FreeBSD kernel BXE device code
ecore_init_ops.h
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#ifndef ECORE_INIT_OPS_H
33#define ECORE_INIT_OPS_H
34
35
36
37
38
39
40
41
42
43
44static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
45static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
46static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
47 ecore_dma_addr_t phys_addr, uint32_t addr,
48 uint32_t len);
49
50static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
51 const uint32_t *data, uint32_t len)
52{
53 uint32_t i;
54
55 for (i = 0; i < len; i++)
56 REG_WR(sc, addr + i*4, data[i]);
57}
58
59static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
60 const uint32_t *data, uint32_t len)
61{
62 uint32_t i;
63
64 for (i = 0; i < len; i++)
65 ecore_reg_wr_ind(sc, addr + i*4, data[i]);
66}
67
68static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
69 uint8_t wb)
70{
71 if (DMAE_READY(sc))
73
74 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
75 else if (wb && CHIP_IS_E1(sc))
76 ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
77
78 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
79 else
80 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
81}
82
83static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
84 uint32_t len, uint8_t wb)
85{
86 uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
87 uint32_t buf_len32 = buf_len/4;
88 uint32_t i;
89
90 ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
91
92 for (i = 0; i < len; i += buf_len32) {
93 uint32_t cur_len = min(buf_len32, len - i);
94
95 ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
96 }
97}
98
99static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
100{
101 if (DMAE_READY(sc))
103
104 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
105 else if (CHIP_IS_E1(sc))
106 ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
107
108 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
109 else
110 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
111}
112
113static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
114 const uint32_t *data, uint32_t len64)
115{
116 uint32_t buf_len32 = FW_BUF_SIZE/4;
117 uint32_t len = len64*2;
118 uint64_t data64 = 0;
119 uint32_t i;
120
121 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
122 data64 = HILO_U64((*(data + 1)), (*data));
123
124 len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
125 for (i = 0; i < len64; i++) {
126 uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
127
128 *pdata = data64;
129 }
130
131 for (i = 0; i < len; i += buf_len32) {
132 uint32_t cur_len = min(buf_len32, len - i);
133
134 ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
135 }
136}
137
138/*********************************************************
139 There are different blobs for each PRAM section.
140 In addition, each blob write operation is divided into a few operations
141 in order to decrease the amount of phys. contiguous buffer needed.
142 Thus, when we select a blob the address may be with some offset
143 from the beginning of PRAM section.
144 The same holds for the INT_TABLE sections.
145**********************************************************/
146#define IF_IS_INT_TABLE_ADDR(base, addr) \
147 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
148
149#define IF_IS_PRAM_ADDR(base, addr) \
150 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
151
152static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
153 const uint8_t *data)
154{
156 data = INIT_TSEM_INT_TABLE_DATA(sc);
157 else
159 data = INIT_CSEM_INT_TABLE_DATA(sc);
160 else
162 data = INIT_USEM_INT_TABLE_DATA(sc);
163 else
165 data = INIT_XSEM_INT_TABLE_DATA(sc);
166 else
168 data = INIT_TSEM_PRAM_DATA(sc);
169 else
171 data = INIT_CSEM_PRAM_DATA(sc);
172 else
174 data = INIT_USEM_PRAM_DATA(sc);
175 else
177 data = INIT_XSEM_PRAM_DATA(sc);
178
179 return data;
180}
181
182static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
183 const uint32_t *data, uint32_t len)
184{
185 if (DMAE_READY(sc))
186 VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
187
188 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
189 else if (CHIP_IS_E1(sc))
190 ecore_init_ind_wr(sc, addr, data, len);
191
192 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
193 else
194 ecore_init_str_wr(sc, addr, data, len);
195}
196
197#ifndef FW_ZIP_SUPPORT
198static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
199{
200 const uint8_t *data = NULL;
201
202 data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
203
204 if (DMAE_READY(sc))
205 VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
206
207 /* in E1 BIOS initiated ZLR may interrupt widebus writes */
208 else if (CHIP_IS_E1(sc))
209 ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
210
211 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
212 else
213 ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
214}
215
216#endif
217
218static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
219 uint32_t val_hi)
220{
221 uint32_t wb_write[2];
222
223 wb_write[0] = val_lo;
224 wb_write[1] = val_hi;
225 REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
226}
227
228static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
229 uint32_t blob_off)
230{
231 const uint8_t *data = NULL;
232 int rc;
233 uint32_t i;
234
235 data = ecore_sel_blob(sc, addr, data) + blob_off*4;
236
237 rc = ecore_gunzip(sc, data, len);
238 if (rc)
239 return;
240
241 /* gunzip_outlen is in dwords */
242 len = GUNZIP_OUTLEN(sc);
243 for (i = 0; i < len; i++)
244 ((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
245 ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
246
248}
249
250static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
251{
252 uint16_t op_start =
253 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
254 STAGE_START)];
255 uint16_t op_end =
256 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
257 STAGE_END)];
258 const union init_op *op;
259 uint32_t op_idx, op_type, addr, len;
260 const uint32_t *data, *data_base;
261
262 /* If empty block */
263 if (op_start == op_end)
264 return;
265
266 data_base = INIT_DATA(sc);
267
268 for (op_idx = op_start; op_idx < op_end; op_idx++) {
269
270 op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
271 /* Get generic data */
272 op_type = op->raw.op;
273 addr = op->raw.offset;
274 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
275 * OP_WR64 (we assume that op_arr_write and op_write have the
276 * same structure).
