FreeBSD kernel kern code
kern_timeout.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_callout_profiling.h"
43#include "opt_ddb.h"
44#include "opt_rss.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/callout.h>
50#include <sys/domainset.h>
51#include <sys/file.h>
52#include <sys/interrupt.h>
53#include <sys/kernel.h>
54#include <sys/ktr.h>
55#include <sys/kthread.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mutex.h>
59#include <sys/proc.h>
60#include <sys/random.h>
61#include <sys/sched.h>
62#include <sys/sdt.h>
63#include <sys/sleepqueue.h>
64#include <sys/sysctl.h>
65#include <sys/smp.h>
66#include <sys/unistd.h>
67
68#ifdef DDB
69#include <ddb/ddb.h>
70#include <ddb/db_sym.h>
71#include <machine/_inttypes.h>
72#endif
73
74#ifdef SMP
75#include <machine/cpu.h>
76#endif
77
78DPCPU_DECLARE(sbintime_t, hardclocktime);
79
80SDT_PROVIDER_DEFINE(callout_execute);
81SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
82SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
83
84static void softclock_thread(void *arg);
85
86#ifdef CALLOUT_PROFILING
87static int avg_depth;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
89 "Average number of items examined per softclock call. Units = 1/1000");
90static int avg_gcalls;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
92 "Average number of Giant callouts made per softclock call. Units = 1/1000");
93static int avg_lockcalls;
94SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
95 "Average number of lock callouts made per softclock call. Units = 1/1000");
96static int avg_mpcalls;
97SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
98 "Average number of MP callouts made per softclock call. Units = 1/1000");
99static int avg_depth_dir;
100SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
101 "Average number of direct callouts examined per callout_process call. "
102 "Units = 1/1000");
103static int avg_lockcalls_dir;
104SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
105 &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
106 "callout_process call. Units = 1/1000");
107static int avg_mpcalls_dir;
108SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
109 0, "Average number of MP direct callouts made per callout_process call. "
110 "Units = 1/1000");
111#endif
112
113static int ncallout;
114SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
115 "Number of entries in callwheel and size of timeout() preallocation");
116
117#ifdef RSS
118static int pin_default_swi = 1;
119static int pin_pcpu_swi = 1;
120#else
121static int pin_default_swi = 0;
122static int pin_pcpu_swi = 0;
123#endif
124
125SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
126 0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
127SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
128 0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
129
130/*
131 * TODO:
132 * allocate more timeout table slots when table overflows.
133 */
136
137/*
138 * The callout cpu exec entities represent informations necessary for
139 * describing the state of callouts currently running on the CPU and the ones
140 * necessary for migrating callouts to the new callout cpu. In particular,
141 * the first entry of the array cc_exec_entity holds informations for callout
142 * running in SWI thread context, while the second one holds informations
143 * for callout running directly from hardware interrupt context.
144 * The cached informations are very important for deferring migration when
145 * the migrating callout is already running.
146 */
147struct cc_exec {
148 struct callout *cc_curr;
149 callout_func_t *cc_drain;
152#ifdef SMP
153 callout_func_t *ce_migration_func;
154 void *ce_migration_arg;
155 sbintime_t ce_migration_time;
156 sbintime_t ce_migration_prec;
157 int ce_migration_cpu;
158#endif
161};
162
163/*
164 * There is one struct callout_cpu per cpu, holding all relevant
165 * state for the callout processing thread on the individual CPU.
166 */
168 struct mtx_padalign cc_lock;
170 struct callout *cc_next;
171 struct callout_list *cc_callwheel;
172 struct callout_tailq cc_expireq;
173 sbintime_t cc_firstevent;
174 sbintime_t cc_lastscan;
175 struct thread *cc_thread;
178#ifdef KTR
179 char cc_ktr_event_name[20];
180#endif
181};
182
183#define callout_migrating(c) ((c)->c_iflags & CALLOUT_DFRMIGRATION)
184
185#define cc_exec_curr(cc, dir) cc->cc_exec_entity[dir].cc_curr
186#define cc_exec_last_func(cc, dir) cc->cc_exec_entity[dir].cc_last_func
187#define cc_exec_last_arg(cc, dir) cc->cc_exec_entity[dir].cc_last_arg
188#define cc_exec_drain(cc, dir) cc->cc_exec_entity[dir].cc_drain
189#define cc_exec_next(cc) cc->cc_next
190#define cc_exec_cancel(cc, dir) cc->cc_exec_entity[dir].cc_cancel
191#define cc_exec_waiting(cc, dir) cc->cc_exec_entity[dir].cc_waiting
192#ifdef SMP
193#define cc_migration_func(cc, dir) cc->cc_exec_entity[dir].ce_migration_func
194#define cc_migration_arg(cc, dir) cc->cc_exec_entity[dir].ce_migration_arg
195#define cc_migration_cpu(cc, dir) cc->cc_exec_entity[dir].ce_migration_cpu
196#define cc_migration_time(cc, dir) cc->cc_exec_entity[dir].ce_migration_time
197#define cc_migration_prec(cc, dir) cc->cc_exec_entity[dir].ce_migration_prec
198
199static struct callout_cpu cc_cpu[MAXCPU];
200#define CPUBLOCK MAXCPU
201#define CC_CPU(cpu) (&cc_cpu[(cpu)])
202#define CC_SELF() CC_CPU(PCPU_GET(cpuid))
203#else
204static struct callout_cpu cc_cpu;
205#define CC_CPU(cpu) (&cc_cpu)
206#define CC_SELF() (&cc_cpu)
207#endif
208#define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock)
209#define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock)
210#define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED)
211
213
214static void callout_cpu_init(struct callout_cpu *cc, int cpu);
215static void softclock_call_cc(struct callout *c, struct callout_cpu *cc,
216#ifdef CALLOUT_PROFILING
217 int *mpcalls, int *lockcalls, int *gcalls,
218#endif
219 int direct);
220
221static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
222
240/*
241 * Resets the execution entity tied to a specific callout cpu.
242 */
243static void
244cc_cce_cleanup(struct callout_cpu *cc, int direct)
245{
246
247 cc_exec_curr(cc, direct) = NULL;
248 cc_exec_cancel(cc, direct) = false;
249 cc_exec_waiting(cc, direct) = false;
250#ifdef SMP
251 cc_migration_cpu(cc, direct) = CPUBLOCK;
252 cc_migration_time(cc, direct) = 0;
253 cc_migration_prec(cc, direct) = 0;
254 cc_migration_func(cc, direct) = NULL;
255 cc_migration_arg(cc, direct) = NULL;
256#endif
257}
258
259/*
260 * Checks if migration is requested by a specific callout cpu.
261 */
262static int
263cc_cce_migrating(struct callout_cpu *cc, int direct)
264{
265
266#ifdef SMP
267 return (cc_migration_cpu(cc, direct) != CPUBLOCK);
268#else
269 return (0);
270#endif
271}
272
273/*
274 * Kernel low level callwheel initialization
275 * called on the BSP during kernel startup.
