping, void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping, struct ecore_func_sp_drv_ops *drv_iface)
Definition: ecore_sp.c:6554
int ecore_config_rss(struct bxe_softc *sc, struct ecore_config_rss_params *p)
Definition: ecore_sp.c:4587
int ecore_config_mcast(struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p, enum ecore_mcast_cmd cmd)
Definition: ecore_sp.c:4003
#define BIT_VEC64_CLEAR_BIT(vec64, idx)
Definition: ecore_sp.h:422
#define ECORE_LIST_INIT(_list)
Definition: ecore_sp.h:289
@ ECORE_ETH_MAC
Definition: ecore_sp.h:725
@ ECORE_UC_LIST_MAC
Definition: ecore_sp.h:724
#define BIT_VEC64_ELEM_ONE_MASK
Definition: ecore_sp.h:436
ecore_queue_cmd
Definition: ecore_sp.h:1268
@ ECORE_Q_CMD_UPDATE
Definition: ecore_sp.h:1274
@ ECORE_Q_CMD_TERMINATE
Definition: ecore_sp.h:1278
@ ECORE_Q_CMD_SETUP_TX_ONLY
Definition: ecore_sp.h:1271
@ ECORE_Q_CMD_CFC_DEL
Definition: ecore_sp.h:1277
@ ECORE_Q_CMD_EMPTY
Definition: ecore_sp.h:1279
@ ECORE_Q_CMD_SETUP
Definition: ecore_sp.h:1270
@ ECORE_Q_CMD_INIT
Definition: ecore_sp.h:1269
@ ECORE_Q_CMD_MAX
Definition: ecore_sp.h:1280
@ ECORE_Q_CMD_HALT
Definition: ecore_sp.h:1276
@ ECORE_Q_FLG_MCAST
Definition: ecore_sp.h:1300
@ ECORE_Q_FLG_PCSUM_ON_PKT
Definition: ecore_sp.h:1308
@ ECORE_Q_FLG_ZERO_STATS
Definition: ecore_sp.h:1289
@ ECORE_Q_FLG_HC
Definition: ecore_sp.h:1294
@ ECORE_Q_FLG_HC_EN
Definition: ecore_sp.h:1295
@ ECORE_Q_FLG_ACTIVE
Definition: ecore_sp.h:1290
@ ECORE_Q_FLG_TX_SWITCH
Definition: ecore_sp.h:1302
@ ECORE_Q_FLG_STATS
Definition: ecore_sp.h:1288
@ ECORE_Q_FLG_VLAN
Definition: ecore_sp.h:1292
@ ECORE_Q_FLG_LEADING_RSS
Definition: ecore_sp.h:1299
@ ECORE_Q_FLG_OV
Definition: ecore_sp.h:1291
@ ECORE_Q_FLG_TPA_IPV6
Definition: ecore_sp.h:1286
@ ECORE_Q_FLG_TPA
Definition: ecore_sp.h:1285
@ ECORE_EXISTS
Definition: ecore_sp.h:455
@ ECORE_ACCEPT_MULTICAST
Definition: ecore_sp.h:929
@ ECORE_ACCEPT_BROADCAST
Definition: ecore_sp.h:932
@ ECORE_ACCEPT_ANY_VLAN
Definition: ecore_sp.h:934
@ ECORE_ACCEPT_UNMATCHED
Definition: ecore_sp.h:933
@ ECORE_ACCEPT_ALL_MULTICAST
Definition: ecore_sp.h:931
@ ECORE_ACCEPT_ALL_UNICAST
Definition: ecore_sp.h:930
@ ECORE_ACCEPT_UNICAST
Definition: ecore_sp.h:928
@ RAMROD_RX
Definition: ecore_sp.h:480
@ RAMROD_TX
Definition: ecore_sp.h:479
@ RAMROD_COMP_WAIT
Definition: ecore_sp.h:482
@ RAMROD_DRV_CLR_ONLY
Definition: ecore_sp.h:484
@ RAMROD_CONT
Definition: ecore_sp.h:493
@ ECORE_F_CMD_HW_RESET
Definition: ecore_sp.h:1598
@ ECORE_F_CMD_START
Definition: ecore_sp.h:1596
@ ECORE_F_CMD_TX_START
Definition: ecore_sp.h:1602
@ ECORE_F_CMD_STOP
Definition: ecore_sp.h:1597
@ ECORE_F_CMD_TX_STOP
Definition: ecore_sp.h:1601
@ ECORE_F_CMD_SWITCH_UPDATE
Definition: ecore_sp.h:1603
@ ECORE_F_CMD_HW_INIT
Definition: ecore_sp.h:1595
#define ECORE_LIST_PUSH_TAIL(_elem, _list)
Definition: ecore_sp.h:327
@ ECORE_Q_TYPE_HAS_RX
Definition: ecore_sp.h:1318
@ ECORE_Q_TYPE_HAS_TX
Definition: ecore_sp.h:1319
@ ECORE_RSS_IPV6
Definition: ecore_sp.h:1177
@ ECORE_RSS_SET_SRCH
Definition: ecore_sp.h:1172
@ ECORE_RSS_IPV4_UDP
Definition: ecore_sp.h:1176
@ ECORE_RSS_IPV4_TCP
Definition: ecore_sp.h:1175
@ ECORE_RSS_IPV4
Definition: ecore_sp.h:1174
@ ECORE_RSS_MODE_REGULAR
Definition: ecore_sp.h:1170
@ ECORE_RSS_IPV6_UDP
Definition: ecore_sp.h:1179
@ ECORE_RSS_IPV6_TCP
Definition: ecore_sp.h:1178
#define ETH_ALEN
Definition: ecore_sp.h:81
#define SC_ILT(sc)
Definition: ecore_sp.h:163
@ ECORE_VLAN_MAC_ADD
Definition: ecore_sp.h:585
@ ECORE_VLAN_MAC_DEL
Definition: ecore_sp.h:586
@ SWITCH_UPDATE
Definition: ecore_sp.h:467
@ ECORE_FILTER_RSS_CONF_PENDING
Definition: ecore_sp.h:524
@ ECORE_FILTER_MCAST_PENDING
Definition: ecore_sp.h:522
@ ECORE_FILTER_RX_MODE_PENDING
Definition: ecore_sp.h:513
@ ECORE_FILTER_RX_MODE_SCHED
Definition: ecore_sp.h:514
@ ECORE_FILTER_MAC_PENDING
Definition: ecore_sp.h:510
#define BIT_VEC64_ELEM_SZ
Definition: ecore_sp.h:404
@ ECORE_MCAST_CMD_CONT
Definition: ecore_sp.h:1000
@ ECORE_MCAST_CMD_DEL
Definition: ecore_sp.h:1001
@ ECORE_MCAST_CMD_ADD
Definition: ecore_sp.h:999
@ ECORE_F_STATE_STARTED
Definition: ecore_sp.h:1588
#define BIT_VEC64_ELEM_SHIFT
Definition: ecore_sp.h:405
#define MAC_PAD
Definition: ecore_sp.h:1327
#define ECORE_MULTI_TX_COS
Definition: ecore_sp.h:1326
ecore_obj_type
Definition: ecore_sp.h:502
@ ECORE_OBJ_TYPE_RX_TX
Definition: ecore_sp.h:505
@ ECORE_OBJ_TYPE_RX
Definition: ecore_sp.h:503