277 */
278 len = op->arr_wr.data_len;
279 data = data_base + op->arr_wr.data_off;
280
281 switch (op_type) {
282 case OP_RD:
283 REG_RD(sc, addr);
284 break;
285 case OP_WR:
286 REG_WR(sc, addr, op->write.val);
287 break;
288 case OP_SW:
289 ecore_init_str_wr(sc, addr, data, len);
290 break;
291 case OP_WB:
292 ecore_init_wr_wb(sc, addr, data, len);
293 break;
294#ifndef FW_ZIP_SUPPORT
295 case OP_FW:
296 ecore_init_fw(sc, addr, len);
297 break;
298#endif
299 case OP_ZR:
300 ecore_init_fill(sc, addr, 0, op->zero.len, 0);
301 break;
302 case OP_WB_ZR:
303 ecore_init_fill(sc, addr, 0, op->zero.len, 1);
304 break;
305 case OP_ZP:
306 ecore_init_wr_zp(sc, addr, len,
307 op->arr_wr.data_off);
308 break;
309 case OP_WR_64:
310 ecore_init_wr_64(sc, addr, data, len);
311 break;
312 case OP_IF_MODE_AND:
313 /* if any of the flags doesn't match, skip the
314 * conditional block.
315 */
316 if ((INIT_MODE_FLAGS(sc) &
317 op->if_mode.mode_bit_map) !=
319 op_idx += op->if_mode.cmd_offset;
320 break;
321 case OP_IF_MODE_OR:
322 /* if all the flags don't match, skip the conditional
323 * block.
324 */
325 if ((INIT_MODE_FLAGS(sc) &
326 op->if_mode.mode_bit_map) == 0)
327 op_idx += op->if_mode.cmd_offset;
328 break;
329 /* the following opcodes are unused at the moment. */
330 case OP_IF_PHASE:
331 case OP_RT:
332 case OP_DELAY:
333 case OP_VERIFY:
334 default:
335 /* Should never get here! */
336
337 break;
338 }
339 }
340}
341
342
343/****************************************************************************
344* PXP Arbiter
345****************************************************************************/
346/*
347 * This code configures the PCI read/write arbiter
348 * which implements a weighted round robin
349 * between the virtual queues in the chip.
350 *
351 * The values were derived for each PCI max payload and max request size.
352 * since max payload and max request size are only known at run time,
353 * this is done as a separate init stage.
354 */
355
356#define NUM_WR_Q 13
357#define NUM_RD_Q 29
358#define MAX_RD_ORD 3
359#define MAX_WR_ORD 2
360
361/* configuration for one arbiter queue */
362struct arb_line {
363 int l;
364 int add;
366};
367
368/* derived configuration for each read queue for each max request size */
369static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
370/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
371 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
372 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
373 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
374 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
375 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
376 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
377 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
378 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
379/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
380 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
381 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
382 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
383 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
384 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
385 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
386 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
387 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
388 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
389/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
390 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
391 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
392 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
393 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
394 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
395 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
396 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
397 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
398 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
399};
400
401/* derived configuration for each write queue for each max request size */
402static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
403/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
404 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
405 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
406 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
407 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
408 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
409 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
410 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
411 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
412/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
413 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
414 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
415 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
416};
417
418/* register addresses for read queues */
419static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
476};
477
478/* register addresses for write queues */
479static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
504};
505
506static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
507 int w_order)
508{
509 uint32_t val, i;
510
511 if (r_order > MAX_RD_ORD) {
512 ECORE_MSG(sc, "read order of %d order adjusted to %d\n",
513 r_order, MAX_RD_ORD);
514 r_order = MAX_RD_ORD;
515 }
516 if (w_order > MAX_WR_ORD) {
517 ECORE_MSG(sc, "write order of %d order adjusted to %d\n",
518 w_order, MAX_WR_ORD);
519 w_order = MAX_WR_ORD;
520 }
521 if (CHIP_REV_IS_FPGA(sc)) {
522 ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
523 w_order = 0;
524 }
525 ECORE_MSG(sc, "read order %d write order %d\n", r_order, w_order);
526
527 for (i = 0; i < NUM_RD_Q-1; i++) {
528 REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
529 REG_WR(sc, read_arb_addr[i].add,
530 read_arb_data[i][r_order].add);
532 read_arb_data[i][r_order].ubound);
533 }
534
535 for (i = 0; i < NUM_WR_Q-1; i++) {
538
539 REG_WR(sc, write_arb_addr[i].l,
540 write_arb_data[i][w_order].l);
541
543 write_arb_data[i][w_order].add);
544
546 write_arb_data[i][w_order].ubound);
547 } else {
548
549 val = REG_RD(sc, write_arb_addr[i].l);
550 REG_WR(sc, write_arb_addr[i].l,
551 val | (write_arb_data[i][w_order].l << 10));
552
553 val = REG_RD(sc, write_arb_addr[i].add);
555 val | (write_arb_data[i][w_order].add << 10));
556
557 val = REG_RD(sc, write_arb_addr[i].ubound);
559 val | (write_arb_data[i][w_order].ubound << 7));
560 }
561 }
562
563 val = write_arb_data[NUM_WR_Q-1][w_order].add;
564 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
565 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
567
568 val = read_arb_data[NUM_RD_Q-1][r_order].add;
569 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
570 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
572
573 REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
574 REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
575 REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
576 REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
577
578 if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
579 REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
580
581 if (CHIP_IS_E3(sc))
582 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
583 else if (CHIP_IS_E2(sc))
584 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
585 else
586 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
587
588 if (!CHIP_IS_E1(sc)) {
589 /* MPS w_order optimal TH presently TH
590 * 128 0 0 2
591 * 256 1 1 3
592 * >=512 2 2 3
593 */
594 /* DMAE is special */
595 if (!CHIP_IS_E1H(sc)) {
596 /* E2 can use optimal TH */
597 val = w_order;
599 } else {
600 val = ((w_order == 0) ? 2 : 3);
602 }
603
604 REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
609 REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
610 REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
611 REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
612 REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
613 REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
614 }
615
616 /* Validate number of tags suppoted by device */
617#define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
619 val &= 0xFF;
620 if (val <= 0x20)
622}
623
624/****************************************************************************
625* ILT management
626****************************************************************************/
627/*
628 * This codes hides the low level HW interaction for ILT management and
629 * configuration. The API consists of a shadow ILT table which is set by the
630 * driver and a set of routines to use it to configure the HW.