276 */
277static void
279{
280 struct callout_cpu *cc;
281 int cpu;
282
283 /*
284 * Calculate the size of the callout wheel and the preallocated
285 * timeout() structures.
286 * XXX: Clip callout to result of previous function of maxusers
287 * maximum 384. This is still huge, but acceptable.
288 */
289 ncallout = imin(16 + maxproc + maxfiles, 18508);
290 TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
291
292 /*
293 * Calculate callout wheel size, should be next power of two higher
294 * than 'ncallout'.
295 */
296 callwheelsize = 1 << fls(ncallout);
298
299 /*
300 * Fetch whether we're pinning the swi's or not.
301 */
302 TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
303 TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
304
305 /*
306 * Initialize callout wheels. The software interrupt threads
307 * are created later.
308 */
309 cc_default_cpu = PCPU_GET(cpuid);
310 CPU_FOREACH(cpu) {
311 cc = CC_CPU(cpu);
312 callout_cpu_init(cc, cpu);
313 }
314}
315SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
316
317/*
318 * Initialize the per-cpu callout structures.
319 */
320static void
321callout_cpu_init(struct callout_cpu *cc, int cpu)
322{
323 int i;
324
325 mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
326 cc->cc_inited = 1;
327 cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
328 callwheelsize, M_CALLOUT,
329 DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
330 for (i = 0; i < callwheelsize; i++)
331 LIST_INIT(&cc->cc_callwheel[i]);
332 TAILQ_INIT(&cc->cc_expireq);
333 cc->cc_firstevent = SBT_MAX;
334 for (i = 0; i < 2; i++)
335 cc_cce_cleanup(cc, i);
336#ifdef KTR
337 snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
338 "callwheel cpu %d", cpu);
339#endif
340}
341
342#ifdef SMP
343/*
344 * Switches the cpu tied to a specific callout.
345 * The function expects a locked incoming callout cpu and returns with
346 * locked outcoming callout cpu.
347 */
348static struct callout_cpu *
349callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
350{
351 struct callout_cpu *new_cc;
352
353 MPASS(c != NULL && cc != NULL);
354 CC_LOCK_ASSERT(cc);
355
356 /*
357 * Avoid interrupts and preemption firing after the callout cpu
358 * is blocked in order to avoid deadlocks as the new thread
359 * may be willing to acquire the callout cpu lock.
360 */
361 c->c_cpu = CPUBLOCK;
362 spinlock_enter();
363 CC_UNLOCK(cc);
364 new_cc = CC_CPU(new_cpu);
365 CC_LOCK(new_cc);
366 spinlock_exit();
367 c->c_cpu = new_cpu;
368 return (new_cc);
369}
370#endif
371
372/*
373 * Start softclock threads.
374 */
375static void
377{
378 struct proc *p;
379 struct thread *td;
380 struct callout_cpu *cc;
381 int cpu, error;
382 bool pin_swi;
383
384 p = NULL;
385 CPU_FOREACH(cpu) {
386 cc = CC_CPU(cpu);
387 error = kproc_kthread_add(softclock_thread, cc, &p, &td,
388 RFSTOPPED, 0, "clock", "clock (%d)", cpu);
389 if (error != 0)
390 panic("failed to create softclock thread for cpu %d: %d",
391 cpu, error);
392 CC_LOCK(cc);
393 cc->cc_thread = td;
394 thread_lock(td);
395 sched_class(td, PRI_ITHD);
396 sched_prio(td, PI_SWI(SWI_CLOCK));
397 TD_SET_IWAIT(td);
398 thread_lock_set(td, (struct mtx *)&cc->cc_lock);
399 thread_unlock(td);
400 if (cpu == cc_default_cpu)
401 pin_swi = pin_default_swi;
402 else
403 pin_swi = pin_pcpu_swi;
404 if (pin_swi) {
405 error = cpuset_setithread(td->td_tid, cpu);
406 if (error != 0)
407 printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
408 __func__, cpu == cc_default_cpu ?
409 "default" : "per-cpu", cpu, error);
410 }
411 }
412}
413SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
414
415#define CC_HASH_SHIFT 8
416
417static inline u_int
418callout_hash(sbintime_t sbt)
419{
420
421 return (sbt >> (32 - CC_HASH_SHIFT));
422}
423
424static inline u_int
425callout_get_bucket(sbintime_t sbt)
426{
427
428 return (callout_hash(sbt) & callwheelmask);
429}
430
431void
432callout_process(sbintime_t now)
433{
434 struct callout_entropy {
435 struct callout_cpu *cc;
436 struct thread *td;
437 sbintime_t now;
438 } entropy;
439 struct callout *tmp, *tmpn;
440 struct callout_cpu *cc;
441 struct callout_list *sc;
442 struct thread *td;
443 sbintime_t first, last, lookahead, max, tmp_max;
444 u_int firstb, lastb, nowb;
445#ifdef CALLOUT_PROFILING
446 int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
447#endif
448
449 cc = CC_SELF();
450 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
451
452 /* Compute the buckets of the last scan and present times. */
453 firstb = callout_hash(cc->cc_lastscan);
454 cc->cc_lastscan = now;
455 nowb = callout_hash(now);
456
457 /* Compute the last bucket and minimum time of the bucket after it. */
458 if (nowb == firstb)
459 lookahead = (SBT_1S / 16);
460 else if (nowb - firstb == 1)
461 lookahead = (SBT_1S / 8);
462 else
463 lookahead = SBT_1S;
464 first = last = now;
465 first += (lookahead / 2);
466 last += lookahead;
467 last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
468 lastb = callout_hash(last) - 1;
469 max = last;
470
471 /*
472 * Check if we wrapped around the entire wheel from the last scan.
473 * In case, we need to scan entirely the wheel for pending callouts.
474 */
475 if (lastb - firstb >= callwheelsize) {
476 lastb = firstb + callwheelsize - 1;
477 if (nowb - firstb >= callwheelsize)
478 nowb = lastb;
479 }
480
481 /* Iterate callwheel from firstb to nowb and then up to lastb. */
482 do {
483 sc = &cc->cc_callwheel[firstb & callwheelmask];
484 tmp = LIST_FIRST(sc);
485 while (tmp != NULL) {
486 /* Run the callout if present time within allowed. */
487 if (tmp->c_time <= now) {
488 /*
489 * Consumer told us the callout may be run
490 * directly from hardware interrupt context.
491 */
492 if (tmp->c_iflags & CALLOUT_DIRECT) {
493#ifdef CALLOUT_PROFILING
494 ++depth_dir;
495#endif
496 cc_exec_next(cc) =
497 LIST_NEXT(tmp, c_links.le);
498 cc->cc_bucket = firstb & callwheelmask;
499 LIST_REMOVE(tmp, c_links.le);
500 softclock_call_cc(tmp, cc,
501#ifdef CALLOUT_PROFILING
502 &mpcalls_dir, &lockcalls_dir, NULL,
503#endif
504 1);
505 tmp = cc_exec_next(cc);
506 cc_exec_next(cc) = NULL;
507 } else {
508 tmpn = LIST_NEXT(tmp, c_links.le);
509 LIST_REMOVE(tmp, c_links.le);
510 TAILQ_INSERT_TAIL(&cc->cc_expireq,
511 tmp, c_links.tqe);
512 tmp->c_iflags |= CALLOUT_PROCESSED;
513 tmp = tmpn;
514 }
515 continue;
516 }
517 /* Skip events from distant future. */
518 if (tmp->c_time >= max)
519 goto next;
520 /*
521 * Event minimal time is bigger than present maximal
522 * time, so it cannot be aggregated.