#define ECORE_LIST_FIRST_ENTRY(_list, cast, _link)
Definition: ecore_sp.h:305
uint16_t attn_bits_index
Definition: ecore_hsi.h:3559
uint32_t sig[5]
Definition: bxe.h:489
struct resource * resource
Definition: bxe.h:459
int rid
Definition: bxe.h:460
bus_space_handle_t handle
Definition: bxe.h:462
vm_offset_t kva
Definition: bxe.h:463
bus_space_tag_t tag
Definition: bxe.h:461
uint32_t phy_address
Definition: bxe_ioctl.h:69
uint32_t port
Definition: bxe_ioctl.h:68
uint32_t duplex
Definition: bxe_ioctl.h:67
uint32_t speed
Definition: bxe_ioctl.h:66
uint32_t advertising
Definition: bxe_ioctl.h:65
uint32_t supported
Definition: bxe_ioctl.h:64
uint32_t autoneg
Definition: bxe_ioctl.h:70
uint16_t bxe_vid
Definition: bxe.h:151
uint16_t bxe_sdid
Definition: bxe.h:154
uint16_t bxe_did
Definition: bxe.h:152
char * bxe_name
Definition: bxe.h:155
uint16_t bxe_svid
Definition: bxe.h:153
uint32_t hw_config2
Definition: bxe.h:1282
uint16_t pcie_link_speed
Definition: bxe.h:1276
uint16_t pcie_link_width
Definition: bxe.h:1275
uint32_t shmem2_base
Definition: bxe.h:1255
uint32_t hw_config
Definition: bxe.h:1281
uint32_t bc_ver
Definition: bxe.h:1256
int flash_size
Definition: bxe.h:1261
uint8_t chip_port_mode
Definition: bxe.h:1237
uint32_t mf_cfg_base
Definition: bxe.h:1258
uint16_t pcie_pm_cap_reg
Definition: bxe.h:1272
uint16_t vendor_id
Definition: bxe.h:1103
uint16_t subdevice_id
Definition: bxe.h:1106
uint32_t shmem_base
Definition: bxe.h:1254
uint32_t pcie_cap_flags
Definition: bxe.h:1267
uint16_t pcie_msix_cap_reg
Definition: bxe.h:1278
uint16_t pcie_pcie_cap_reg
Definition: bxe.h:1273
uint32_t chip_id
Definition: bxe.h:1115
uint16_t pcie_msi_cap_reg
Definition: bxe.h:1277
uint16_t subvendor_id
Definition: bxe.h:1105
uint16_t device_id
Definition: bxe.h:1104
char bc_ver_str[32]
Definition: bxe.h:1257
struct bxe_mf_info mf_info
Definition: bxe.h:1259
uint8_t int_block
Definition: bxe.h:1244
Definition: bxe.h:473
int nseg
Definition: bxe.h:481
void * vaddr
Definition: bxe.h:476
bus_dmamap_t map
Definition: bxe.h:478
struct bxe_softc * sc
Definition: bxe.h:474
bus_addr_t paddr
Definition: bxe.h:475
char msg[32]
Definition: bxe.h:482
bus_dma_tag_t tag
Definition: bxe.h:477
bus_size_t size
Definition: bxe.h:480
uint32_t reg_dump_len
Definition: bxe_ioctl.h:57
uint32_t eeprom_dump_len
Definition: bxe_ioctl.h:56
char drv_version[BXE_DRV_VERSION_LENGTH]
Definition: bxe_ioctl.h:53
char mfw_version[BXE_MFW_VERSION_LENGTH]
Definition: bxe_ioctl.h:54
char drv_name[BXE_DRV_NAME_LENGTH]
Definition: bxe_ioctl.h:52
char stormfw_version[BXE_STORMFW_VERSION_LENGTH]
Definition: bxe_ioctl.h:55
char bus_info[BXE_BUS_INFO_LENGTH]
Definition: bxe_ioctl.h:58
uint32_t eeprom_data_len
Definition: bxe_ioctl.h:89
uint32_t eeprom_offset
Definition: bxe_ioctl.h:88
void * eeprom_data
Definition: bxe_ioctl.h:87
uint32_t eeprom_cmd
Definition: bxe_ioctl.h:83
uint32_t rx_ofld_frames_csum_tcp_udp
Definition: bxe_stats.h:343
uint32_t tx_request_link_down_failures
Definition: bxe_stats.h:388
uint32_t tx_max_drbr_queue_depth
Definition: bxe_stats.h:358
uint32_t tx_queue_xoff
Definition: bxe_stats.h:365
uint32_t bd_avail_too_less_failures
Definition: bxe_stats.h:389
uint32_t mbuf_alloc_rx
Definition: bxe_stats.h:379
uint32_t tx_frames_deferred
Definition: bxe_stats.h:364
uint32_t rx_calls
Definition: bxe_stats.h:334
uint32_t tx_hw_queue_full
Definition: bxe_stats.h:355
uint32_t rx_pkts
Definition: bxe_stats.h:335
uint32_t tx_mq_not_empty
Definition: bxe_stats.h:390
uint32_t tx_window_violation_std
Definition: bxe_stats.h:359
uint32_t nsegs_path1_errors
Definition: bxe_stats.h:391
uint32_t rx_hw_csum_errors
Definition: bxe_stats.h:341
uint32_t mbuf_alloc_tx
Definition: bxe_stats.h:378
uint32_t tx_ofld_frames_lso_hdr_splits
Definition: bxe_stats.h:353
uint32_t mbuf_rx_tpa_mapping_failed
Definition: bxe_stats.h:373
uint32_t tx_encap_failures
Definition: bxe_stats.h:354
uint32_t mbuf_rx_sge_mapping_failed
Definition: bxe_stats.h:375
uint32_t tx_ofld_frames_csum_udp
Definition: bxe_stats.h:351
uint32_t mbuf_alloc_tpa
Definition: bxe_stats.h:381
uint32_t mbuf_rx_bd_alloc_failed
Definition: bxe_stats.h:370
uint32_t mbuf_rx_sge_alloc_failed
Definition: bxe_stats.h:374
uint32_t nsegs_path2_errors
Definition: bxe_stats.h:392
uint32_t rx_ofld_frames_csum_ip
Definition: bxe_stats.h:342
uint32_t tx_soft_errors
Definition: bxe_stats.h:348
uint32_t rx_budget_reached
Definition: bxe_stats.h:344