631 *
632 */
633
634/* ILT HW init operations */
635
636/* ILT memory management operations */
637#define ILT_MEMOP_ALLOC 0
638#define ILT_MEMOP_FREE 1
639
640/* the phys address is shifted right 12 bits and has an added
641 * 1=valid bit added to the 53rd bit
642 * then since this is a wide register(TM)
643 * we split it into two 32 bit writes
644 */
645#define ILT_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
646#define ILT_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
647#define ILT_RANGE(f, l) (((l) << 10) | f)
648
649static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
650 struct ilt_line *line, uint32_t size, uint8_t memop)
651{
652 if (memop == ILT_MEMOP_FREE) {
653 ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
654 return 0;
655 }
656 ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
657 if (!line->page)
658 return -1;
659 line->size = size;
660 return 0;
661}
662
663
664static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
665 uint8_t memop)
666{
667 int i, rc;
668 struct ecore_ilt *ilt = SC_ILT(sc);
669 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
670
671 if (!ilt || !ilt->lines)
672 return -1;
673
675 return 0;
676
677 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
678 rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
679 ilt_cli->page_size, memop);
680 }
681 return rc;
682}
683
684static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
685{
686 int rc = 0;
687
688 if (CONFIGURE_NIC_MODE(sc))
690 if (!rc)
691 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
692
693 return rc;
694}
695
696static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
697{
698 int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
699 if (!rc)
700 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
701 if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
703
704 return rc;
705}
706
707static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
708 ecore_dma_addr_t page_mapping)
709{
710 uint32_t reg;
711
712 if (CHIP_IS_E1(sc))
713 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
714 else
715 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
716
717 ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
718}
719
720static void ecore_ilt_line_init_op(struct bxe_softc *sc,
721 struct ecore_ilt *ilt, int idx, uint8_t initop)
722{
723 ecore_dma_addr_t null_mapping;
724 int abs_idx = ilt->start_line + idx;
725
726
727 switch (initop) {
728 case INITOP_INIT:
729 /* set in the init-value array */
730 case INITOP_SET:
731 ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
732 break;
733 case INITOP_CLEAR:
734 null_mapping = 0;
735 ecore_ilt_line_wr(sc, abs_idx, null_mapping);
736 break;
737 }
738}
739
741 struct ilt_client_info *ilt_cli,
742 uint32_t ilt_start, uint8_t initop)
743{
744 uint32_t start_reg = 0;
745 uint32_t end_reg = 0;
746
747 /* The boundary is either SET or INIT,
748 CLEAR => SET and for now SET ~~ INIT */
749
750 /* find the appropriate regs */
751 if (CHIP_IS_E1(sc)) {
752 switch (ilt_cli->client_num) {
753 case ILT_CLIENT_CDU:
754 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
755 break;
756 case ILT_CLIENT_QM:
757 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
758 break;
759 case ILT_CLIENT_SRC:
760 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
761 break;
762 case ILT_CLIENT_TM:
763 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
764 break;
765 }
766 REG_WR(sc, start_reg + SC_FUNC(sc)*4,
767 ILT_RANGE((ilt_start + ilt_cli->start),
768 (ilt_start + ilt_cli->end)));
769 } else {
770 switch (ilt_cli->client_num) {
771 case ILT_CLIENT_CDU:
772 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
773 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
774 break;
775 case ILT_CLIENT_QM:
776 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
777 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
778 break;
779 case ILT_CLIENT_SRC:
780 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
781 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
782 break;
783 case ILT_CLIENT_TM:
784 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
785 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
786 break;