523 */
524 if (tmp->c_time > last) {
525 lastb = nowb;
526 goto next;
527 }
528 /* Update first and last time, respecting this event. */
529 if (tmp->c_time < first)
530 first = tmp->c_time;
531 tmp_max = tmp->c_time + tmp->c_precision;
532 if (tmp_max < last)
533 last = tmp_max;
534next:
535 tmp = LIST_NEXT(tmp, c_links.le);
536 }
537 /* Proceed with the next bucket. */
538 firstb++;
539 /*
540 * Stop if we looked after present time and found
541 * some event we can't execute at now.
542 * Stop if we looked far enough into the future.
543 */
544 } while (((int)(firstb - lastb)) <= 0);
545 cc->cc_firstevent = last;
546 cpu_new_callout(curcpu, last, first);
547
548#ifdef CALLOUT_PROFILING
549 avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
550 avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
551 avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
552#endif
553 if (!TAILQ_EMPTY(&cc->cc_expireq)) {
554 entropy.cc = cc;
555 entropy.td = curthread;
556 entropy.now = now;
557 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_CALLOUT);
558
559 td = cc->cc_thread;
560 if (TD_AWAITING_INTR(td)) {
562 THREAD_LOCK_ASSERT(td, MA_OWNED);
563 TD_CLR_IWAIT(td);
564 sched_add(td, SRQ_INTR);
565 } else
566 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
567 } else
568 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
569}
570
571static struct callout_cpu *
572callout_lock(struct callout *c)
573{
574 struct callout_cpu *cc;
575 int cpu;
576
577 for (;;) {
578 cpu = c->c_cpu;
579#ifdef SMP
580 if (cpu == CPUBLOCK) {
581 while (c->c_cpu == CPUBLOCK)
582 cpu_spinwait();
583 continue;
584 }
585#endif
586 cc = CC_CPU(cpu);
587 CC_LOCK(cc);
588 if (cpu == c->c_cpu)
589 break;
590 CC_UNLOCK(cc);
591 }
592 return (cc);
593}
594
595static void
596callout_cc_add(struct callout *c, struct callout_cpu *cc,
597 sbintime_t sbt, sbintime_t precision, void (*func)(void *),
598 void *arg, int cpu, int flags)
599{
600 int bucket;
601
602 CC_LOCK_ASSERT(cc);
603 if (sbt < cc->cc_lastscan)
604 sbt = cc->cc_lastscan;
605 c->c_arg = arg;
606 c->c_iflags |= CALLOUT_PENDING;
607 c->c_iflags &= ~CALLOUT_PROCESSED;
608 c->c_flags |= CALLOUT_ACTIVE;
609 if (flags & C_DIRECT_EXEC)
610 c->c_iflags |= CALLOUT_DIRECT;
611 c->c_func = func;
612 c->c_time = sbt;
613 c->c_precision = precision;
614 bucket = callout_get_bucket(c->c_time);
615 CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
616 c, (int)(c->c_precision >> 32),
617 (u_int)(c->c_precision & 0xffffffff));
618 LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
619 if (cc->cc_bucket == bucket)
620 cc_exec_next(cc) = c;
621
622 /*
623 * Inform the eventtimers(4) subsystem there's a new callout
624 * that has been inserted, but only if really required.
625 */
626 if (SBT_MAX - c->c_time < c->c_precision)
627 c->c_precision = SBT_MAX - c->c_time;
628 sbt = c->c_time + c->c_precision;
629 if (sbt < cc->cc_firstevent) {
630 cc->cc_firstevent = sbt;
631 cpu_new_callout(cpu, sbt, c->c_time);
632 }
633}
634
635static void
636softclock_call_cc(struct callout *c, struct callout_cpu *cc,
637#ifdef CALLOUT_PROFILING
638 int *mpcalls, int *lockcalls, int *gcalls,
639#endif
640 int direct)
641{
642 struct rm_priotracker tracker;
643 callout_func_t *c_func, *drain;
644 void *c_arg;
645 struct lock_class *class;
646 struct lock_object *c_lock;
647 uintptr_t lock_status;
648 int c_iflags;
649#ifdef SMP
650 struct callout_cpu *new_cc;
651 callout_func_t *new_func;
652 void *new_arg;
653 int flags, new_cpu;
654 sbintime_t new_prec, new_time;
655#endif
656#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
657 sbintime_t sbt1, sbt2;
658 struct timespec ts2;
659 static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */
660 static callout_func_t *lastfunc;
661#endif
662
663 KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
664 ("softclock_call_cc: pend %p %x", c, c->c_iflags));
665 KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
666 ("softclock_call_cc: act %p %x", c, c->c_flags));
667 class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
668 lock_status = 0;
669 if (c->c_flags & CALLOUT_SHAREDLOCK) {
670 if (class == &lock_class_rm)
671 lock_status = (uintptr_t)&tracker;
672 else
673 lock_status = 1;
674 }
675 c_lock = c->c_lock;
676 c_func = c->c_func;
677 c_arg = c->c_arg;
678 c_iflags = c->c_iflags;
679 c->c_iflags &= ~CALLOUT_PENDING;
680
681 cc_exec_curr(cc, direct) = c;
682 cc_exec_last_func(cc, direct) = c_func;
683 cc_exec_last_arg(cc, direct) = c_arg;
684 cc_exec_cancel(cc, direct) = false;
685 cc_exec_drain(cc, direct) = NULL;
686 CC_UNLOCK(cc);
687 if (c_lock != NULL) {
688 class->lc_lock(c_lock, lock_status);
689 /*
690 * The callout may have been cancelled
691 * while we switched locks.