uint32_t tx_queue_full_return
Definition: bxe_stats.h:384
uint32_t tx_ofld_frames_csum_ip
Definition: bxe_stats.h:349
uint32_t tx_pkts
Definition: bxe_stats.h:347
uint32_t tx_ofld_frames_lso
Definition: bxe_stats.h:352
uint32_t rx_jumbo_sge_pkts
Definition: bxe_stats.h:339
uint32_t mbuf_alloc_sge
Definition: bxe_stats.h:380
uint32_t mbuf_defrag_failures
Definition: bxe_stats.h:369
uint32_t rx_erroneous_jumbo_sge_pkts
Definition: bxe_stats.h:337
uint32_t rx_soft_errors
Definition: bxe_stats.h:340
uint32_t tx_hw_max_queue_depth
Definition: bxe_stats.h:356
uint32_t mbuf_defrag_attempts
Definition: bxe_stats.h:368
uint32_t tx_window_violation_tso
Definition: bxe_stats.h:360
uint32_t bxe_tx_mq_sc_state_failures
Definition: bxe_stats.h:387
uint32_t mbuf_rx_bd_mapping_failed
Definition: bxe_stats.h:371
uint32_t rx_tpa_pkts
Definition: bxe_stats.h:336
uint32_t tx_chain_lost_mbuf
Definition: bxe_stats.h:363
uint32_t tx_dma_mapping_failure
Definition: bxe_stats.h:357
uint32_t tx_ofld_frames_csum_tcp
Definition: bxe_stats.h:350
uint32_t mbuf_rx_tpa_alloc_failed
Definition: bxe_stats.h:372
uint32_t rx_bxe_service_rxsgl
Definition: bxe_stats.h:338
uint32_t recoverable_error
Definition: bxe_stats.h:213
uint32_t unrecoverable_error
Definition: bxe_stats.h:214
uint16_t rx_cq_cons
Definition: bxe.h:643
struct bxe_dma sb_dma
Definition: bxe.h:561
struct bxe_dma tx_dma
Definition: bxe.h:565
struct task tq_task
Definition: bxe.h:623
uint32_t ustorm_rx_prods_offset
Definition: bxe.h:602
char tx_mtx_name[32]
Definition: bxe.h:547
struct task tx_task
Definition: bxe.h:627
bus_dmamap_t rx_sge_mbuf_spare_map
Definition: bxe.h:592
union eth_rx_cqe * rcq_chain
Definition: bxe.h:574
uint8_t fw_sb_id
Definition: bxe.h:605
union bxe_host_hc_status_block status_block
Definition: bxe.h:562
struct bxe_dma rx_sge_dma
Definition: bxe.h:577
bus_dma_tag_t tx_mbuf_tag
Definition: bxe.h:581
uint16_t rx_bd_prod
Definition: bxe.h:638
uint16_t * tx_cons_sb
Definition: bxe.h:668
struct bxe_eth_q_stats eth_q_stats
Definition: bxe.h:661
struct bxe_dma rx_dma
Definition: bxe.h:569
uint16_t tx_pkt_cons
Definition: bxe.h:649
uint16_t * rx_cq_cons_sb
Definition: bxe.h:665
struct eth_rx_sge * rx_sge_chain
Definition: bxe.h:578
int tpa_enable
Definition: bxe.h:595
uint8_t cl_id
Definition: bxe.h:631
struct mtx rx_mtx
Definition: bxe.h:548
bus_dmamap_t rx_mbuf_spare_map
Definition: bxe.h:587
bus_dmamap_t rx_tpa_info_mbuf_spare_map
Definition: bxe.h:597
uint64_t sge_mask[RX_SGE_MASK_LEN]
Definition: bxe.h:655
union eth_tx_bd_types * tx_chain
Definition: bxe.h:566
struct bxe_softc * sc
Definition: bxe.h:544
uint32_t rx_buf_size
Definition: bxe.h:607
uint16_t tx_bd_prod
Definition: bxe.h:652
uint16_t rx_bd_cons
Definition: bxe.h:639
char tq_name[32]
Definition: bxe.h:625
uint16_t rx_cq_prod
Definition: bxe.h:642
uint16_t fp_hc_idx
Definition: bxe.h:635
struct taskqueue * tq
Definition: bxe.h:624
uint16_t * sb_running_index
Definition: bxe.h:601
uint16_t last_max_sge
Definition: bxe.h:677
uint16_t tx_bd_cons
Definition: bxe.h:653
struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL]
Definition: bxe.h:586
uint8_t index
Definition: bxe.h:619
int watchdog_timer
Definition: bxe.h:671
struct bxe_dma rcq_dma
Definition: bxe.h:573
int mbuf_alloc_size
Definition: bxe.h:608
struct eth_rx_bd * rx_chain
Definition: bxe.h:570
uint16_t tx_pkt_prod
Definition: bxe.h:648
struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]
Definition: bxe.h:596
union bxe_db_prod tx_db
Definition: bxe.h:645
bus_dma_tag_t rx_mbuf_tag
Definition: bxe.h:585
int state
Definition: bxe.h:610
uint16_t * sb_index_values
Definition: bxe.h:600
struct mtx tx_mtx
Definition: bxe.h:546
struct timeout_task tx_timeout_task
Definition: bxe.h:628
char rx_mtx_name[32]
Definition: bxe.h:549
struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL]
Definition: bxe.h:591
uint64_t rx_tpa_queue_used
Definition: bxe.h:598
struct buf_ring * tx_br
Definition: bxe.h:684
uint16_t rx_sge_prod
Definition: bxe.h:656
struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL]
Definition: bxe.h:582
bus_dma_tag_t rx_sge_mbuf_tag
Definition: bxe.h:590
uint8_t cl_qzone_id
Definition: bxe.h:633
uint8_t igu_sb_id
Definition: bxe.h:604
uint16_t pf_id
Definition: bxe.h:1812
bus_addr_t spq_map
Definition: bxe.h:1809
uint16_t func_flgs
Definition: bxe.h:1810
uint16_t spq_prod
Definition: bxe.h:1813
uint16_t func_id
Definition: bxe.h:1811