787 }
788 REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
789 REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
790 }
791}
792
794 struct ecore_ilt *ilt,
795 struct ilt_client_info *ilt_cli,
796 uint8_t initop)
797{
798 int i;
799
800 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
801 return;
802
803 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
804 ecore_ilt_line_init_op(sc, ilt, i, initop);
805
806 /* init/clear the ILT boundries */
807 ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
808}
809
810static void ecore_ilt_client_init_op(struct bxe_softc *sc,
811 struct ilt_client_info *ilt_cli, uint8_t initop)
812{
813 struct ecore_ilt *ilt = SC_ILT(sc);
814
815 ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
816}
817
819 int cli_num, uint8_t initop)
820{
821 struct ecore_ilt *ilt = SC_ILT(sc);
822 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
823
824 ecore_ilt_client_init_op(sc, ilt_cli, initop);
825}
826
827static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
828{
829 if (CONFIGURE_NIC_MODE(sc))
832}
833
834static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
835{
838 if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
840}
841
842static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
843 uint32_t psz_reg, uint8_t initop)
844{
845 struct ecore_ilt *ilt = SC_ILT(sc);
846 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
847
848 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
849 return;
850
851 switch (initop) {
852 case INITOP_INIT:
853 /* set in the init-value array */
854 case INITOP_SET:
855 REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
856 break;
857 case INITOP_CLEAR:
858 break;
859 }
860}
861
862/*
863 * called during init common stage, ilt clients should be initialized
864 * prioir to calling this function
865 */
866static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
867{
869 PXP2_REG_RQ_CDU_P_SIZE, initop);
871 PXP2_REG_RQ_QM_P_SIZE, initop);
873 PXP2_REG_RQ_SRC_P_SIZE, initop);
875 PXP2_REG_RQ_TM_P_SIZE, initop);
876}
877
878/****************************************************************************
879* QM initializations
880****************************************************************************/
881#define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
882#define QM_INIT_MIN_CID_COUNT 31
883#define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
884
885/* called during init port stage */
886static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
887 uint8_t initop)
888{
889 int port = SC_PORT(sc);
890
891 if (QM_INIT(qm_cid_count)) {
892 switch (initop) {
893 case INITOP_INIT:
894 /* set in the init-value array */
895 case INITOP_SET:
896 REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
897 qm_cid_count/16 - 1);
898 break;
899 case INITOP_CLEAR:
900 break;
901 }
902 }
903}
904
905static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
906 uint32_t base_reg, uint32_t reg)
907{
908 int i;
909 uint32_t wb_data[2] = {0, 0};
910 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
911 REG_WR(sc, base_reg + i*4,
912 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
913 ecore_init_wr_wb(sc, reg + i*8,
914 wb_data, 2);
915 }
916}
917
918/* called during init common stage */
919static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
920 uint8_t initop)
921{
922 if (!QM_INIT(qm_cid_count))
923 return;
924
925 switch (initop) {
926 case INITOP_INIT:
927 /* set in the init-value array */
928 case INITOP_SET:
929 ecore_qm_set_ptr_table(sc, qm_cid_count,
931 if (CHIP_IS_E1H(sc))
932 ecore_qm_set_ptr_table(sc, qm_cid_count,
935 break;
936 case INITOP_CLEAR:
937 break;
938 }
939}
940
941/****************************************************************************
942* SRC initializations
943****************************************************************************/
944#ifdef ECORE_L5
945/* called during init func stage */
946static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
947 ecore_dma_addr_t t2_mapping, int src_cid_count)
948{
949 int i;
950 int port = SC_PORT(sc);
951
952 /* Initialize T2 */
953 for (i = 0; i < src_cid_count-1; i++)
954 t2[i].next = (uint64_t)(t2_mapping +