692 */
693 if (cc_exec_cancel(cc, direct)) {
694 class->lc_unlock(c_lock);
695 goto skip;
696 }
697 /* The callout cannot be stopped now. */
698 cc_exec_cancel(cc, direct) = true;
699 if (c_lock == &Giant.lock_object) {
700#ifdef CALLOUT_PROFILING
701 (*gcalls)++;
702#endif
703 CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
704 c, c_func, c_arg);
705 } else {
706#ifdef CALLOUT_PROFILING
707 (*lockcalls)++;
708#endif
709 CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
710 c, c_func, c_arg);
711 }
712 } else {
713#ifdef CALLOUT_PROFILING
714 (*mpcalls)++;
715#endif
716 CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
717 c, c_func, c_arg);
718 }
719 KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
720 "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
721#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
722 sbt1 = sbinuptime();
723#endif
724 THREAD_NO_SLEEPING();
725 SDT_PROBE1(callout_execute, , , callout__start, c);
726 c_func(c_arg);
727 SDT_PROBE1(callout_execute, , , callout__end, c);
728 THREAD_SLEEPING_OK();
729#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
730 sbt2 = sbinuptime();
731 sbt2 -= sbt1;
732 if (sbt2 > maxdt) {
733 if (lastfunc != c_func || sbt2 > maxdt * 2) {
734 ts2 = sbttots(sbt2);
735 printf(
736 "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
737 c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
738 }
739 maxdt = sbt2;
740 lastfunc = c_func;
741 }
742#endif
743 KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
744 CTR1(KTR_CALLOUT, "callout %p finished", c);
745 if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
746 class->lc_unlock(c_lock);
747skip:
748 CC_LOCK(cc);
749 KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
750 cc_exec_curr(cc, direct) = NULL;
751 if (cc_exec_drain(cc, direct)) {
752 drain = cc_exec_drain(cc, direct);
753 cc_exec_drain(cc, direct) = NULL;
754 CC_UNLOCK(cc);
755 drain(c_arg);
756 CC_LOCK(cc);
757 }
758 if (cc_exec_waiting(cc, direct)) {
759 /*
760 * There is someone waiting for the
761 * callout to complete.
762 * If the callout was scheduled for
763 * migration just cancel it.
764 */
765 if (cc_cce_migrating(cc, direct)) {
766 cc_cce_cleanup(cc, direct);
767
768 /*
769 * It should be assert here that the callout is not
770 * destroyed but that is not easy.
771 */
772 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
773 }
774 cc_exec_waiting(cc, direct) = false;
775 CC_UNLOCK(cc);
776 wakeup(&cc_exec_waiting(cc, direct));
777 CC_LOCK(cc);
778 } else if (cc_cce_migrating(cc, direct)) {
779#ifdef SMP
780 /*
781 * If the callout was scheduled for
782 * migration just perform it now.
783 */
784 new_cpu = cc_migration_cpu(cc, direct);
785 new_time = cc_migration_time(cc, direct);
786 new_prec = cc_migration_prec(cc, direct);
787 new_func = cc_migration_func(cc, direct);
788 new_arg = cc_migration_arg(cc, direct);
789 cc_cce_cleanup(cc, direct);
790
791 /*
792 * It should be assert here that the callout is not destroyed
793 * but that is not easy.
794 *
795 * As first thing, handle deferred callout stops.
796 */
797 if (!callout_migrating(c)) {
798 CTR3(KTR_CALLOUT,
799 "deferred cancelled %p func %p arg %p",
800 c, new_func, new_arg);
801 return;
802 }
803 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
804
805 new_cc = callout_cpu_switch(c, cc, new_cpu);
806 flags = (direct) ? C_DIRECT_EXEC : 0;
807 callout_cc_add(c, new_cc, new_time, new_prec, new_func,
808 new_arg, new_cpu, flags);
809 CC_UNLOCK(new_cc);
810 CC_LOCK(cc);
811#else
812 panic("migration should not happen");
813#endif
814 }
815}
816
817/*
818 * The callout mechanism is based on the work of Adam M. Costello and
819 * George Varghese, published in a technical report entitled "Redesigning
820 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
821 * in FreeBSD by Justin T. Gibbs. The original work on the data structures
822 * used in this implementation was published by G. Varghese and T. Lauck in
823 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
824 * the Efficient Implementation of a Timer Facility" in the Proceedings of
825 * the 11th ACM Annual Symposium on Operating Systems Principles,
826 * Austin, Texas Nov 1987.
827 */
828
829/*
830 * Software (low priority) clock interrupt thread handler.
831 * Run periodic events from timeout queue.
832 */
833static void
835{
836 struct thread *td = curthread;
837 struct callout_cpu *cc;
838 struct callout *c;
839#ifdef CALLOUT_PROFILING
840 int depth, gcalls, lockcalls, mpcalls;
841#endif
842
843 cc = (struct callout_cpu *)arg;
844 CC_LOCK(cc);
845 for (;;) {
846 while (TAILQ_EMPTY(&cc->cc_expireq)) {
847 /*
848 * Use CC_LOCK(cc) as the thread_lock while
849 * idle.
850 */
851 thread_lock(td);
852 thread_lock_set(td, (struct mtx *)&cc->cc_lock);
853 TD_SET_IWAIT(td);
854 mi_switch(SW_VOL | SWT_IWAIT);
855
856 /* mi_switch() drops thread_lock(). */
857 CC_LOCK(cc);
858 }
859
860#ifdef CALLOUT_PROFILING
861 depth = gcalls = lockcalls = mpcalls = 0;
862#endif
863 while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
864 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
865 softclock_call_cc(c, cc,
866#ifdef CALLOUT_PROFILING
867 &mpcalls, &lockcalls, &gcalls,
868#endif
869 0);
870#ifdef CALLOUT_PROFILING
871 ++depth;
872#endif
873 }
874#ifdef CALLOUT_PROFILING
875 avg_depth += (depth * 1000 - avg_depth) >> 8;
876 avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
877 avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
878 avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
879#endif
880 }
881}
882
883void
884callout_when(sbintime_t sbt, sbintime_t precision, int flags,
885 sbintime_t *res, sbintime_t *prec_res)
886{
887 sbintime_t to_sbt, to_pr;
888
889 if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
890 *res = sbt;
891 *prec_res = precision;
892 return;
893 }
894 if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
895 sbt = tick_sbt;
896 if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
897 /*
898 * Obtain the time of the last hardclock() call on
899 * this CPU directly from the kern_clocksource.c.
900 * This value is per-CPU, but it is equal for all
901 * active ones.
902 */
903#ifdef __LP64__
904 to_sbt = DPCPU_GET(hardclocktime);
905#else
906 spinlock_enter();
907 to_sbt = DPCPU_GET(hardclocktime);
908 spinlock_exit();
909#endif
910 if (cold && to_sbt == 0)
911 to_sbt = sbinuptime();
912 if ((flags & C_HARDCLOCK) == 0)
913 to_sbt += tick_sbt;
914 } else
915 to_sbt = sbinuptime();
916 if (SBT_MAX - to_sbt < sbt)
917 to_sbt = SBT_MAX;
918 else
919 to_sbt += sbt;
920 *res = to_sbt;
921 to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
922 sbt >> C_PRELGET(flags));
923 *prec_res = to_pr > precision ? to_pr : precision;
924}
925
926/*
927 * New interface; clients allocate their own callout structures.
928 *
929 * callout_reset() - establish or change a timeout
930 * callout_stop() - disestablish a timeout
931 * callout_init() - initialize a callout structure so that it can
932 * safely be passed to callout_reset() and callout_stop()
933 *
934 * <sys/callout.h> defines three convenience macros:
935 *
936 * callout_active() - returns truth if callout has not been stopped,
937 * drained, or deactivated since the last time the callout was
938 * reset.