void * reg_buf
Definition: bxe_ioctl.h:75
uint32_t reg_buf_len
Definition: bxe_ioctl.h:76
uint16_t pci_func
Definition: bxe_ioctl.h:38
uint32_t grcdump_size
Definition: bxe_ioctl.h:39
void * grcdump
Definition: bxe_ioctl.h:40
uint32_t grcdump_dwords
Definition: bxe_ioctl.h:41
int rid
Definition: bxe.h:468
struct resource * resource
Definition: bxe.h:467
void * tag
Definition: bxe.h:469
uint32_t umac_addr
Definition: bxe.c:15447
uint32_t umac_val
Definition: bxe.c:15448
uint32_t xmac_val
Definition: bxe.c:15444
uint32_t bmac_val[2]
Definition: bxe.c:15450
uint32_t emac_val
Definition: bxe.c:15446
uint32_t bmac_addr
Definition: bxe.c:15449
uint32_t emac_addr
Definition: bxe.c:15445
uint32_t xmac_addr
Definition: bxe.c:15443
uint32_t vnics_per_port
Definition: bxe.h:1039
uint32_t mf_config[E1HVN_MAX]
Definition: bxe.h:1037
uint8_t max_bw[MAX_VNIC_NUM]
Definition: bxe.h:1050
uint16_t ext_id
Definition: bxe.h:1052
uint32_t multi_vnics_mode
Definition: bxe.h:1040
uint32_t mf_protos_supported
Definition: bxe.h:1094
int afex_def_vlan_tag
Definition: bxe.h:1071
uint8_t mf_mode
Definition: bxe.h:1077
uint16_t default_vlan
Definition: bxe.h:1058
uint8_t niv_mba_enabled
Definition: bxe.h:1067
uint8_t min_bw[MAX_VNIC_NUM]
Definition: bxe.h:1049
uint32_t path_has_ovlan
Definition: bxe.h:1041
uint8_t niv_allowed_priorities
Definition: bxe.h:1061
enum mf_cfg_afex_vlan_mode afex_vlan_mode
Definition: bxe.h:1069
uint8_t niv_default_cos
Definition: bxe.h:1064
uint32_t cfg_id
Definition: bxe_ioctl.h:112
uint32_t cfg_cmd
Definition: bxe_ioctl.h:109
uint32_t cfg_val
Definition: bxe_ioctl.h:113
uint32_t cfg_width
Definition: bxe_ioctl.h:114
char mac_addr_str[32]
Definition: bxe_ioctl.h:120
uint32_t pmf
Definition: bxe.h:984
uint32_t phy_addr
Definition: bxe.h:1015
char phy_mtx_name[32]
Definition: bxe.h:1019
uint32_t advertising[ELINK_LINK_CONFIG_SIZE]
Definition: bxe.h:1000
uint32_t supported[ELINK_LINK_CONFIG_SIZE]
Definition: bxe.h:997
uint32_t config
Definition: bxe.h:994
struct mtx phy_mtx
Definition: bxe.h:1018
uint32_t ext_phy_config
Definition: bxe.h:991
uint32_t link_config[ELINK_LINK_CONFIG_SIZE]
Definition: bxe.h:989
uint32_t reg_val
Definition: bxe_ioctl.h:100
uint32_t reg_id
Definition: bxe_ioctl.h:99
uint32_t reg_cmd
Definition: bxe_ioctl.h:95
uint32_t reg_access_type
Definition: bxe_ioctl.h:101
struct bxe_softc * sc
Definition: bxe.c:12124
unsigned long ramrod_flags
Definition: bxe.c:12125
union drv_info_to_mcp drv_info_to_mcp
Definition: bxe.h:971
volatile int state
Definition: bxe.h:1316
uint32_t attn_state
Definition: bxe.h:1563
char core_sx_name[32]
Definition: bxe.h:1415
char pci_link_str[32]
Definition: bxe.h:1409
char chip_tq_name[32]
Definition: bxe.h:1366
struct task sp_tq_task
Definition: bxe.h:1371
int flags
Definition: bxe.h:1328
struct eth_spe * spq
Definition: bxe.h:1603
int rx_ring_size
Definition: bxe.h:1492
struct eth_spe * spq_last_bd
Definition: bxe.h:1610
int media
Definition: bxe.h:1314
uint32_t rx_mode
Definition: bxe.h:1513
int autogreeen
Definition: bxe.h:1532
struct bxe_fw_stats_data * fw_stats_data
Definition: bxe.h:1706
uint8_t pfunc_abs
Definition: bxe.h:1386
const struct iro * iro_array
Definition: bxe.h:1411
union event_ring_elem * eq
Definition: bxe.h:1579
struct bxe_bar bar[MAX_BARS]
Definition: bxe.h:1348
uint8_t igu_dsb_id
Definition: bxe.h:1545
uint8_t fw_stats_num
Definition: bxe.h:1688
uint32_t link_cnt
Definition: bxe.h:1485
struct bxe_fw_stats_req * fw_stats_req
Definition: bxe.h:1699
char mcast_mtx_name[32]
Definition: bxe.h:1431
z_streamp gz_strm
Definition: bxe.h:1621
int hc_rx_ticks
Definition: bxe.h:1527
uint16_t * eq_cons_sb
Definition: bxe.h:1582
uint16_t fw_drv_pulse_wr_seq
Definition: bxe.h:1480
void * eeprom
Definition: bxe.h:1767
uint16_t * dsb_sp_prod
Definition: bxe.h:1611
uint16_t stats_comp
Definition: bxe.h:1712
uint8_t igu_sb_cnt
Definition: bxe.h:1547
struct taskqueue * chip_tq
Definition: bxe.h:1365
uint16_t eq_prod
Definition: bxe.h:1580
unsigned int trigger_grcdump
Definition: bxe.h:1763
uint16_t fw_seq
Definition: bxe.h:1479
int hc_tx_ticks
Definition: bxe.h:1528
struct ecore_credit_pool_obj vlans_pool
Definition: bxe.h:1472
char dmae_mtx_name[32]
Definition: bxe.h:1423
struct bxe_dma def_sb_dma
Definition: bxe.h:1559
struct mtx stats_mtx
Definition: bxe.h:1428
char sp_tq_name[32]
Definition: bxe.h:1373
int is_leader
Definition: bxe.h:1495
struct cdev * ioctl_dev