955 (i+1)*sizeof(struct src_ent));
956
957 /* tell the searcher where the T2 table is */
958 REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
959
960 ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
961 U64_LO(t2_mapping), U64_HI(t2_mapping));
962
963 ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
964 U64_LO((uint64_t)t2_mapping +
965 (src_cid_count-1) * sizeof(struct src_ent)),
966 U64_HI((uint64_t)t2_mapping +
967 (src_cid_count-1) * sizeof(struct src_ent)));
968}
969#endif
970#endif /* ECORE_INIT_OPS_H */
uint32_t size
Definition: bxe.c:322
#define INIT_OPS(sc)
Definition: bxe.h:1642
#define FW_BUF_SIZE
Definition: bxe.h:1626
#define INIT_XSEM_INT_TABLE_DATA(sc)
Definition: bxe.h:1649
#define CHIP_IS_E1(sc)
Definition: bxe.h:1161
#define U64_LO(addr)
Definition: bxe.h:171
#define GUNZIP_PHYS(sc)
Definition: bxe.h:1625
#define CHIP_IS_E1H(sc)
Definition: bxe.h:1165
#define INIT_OPS_OFFSETS(sc)
Definition: bxe.h:1643
#define INIT_USEM_PRAM_DATA(sc)
Definition: bxe.h:1648
#define INIT_MODE_FLAGS(sc)
Definition: bxe.h:1632
#define INIT_TSEM_PRAM_DATA(sc)
Definition: bxe.h:1646
#define GUNZIP_BUF(sc)
Definition: bxe.h:1623
#define CNIC_SUPPORT(sc)
Definition: bxe.h:1748
#define INIT_CSEM_PRAM_DATA(sc)
Definition: bxe.h:1652
#define INIT_XSEM_PRAM_DATA(sc)
Definition: bxe.h:1650
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)
Definition: bxe.h:1905
#define SC_PORT(sc)
Definition: bxe.h:1389
#define REG_WR_DMAE_LEN(sc, offset, valp, len32)
Definition: bxe.h:1899
#define CHIP_REV_IS_FPGA(sc)
Definition: bxe.h:1151
#define HILO_U64(hi, lo)
Definition: bxe.h:174
#define SC_FUNC(sc)
Definition: bxe.h:1390
#define U64_HI(addr)
Definition: bxe.h:172
#define DMAE_READY(sc)
Definition: bxe.h:1470
#define INIT_DATA(sc)
Definition: bxe.h:1644
#define CONFIGURE_NIC_MODE(sc)
Definition: bxe.h:1235
#define CHIP_IS_E2(sc)
Definition: bxe.h:1173
#define CHIP_IS_E3(sc)
Definition: bxe.h:1192
#define REG_RD(sc, offset)
Definition: bxe.h:1874
#define INIT_CSEM_INT_TABLE_DATA(sc)
Definition: bxe.h:1651
#define INIT_TSEM_INT_TABLE_DATA(sc)
Definition: bxe.h:1645
#define REG_WR(sc, offset, val)
Definition: bxe.h:1875
#define INIT_USEM_INT_TABLE_DATA(sc)
Definition: bxe.h:1647
#define GUNZIP_OUTLEN(sc)
Definition: bxe.h:1624
#define ILT_CLIENT_CDU
Definition: ecore_init.h:593
#define ILT_CLIENT_SKIP_MEM
Definition: ecore_init.h:586
#define ILT_CLIENT_SRC
Definition: ecore_init.h:595
#define INITOP_SET
Definition: ecore_init.h:566
@ OP_WB
Definition: ecore_init.h:43
@ OP_RD
Definition: ecore_init.h:37
@ OP_RT
Definition: ecore_init.h:51
@ OP_WR
Definition: ecore_init.h:38
@ OP_FW
Definition: ecore_init.h:45
@ OP_VERIFY
Definition: ecore_init.h:53
@ OP_WR_64
Definition: ecore_init.h:42
@ OP_SW
Definition: ecore_init.h:39
@ OP_DELAY
Definition: ecore_init.h:52
@ OP_ZR
Definition: ecore_init.h:40
@ OP_IF_MODE_OR
Definition: ecore_init.h:48
@ OP_IF_PHASE
Definition: ecore_init.h:50
@ OP_WB_ZR
Definition: ecore_init.h:47
@ OP_ZP
Definition: ecore_init.h:41
@ OP_IF_MODE_AND
Definition: ecore_init.h:49
#define ILT_CLIENT_SKIP_INIT
Definition: ecore_init.h:585
#define ILT_CLIENT_TM
Definition: ecore_init.h:596
#define INITOP_CLEAR
Definition: ecore_init.h:567
#define INITOP_INIT
Definition: ecore_init.h:568
#define BLOCK_OPS_IDX(block, stage, end)
Definition: ecore_init.h:562
uint32_t addr
Definition: ecore_init.h:729
#define ILT_CLIENT_QM
Definition: ecore_init.h:594
@ STAGE_END
Definition: ecore_init.h:59
@ STAGE_START
Definition: ecore_init.h:58
static const struct arb_line read_arb_addr[NUM_RD_Q-1]
static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num, uint32_t psz_reg, uint8_t initop)
static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD+1]
static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len)
static void ecore_ilt_client_init_op(struct bxe_softc *sc, struct ilt_client_info *ilt_cli, uint8_t initop)
static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo, uint32_t val_hi)
static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc, struct ecore_ilt *ilt, struct ilt_client_info *ilt_cli, uint8_t initop)
static int ecore_ilt_line_mem_op(struct bxe_softc *sc, struct ilt_line *line, uint32_t size, uint8_t memop)