939 * callout_pending() - returns truth if callout is still waiting for timeout
940 * callout_deactivate() - marks the callout as having been serviced
941 */
942int
943callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
944 callout_func_t *ftn, void *arg, int cpu, int flags)
945{
946 sbintime_t to_sbt, precision;
947 struct callout_cpu *cc;
948 int cancelled, direct;
949 int ignore_cpu=0;
950
951 cancelled = 0;
952 if (cpu == -1) {
953 ignore_cpu = 1;
954 } else if ((cpu >= MAXCPU) ||
955 ((CC_CPU(cpu))->cc_inited == 0)) {
956 /* Invalid CPU spec */
957 panic("Invalid CPU in callout %d", cpu);
958 }
959 callout_when(sbt, prec, flags, &to_sbt, &precision);
960
961 /*
962 * This flag used to be added by callout_cc_add, but the
963 * first time you call this we could end up with the
964 * wrong direct flag if we don't do it before we add.
965 */
966 if (flags & C_DIRECT_EXEC) {
967 direct = 1;
968 } else {
969 direct = 0;
970 }
971 KASSERT(!direct || c->c_lock == NULL ||
972 (LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
973 ("%s: direct callout %p has non-spin lock", __func__, c));
974 cc = callout_lock(c);
975 /*
976 * Don't allow migration if the user does not care.
977 */
978 if (ignore_cpu) {
979 cpu = c->c_cpu;
980 }
981
982 if (cc_exec_curr(cc, direct) == c) {
983 /*
984 * We're being asked to reschedule a callout which is
985 * currently in progress. If there is a lock then we
986 * can cancel the callout if it has not really started.
987 */
988 if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
989 cancelled = cc_exec_cancel(cc, direct) = true;
990 if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
991 /*
992 * Someone has called callout_drain to kill this
993 * callout. Don't reschedule.
994 */
995 CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
996 cancelled ? "cancelled" : "failed to cancel",
997 c, c->c_func, c->c_arg);
998 CC_UNLOCK(cc);
999 return (cancelled);
1000 }
1001#ifdef SMP
1002 if (callout_migrating(c)) {
1003 /*
1004 * This only occurs when a second callout_reset_sbt_on
1005 * is made after a previous one moved it into
1006 * deferred migration (below). Note we do *not* change
1007 * the prev_cpu even though the previous target may
1008 * be different.
1009 */
1010 cc_migration_cpu(cc, direct) = cpu;
1011 cc_migration_time(cc, direct) = to_sbt;
1012 cc_migration_prec(cc, direct) = precision;
1013 cc_migration_func(cc, direct) = ftn;
1014 cc_migration_arg(cc, direct) = arg;
1015 cancelled = 1;
1016 CC_UNLOCK(cc);
1017 return (cancelled);
1018 }
1019#endif
1020 }
1021 if (c->c_iflags & CALLOUT_PENDING) {
1022 if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1023 if (cc_exec_next(cc) == c)
1024 cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1025 LIST_REMOVE(c, c_links.le);
1026 } else {
1027 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1028 }
1029 cancelled = 1;
1030 c->c_iflags &= ~ CALLOUT_PENDING;
1031 c->c_flags &= ~ CALLOUT_ACTIVE;
1032 }
1033
1034#ifdef SMP
1035 /*
1036 * If the callout must migrate try to perform it immediately.
1037 * If the callout is currently running, just defer the migration
1038 * to a more appropriate moment.
1039 */
1040 if (c->c_cpu != cpu) {
1041 if (cc_exec_curr(cc, direct) == c) {
1042 /*
1043 * Pending will have been removed since we are
1044 * actually executing the callout on another
1045 * CPU. That callout should be waiting on the
1046 * lock the caller holds. If we set both
1047 * active/and/pending after we return and the
1048 * lock on the executing callout proceeds, it
1049 * will then see pending is true and return.
1050 * At the return from the actual callout execution
1051 * the migration will occur in softclock_call_cc
1052 * and this new callout will be placed on the
1053 * new CPU via a call to callout_cpu_switch() which
1054 * will get the lock on the right CPU followed
1055 * by a call callout_cc_add() which will add it there.
1056 * (see above in softclock_call_cc()).
1057 */
1058 cc_migration_cpu(cc, direct) = cpu;
1059 cc_migration_time(cc, direct) = to_sbt;
1060 cc_migration_prec(cc, direct) = precision;
1061 cc_migration_func(cc, direct) = ftn;
1062 cc_migration_arg(cc, direct) = arg;
1063 c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1064 c->c_flags |= CALLOUT_ACTIVE;
1065 CTR6(KTR_CALLOUT,
1066 "migration of %p func %p arg %p in %d.%08x to %u deferred",
1067 c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1068 (u_int)(to_sbt & 0xffffffff), cpu);
1069 CC_UNLOCK(cc);
1070 return (cancelled);
1071 }
1072 cc = callout_cpu_switch(c, cc, cpu);
1073 }
1074#endif
1075
1076 callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1077 CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1078 cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1079 (u_int)(to_sbt & 0xffffffff));
1080 CC_UNLOCK(cc);
1081
1082 return (cancelled);
1083}
1084
1085/*
1086 * Common idioms that can be optimized in the future.
1087 */
1088int
1089callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1090{
1091 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1092}
1093
1094int
1095callout_schedule(struct callout *c, int to_ticks)
1096{
1097 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1098}
1099
1100int
1101_callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
1102{
1103 struct callout_cpu *cc, *old_cc;
1104 struct lock_class *class;
1105 int direct, sq_locked, use_lock;
1106 int cancelled, not_on_a_list;
1107
1108 if ((flags & CS_DRAIN) != 0)
1109 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1110 "calling %s", __func__);
1111
1112 KASSERT((flags & CS_DRAIN) == 0 || drain == NULL,
1113 ("Cannot set drain callback and CS_DRAIN flag at the same time"));
1114
1115 /*
1116 * Some old subsystems don't hold Giant while running a callout_stop(),
1117 * so just discard this check for the moment.
1118 */
1119 if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1120 if (c->c_lock == &Giant.lock_object)
1121 use_lock = mtx_owned(&Giant);
1122 else {
1123 use_lock = 1;
1124 class = LOCK_CLASS(c->c_lock);
1125 class->lc_assert(c->c_lock, LA_XLOCKED);
1126 }
1127 } else
1128 use_lock = 0;
1129 if (c->c_iflags & CALLOUT_DIRECT) {
1130 direct = 1;
1131 } else {
1132 direct = 0;
1133 }
1134 sq_locked = 0;
1135 old_cc = NULL;
1136again:
1137 cc = callout_lock(c);
1138
1139 if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1140 (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1141 ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1142 /*
1143 * Special case where this slipped in while we
1144 * were migrating *as* the callout is about to
1145 * execute. The caller probably holds the lock
1146 * the callout wants.
1147 *
1148 * Get rid of the migration first. Then set
1149 * the flag that tells this code *not* to
1150 * try to remove it from any lists (its not
1151 * on one yet). When the callout wheel runs,
1152 * it will ignore this callout.