Definition: bxe.h:1760
unsigned long debug
Definition: bxe.h:1345
int pcie_device
Definition: bxe.h:1382
device_t dev
Definition: bxe.h:1378
uint8_t igu_base_sb
Definition: bxe.h:1546
unsigned int grcdump_started
Definition: bxe.h:1765
struct eth_spe * spq_prod_bd
Definition: bxe.h:1609
uint16_t def_att_idx
Definition: bxe.h:1562
int recovery_state
Definition: bxe.h:1496
uint16_t doorbell_size
Definition: bxe.h:1350
struct bxe_dma sp_dma
Definition: bxe.h:1597
void * grc_dump
Definition: bxe.h:1762
struct bxe_slowpath * sp
Definition: bxe.h:1598
struct bxe_fastpath fp[MAX_RSS_CHAINS]
Definition: bxe.h:1375
bus_dma_tag_t parent_dma_tag
Definition: bxe.h:1556
uint8_t prio_to_cos[BXE_MAX_PRIORITY]
Definition: bxe.h:1756
volatile unsigned long chip_tq_flags
Definition: bxe.h:1363
struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS]
Definition: bxe.h:1376
struct ecore_ilt * ilt
Definition: bxe.h:1660
int fw_stats_data_size
Definition: bxe.h:1705
uint16_t eq_cons
Definition: bxe.h:1581
struct ecore_credit_pool_obj macs_pool
Definition: bxe.h:1473
struct elink_vars link_vars
Definition: bxe.h:1484
uint8_t unit
Definition: bxe.h:1379
int pcie_bus
Definition: bxe.h:1381
struct mtx sp_mtx
Definition: bxe.h:1420
struct bxe_dma eq_dma
Definition: bxe.h:1578
uint8_t dropless_fc
Definition: bxe.h:1685
int last_reported_link_state
Definition: bxe.h:1489
int intr_count
Definition: bxe.h:1544
char sp_mtx_name[32]
Definition: bxe.h:1421
uint32_t error_status
Definition: bxe.h:1511
int qm_cid_count
Definition: bxe.h:1683
char mf_mode_str[32]
Definition: bxe.h:1408
struct hw_context context[ILT_MAX_L2_LINES]
Definition: bxe.h:1659
struct taskqueue * sp_tq
Definition: bxe.h:1372
uint8_t path_id
Definition: bxe.h:1387
struct ecore_rx_mode_obj rx_mode_obj
Definition: bxe.h:1474
int dcb_state
Definition: bxe.h:1731
int wol
Definition: bxe.h:1493
char print_mtx_name[32]
Definition: bxe.h:1427
struct bxe_eth_stats eth_stats
Definition: bxe.h:1717
struct elink_params link_params
Definition: bxe.h:1483
int pcie_func
Definition: bxe.h:1383
struct bxe_port port
Definition: bxe.h:1520
int dmae_ready
Definition: bxe.h:1469
struct sx core_sx
Definition: bxe.h:1414
volatile unsigned long cq_spq_left
Definition: bxe.h:1616
int udp_rss
Definition: bxe.h:1540
int interrupt_mode
Definition: bxe.h:1536
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]
Definition: bxe.h:1564
struct mtx dmae_mtx
Definition: bxe.h:1422
bus_addr_t fw_stats_req_mapping
Definition: bxe.h:1700
struct bxe_devinfo devinfo
Definition: bxe.h:1406
if_t ifp
Definition: bxe.h:1312
struct mtx mcast_mtx
Definition: bxe.h:1430
int fw_stats_req_size
Definition: bxe.h:1698
struct bxe_dma spq_dma
Definition: bxe.h:1602
struct ecore_func_sp_obj func_obj
Definition: bxe.h:1477
int max_rx_bufs
Definition: bxe.h:1526
int num_queues
Definition: bxe.h:1525
uint8_t max_cos
Definition: bxe.h:1753
void * gz_buf
Definition: bxe.h:1620
uint16_t spq_prod_idx
Definition: bxe.h:1608
struct ecore_mcast_obj mcast_obj
Definition: bxe.h:1475
volatile unsigned long periodic_flags
Definition: bxe.h:1355
int dcbx_enabled
Definition: bxe.h:1735
uint8_t pfunc_rel
Definition: bxe.h:1385
struct bxe_link_report_data last_reported_link
Definition: bxe.h:1486
struct timeout_task sp_err_timeout_task
Definition: bxe.h:1368
struct callout periodic_callout
Definition: bxe.h:1356
struct bxe_dma fw_stats_dma
Definition: bxe.h:1693
int rx_budget
Definition: bxe.h:1529
unsigned int grcdump_done
Definition: bxe.h:1764
int bxe_pause_param
Definition: bxe.h:1766
struct mtx fwmb_mtx
Definition: bxe.h:1424
struct cmng_init cmng
Definition: bxe.h:1522
int tx_ring_size
Definition: bxe.h:1491
unsigned long sp_state
Definition: bxe.h:1599
struct ecore_rss_config_obj rss_conf_obj
Definition: bxe.h:1476
int max_aggregation_size
Definition: bxe.h:1530
bus_addr_t fw_stats_data_mapping
Definition: bxe.h:1707
volatile unsigned long eq_spq_left
Definition: bxe.h:1615
struct task chip_tq_task
Definition: bxe.h:1364
char fw_ver_str[32]
Definition: bxe.h:1407
int mtu
Definition: bxe.h:1726
struct ifmedia ifmedia
Definition: bxe.h:1313
struct mtx print_mtx
Definition: bxe.h:1426
uint32_t igu_base_addr
Definition: bxe.h:1549
char mac_addr_str[32]
Definition: bxe.h:1487
struct bxe_dma gz_buf_dma
Definition: bxe.h:1619
uint8_t base_fw_ndsb
Definition: bxe.h:1551
char fwmb_mtx_name[32]
Definition: bxe.h:1425
uint16_t def_idx
Definition: bxe.h:1561
int mrrs
Definition: bxe.h:1531
struct bxe_intr intr[MAX_RSS_CHAINS+1]
Definition: bxe.h:1543
char stats_mtx_name[32]
Definition: bxe.h:1429
struct host_sp_status_block * def_sb
Definition: bxe.h:1560
struct ecore_queue_sp_obj q_obj
Definition: bxe.h:1287
struct ecore_vlan_mac_obj mac_obj
Definition: bxe.h:1286
bus_dmamap_t m_map
Definition: bxe.h:523
struct mbuf * m
Definition: bxe.h:522
uint8_t state
Definition: bxe.h:529
uint16_t len_on_bd
Definition: bxe.h:535
uint8_t placement_offset
Definition: bxe.h:532
uint16_t vlan_tag
Definition: bxe.h:534
bus_dma_segment_t seg
Definition: bxe.h:528
uint16_t parsing_flags
Definition: bxe.h:533
struct bxe_sw_rx_bd bd
Definition: bxe.h:527
bus_dmamap_t m_map
Definition: bxe.h:514
uint16_t first_bd
Definition: bxe.h:515
uint8_t flags
Definition: bxe.h:516
struct mbuf * m
Definition: bxe.h:513
struct cmng_flags_per_port flags
Definition: ecore_hsi.h:11304
uint16_t vnic_min_rate[4]
Definition: ecore_hsi.h:11300
uint32_t port_rate
Definition: ecore_hsi.h:11299
uint16_t vnic_max_rate[4]
Definition: ecore_hsi.h:11301
struct cmng_vnic vnic
Definition: ecore_hsi.h:11290
struct cmng_struct_per_port port
Definition: ecore_hsi.h:11289
struct rate_shaping_vars_per_vn vnic_max_rate[4]
Definition: ecore_hsi.h:11280
struct fairness_vars_per_vn vnic_min_rate[4]
Definition: ecore_hsi.h:11281
uint32_t comp_addr_lo
Definition: ecore_hsi.h:3802
uint32_t dst_addr_hi
Definition: ecore_hsi.h:3770
uint32_t src_addr_lo
Definition: ecore_hsi.h:3767
uint32_t comp_val
Definition: ecore_hsi.h:3804
uint32_t src_addr_hi
Definition: ecore_hsi.h:3768
uint32_t comp_addr_hi
Definition: ecore_hsi.h:3803
uint32_t dst_addr_lo
Definition: ecore_hsi.h:3769
uint32_t opcode
Definition: ecore_hsi.h:3734
uint32_t version
Definition: bxe_dump.h:53
uint32_t dump_meta_data
Definition: bxe_dump.h:55
uint32_t header_size
Definition: bxe_dump.h:52
uint32_t preset
Definition: bxe_dump.h:54
struct ecore_rss_config_obj * rss_obj
Definition: ecore_sp.h:1187
unsigned long rss_flags
Definition: ecore_sp.h:1193
unsigned long ramrod_flags
Definition: ecore_sp.h:1190
uint32_t rss_key[10]
Definition: ecore_sp.h:1202
uint8_t ind_table[T_ETH_INDIRECTION_TABLE_SIZE]
Definition: ecore_sp.h:1199
int(* init_hw_cmn_chip)(struct bxe_softc *sc)
Definition: ecore_sp.h:1760
int(* complete_cmd)(struct bxe_softc *sc, struct ecore_func_sp_obj *o, enum ecore_func_cmd cmd)
Definition: ecore_sp.h:1826
struct ecore_func_hw_init_params hw_init
Definition: ecore_sp.h:1742
unsigned long ramrod_flags
Definition: ecore_sp.h:1738
struct ecore_func_start_params start
Definition: ecore_sp.h:1744
union ecore_func_state_params::@45 params
enum ecore_func_cmd cmd
Definition: ecore_sp.h:1735
struct ecore_func_sp_obj * f_obj
Definition: ecore_sp.h:1732
uint32_t start_line
Definition: ecore_init.h:590
struct ilt_client_info clients[4]
Definition: ecore_init.h:592
struct ilt_line * lines
Definition: ecore_init.h:591
uint8_t mac[ETH_ALEN]
Definition: ecore_sp.h:557
ecore_list_entry_t link
Definition: ecore_sp.h:971
bool(* check_pending)(struct ecore_mcast_obj *o)
Definition: ecore_sp.h:1076
struct ecore_raw_obj raw
Definition: ecore_sp.h:1006
unsigned long ramrod_flags
Definition: ecore_sp.h:984
ecore_list_t mcast_list
Definition: ecore_sp.h:986
struct ecore_mcast_obj * mcast_obj
Definition: ecore_sp.h:981
struct ecore_queue_init_params::@43 rx
unsigned long flags
Definition: ecore_sp.h:1335
struct eth_context * cxts[ECORE_MULTI_TX_COS]
Definition: ecore_sp.h:1349
struct ecore_queue_init_params::@42 tx
struct ecore_txq_setup_params txq_params
Definition: ecore_sp.h:1462
struct ecore_general_setup_params gen_params
Definition: ecore_sp.h:1461
struct rxq_pause_params pause_params
Definition: ecore_sp.h:1464
struct ecore_rxq_setup_params rxq_params
Definition: ecore_sp.h:1463
unsigned long flags
Definition: ecore_sp.h:1465
int(* complete_cmd)(struct bxe_softc *sc, struct ecore_queue_sp_obj *o, enum ecore_queue_cmd)
Definition: ecore_sp.h:1558
struct ecore_queue_cfc_del_params cfc_del
Definition: ecore_sp.h:1493
struct ecore_queue_terminate_params terminate
Definition: ecore_sp.h:1492
enum ecore_queue_cmd cmd
Definition: ecore_sp.h:1480
struct ecore_queue_sp_obj * q_obj
Definition: ecore_sp.h:1477
unsigned long ramrod_flags
Definition: ecore_sp.h:1483
struct ecore_queue_init_params init
Definition: ecore_sp.h:1490
struct ecore_queue_setup_params setup
Definition: ecore_sp.h:1489
union ecore_queue_state_params::@44 params
void(* clear_pending)(struct ecore_raw_obj *o)
Definition: ecore_sp.h:551
uint32_t cid
Definition: ecore_sp.h:535
uint8_t ind_table[T_ETH_INDIRECTION_TABLE_SIZE]
Definition: ecore_sp.h:1215
struct ecore_raw_obj raw
Definition: ecore_sp.h:1209
unsigned long ramrod_flags
Definition: ecore_sp.h:944
ecore_dma_addr_t rdata_mapping
Definition: ecore_sp.h:951
struct ecore_rx_mode_obj * rx_mode_obj
Definition: ecore_sp.h:938
unsigned long tx_accept_flags
Definition: ecore_sp.h:957
unsigned long rx_mode_flags
Definition: ecore_sp.h:945
unsigned long * pstate
Definition: ecore_sp.h:939
unsigned long rx_accept_flags
Definition: ecore_sp.h:954
ecore_dma_addr_t sge_map
Definition: ecore_sp.h:1417
uint16_t silent_removal_value
Definition: ecore_sp.h:1441
uint16_t silent_removal_mask
Definition: ecore_sp.h:1442
ecore_dma_addr_t dscr_map
Definition: ecore_sp.h:1416
ecore_dma_addr_t rcq_map
Definition: ecore_sp.h:1418
ecore_dma_addr_t rcq_np_map
Definition: ecore_sp.h:1419
ecore_dma_addr_t dscr_map
Definition: ecore_sp.h:1447
union ecore_classification_ramrod_data u
Definition: ecore_sp.h:601
unsigned long vlan_mac_flags
Definition: ecore_sp.h:596
enum ecore_vlan_mac_cmd cmd
Definition: ecore_sp.h:592
int(* complete)(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o, union event_ring_elem *cqe, unsigned long *ramrod_flags)
Definition: ecore_sp.h:896
int(* get_n_elements)(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o, int n, uint8_t *base, uint8_t stride, uint8_t size)
Definition: ecore_sp.h:787
int(* delete_all)(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o, unsigned long *vlan_mac_flags, unsigned long *ramrod_flags)
Definition: ecore_sp.h:855
unsigned long ramrod_flags
Definition: ecore_sp.h:744
struct ecore_vlan_mac_obj * vlan_mac_obj
Definition: ecore_sp.h:741
struct ecore_vlan_mac_data user_req
Definition: ecore_sp.h:747
struct xstorm_eth_ag_context xstorm_ag_context
Definition: ecore_hsi.h:6988
struct ustorm_eth_ag_context ustorm_ag_context
Definition: ecore_hsi.h:6991
union eth_sgl_or_raw_data sgl_or_raw_data
Definition: ecore_hsi.h:7028
uint32_t echo
Definition: ecore_hsi.h:11501
uint16_t pkt_len_or_gro_seg_len
Definition: ecore_hsi.h:7070
union eth_sgl_or_raw_data sgl_or_raw_data
Definition: ecore_hsi.h:7073
uint8_t type_error_flags
Definition: ecore_hsi.h:7038
struct parsing_flags pars_flags
Definition: ecore_hsi.h:7072
uint32_t rss_hash_result
Definition: ecore_hsi.h:7068
uint8_t placement_offset
Definition: ecore_hsi.h:7067
uint32_t addr_lo
Definition: ecore_hsi.h:7343
uint32_t addr_hi
Definition: ecore_hsi.h:7344
uint32_t addr_hi
Definition: ecore_hsi.h:7430
uint32_t addr_lo
Definition: ecore_hsi.h:7429
struct spe_hdr_t hdr
Definition: ecore_hsi.h:7473
union eth_specific_data data
Definition: ecore_hsi.h:7474
uint8_t version[ETH_STAT_INFO_VERSION_LEN]
Definition: ecore_mfw_req.h:95
uint8_t mac_local[8]
Definition: ecore_mfw_req.h:97
uint32_t promiscuous_mode
uint32_t rxq_size
uint32_t txq_size
uint32_t feature_flags
uint32_t mtu_size
uint8_t as_bitfield
Definition: ecore_hsi.h:7565
uint32_t addr_hi
Definition: ecore_hsi.h:7553
uint16_t total_pkt_bytes
Definition: ecore_hsi.h:7554
uint16_t nbytes
Definition: ecore_hsi.h:7555
uint32_t addr_lo
Definition: ecore_hsi.h:7552
uint32_t addr_lo
Definition: ecore_hsi.h:7724
uint32_t addr_hi
Definition: ecore_hsi.h:7725
uint32_t tcp_send_seq
Definition: ecore_hsi.h:7646
uint16_t global_data
Definition: ecore_hsi.h:7611
uint16_t tcp_pseudo_csum
Definition: ecore_hsi.h:7643
uint16_t total_hlen_w
Definition: ecore_hsi.h:7642
uint32_t parsing_data
Definition: ecore_hsi.h:7655
union eth_mac_addr_or_tunnel_data data
Definition: ecore_hsi.h:7654
uint16_t vlan_or_ethertype
Definition: ecore_hsi.h:7591
uint32_t addr_lo
Definition: ecore_hsi.h:7587
struct eth_tx_bd_flags bd_flags
Definition: ecore_hsi.h:7592
uint8_t general_data
Definition: ecore_hsi.h:7593
uint16_t nbd
Definition: ecore_hsi.h:7589
uint16_t nbytes
Definition: ecore_hsi.h:7590
uint32_t addr_hi
Definition: ecore_hsi.h:7588
struct regpair_native_t base_addr
Definition: ecore_hsi.h:11587
union event_data data
Definition: ecore_hsi.h:11609
uint8_t opcode
Definition: ecore_hsi.h:11606
struct regpair_t addr
Definition: ecore_hsi.h:11617
struct regpair_native_t host_sb_addr
Definition: ecore_hsi.h:11875
struct pci_entity p_func
Definition: ecore_hsi.h:11877
struct hc_status_block_sm state_machine[HC_SB_MAX_SM]
Definition: ecore_hsi.h:11876
struct pci_entity p_func
Definition: ecore_hsi.h:11920
struct regpair_native_t host_sb_addr
Definition: ecore_hsi.h:11908
uint16_t running_index
Definition: ecore_hsi.h:3920
uint16_t index_values[HC_SP_SB_MAX_INDICES]
Definition: ecore_hsi.h:3919
struct hc_index_data index_data[HC_SB_MAX_INDICES_E1X]
Definition: ecore_hsi.h:11929
struct hc_sb_data common
Definition: ecore_hsi.h:11930
struct hc_index_data index_data[HC_SB_MAX_INDICES_E2]
Definition: ecore_hsi.h:11939
struct hc_sb_data common
Definition: ecore_hsi.h:11940
uint16_t running_index[HC_SB_MAX_SM]
Definition: ecore_hsi.h:3882
uint16_t index_values[HC_SB_MAX_INDICES_E1X]
Definition: ecore_hsi.h:3881
uint16_t index_values[HC_SB_MAX_INDICES_E2]
Definition: ecore_hsi.h:3900
uint16_t running_index[HC_SB_MAX_SM]
Definition: ecore_hsi.h:3901
uint32_t time_to_expire
Definition: ecore_hsi.h:11849
struct hc_status_block_e1x sb
Definition: ecore_hsi.h:3891
struct hc_status_block_e2 sb
Definition: ecore_hsi.h:3910
struct mac_stx mac_stx[MAC_STX_IDX_MAX]
Definition: ecore_hsi.h:3403
struct hc_sp_status_block sp_sb
Definition: ecore_hsi.h:3931
struct atten_sp_status_block atten_status_block
Definition: ecore_hsi.h:3930
union cdu_context * vcxt
Definition: bxe.h:742
struct bxe_dma vcxt_dma
Definition: bxe.h:741
size_t size
Definition: bxe.h:744
uint16_t end
Definition: ecore_init.h:582
uint16_t flags
Definition: ecore_init.h:584
uint32_t page_size
Definition: ecore_init.h:580
uint16_t client_num
Definition: ecore_init.h:583
uint16_t start
Definition: ecore_init.h:581
ecore_dma_addr_t page_mapping
Definition: ecore_init.h:574
uint32_t size
Definition: ecore_init.h:576
void * page
Definition: ecore_init.h:575
uint16_t flags
Definition: ecore_hsi.h:4115
uint32_t crd
Definition: bxe.c:76
uint32_t init_crd
Definition: bxe.c:75
uint32_t crd_freed
Definition: bxe.c:77
int pN
Definition: bxe.c:74
uint32_t lines_occup
Definition: bxe.c:82
int pN
Definition: bxe.c:81
uint32_t lines_freed
Definition: bxe.c:83
uint32_t chips
Definition: bxe_dump.h:62
uint32_t presets
Definition: bxe_dump.h:63
uint32_t size
Definition: bxe_dump.h:61
uint32_t addr
Definition: bxe_dump.h:60
uint32_t lo
Definition: ecore_hsi.h:6601
uint32_t hi
Definition: ecore_hsi.h:6602
uint16_t bd_th_lo
Definition: ecore_sp.h:1393
uint16_t sge_th_hi
Definition: ecore_sp.h:1398
uint16_t rcq_th_lo
Definition: ecore_sp.h:1395
uint16_t rcq_th_hi
Definition: ecore_sp.h:1396
uint16_t bd_th_hi
Definition: ecore_sp.h:1394
uint16_t pri_map
Definition: ecore_sp.h:1399
uint16_t sge_th_lo
Definition: ecore_sp.h:1397
uint32_t conn_and_cmd_data
Definition: ecore_hsi.h:7439
uint16_t type
Definition: ecore_hsi.h:7444
uint32_t addr
Definition: bxe_dump.h:67
uint32_t read_regs_count
Definition: bxe_dump.h:69
const uint32_t * read_regs
Definition: bxe_dump.h:70
uint32_t presets
Definition: bxe_dump.h:72
uint32_t size
Definition: bxe_dump.h:68
uint32_t chips
Definition: bxe_dump.h:71
struct doorbell_set_prod data
Definition: bxe.h:508
uint32_t raw
Definition: bxe.h:509
struct host_hc_status_block_e2 * e2_sb
Definition: bxe.h:502
struct host_hc_status_block_e1x * e1x_sb
Definition: bxe.h:504
struct eth_context eth
Definition: bxe.h:705
struct eth_stats_info ether_stat
struct ecore_mac_ramrod_data mac
Definition: ecore_sp.h:577
struct eth_mac_addresses mac_addr
Definition: ecore_hsi.h:7213
struct eth_end_agg_rx_cqe end_agg_cqe
Definition: ecore_hsi.h:7398
struct common_ramrod_eth_rx_cqe ramrod_cqe
Definition: ecore_hsi.h:7396
struct eth_fast_path_rx_cqe fast_path_cqe
Definition: ecore_hsi.h:7395
uint16_t sgl[8]
Definition: ecore_hsi.h:7003
struct regpair_t update_data_addr
Definition: ecore_hsi.h:7461
struct eth_tx_next_bd next_bd
Definition: ecore_hsi.h:7739
struct eth_tx_bd reg_bd
Definition: ecore_hsi.h:7735
struct eth_tx_start_bd start_bd
Definition: ecore_hsi.h:7734
struct eth_tx_parse_bd_e1x parse_bd_e1x
Definition: ecore_hsi.h:7736
struct eth_tx_parse_bd_e2 parse_bd_e2
Definition: ecore_hsi.h:7737
struct function_update_event_data function_update_event
Definition: ecore_hsi.h:11578
struct cfc_del_event_data cfc_del_event
Definition: ecore_hsi.h:11574
struct eth_event_data eth_event
Definition: ecore_hsi.h:11573
struct event_ring_msg message
Definition: ecore_hsi.h:11626
struct event_ring_next next_page
Definition: ecore_hsi.h:11627