static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill, uint32_t len, uint8_t wb)
#define NUM_WR_Q
static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count, uint8_t initop)
static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len, uint32_t blob_off)
#define ILT_ADDR1(x)
static const struct arb_line write_arb_addr[NUM_WR_Q-1]
#define QM_INIT(cid_cnt)
static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num, uint8_t memop)
static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val)
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD+1]
static const uint8_t * ecore_sel_blob(struct bxe_softc *sc, uint32_t addr, const uint8_t *data)
static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len64)
static void ecore_ilt_client_id_init_op(struct bxe_softc *sc, int cli_num, uint8_t initop)
#define ILT_RANGE(f, l)
#define QM_QUEUES_PER_FUNC
__FBSDID("$FreeBSD$")
static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len)
static void ecore_ilt_boundry_init_op(struct bxe_softc *sc, struct ilt_client_info *ilt_cli, uint32_t ilt_start, uint8_t initop)
#define MAX_WR_ORD
#define IF_IS_INT_TABLE_ADDR(base, addr)
static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
#define ILT_MEMOP_FREE
#define NUM_RD_Q
static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr, const uint32_t *data, uint32_t len)
static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
#define ILT_ADDR2(x)
static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count, uint32_t base_reg, uint32_t reg)
static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order, int w_order)
static int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
static void ecore_ilt_line_init_op(struct bxe_softc *sc, struct ecore_ilt *ilt, int idx, uint8_t initop)
static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
#define IF_IS_PRAM_ADDR(base, addr)
static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len)
static void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
#define MAX_RD_ORD
static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx, ecore_dma_addr_t page_mapping)
static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count, uint8_t initop)
#define PCIE_REG_PCIER_TL_HDR_FC_ST
static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len, uint8_t wb)
static void ecore_write_dmae_phys_len(struct bxe_softc *sc, ecore_dma_addr_t phys_addr, uint32_t addr, uint32_t len)
#define PXP2_REG_RQ_BW_RD_L12
Definition: ecore_reg.h:1262
#define PXP2_REG_RQ_ONCHIP_AT
Definition: ecore_reg.h:1366
#define PXP2_REG_RQ_BW_RD_ADD13
Definition: ecore_reg.h:1228
#define PXP2_REG_RQ_BW_RD_ADD23
Definition: ecore_reg.h:1246
#define PXP2_REG_RQ_BW_WR_UBOUND30
Definition: ecore_reg.h:1342
#define PXP2_REG_RQ_BW_RD_UBOUND14
Definition: ecore_reg.h:1302
#define PXP2_REG_RQ_BW_RD_UBOUND13
Definition: ecore_reg.h:1300
#define PXP2_REG_PSWRQ_BW_ADD28
Definition: ecore_reg.h:1118
#define PXP2_REG_WR_TSDM_MPS
Definition: ecore_reg.h:1422
#define PXP2_REG_WR_TM_MPS
Definition: ecore_reg.h:1420
#define PXP2_REG_RQ_BW_RD_L15
Definition: ecore_reg.h:1268
#define PXP2_REG_RQ_BW_RD_UBOUND20
Definition: ecore_reg.h:1314
#define PXP2_REG_PSWRQ_BW_L8
Definition: ecore_reg.h:1146
#define PXP2_REG_RQ_BW_RD_L19
Definition: ecore_reg.h:1276
#define USEM_REG_INT_TABLE
Definition: ecore_reg.h:1616
#define PXP2_REG_PSWRQ_BW_ADD1
Definition: ecore_reg.h:1110
#define PXP2_REG_PSWRQ_BW_L2
Definition: ecore_reg.h:1136
#define PXP2_REG_RQ_BW_RD_L18
Definition: ecore_reg.h:1274
#define PXP2_REG_RQ_BW_RD_L4
Definition: ecore_reg.h:1292
#define USEM_REG_PRAM
Definition: ecore_reg.h:1620
#define PXP2_REG_PSWRQ_BW_UB10
Definition: ecore_reg.h:1154
#define PXP2_REG_WR_USDMDP_TH
Definition: ecore_reg.h:1424
#define XSEM_REG_INT_TABLE
Definition: ecore_reg.h:1718
#define PXP2_REG_RQ_BW_RD_UBOUND12
Definition: ecore_reg.h:1298
#define QM_REG_PTRTBL_EXT_A
Definition: ecore_reg.h:1460
#define PXP2_REG_RQ_BW_RD_UBOUND0
Definition: ecore_reg.h:1296
#define PXP2_REG_RQ_BW_WR_ADD30
Definition: ecore_reg.h:1334
#define PXP2_REG_RQ_PDR_LIMIT
Definition: ecore_reg.h:1370
#define PXP2_REG_PSWRQ_BW_ADD3
Definition: ecore_reg.h:1120
#define PXP2_REG_RQ_BW_RD_ADD12