1153 */
1154 c->c_iflags &= ~CALLOUT_PENDING;
1155 c->c_flags &= ~CALLOUT_ACTIVE;
1156 not_on_a_list = 1;
1157 } else {
1158 not_on_a_list = 0;
1159 }
1160
1161 /*
1162 * If the callout was migrating while the callout cpu lock was
1163 * dropped, just drop the sleepqueue lock and check the states
1164 * again.
1165 */
1166 if (sq_locked != 0 && cc != old_cc) {
1167#ifdef SMP
1168 CC_UNLOCK(cc);
1169 sleepq_release(&cc_exec_waiting(old_cc, direct));
1170 sq_locked = 0;
1171 old_cc = NULL;
1172 goto again;
1173#else
1174 panic("migration should not happen");
1175#endif
1176 }
1177
1178 /*
1179 * If the callout is running, try to stop it or drain it.
1180 */
1181 if (cc_exec_curr(cc, direct) == c) {
1182 /*
1183 * Succeed we to stop it or not, we must clear the
1184 * active flag - this is what API users expect. If we're
1185 * draining and the callout is currently executing, first wait
1186 * until it finishes.
1187 */
1188 if ((flags & CS_DRAIN) == 0)
1189 c->c_flags &= ~CALLOUT_ACTIVE;
1190
1191 if ((flags & CS_DRAIN) != 0) {
1192 /*
1193 * The current callout is running (or just
1194 * about to run) and blocking is allowed, so
1195 * just wait for the current invocation to
1196 * finish.
1197 */
1198 if (cc_exec_curr(cc, direct) == c) {
1199 /*
1200 * Use direct calls to sleepqueue interface
1201 * instead of cv/msleep in order to avoid
1202 * a LOR between cc_lock and sleepqueue
1203 * chain spinlocks. This piece of code
1204 * emulates a msleep_spin() call actually.
1205 *
1206 * If we already have the sleepqueue chain
1207 * locked, then we can safely block. If we
1208 * don't already have it locked, however,
1209 * we have to drop the cc_lock to lock
1210 * it. This opens several races, so we
1211 * restart at the beginning once we have
1212 * both locks. If nothing has changed, then
1213 * we will end up back here with sq_locked
1214 * set.
1215 */
1216 if (!sq_locked) {
1217 CC_UNLOCK(cc);
1219 &cc_exec_waiting(cc, direct));
1220 sq_locked = 1;
1221 old_cc = cc;
1222 goto again;
1223 }
1224
1225 /*
1226 * Migration could be cancelled here, but
1227 * as long as it is still not sure when it
1228 * will be packed up, just let softclock()
1229 * take care of it.
1230 */
1231 cc_exec_waiting(cc, direct) = true;
1232 DROP_GIANT();
1233 CC_UNLOCK(cc);
1234 sleepq_add(
1235 &cc_exec_waiting(cc, direct),
1236 &cc->cc_lock.lock_object, "codrain",
1237 SLEEPQ_SLEEP, 0);
1239 &cc_exec_waiting(cc, direct),
1240 0);
1241 sq_locked = 0;
1242 old_cc = NULL;
1243
1244 /* Reacquire locks previously released. */
1245 PICKUP_GIANT();
1246 goto again;
1247 }
1248 c->c_flags &= ~CALLOUT_ACTIVE;
1249 } else if (use_lock &&
1250 !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1251
1252 /*
1253 * The current callout is waiting for its
1254 * lock which we hold. Cancel the callout
1255 * and return. After our caller drops the
1256 * lock, the callout will be skipped in
1257 * softclock(). This *only* works with a
1258 * callout_stop() *not* callout_drain() or
1259 * callout_async_drain().
1260 */
1261 cc_exec_cancel(cc, direct) = true;
1262 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1263 c, c->c_func, c->c_arg);
1264 KASSERT(!cc_cce_migrating(cc, direct),
1265 ("callout wrongly scheduled for migration"));
1266 if (callout_migrating(c)) {
1267 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1268#ifdef SMP
1269 cc_migration_cpu(cc, direct) = CPUBLOCK;
1270 cc_migration_time(cc, direct) = 0;
1271 cc_migration_prec(cc, direct) = 0;
1272 cc_migration_func(cc, direct) = NULL;
1273 cc_migration_arg(cc, direct) = NULL;
1274#endif
1275 }
1276 CC_UNLOCK(cc);
1277 KASSERT(!sq_locked, ("sleepqueue chain locked"));
1278 return (1);
1279 } else if (callout_migrating(c)) {
1280 /*
1281 * The callout is currently being serviced
1282 * and the "next" callout is scheduled at
1283 * its completion with a migration. We remove
1284 * the migration flag so it *won't* get rescheduled,
1285 * but we can't stop the one thats running so
1286 * we return 0.
1287 */
1288 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1289#ifdef SMP
1290 /*
1291 * We can't call cc_cce_cleanup here since
1292 * if we do it will remove .ce_curr and
1293 * its still running. This will prevent a
1294 * reschedule of the callout when the
1295 * execution completes.
1296 */
1297 cc_migration_cpu(cc, direct) = CPUBLOCK;
1298 cc_migration_time(cc, direct) = 0;
1299 cc_migration_prec(cc, direct) = 0;
1300 cc_migration_func(cc, direct) = NULL;
1301 cc_migration_arg(cc, direct) = NULL;
1302#endif
1303 CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1304 c, c->c_func, c->c_arg);
1305 if (drain) {
1306 KASSERT(cc_exec_drain(cc, direct) == NULL,
1307 ("callout drain function already set to %p",
1308 cc_exec_drain(cc, direct)));
1309 cc_exec_drain(cc, direct) = drain;
1310 }
1311 CC_UNLOCK(cc);
1312 return ((flags & CS_EXECUTING) != 0);
1313 } else {
1314 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1315 c, c->c_func, c->c_arg);
1316 if (drain) {
1317 KASSERT(cc_exec_drain(cc, direct) == NULL,
1318 ("callout drain function already set to %p",
1319 cc_exec_drain(cc, direct)));
1320 cc_exec_drain(cc, direct) = drain;
1321 }
1322 }
1323 KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1324 cancelled = ((flags & CS_EXECUTING) != 0);
1325 } else
1326 cancelled = 1;
1327
1328 if (sq_locked)
1329 sleepq_release(&cc_exec_waiting(cc, direct));
1330
1331 if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1332 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1333 c, c->c_func, c->c_arg);
1334 /*
1335 * For not scheduled and not executing callout return
1336 * negative value.