Definition: ecore_reg.h:1226
#define PXP2_REG_RQ_BW_RD_L20
Definition: ecore_reg.h:1278
#define PXP2_REG_RQ_BW_RD_UBOUND19
Definition: ecore_reg.h:1312
#define PXP2_REG_PSWRQ_BW_UB9
Definition: ecore_reg.h:1170
#define PXP2_REG_RQ_BW_RD_UBOUND27
Definition: ecore_reg.h:1326
#define PXP2_REG_WR_XSDM_MPS
Definition: ecore_reg.h:1428
#define PXP2_REG_RQ_RD_MBS0
Definition: ecore_reg.h:1382
#define PXP2_REG_RQ_SRC_P_SIZE
Definition: ecore_reg.h:1392
#define PXP2_REG_RQ_RD_MBS1
Definition: ecore_reg.h:1384
#define PXP2_REG_PSWRQ_BW_ADD9
Definition: ecore_reg.h:1128
#define SRC_REG_COUNTFREE0
Definition: ecore_reg.h:1476
#define PXP2_REG_RQ_CDU_P_SIZE
Definition: ecore_reg.h:1350
#define PXP2_REG_RQ_BW_RD_UBOUND17
Definition: ecore_reg.h:1308
#define PXP2_REG_PSWRQ_BW_UB8
Definition: ecore_reg.h:1168
#define PXP2_REG_RQ_BW_RD_ADD14
Definition: ecore_reg.h:1230
#define PXP2_REG_WR_DMAE_MPS
Definition: ecore_reg.h:1412
#define PXP2_REG_RQ_BW_RD_L5
Definition: ecore_reg.h:1294
#define PXP2_REG_RQ_WR_MBS1
Definition: ecore_reg.h:1404
#define PXP2_REG_RQ_BW_RD_ADD24
Definition: ecore_reg.h:1248
#define PXP2_REG_WR_QM_MPS
Definition: ecore_reg.h:1416
#define PXP2_REG_PSWRQ_SRC0_L2P
Definition: ecore_reg.h:1178
#define PXP2_REG_RQ_BW_RD_ADD15
Definition: ecore_reg.h:1232
#define PXP2_REG_WR_CDU_MPS
Definition: ecore_reg.h:1406
#define PXP2_REG_RQ_BW_RD_UBOUND23
Definition: ecore_reg.h:1318
#define PXP2_REG_RQ_BW_RD_L13
Definition: ecore_reg.h:1264
#define PXP2_REG_RQ_TM_FIRST_ILT
Definition: ecore_reg.h:1396
#define PXP2_REG_PSWRQ_BW_L9
Definition: ecore_reg.h:1148
#define PXP2_REG_RQ_BW_RD_UBOUND26
Definition: ecore_reg.h:1324
#define PXP2_REG_PSWRQ_QM0_L2P
Definition: ecore_reg.h:1176
#define PXP2_REG_RQ_BW_RD_UBOUND22
Definition: ecore_reg.h:1316
#define PXP2_REG_RQ_BW_RD_L0
Definition: ecore_reg.h:1260
#define PXP2_REG_RQ_BW_RD_L26
Definition: ecore_reg.h:1288
#define PXP2_REG_RQ_BW_RD_ADD26
Definition: ecore_reg.h:1252
#define PXP2_REG_RQ_BW_RD_UBOUND15
Definition: ecore_reg.h:1304
#define QM_REG_BASEADDR_EXT_A
Definition: ecore_reg.h:1448
#define PXP2_REG_PSWRQ_BW_UB2
Definition: ecore_reg.h:1158
#define PXP2_REG_PSWRQ_BW_ADD10
Definition: ecore_reg.h:1112
#define PXP2_REG_RQ_BW_RD_L14
Definition: ecore_reg.h:1266
#define PXP2_REG_PSWRQ_BW_UB11
Definition: ecore_reg.h:1156
#define TSEM_REG_INT_TABLE
Definition: ecore_reg.h:1546
#define PXP2_REG_RQ_BW_RD_UBOUND5
Definition: ecore_reg.h:1330
#define PXP2_REG_RQ_TM_P_SIZE
Definition: ecore_reg.h:1400
#define PXP2_REG_WR_SRC_MPS
Definition: ecore_reg.h:1418
#define PXP2_REG_PSWRQ_BW_UB28
Definition: ecore_reg.h:1160
#define PXP2_REG_RQ_BW_RD_L16
Definition: ecore_reg.h:1270
#define PXP2_REG_RQ_BW_RD_UBOUND25
Definition: ecore_reg.h:1322
#define PXP2_REG_PSWRQ_CDU0_L2P
Definition: ecore_reg.h:1174
#define PXP2_REG_RQ_BW_RD_L25
Definition: ecore_reg.h:1286
#define PXP2_REG_PSWRQ_TM0_L2P
Definition: ecore_reg.h:1180
#define PXP2_REG_RQ_BW_RD_ADD22
Definition: ecore_reg.h:1244
#define PXP2_REG_PSWRQ_BW_L28
Definition: ecore_reg.h:1138
#define PXP2_REG_PSWRQ_BW_L10
Definition: ecore_reg.h:1132
#define PXP2_REG_RQ_QM_FIRST_ILT
Definition: ecore_reg.h:1374
#define PXP2_REG_RQ_BW_RD_ADD17
Definition: ecore_reg.h:1236
#define PXP2_REG_RQ_BW_RD_UBOUND4
Definition: ecore_reg.h:1328
#define PXP2_REG_RQ_BW_WR_UBOUND29
Definition: ecore_reg.h:1340
#define PXP2_REG_WR_HC_MPS
Definition: ecore_reg.h:1414
#define PXP2_REG_RQ_BW_RD_ADD27
Definition: ecore_reg.h:1254
#define PXP2_REG_WR_CSDM_MPS
Definition: ecore_reg.h:1408
#define PXP2_REG_PSWRQ_BW_L7
Definition: ecore_reg.h:1144
#define PXP2_REG_RQ_BW_RD_UBOUND24
Definition: ecore_reg.h:1320
#define CSEM_REG_INT_TABLE
Definition: ecore_reg.h:134
#define XSEM_REG_PRAM
Definition: ecore_reg.h:1722
#define PXP2_REG_PSWRQ_BW_ADD8
Definition: ecore_reg.h:1126
#define PXP2_REG_WR_USDM_MPS
Definition: ecore_reg.h:1426
#define PXP2_REG_RQ_BW_RD_ADD19
Definition: ecore_reg.h:1240
#define PXP2_REG_RQ_BW_WR_L30
Definition: ecore_reg.h:1338
#define SRC_REG_LASTFREE0
Definition: ecore_reg.h:1500
#define PXP2_REG_RQ_BW_WR_L29
Definition: ecore_reg.h:1336
#define PXP2_REG_PSWRQ_BW_ADD6
Definition: ecore_reg.h:1122
#define PXP2_REG_PSWRQ_BW_L11
Definition: ecore_reg.h:1134
#define PXP2_REG_PSWRQ_BW_UB1
Definition: ecore_reg.h:1152
#define PXP2_REG_PSWRQ_BW_L6
Definition: ecore_reg.h:1142
#define PXP2_REG_RQ_ONCHIP_AT_B0
Definition: ecore_reg.h:1368
#define PXP2_REG_RQ_BW_RD_L24
Definition: ecore_reg.h:1284
#define PXP2_REG_RQ_BW_RD_L17
Definition: ecore_reg.h:1272
#define PXP2_REG_RQ_SRC_FIRST_ILT
Definition: ecore_reg.h:1388
#define PXP2_REG_RQ_BW_RD_ADD20
Definition: ecore_reg.h:1242
#define PXP2_REG_RQ_BW_RD_L23
Definition: ecore_reg.h:1282
#define PXP2_REG_RQ_BW_RD_ADD25
Definition: ecore_reg.h:1250
#define PXP2_REG_PSWRQ_BW_ADD7
Definition: ecore_reg.h:1124
#define PXP2_REG_RQ_CDU_FIRST_ILT
Definition: ecore_reg.h:1346
#define PXP2_REG_RQ_QM_P_SIZE
Definition: ecore_reg.h:1378
#define PXP2_REG_RQ_TM_LAST_ILT
Definition: ecore_reg.h:1398
#define CSEM_REG_PRAM
Definition: ecore_reg.h:138
#define PXP2_REG_PSWRQ_BW_L3
Definition: ecore_reg.h:1140
#define PXP2_REG_PSWRQ_BW_UB3
Definition: ecore_reg.h:1162
#define PXP2_REG_RQ_QM_LAST_ILT
Definition: ecore_reg.h:1376
#define PXP2_REG_RQ_BW_RD_ADD5
Definition: ecore_reg.h:1258
#define PXP2_REG_PSWRQ_BW_UB7
Definition: ecore_reg.h:1166
#define PXP2_REG_PSWRQ_BW_L1
Definition: ecore_reg.h:1130
#define QM_REG_CONNNUM_0
Definition: ecore_reg.h:1452
#define PXP2_REG_PGL_TAGS_LIMIT
Definition: ecore_reg.h:1108
#define QM_REG_PTRTBL
Definition: ecore_reg.h:1458
#define PXP2_REG_WR_DBG_MPS
Definition: ecore_reg.h:1410
#define QM_REG_BASEADDR
Definition: ecore_reg.h:1446
#define TSEM_REG_PRAM
Definition: ecore_reg.h:1550
#define PXP2_REG_RQ_CDU_LAST_ILT
Definition: ecore_reg.h:1348
#define PXP2_REG_RQ_BW_RD_UBOUND16
Definition: ecore_reg.h:1306
#define PXP2_REG_RQ_BW_RD_UBOUND18
Definition: ecore_reg.h:1310
#define PXP2_REG_PSWRQ_BW_UB6
Definition: ecore_reg.h:1164
#define PXP2_REG_RQ_SRC_LAST_ILT
Definition: ecore_reg.h:1390
#define PXP2_REG_PSWRQ_BW_ADD11
Definition: ecore_reg.h:1114
#define PXP2_REG_RQ_BW_RD_ADD0
Definition: ecore_reg.h:1224
#define PXP2_REG_RQ_BW_RD_ADD16
Definition: ecore_reg.h:1234
#define PXP2_REG_RQ_BW_WR_ADD29
Definition: ecore_reg.h:1332
#define PXP2_REG_PSWRQ_BW_WR
Definition: ecore_reg.h:1172
#define PXP2_REG_RQ_BW_RD_L27
Definition: ecore_reg.h:1290
#define SRC_REG_FIRSTFREE0
Definition: ecore_reg.h:1478
#define PXP2_REG_RQ_BW_RD_L22
Definition: ecore_reg.h:1280
#define PXP2_REG_RQ_WR_MBS0
Definition: ecore_reg.h:1402
#define PXP2_REG_RQ_BW_RD_ADD4
Definition: ecore_reg.h:1256
#define PXP2_REG_PSWRQ_BW_RD
Definition: ecore_reg.h:1150
#define PXP2_REG_PSWRQ_BW_ADD2
Definition: ecore_reg.h:1116
#define PXP2_REG_RQ_BW_RD_ADD18
Definition: ecore_reg.h:1238
#define ECORE_ILT_FREE(x, y, size)
Definition: ecore_sp.h:182
bus_addr_t ecore_dma_addr_t
Definition: ecore_sp.h:71
#define ECORE_MSG(sc, m,...)
Definition: ecore_sp.h:274
#define SC_ILT(sc)
Definition: ecore_sp.h:163
#define ECORE_ILT_ZALLOC(x, y, size)
Definition: ecore_sp.h:166
#define ILOG2(x)
Definition: ecore_sp.h:164
#define ECORE_CPU_TO_LE32(x)
Definition: ecore_sp.h:147
#define ECORE_MEMSET(_a, _c, _s)
Definition: ecore_sp.h:144
uint32_t start_line
Definition: ecore_init.h:590
struct ilt_client_info clients[4]
Definition: ecore_init.h:592
struct ilt_line * lines
Definition: ecore_init.h:591
uint16_t end
Definition: ecore_init.h:582
uint16_t flags
Definition: ecore_init.h:584
uint32_t page_size
Definition: ecore_init.h:580
uint16_t client_num
Definition: ecore_init.h:583
uint16_t start
Definition: ecore_init.h:581
ecore_dma_addr_t page_mapping
Definition: ecore_init.h:574
uint32_t size
Definition: ecore_init.h:576
void * page
Definition: ecore_init.h:575
uint16_t data_off
Definition: ecore_init.h:93
uint16_t data_len
Definition: ecore_init.h:94
uint32_t cmd_offset
Definition: ecore_init.h:106
uint32_t mode_bit_map
Definition: ecore_init.h:107
uint32_t val
Definition: ecore_init.h:83
uint32_t len
Definition: ecore_init.h:101
uint32_t op
Definition: ecore_init.h:69
uint32_t offset
Definition: ecore_init.h:70
struct op_if_mode if_mode
Definition: ecore_init.h:128
struct op_zero zero
Definition: ecore_init.h:126
struct raw_op raw
Definition: ecore_init.h:127
struct op_write write
Definition: ecore_init.h:124
struct op_arr_write arr_wr
Definition: ecore_init.h:125