1337 */
1338 if (cc_exec_curr(cc, direct) != c)
1339 cancelled = -1;
1340 CC_UNLOCK(cc);
1341 return (cancelled);
1342 }
1343
1344 c->c_iflags &= ~CALLOUT_PENDING;
1345 c->c_flags &= ~CALLOUT_ACTIVE;
1346
1347 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1348 c, c->c_func, c->c_arg);
1349 if (not_on_a_list == 0) {
1350 if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1351 if (cc_exec_next(cc) == c)
1352 cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1353 LIST_REMOVE(c, c_links.le);
1354 } else {
1355 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1356 }
1357 }
1358 CC_UNLOCK(cc);
1359 return (cancelled);
1360}
1361
1362void
1363callout_init(struct callout *c, int mpsafe)
1364{
1365 bzero(c, sizeof *c);
1366 if (mpsafe) {
1367 c->c_lock = NULL;
1368 c->c_iflags = CALLOUT_RETURNUNLOCKED;
1369 } else {
1370 c->c_lock = &Giant.lock_object;
1371 c->c_iflags = 0;
1372 }
1373 c->c_cpu = cc_default_cpu;
1374}
1375
1376void
1377_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1378{
1379 bzero(c, sizeof *c);
1380 c->c_lock = lock;
1381 KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1382 ("callout_init_lock: bad flags %d", flags));
1383 KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1384 ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1385 KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
1386 ("%s: callout %p has sleepable lock", __func__, c));
1387 c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1388 c->c_cpu = cc_default_cpu;
1389}
1390
1391static int
1392flssbt(sbintime_t sbt)
1393{
1394
1395 sbt += (uint64_t)sbt >> 1;
1396 if (sizeof(long) >= sizeof(sbintime_t))
1397 return (flsl(sbt));
1398 if (sbt >= SBT_1S)
1399 return (flsl(((uint64_t)sbt) >> 32) + 32);
1400 return (flsl(sbt));
1401}
1402
1403/*
1404 * Dump immediate statistic snapshot of the scheduled callouts.
1405 */
1406static int
1407sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1408{
1409 struct callout *tmp;
1410 struct callout_cpu *cc;
1411 struct callout_list *sc;
1412 sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1413 int ct[64], cpr[64], ccpbk[32];
1414 int error, val, i, count, tcum, pcum, maxc, c, medc;
1415 int cpu;
1416
1417 val = 0;
1418 error = sysctl_handle_int(oidp, &val, 0, req);
1419 if (error != 0 || req->newptr == NULL)
1420 return (error);
1421 count = maxc = 0;
1422 st = spr = maxt = maxpr = 0;
1423 bzero(ccpbk, sizeof(ccpbk));
1424 bzero(ct, sizeof(ct));
1425 bzero(cpr, sizeof(cpr));
1426 now = sbinuptime();
1427 CPU_FOREACH(cpu) {
1428 cc = CC_CPU(cpu);
1429 CC_LOCK(cc);
1430 for (i = 0; i < callwheelsize; i++) {
1431 sc = &cc->cc_callwheel[i];
1432 c = 0;
1433 LIST_FOREACH(tmp, sc, c_links.le) {
1434 c++;
1435 t = tmp->c_time - now;
1436 if (t < 0)
1437 t = 0;
1438 st += t / SBT_1US;
1439 spr += tmp->c_precision / SBT_1US;
1440 if (t > maxt)
1441 maxt = t;
1442 if (tmp->c_precision > maxpr)
1443 maxpr = tmp->c_precision;
1444 ct[flssbt(t)]++;
1445 cpr[flssbt(tmp->c_precision)]++;
1446 }
1447 if (c > maxc)
1448 maxc = c;
1449 ccpbk[fls(c + c / 2)]++;
1450 count += c;
1451 }
1452 CC_UNLOCK(cc);
1453 }
1454
1455 for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1456 tcum += ct[i];
1457 medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1458 for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1459 pcum += cpr[i];
1460 medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1461 for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1462 c += ccpbk[i];
1463 medc = (i >= 2) ? (1 << (i - 2)) : 0;
1464
1465 printf("Scheduled callouts statistic snapshot:\n");
1466 printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n",
1468 printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n",
1469 medc,
1471 (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1472 maxc);
1473 printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1474 medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1475 (st / count) / 1000000, (st / count) % 1000000,
1476 maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1477 printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1478 medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1479 (spr / count) / 1000000, (spr / count) % 1000000,
1480 maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1481 printf(" Distribution: \tbuckets\t time\t tcum\t"
1482 " prec\t pcum\n");
1483 for (i = 0, tcum = pcum = 0; i < 64; i++) {
1484 if (ct[i] == 0 && cpr[i] == 0)
1485 continue;
1486 t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1487 tcum += ct[i];
1488 pcum += cpr[i];
1489 printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1490 t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1491 i - 1 - (32 - CC_HASH_SHIFT),
1492 ct[i], tcum, cpr[i], pcum);
1493 }
1494 return (error);
1495}
1496SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1497 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1498 0, 0, sysctl_kern_callout_stat, "I",
1499 "Dump immediate statistic snapshot of the scheduled callouts");
1500
1501#ifdef DDB
1502static void
1503_show_callout(struct callout *c)
1504{
1505
1506 db_printf("callout %p\n", c);
1507#define C_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, c->e);
1508 db_printf(" &c_links = %p\n", &(c->c_links));
1509 C_DB_PRINTF("%" PRId64, c_time);
1510 C_DB_PRINTF("%" PRId64, c_precision);
1511 C_DB_PRINTF("%p", c_arg);
1512 C_DB_PRINTF("%p", c_func);
1513 C_DB_PRINTF("%p", c_lock);
1514 C_DB_PRINTF("%#x", c_flags);
1515 C_DB_PRINTF("%#x", c_iflags);
1516 C_DB_PRINTF("%d", c_cpu);
1517#undef C_DB_PRINTF
1518}
1519
1520DB_SHOW_COMMAND(callout, db_show_callout)
1521{
1522
1523 if (!have_addr) {
1524 db_printf("usage: show callout <struct callout *>\n");
1525 return;
1526 }
1527
1528 _show_callout((struct callout *)addr);
1529}
1530
1531static void
1532_show_last_callout(int cpu, int direct, const char *dirstr)
1533{
1534 struct callout_cpu *cc;
1535 void *func, *arg;
1536
1537 cc = CC_CPU(cpu);
1538 func = cc_exec_last_func(cc, direct);
1539 arg = cc_exec_last_arg(cc, direct);
1540 db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1541 db_printsym((db_expr_t)func, DB_STGY_ANY);
1542 db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1543}
1544
1545DB_SHOW_COMMAND(callout_last, db_show_callout_last)
1546{
1547 int cpu, last;
1548
1549 if (have_addr) {
1550 if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1551 db_printf("no such cpu: %d\n", (int)addr);
1552 return;
1553 }
1554 cpu = last = addr;
1555 } else {
1556 cpu = 0;
1557 last = mp_maxid;
1558 }
1559
1560 while (cpu <= last) {
1561 if (!CPU_ABSENT(cpu)) {
1562 _show_last_callout(cpu, 0, "");
1563 _show_last_callout(cpu, 1, " direct");
1564 }
1565 cpu++;
1566 }
1567}
1568#endif /* DDB */
int * count
Definition: cpufreq_if.m:63
static struct bt_table st
void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
int cpuset_setithread(lwpid_t id, int cpu)
Definition: kern_cpuset.c:1512
int kproc_kthread_add(void(*func)(void *), void *arg, struct proc **procptr, struct thread **tdptr, int flags, int pages, const char *procname, const char *fmt,...)
Definition: kern_kthread.c:455
void * malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, int flags)
Definition: kern_malloc.c:705
void thread_lock_block_wait(struct thread *td)
Definition: kern_mutex.c:986
void thread_lock_set(struct thread *td, struct mtx *new)
Definition: kern_mutex.c:997
struct mtx __exclusive_cache_line Giant
Definition: kern_mutex.c:181
struct lock_class lock_class_rm
Definition: kern_rmlock.c:88
void panic(const char *fmt,...)
void mi_switch(int flags)
Definition: kern_synch.c:491
void wakeup(const void *ident)
Definition: kern_synch.c:349
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1644
int tc_precexp
Definition: kern_tc.c:141
sbintime_t sbt_tickthreshold
Definition: kern_tc.c:138
int callout_schedule_on(struct callout *c, int to_ticks, int cpu)
int _callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
#define CC_UNLOCK(cc)
Definition: kern_timeout.c:209
#define CC_LOCK(cc)
Definition: kern_timeout.c:208
static void start_softclock(void *dummy)
Definition: kern_timeout.c:376
#define CC_CPU(cpu)
Definition: kern_timeout.c:205
#define CC_SELF()
Definition: kern_timeout.c:206
DPCPU_DECLARE(sbintime_t, hardclocktime)
static void softclock_call_cc(struct callout *c, struct callout_cpu *cc, int direct)
Definition: kern_timeout.c:636
static int pin_pcpu_swi
Definition: kern_timeout.c:122
#define cc_exec_last_func(cc, dir)
Definition: kern_timeout.c:186
static struct callout_cpu * callout_lock(struct callout *c)
Definition: kern_timeout.c:572
#define cc_exec_curr(cc, dir)
Definition: kern_timeout.c:185
static int flssbt(sbintime_t sbt)
int callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec, callout_func_t *ftn, void *arg, int cpu, int flags)
Definition: kern_timeout.c:943
SDT_PROVIDER_DEFINE(callout_execute)
#define cc_exec_waiting(cc, dir)
Definition: kern_timeout.c:191
SDT_PROBE_DEFINE1(callout_execute,,, callout__start, "struct callout *")
static int ncallout
Definition: kern_timeout.c:113
void callout_process(sbintime_t now)
Definition: kern_timeout.c:432
void callout_init(struct callout *c, int mpsafe)
#define CC_LOCK_ASSERT(cc)
Definition: kern_timeout.c:210
static int sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
#define cc_exec_next(cc)
Definition: kern_timeout.c:189
__FBSDID("$FreeBSD$")
static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures")
void _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
SYSCTL_PROC(_kern, OID_AUTO, callout_stat, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, 0, 0, sysctl_kern_callout_stat, "I", "Dump immediate statistic snapshot of the scheduled callouts")
static void callout_cpu_init(struct callout_cpu *cc, int cpu)
Definition: kern_timeout.c:321
static void softclock_thread(void *arg)
Definition: kern_timeout.c:834
void callout_when(sbintime_t sbt, sbintime_t precision, int flags, sbintime_t *res, sbintime_t *prec_res)
Definition: kern_timeout.c:884
static u_int __read_mostly callwheelsize
Definition: kern_timeout.c:134
#define cc_exec_cancel(cc, dir)
Definition: kern_timeout.c:190
static u_int __read_mostly callwheelmask
Definition: kern_timeout.c:135
SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN|CTLFLAG_NOFETCH, &ncallout, 0, "Number of entries in callwheel and size of timeout() preallocation")
static int pin_default_swi
Definition: kern_timeout.c:121
#define cc_exec_drain(cc, dir)
Definition: kern_timeout.c:188
static struct callout_cpu cc_cpu
Definition: kern_timeout.c:204
static void callout_callwheel_init(void *dummy)
Definition: kern_timeout.c:278
static int __read_mostly cc_default_cpu
Definition: kern_timeout.c:212
int callout_schedule(struct callout *c, int to_ticks)
static void callout_cc_add(struct callout *c, struct callout_cpu *cc, sbintime_t sbt, sbintime_t precision, void(*func)(void *), void *arg, int cpu, int flags)
Definition: kern_timeout.c:596
static int cc_cce_migrating(struct callout_cpu *cc, int direct)
Definition: kern_timeout.c:263
SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL)
#define CC_HASH_SHIFT
Definition: kern_timeout.c:415
static u_int callout_get_bucket(sbintime_t sbt)
Definition: kern_timeout.c:425
static u_int callout_hash(sbintime_t sbt)
Definition: kern_timeout.c:418
static void cc_cce_cleanup(struct callout_cpu *cc, int direct)
Definition: kern_timeout.c:244
#define callout_migrating(c)
Definition: kern_timeout.c:183
#define cc_exec_last_arg(cc, dir)
Definition: kern_timeout.c:187
uint64_t * addr
Definition: msi_if.m:89
struct resource * res
Definition: pic_if.m:98
void sched_class(struct thread *td, int class)
Definition: sched_4bsd.c:829
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:901
void sched_add(struct thread *td, int flags)
Definition: sched_4bsd.c:1285
u_int cc_bucket
Definition: kern_timeout.c:176
struct callout_tailq cc_expireq
Definition: kern_timeout.c:172
sbintime_t cc_lastscan
Definition: kern_timeout.c:174
u_int cc_inited
Definition: kern_timeout.c:177
struct cc_exec cc_exec_entity[2]
Definition: kern_timeout.c:169
struct mtx_padalign cc_lock
Definition: kern_timeout.c:168
struct thread * cc_thread
Definition: kern_timeout.c:175
sbintime_t cc_firstevent
Definition: kern_timeout.c:173
struct callout_list * cc_callwheel
Definition: kern_timeout.c:171
struct callout * cc_next
Definition: kern_timeout.c:170
void * cc_last_arg
Definition: kern_timeout.c:151
void * cc_last_func
Definition: kern_timeout.c:150
bool cc_waiting
Definition: kern_timeout.c:160
struct callout * cc_curr
Definition: kern_timeout.c:148
callout_func_t * cc_drain
Definition: kern_timeout.c:149
bool cc_cancel
Definition: kern_timeout.c:159
static bool kasan_enabled __read_mostly
Definition: subr_asan.c:95
int maxproc
Definition: subr_param.c:90
int maxfiles
Definition: subr_param.c:92
sbintime_t tick_sbt
Definition: subr_param.c:88
struct pcpu * pcpu_find(u_int cpuid)
Definition: subr_pcpu.c:283
int printf(const char *fmt,...)
Definition: subr_prf.c:397
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:550
void sleepq_release(const void *wchan)
void sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg, int flags, int queue)
void sleepq_wait(const void *wchan, int pri)
void sleepq_lock(const void *wchan)
u_int mp_maxid
Definition: subr_smp.c:77
int mp_ncpus
Definition: subr_smp.c:72
uint16_t flags
Definition: subr_stats.c:2
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy