FreeBSD kernel kern code
kern_malloc.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2005-2009 Robert N. M. Watson
7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
35 */
36
37/*
38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
39 * based on memory types. Back end is implemented using the UMA(9) zone
40 * allocator. A set of fixed-size buckets are used for smaller allocations,
41 * and a special UMA allocation interface is used for larger allocations.
42 * Callers declare memory types, and statistics are maintained independently
43 * for each memory type. Statistics are maintained per-CPU for performance
44 * reasons. See malloc(9) and comments in malloc.h for a detailed
45 * description.
46 */
47
48#include <sys/cdefs.h>
49__FBSDID("$FreeBSD$");
50
51#include "opt_ddb.h"
52#include "opt_vm.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/asan.h>
57#include <sys/kdb.h>
58#include <sys/kernel.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/msan.h>
62#include <sys/mutex.h>
63#include <sys/vmmeter.h>
64#include <sys/proc.h>
65#include <sys/queue.h>
66#include <sys/sbuf.h>
67#include <sys/smp.h>
68#include <sys/sysctl.h>
69#include <sys/time.h>
70#include <sys/vmem.h>
71#ifdef EPOCH_TRACE
72#include <sys/epoch.h>
73#endif
74
75#include <vm/vm.h>
76#include <vm/pmap.h>
77#include <vm/vm_domainset.h>
78#include <vm/vm_pageout.h>
79#include <vm/vm_param.h>
80#include <vm/vm_kern.h>
81#include <vm/vm_extern.h>
82#include <vm/vm_map.h>
83#include <vm/vm_page.h>
84#include <vm/vm_phys.h>
85#include <vm/vm_pagequeue.h>
86#include <vm/uma.h>
87#include <vm/uma_int.h>
88#include <vm/uma_dbg.h>
89
90#ifdef DEBUG_MEMGUARD
91#include <vm/memguard.h>
92#endif
93#ifdef DEBUG_REDZONE
94#include <vm/redzone.h>
95#endif
96
97#if defined(INVARIANTS) && defined(__i386__)
98#include <machine/cpu.h>
99#endif
100
101#include <ddb/ddb.h>
102
103#ifdef KDTRACE_HOOKS
104#include <sys/dtrace_bsd.h>
105
106bool __read_frequently dtrace_malloc_enabled;
107dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe;
108#endif
109
110#if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \
111 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
112#define MALLOC_DEBUG 1
113#endif
114
115#if defined(KASAN) || defined(DEBUG_REDZONE)
116#define DEBUG_REDZONE_ARG_DEF , unsigned long osize
117#define DEBUG_REDZONE_ARG , osize
118#else
119#define DEBUG_REDZONE_ARG_DEF
120#define DEBUG_REDZONE_ARG
121#endif
122
123/*
124 * When realloc() is called, if the new size is sufficiently smaller than
125 * the old size, realloc() will allocate a new, smaller block to avoid
126 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
127 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
128 */
129#ifndef REALLOC_FRACTION
130#define REALLOC_FRACTION 1 /* new block if <= half the size */
131#endif
132
133/*
134 * Centrally define some common malloc types.
135 */
136MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
137MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
138MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
139
140static struct malloc_type *kmemstatistics;
141static int kmemcount;
142
143#define KMEM_ZSHIFT 4
144#define KMEM_ZBASE 16
145#define KMEM_ZMASK (KMEM_ZBASE - 1)
146
147#define KMEM_ZMAX 65536
148#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
149static uint8_t kmemsize[KMEM_ZSIZE + 1];
150
151#ifndef MALLOC_DEBUG_MAXZONES
152#define MALLOC_DEBUG_MAXZONES 1
153#endif
155
156/*
157 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
158 * of various sizes.
159 *
160 * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
161 *
162 * XXX: The comment here used to read "These won't be powers of two for
163 * long." It's possible that a significant amount of wasted memory could be
164 * recovered by tuning the sizes of these buckets.
165 */
166struct {
168 const char *kz_name;
170} kmemzones[] = {
171 {16, "malloc-16", },
172 {32, "malloc-32", },
173 {64, "malloc-64", },
174 {128, "malloc-128", },
175 {256, "malloc-256", },
176 {384, "malloc-384", },
177 {512, "malloc-512", },
178 {1024, "malloc-1024", },
179 {2048, "malloc-2048", },
180 {4096, "malloc-4096", },
181 {8192, "malloc-8192", },
182 {16384, "malloc-16384", },
183 {32768, "malloc-32768", },
184 {65536, "malloc-65536", },
185 {0, NULL},
187
189SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
190 "Size of kernel memory");
191
192static u_long kmem_zmax = KMEM_ZMAX;
193SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
194 "Maximum allocation size that malloc(9) would use UMA as backend");
195
196static u_long vm_kmem_size_min;
197SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
198 "Minimum size of kernel memory");
199
200static u_long vm_kmem_size_max;
201SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
202 "Maximum size of kernel memory");
203
205SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
206 "Scale factor for kernel memory size");
207
208static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
209SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
210 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
211 sysctl_kmem_map_size, "LU", "Current kmem allocation size");
212
213static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
214SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
215 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
216 sysctl_kmem_map_free, "LU", "Free space in kmem");
217
218static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
219 "Malloc information");
220
221static u_int vm_malloc_zone_count = nitems(kmemzones);
222SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
223 CTLFLAG_RD, &vm_malloc_zone_count, 0,
224 "Number of malloc zones");
225
226static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
227SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
228 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
229 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
230
231/*
232 * The malloc_mtx protects the kmemstatistics linked list.
233 */
235
236static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
237
238#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
239static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
240 "Kernel malloc debugging options");
241#endif
242
243/*
244 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
245 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
246 */
247#ifdef MALLOC_MAKE_FAILURES
248static int malloc_failure_rate;
249static int malloc_nowait_count;
250static int malloc_failure_count;
251SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
252 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
253SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
254 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
255#endif
256
257static int
258sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
259{
260 u_long size;
261
262 size = uma_size();
263 return (sysctl_handle_long(oidp, &size, 0, req));
264}
265
266static int
267sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
268{
269 u_long size, limit;
270
271 /* The sysctl is unsigned, implement as a saturation value. */
272 size = uma_size();
273 limit = uma_limit();
274 if (size > limit)
275 size = 0;
276 else
277 size = limit - size;
278 return (sysctl_handle_long(oidp, &size, 0, req));
279}
280
281static int
282sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
283{
284 int sizes[nitems(kmemzones)];
285 int i;
286
287 for (i = 0; i < nitems(kmemzones); i++) {
288 sizes[i] = kmemzones[i].kz_size;
289 }
290
291 return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
292}
293
294/*
295 * malloc(9) uma zone separation -- sub-page buffer overruns in one
296 * malloc type will affect only a subset of other malloc types.
297 */
298#if MALLOC_DEBUG_MAXZONES > 1
299static void
300tunable_set_numzones(void)
301{
302
303 TUNABLE_INT_FETCH("debug.malloc.numzones",
304 &numzones);
305
306 /* Sanity check the number of malloc uma zones. */
307 if (numzones <= 0)
308 numzones = 1;
311}
312SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
313SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
314 &numzones, 0, "Number of malloc uma subzones");
315
316/*
317 * Any number that changes regularly is an okay choice for the
318 * offset. Build numbers are pretty good of you have them.
319 */
320static u_int zone_offset = __FreeBSD_version;
321TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
322SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
323 &zone_offset, 0, "Separate malloc types by examining the "
324 "Nth character in the malloc type short description.");
325
326static void
327mtp_set_subzone(struct malloc_type *mtp)
328{
329 struct malloc_type_internal *mtip;
330 const char *desc;
331 size_t len;
332 u_int val;
333
334 mtip = &mtp->ks_mti;
335 desc = mtp->ks_shortdesc;
336 if (desc == NULL || (len = strlen(desc)) == 0)
337 val = 0;
338 else
339 val = desc[zone_offset % len];
340 mtip->mti_zone = (val % numzones);
341}
342
343static inline u_int
344mtp_get_subzone(struct malloc_type *mtp)
345{
346 struct malloc_type_internal *mtip;
347
348 mtip = &mtp->ks_mti;
349
350 KASSERT(mtip->mti_zone < numzones,
351 ("mti_zone %u out of range %d",
352 mtip->mti_zone, numzones));
353 return (mtip->mti_zone);
354}
355#elif MALLOC_DEBUG_MAXZONES == 0
356#error "MALLOC_DEBUG_MAXZONES must be positive."
357#else
358static void
359mtp_set_subzone(struct malloc_type *mtp)
360{
361 struct malloc_type_internal *mtip;
362
363 mtip = &mtp->ks_mti;
364 mtip->mti_zone = 0;
365}
366
367static inline u_int
368mtp_get_subzone(struct malloc_type *mtp)
369{
370
371 return (0);
372}
373#endif /* MALLOC_DEBUG_MAXZONES > 1 */
374
375/*
376 * An allocation has succeeded -- update malloc type statistics for the
377 * amount of bucket size. Occurs within a critical section so that the
378 * thread isn't preempted and doesn't migrate while updating per-PCU
379 * statistics.
380 */
381static void
382malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
383 int zindx)
384{
385 struct malloc_type_internal *mtip;
386 struct malloc_type_stats *mtsp;
387
388 critical_enter();
389 mtip = &mtp->ks_mti;
390 mtsp = zpcpu_get(mtip->mti_stats);
391 if (size > 0) {
392 mtsp->mts_memalloced += size;
393 mtsp->mts_numallocs++;
394 }
395 if (zindx != -1)
396 mtsp->mts_size |= 1 << zindx;
397
398#ifdef KDTRACE_HOOKS
399 if (__predict_false(dtrace_malloc_enabled)) {
400 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
401 if (probe_id != 0)
402 (dtrace_malloc_probe)(probe_id,
403 (uintptr_t) mtp, (uintptr_t) mtip,
404 (uintptr_t) mtsp, size, zindx);
405 }
406#endif
407
408 critical_exit();
409}
410
411void
412malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
413{
414
415 if (size > 0)
416 malloc_type_zone_allocated(mtp, size, -1);
417}
418
419/*
420 * A free operation has occurred -- update malloc type statistics for the
421 * amount of the bucket size. Occurs within a critical section so that the
422 * thread isn't preempted and doesn't migrate while updating per-CPU
423 * statistics.
424 */
425void
426malloc_type_freed(struct malloc_type *mtp, unsigned long size)
427{
428 struct malloc_type_internal *mtip;
429 struct malloc_type_stats *mtsp;
430
431 critical_enter();
432 mtip = &mtp->ks_mti;
433 mtsp = zpcpu_get(mtip->mti_stats);
434 mtsp->mts_memfreed += size;
435 mtsp->mts_numfrees++;
436
437#ifdef KDTRACE_HOOKS
438 if (__predict_false(dtrace_malloc_enabled)) {
439 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
440 if (probe_id != 0)
441 (dtrace_malloc_probe)(probe_id,
442 (uintptr_t) mtp, (uintptr_t) mtip,
443 (uintptr_t) mtsp, size, 0);
444 }
445#endif
446
447 critical_exit();
448}
449
450/*
451 * contigmalloc:
452 *
453 * Allocate a block of physically contiguous memory.
454 *
455 * If M_NOWAIT is set, this routine will not block and return NULL if
456 * the allocation fails.
457 */
458void *
459contigmalloc(unsigned long size, struct malloc_type *type, int flags,
460 vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
461 vm_paddr_t boundary)
462{
463 void *ret;
464
465 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
466 boundary, VM_MEMATTR_DEFAULT);
467 if (ret != NULL)
468 malloc_type_allocated(type, round_page(size));
469 return (ret);
470}
471
472void *
473contigmalloc_domainset(unsigned long size, struct malloc_type *type,
474 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
475 unsigned long alignment, vm_paddr_t boundary)
476{
477 void *ret;
478
479 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
480 alignment, boundary, VM_MEMATTR_DEFAULT);
481 if (ret != NULL)
482 malloc_type_allocated(type, round_page(size));
483 return (ret);
484}
485
486/*
487 * contigfree:
488 *
489 * Free a block of memory allocated by contigmalloc.
490 *
491 * This routine may not block.
492 */
493void
494contigfree(void *addr, unsigned long size, struct malloc_type *type)
495{
496
497 kmem_free((vm_offset_t)addr, size);
498 malloc_type_freed(type, round_page(size));
499}
500
501#ifdef MALLOC_DEBUG
502static int
503malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
504 int flags)
505{
506#ifdef INVARIANTS
507 int indx;
508
509 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
510 /*
511 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
512 */
513 indx = flags & (M_WAITOK | M_NOWAIT);
514 if (indx != M_NOWAIT && indx != M_WAITOK) {
515 static struct timeval lasterr;
516 static int curerr, once;
517 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
518 printf("Bad malloc flags: %x\n", indx);
520 flags |= M_WAITOK;
521 once++;
522 }
523 }
524#endif
525#ifdef MALLOC_MAKE_FAILURES
526 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
527 atomic_add_int(&malloc_nowait_count, 1);
528 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
529 atomic_add_int(&malloc_failure_count, 1);
530 *vap = NULL;
531 return (EJUSTRETURN);
532 }
533 }
534#endif
535 if (flags & M_WAITOK) {
536 KASSERT(curthread->td_intr_nesting_level == 0,
537 ("malloc(M_WAITOK) in interrupt context"));
538 if (__predict_false(!THREAD_CAN_SLEEP())) {
539#ifdef EPOCH_TRACE
540 epoch_trace_list(curthread);
541#endif
542 KASSERT(0,
543 ("malloc(M_WAITOK) with sleeping prohibited"));
544 }
545 }
546 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
547 ("malloc: called with spinlock or critical section held"));
548
549#ifdef DEBUG_MEMGUARD
550 if (memguard_cmp_mtp(mtp, *sizep)) {
551 *vap = memguard_alloc(*sizep, flags);
552 if (*vap != NULL)
553 return (EJUSTRETURN);
554 /* This is unfortunate but should not be fatal. */
555 }
556#endif
557
558#ifdef DEBUG_REDZONE
559 *sizep = redzone_size_ntor(*sizep);
560#endif
561
562 return (0);
563}
564#endif
565
566/*
567 * Handle large allocations and frees by using kmem_malloc directly.
568 */
569static inline bool
570malloc_large_slab(uma_slab_t slab)
571{
572 uintptr_t va;
573
574 va = (uintptr_t)slab;
575 return ((va & 1) != 0);
576}
577
578static inline size_t
579malloc_large_size(uma_slab_t slab)
580{
581 uintptr_t va;
582
583 va = (uintptr_t)slab;
584 return (va >> 1);
585}
586
587static caddr_t __noinline
588malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy,
590{
591 vm_offset_t kva;
592 caddr_t va;
593
594 size = roundup(size, PAGE_SIZE);
595 kva = kmem_malloc_domainset(policy, size, flags);
596 if (kva != 0) {
597 /* The low bit is unused for slab pointers. */
598 vsetzoneslab(kva, NULL, (void *)((size << 1) | 1));
599 uma_total_inc(size);
600 }
601 va = (caddr_t)kva;
602 malloc_type_allocated(mtp, va == NULL ? 0 : size);
603 if (__predict_false(va == NULL)) {
604 KASSERT((flags & M_WAITOK) == 0,
605 ("malloc(M_WAITOK) returned NULL"));
606 } else {
607#ifdef DEBUG_REDZONE
608 va = redzone_setup(va, osize);
609#endif
610 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
611 }
612 return (va);
613}
614
615static void
616free_large(void *addr, size_t size)
617{
618
619 kmem_free((vm_offset_t)addr, size);
620 uma_total_dec(size);
621}
622
623/*
624 * malloc:
625 *
626 * Allocate a block of memory.
627 *
628 * If M_NOWAIT is set, this routine will not block and return NULL if
629 * the allocation fails.
630 */
631void *
632(malloc)(size_t size, struct malloc_type *mtp, int flags)
633{
634 int indx;
635 caddr_t va;
636 uma_zone_t zone;
637#if defined(DEBUG_REDZONE) || defined(KASAN)
638 unsigned long osize = size;
639#endif
640
641 MPASS((flags & M_EXEC) == 0);
642
643#ifdef MALLOC_DEBUG
644 va = NULL;
645 if (malloc_dbg(&va, &size, mtp, flags) != 0)
646 return (va);
647#endif
648
649 if (__predict_false(size > kmem_zmax))
650 return (malloc_large(size, mtp, DOMAINSET_RR(), flags
652
653 if (size & KMEM_ZMASK)
654 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
655 indx = kmemsize[size >> KMEM_ZSHIFT];
656 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
657 va = uma_zalloc(zone, flags);
658 if (va != NULL) {
659 size = zone->uz_size;
660 if ((flags & M_ZERO) == 0) {
661 kmsan_mark(va, size, KMSAN_STATE_UNINIT);
662 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
663 }
664 }
665 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
666 if (__predict_false(va == NULL)) {
667 KASSERT((flags & M_WAITOK) == 0,
668 ("malloc(M_WAITOK) returned NULL"));
669 }
670#ifdef DEBUG_REDZONE
671 if (va != NULL)
672 va = redzone_setup(va, osize);
673#endif
674#ifdef KASAN
675 if (va != NULL)
676 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
677#endif
678 return ((void *) va);
679}
680
681static void *
682malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
683 int flags)
684{
685 uma_zone_t zone;
686 caddr_t va;
687 size_t size;
688 int indx;
689
690 size = *sizep;
691 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
692 ("malloc_domain: Called with bad flag / size combination."));
693 if (size & KMEM_ZMASK)
694 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
695 indx = kmemsize[size >> KMEM_ZSHIFT];
696 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
697 va = uma_zalloc_domain(zone, NULL, domain, flags);
698 if (va != NULL)
699 *sizep = zone->uz_size;
700 *indxp = indx;
701 return ((void *)va);
702}
703
704void *
705malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
706 int flags)
707{
708 struct vm_domainset_iter di;
709 caddr_t va;
710 int domain;
711 int indx;
712#if defined(KASAN) || defined(DEBUG_REDZONE)
713 unsigned long osize = size;
714#endif
715
716 MPASS((flags & M_EXEC) == 0);
717
718#ifdef MALLOC_DEBUG
719 va = NULL;
720 if (malloc_dbg(&va, &size, mtp, flags) != 0)
721 return (va);
722#endif
723
724 if (__predict_false(size > kmem_zmax))
725 return (malloc_large(size, mtp, DOMAINSET_RR(), flags
727
728 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
729 do {
730 va = malloc_domain(&size, &indx, mtp, domain, flags);
731 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
732 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
733 if (__predict_false(va == NULL)) {
734 KASSERT((flags & M_WAITOK) == 0,
735 ("malloc(M_WAITOK) returned NULL"));
736 }
737#ifdef DEBUG_REDZONE
738 if (va != NULL)
739 va = redzone_setup(va, osize);
740#endif
741#ifdef KASAN
742 if (va != NULL)
743 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
744#endif
745#ifdef KMSAN
746 if ((flags & M_ZERO) == 0) {
747 kmsan_mark(va, size, KMSAN_STATE_UNINIT);
748 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
749 }
750#endif
751 return (va);
752}
753
754/*
755 * Allocate an executable area.
756 */
757void *
758malloc_exec(size_t size, struct malloc_type *mtp, int flags)
759{
760
761 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
762}
763
764void *
765malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
766 int flags)
767{
768#if defined(DEBUG_REDZONE) || defined(KASAN)
769 unsigned long osize = size;
770#endif
771#ifdef MALLOC_DEBUG
772 caddr_t va;
773#endif
774
775 flags |= M_EXEC;
776
777#ifdef MALLOC_DEBUG
778 va = NULL;
779 if (malloc_dbg(&va, &size, mtp, flags) != 0)
780 return (va);
781#endif
782
783 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG));
784}
785
786void *
787malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags)
788{
789 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(),
790 flags));
791}
792
793void *
794malloc_domainset_aligned(size_t size, size_t align,
795 struct malloc_type *mtp, struct domainset *ds, int flags)
796{
797 void *res;
798 size_t asize;
799
800 KASSERT(powerof2(align),
801 ("malloc_domainset_aligned: wrong align %#zx size %#zx",
802 align, size));
803 KASSERT(align <= PAGE_SIZE,
804 ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
805 align, size));
806
807 /*
808 * Round the allocation size up to the next power of 2,
809 * because we can only guarantee alignment for
810 * power-of-2-sized allocations. Further increase the
811 * allocation size to align if the rounded size is less than
812 * align, since malloc zones provide alignment equal to their
813 * size.
814 */
815 if (size == 0)
816 size = 1;
817 asize = size <= align ? align : 1UL << flsl(size - 1);
818
819 res = malloc_domainset(asize, mtp, ds, flags);
820 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
821 ("malloc_domainset_aligned: result not aligned %p size %#zx "
822 "allocsize %#zx align %#zx", res, size, asize, align));
823 return (res);
824}
825
826void *
827mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
828{
829
830 if (WOULD_OVERFLOW(nmemb, size))
831 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
832
833 return (malloc(size * nmemb, type, flags));
834}
835
836void *
837mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type,
838 struct domainset *ds, int flags)
839{
840
841 if (WOULD_OVERFLOW(nmemb, size))
842 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size);
843
844 return (malloc_domainset(size * nmemb, type, ds, flags));
845}
846
847#if defined(INVARIANTS) && !defined(KASAN)
848static void
849free_save_type(void *addr, struct malloc_type *mtp, u_long size)
850{
851 struct malloc_type **mtpp = addr;
852
853 /*
854 * Cache a pointer to the malloc_type that most recently freed
855 * this memory here. This way we know who is most likely to
856 * have stepped on it later.
857 *
858 * This code assumes that size is a multiple of 8 bytes for
859 * 64 bit machines
860 */
861 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
862 mtpp += (size - sizeof(struct malloc_type *)) /
863 sizeof(struct malloc_type *);
864 *mtpp = mtp;
865}
866#endif
867
868#ifdef MALLOC_DEBUG
869static int
870free_dbg(void **addrp, struct malloc_type *mtp)
871{
872 void *addr;
873
874 addr = *addrp;
875 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
876 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
877 ("free: called with spinlock or critical section held"));
878
879 /* free(NULL, ...) does nothing */
880 if (addr == NULL)
881 return (EJUSTRETURN);
882
883#ifdef DEBUG_MEMGUARD
884 if (is_memguard_addr(addr)) {
885 memguard_free(addr);
886 return (EJUSTRETURN);
887 }
888#endif
889
890#ifdef DEBUG_REDZONE
891 redzone_check(addr);
892 *addrp = redzone_addr_ntor(addr);
893#endif
894
895 return (0);
896}
897#endif
898
899/*
900 * free:
901 *
902 * Free a block of memory allocated by malloc.
903 *
904 * This routine may not block.
905 */
906void
907free(void *addr, struct malloc_type *mtp)
908{
909 uma_zone_t zone;
910 uma_slab_t slab;
911 u_long size;
912
913#ifdef MALLOC_DEBUG
914 if (free_dbg(&addr, mtp) != 0)
915 return;
916#endif
917 /* free(NULL, ...) does nothing */
918 if (addr == NULL)
919 return;
920
921 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
922 if (slab == NULL)
923 panic("free: address %p(%p) has not been allocated.\n",
924 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
925
926 if (__predict_true(!malloc_large_slab(slab))) {
927 size = zone->uz_size;
928#if defined(INVARIANTS) && !defined(KASAN)
929 free_save_type(addr, mtp, size);
930#endif
931 uma_zfree_arg(zone, addr, slab);
932 } else {
933 size = malloc_large_size(slab);
934 free_large(addr, size);
935 }
936 malloc_type_freed(mtp, size);
937}
938
939/*
940 * zfree:
941 *
942 * Zero then free a block of memory allocated by malloc.
943 *
944 * This routine may not block.
945 */
946void
947zfree(void *addr, struct malloc_type *mtp)
948{
949 uma_zone_t zone;
950 uma_slab_t slab;
951 u_long size;
952
953#ifdef MALLOC_DEBUG
954 if (free_dbg(&addr, mtp) != 0)
955 return;
956#endif
957 /* free(NULL, ...) does nothing */
958 if (addr == NULL)
959 return;
960
961 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
962 if (slab == NULL)
963 panic("free: address %p(%p) has not been allocated.\n",
964 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
965
966 if (__predict_true(!malloc_large_slab(slab))) {
967 size = zone->uz_size;
968#if defined(INVARIANTS) && !defined(KASAN)
969 free_save_type(addr, mtp, size);
970#endif
971 kasan_mark(addr, size, size, 0);
972 explicit_bzero(addr, size);
973 uma_zfree_arg(zone, addr, slab);
974 } else {
975 size = malloc_large_size(slab);
976 kasan_mark(addr, size, size, 0);
977 explicit_bzero(addr, size);
978 free_large(addr, size);
979 }
980 malloc_type_freed(mtp, size);
981}
982
983/*
984 * realloc: change the size of a memory block
985 */
986void *
987realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
988{
989 uma_zone_t zone;
990 uma_slab_t slab;
991 unsigned long alloc;
992 void *newaddr;
993
994 KASSERT(mtp->ks_version == M_VERSION,
995 ("realloc: bad malloc type version"));
996 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
997 ("realloc: called with spinlock or critical section held"));
998
999 /* realloc(NULL, ...) is equivalent to malloc(...) */
1000 if (addr == NULL)
1001 return (malloc(size, mtp, flags));
1002
1003 /*
1004 * XXX: Should report free of old memory and alloc of new memory to
1005 * per-CPU stats.
1006 */
1007
1008#ifdef DEBUG_MEMGUARD
1009 if (is_memguard_addr(addr))
1010 return (memguard_realloc(addr, size, mtp, flags));
1011#endif
1012
1013#ifdef DEBUG_REDZONE
1014 slab = NULL;
1015 zone = NULL;
1016 alloc = redzone_get_size(addr);
1017#else
1018 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
1019
1020 /* Sanity check */
1021 KASSERT(slab != NULL,
1022 ("realloc: address %p out of range", (void *)addr));
1023
1024 /* Get the size of the original block */
1025 if (!malloc_large_slab(slab))
1026 alloc = zone->uz_size;
1027 else
1028 alloc = malloc_large_size(slab);
1029
1030 /* Reuse the original block if appropriate */
1031 if (size <= alloc &&
1032 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) {
1033 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE);
1034 return (addr);
1035 }
1036#endif /* !DEBUG_REDZONE */
1037
1038 /* Allocate a new, bigger (or smaller) block */
1039 if ((newaddr = malloc(size, mtp, flags)) == NULL)
1040 return (NULL);
1041
1042 /*
1043 * Copy over original contents. For KASAN, the redzone must be marked
1044 * valid before performing the copy.
1045 */
1046 kasan_mark(addr, alloc, alloc, 0);
1047 bcopy(addr, newaddr, min(size, alloc));
1048 free(addr, mtp);
1049 return (newaddr);
1050}
1051
1052/*
1053 * reallocf: same as realloc() but free memory on failure.
1054 */
1055void *
1056reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
1057{
1058 void *mem;
1059
1060 if ((mem = realloc(addr, size, mtp, flags)) == NULL)
1061 free(addr, mtp);
1062 return (mem);
1063}
1064
1065/*
1066 * malloc_size: returns the number of bytes allocated for a request of the
1067 * specified size
1068 */
1069size_t
1070malloc_size(size_t size)
1071{
1072 int indx;
1073
1074 if (size > kmem_zmax)
1075 return (0);
1076 if (size & KMEM_ZMASK)
1077 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
1078 indx = kmemsize[size >> KMEM_ZSHIFT];
1079 return (kmemzones[indx].kz_size);
1080}
1081
1082/*
1083 * malloc_usable_size: returns the usable size of the allocation.
1084 */
1085size_t
1087{
1088#ifndef DEBUG_REDZONE
1089 uma_zone_t zone;
1090 uma_slab_t slab;
1091#endif
1092 u_long size;
1093
1094 if (addr == NULL)
1095 return (0);
1096
1097#ifdef DEBUG_MEMGUARD
1098 if (is_memguard_addr(__DECONST(void *, addr)))
1099 return (memguard_get_req_size(addr));
1100#endif
1101
1102#ifdef DEBUG_REDZONE
1103 size = redzone_get_size(__DECONST(void *, addr));
1104#else
1105 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
1106 if (slab == NULL)
1107 panic("malloc_usable_size: address %p(%p) is not allocated.\n",
1108 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
1109
1110 if (!malloc_large_slab(slab))
1111 size = zone->uz_size;
1112 else
1113 size = malloc_large_size(slab);
1114#endif
1115
1116 /*
1117 * Unmark the redzone to avoid reports from consumers who are
1118 * (presumably) about to use the full allocation size.
1119 */
1120 kasan_mark(addr, size, size, 0);
1121
1122 return (size);
1123}
1124
1125CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
1126
1127/*
1128 * Initialize the kernel memory (kmem) arena.
1129 */
1130void
1132{
1133 u_long mem_size;
1134 u_long tmp;
1135
1136#ifdef VM_KMEM_SIZE
1137 if (vm_kmem_size == 0)
1138 vm_kmem_size = VM_KMEM_SIZE;
1139#endif
1140#ifdef VM_KMEM_SIZE_MIN
1141 if (vm_kmem_size_min == 0)
1142 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
1143#endif
1144#ifdef VM_KMEM_SIZE_MAX
1145 if (vm_kmem_size_max == 0)
1146 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
1147#endif
1148 /*
1149 * Calculate the amount of kernel virtual address (KVA) space that is
1150 * preallocated to the kmem arena. In order to support a wide range
1151 * of machines, it is a function of the physical memory size,
1152 * specifically,
1153 *
1154 * min(max(physical memory size / VM_KMEM_SIZE_SCALE,
1155 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
1156 *
1157 * Every architecture must define an integral value for
1158 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN
1159 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
1160 * ceiling on this preallocation, are optional. Typically,
1161 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
1162 * a given architecture.
1163 */
1164 mem_size = vm_cnt.v_page_count;
1165 if (mem_size <= 32768) /* delphij XXX 128MB */
1166 kmem_zmax = PAGE_SIZE;
1167
1168 if (vm_kmem_size_scale < 1)
1169 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
1170
1171 /*
1172 * Check if we should use defaults for the "vm_kmem_size"
1173 * variable:
1174 */
1175 if (vm_kmem_size == 0) {
1176 vm_kmem_size = mem_size / vm_kmem_size_scale;
1177 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
1178 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
1183 }
1184 if (vm_kmem_size == 0)
1185 panic("Tune VM_KMEM_SIZE_* for the platform");
1186
1187 /*
1188 * The amount of KVA space that is preallocated to the
1189 * kmem arena can be set statically at compile-time or manually
1190 * through the kernel environment. However, it is still limited to
1191 * twice the physical memory size, which has been sufficient to handle
1192 * the most severe cases of external fragmentation in the kmem arena.
1193 */
1194 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
1195 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
1196
1197 vm_kmem_size = round_page(vm_kmem_size);
1198
1199 /*
1200 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is
1201 * shadowed. Account for this when setting the UMA limit.
1202 */
1203#if defined(KASAN)
1204 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) /
1205 (KASAN_SHADOW_SCALE + 1);
1206#elif defined(KMSAN)
1207 vm_kmem_size /= 3;
1208#endif
1209
1210#ifdef DEBUG_MEMGUARD
1211 tmp = memguard_fudge(vm_kmem_size, kernel_map);
1212#else
1213 tmp = vm_kmem_size;
1214#endif
1215 uma_set_limit(tmp);
1216
1217#ifdef DEBUG_MEMGUARD
1218 /*
1219 * Initialize MemGuard if support compiled in. MemGuard is a
1220 * replacement allocator used for detecting tamper-after-free
1221 * scenarios as they occur. It is only used for debugging.
1222 */
1223 memguard_init(kernel_arena);
1224#endif
1225}
1226
1227/*
1228 * Initialize the kernel memory allocator
1229 */
1230/* ARGSUSED*/
1231static void
1233{
1234 int i;
1235 uint8_t indx;
1236
1237 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
1238
1239 kmeminit();
1240
1241 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
1243
1244 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
1245 int size = kmemzones[indx].kz_size;
1246 const char *name = kmemzones[indx].kz_name;
1247 size_t align;
1248 int subzone;
1249
1250 align = UMA_ALIGN_PTR;
1251 if (powerof2(size) && size > sizeof(void *))
1252 align = MIN(size, PAGE_SIZE) - 1;
1253 for (subzone = 0; subzone < numzones; subzone++) {
1254 kmemzones[indx].kz_zone[subzone] =
1255 uma_zcreate(name, size,
1256#if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
1257 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
1258#else
1259 NULL, NULL, NULL, NULL,
1260#endif
1261 align, UMA_ZONE_MALLOC);
1262 }
1263 for (;i <= size; i+= KMEM_ZBASE)
1264 kmemsize[i >> KMEM_ZSHIFT] = indx;
1265 }
1266}
1267SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
1268
1269void
1271{
1272 struct malloc_type_internal *mtip;
1273 struct malloc_type *mtp;
1274
1275 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
1276
1277 mtp = data;
1278 if (mtp->ks_version != M_VERSION)
1279 panic("malloc_init: type %s with unsupported version %lu",
1280 mtp->ks_shortdesc, mtp->ks_version);
1281
1282 mtip = &mtp->ks_mti;
1283 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
1284 mtp_set_subzone(mtp);
1285
1286 mtx_lock(&malloc_mtx);
1287 mtp->ks_next = kmemstatistics;
1288 kmemstatistics = mtp;
1289 kmemcount++;
1290 mtx_unlock(&malloc_mtx);
1291}
1292
1293void
1295{
1296 struct malloc_type_internal *mtip;
1297 struct malloc_type_stats *mtsp;
1298 struct malloc_type *mtp, *temp;
1299 long temp_allocs, temp_bytes;
1300 int i;
1301
1302 mtp = data;
1303 KASSERT(mtp->ks_version == M_VERSION,
1304 ("malloc_uninit: bad malloc type version"));
1305
1306 mtx_lock(&malloc_mtx);
1307 mtip = &mtp->ks_mti;
1308 if (mtp != kmemstatistics) {
1309 for (temp = kmemstatistics; temp != NULL;
1310 temp = temp->ks_next) {
1311 if (temp->ks_next == mtp) {
1312 temp->ks_next = mtp->ks_next;
1313 break;
1314 }
1315 }
1316 KASSERT(temp,
1317 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
1318 } else
1319 kmemstatistics = mtp->ks_next;
1320 kmemcount--;
1321 mtx_unlock(&malloc_mtx);
1322
1323 /*
1324 * Look for memory leaks.
1325 */
1326 temp_allocs = temp_bytes = 0;
1327 for (i = 0; i <= mp_maxid; i++) {
1328 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1329 temp_allocs += mtsp->mts_numallocs;
1330 temp_allocs -= mtsp->mts_numfrees;
1331 temp_bytes += mtsp->mts_memalloced;
1332 temp_bytes -= mtsp->mts_memfreed;
1333 }
1334 if (temp_allocs > 0 || temp_bytes > 0) {
1335 printf("Warning: memory type %s leaked memory on destroy "
1336 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
1337 temp_allocs, temp_bytes);
1338 }
1339
1340 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
1341}
1342
1343struct malloc_type *
1344malloc_desc2type(const char *desc)
1345{
1346 struct malloc_type *mtp;
1347
1348 mtx_assert(&malloc_mtx, MA_OWNED);
1349 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1350 if (strcmp(mtp->ks_shortdesc, desc) == 0)
1351 return (mtp);
1352 }
1353 return (NULL);
1354}
1355
1356static int
1357sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
1358{
1359 struct malloc_type_stream_header mtsh;
1360 struct malloc_type_internal *mtip;
1361 struct malloc_type_stats *mtsp, zeromts;
1362 struct malloc_type_header mth;
1363 struct malloc_type *mtp;
1364 int error, i;
1365 struct sbuf sbuf;
1366
1367 error = sysctl_wire_old_buffer(req, 0);
1368 if (error != 0)
1369 return (error);
1370 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1371 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
1372 mtx_lock(&malloc_mtx);
1373
1374 bzero(&zeromts, sizeof(zeromts));
1375
1376 /*
1377 * Insert stream header.
1378 */
1379 bzero(&mtsh, sizeof(mtsh));
1380 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
1381 mtsh.mtsh_maxcpus = MAXCPU;
1382 mtsh.mtsh_count = kmemcount;
1383 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
1384
1385 /*
1386 * Insert alternating sequence of type headers and type statistics.
1387 */
1388 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1389 mtip = &mtp->ks_mti;
1390
1391 /*
1392 * Insert type header.
1393 */
1394 bzero(&mth, sizeof(mth));
1395 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
1396 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
1397
1398 /*
1399 * Insert type statistics for each CPU.
1400 */
1401 for (i = 0; i <= mp_maxid; i++) {
1402 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1403 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
1404 }
1405 /*
1406 * Fill in the missing CPUs.
1407 */
1408 for (; i < MAXCPU; i++) {
1409 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
1410 }
1411 }
1412 mtx_unlock(&malloc_mtx);
1413 error = sbuf_finish(&sbuf);
1414 sbuf_delete(&sbuf);
1415 return (error);
1416}
1417
1418SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
1419 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
1420 sysctl_kern_malloc_stats, "s,malloc_type_ustats",
1421 "Return malloc types");
1422
1423SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
1424 "Count of kernel malloc types");
1425
1426void
1427malloc_type_list(malloc_type_list_func_t *func, void *arg)
1428{
1429 struct malloc_type *mtp, **bufmtp;
1430 int count, i;
1431 size_t buflen;
1432
1433 mtx_lock(&malloc_mtx);
1434restart:
1435 mtx_assert(&malloc_mtx, MA_OWNED);
1436 count = kmemcount;
1437 mtx_unlock(&malloc_mtx);
1438
1439 buflen = sizeof(struct malloc_type *) * count;
1440 bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
1441
1442 mtx_lock(&malloc_mtx);
1443
1444 if (count < kmemcount) {
1445 free(bufmtp, M_TEMP);
1446 goto restart;
1447 }
1448
1449 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1450 bufmtp[i] = mtp;
1451
1452 mtx_unlock(&malloc_mtx);
1453
1454 for (i = 0; i < count; i++)
1455 (func)(bufmtp[i], arg);
1456
1457 free(bufmtp, M_TEMP);
1458}
1459
1460#ifdef DDB
1461static int64_t
1462get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
1463 uint64_t *inuse)
1464{
1465 const struct malloc_type_stats *mtsp;
1466 uint64_t frees, alloced, freed;
1467 int i;
1468
1469 *allocs = 0;
1470 frees = 0;
1471 alloced = 0;
1472 freed = 0;
1473 for (i = 0; i <= mp_maxid; i++) {
1474 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1475
1476 *allocs += mtsp->mts_numallocs;
1477 frees += mtsp->mts_numfrees;
1478 alloced += mtsp->mts_memalloced;
1479 freed += mtsp->mts_memfreed;
1480 }
1481 *inuse = *allocs - frees;
1482 return (alloced - freed);
1483}
1484
1485DB_SHOW_COMMAND(malloc, db_show_malloc)
1486{
1487 const char *fmt_hdr, *fmt_entry;
1488 struct malloc_type *mtp;
1489 uint64_t allocs, inuse;
1490 int64_t size;
1491 /* variables for sorting */
1492 struct malloc_type *last_mtype, *cur_mtype;
1493 int64_t cur_size, last_size;
1494 int ties;
1495
1496 if (modif[0] == 'i') {
1497 fmt_hdr = "%s,%s,%s,%s\n";
1498 fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
1499 } else {
1500 fmt_hdr = "%18s %12s %12s %12s\n";
1501 fmt_entry = "%18s %12ju %12jdK %12ju\n";
1502 }
1503
1504 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
1505
1506 /* Select sort, largest size first. */
1507 last_mtype = NULL;
1508 last_size = INT64_MAX;
1509 for (;;) {
1510 cur_mtype = NULL;
1511 cur_size = -1;
1512 ties = 0;
1513
1514 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1515 /*
1516 * In the case of size ties, print out mtypes
1517 * in the order they are encountered. That is,
1518 * when we encounter the most recently output
1519 * mtype, we have already printed all preceding
1520 * ties, and we must print all following ties.
1521 */
1522 if (mtp == last_mtype) {
1523 ties = 1;
1524 continue;
1525 }
1526 size = get_malloc_stats(&mtp->ks_mti, &allocs,
1527 &inuse);
1528 if (size > cur_size && size < last_size + ties) {
1529 cur_size = size;
1530 cur_mtype = mtp;
1531 }
1532 }
1533 if (cur_mtype == NULL)
1534 break;
1535
1536 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
1537 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
1538 howmany(size, 1024), allocs);
1539
1540 if (db_pager_quit)
1541 break;
1542
1543 last_mtype = cur_mtype;
1544 last_size = cur_size;
1545 }
1546}
1547
1548#if MALLOC_DEBUG_MAXZONES > 1
1549DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1550{
1551 struct malloc_type_internal *mtip;
1552 struct malloc_type *mtp;
1553 u_int subzone;
1554
1555 if (!have_addr) {
1556 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1557 return;
1558 }
1559 mtp = (void *)addr;
1560 if (mtp->ks_version != M_VERSION) {
1561 db_printf("Version %lx does not match expected %x\n",
1562 mtp->ks_version, M_VERSION);
1563 return;
1564 }
1565
1566 mtip = &mtp->ks_mti;
1567 subzone = mtip->mti_zone;
1568
1569 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1570 mtip = &mtp->ks_mti;
1571 if (mtip->mti_zone != subzone)
1572 continue;
1573 db_printf("%s\n", mtp->ks_shortdesc);
1574 if (db_pager_quit)
1575 break;
1576 }
1577}
1578#endif /* MALLOC_DEBUG_MAXZONES > 1 */
1579#endif /* DDB */
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
TUNABLE_INT("kern.eventtimer.periodic", &want_periodic)
int kz_size
Definition: kern_malloc.c:167
static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:258
#define KMEM_ZMASK
Definition: kern_malloc.c:145
static void free_large(void *addr, size_t size)
Definition: kern_malloc.c:616
static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:282
#define DEBUG_REDZONE_ARG
Definition: kern_malloc.c:120
static bool malloc_large_slab(uma_slab_t slab)
Definition: kern_malloc.c:570
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
#define KMEM_ZBASE
Definition: kern_malloc.c:144
static u_long vm_kmem_size_min
Definition: kern_malloc.c:196
void * contigmalloc(unsigned long size, struct malloc_type *type, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary)
Definition: kern_malloc.c:459
static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD|CTLFLAG_MPSAFE, 0, "Malloc information")
#define DEBUG_REDZONE_ARG_DEF
Definition: kern_malloc.c:119
#define REALLOC_FRACTION
Definition: kern_malloc.c:130
const char * kz_name
Definition: kern_malloc.c:168
static uint8_t kmemsize[KMEM_ZSIZE+1]
Definition: kern_malloc.c:149
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, "Size of kernel memory")
void * malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, int flags)
Definition: kern_malloc.c:765
MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches")
void contigfree(void *addr, unsigned long size, struct malloc_type *type)
Definition: kern_malloc.c:494
uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]
Definition: kern_malloc.c:169
#define KMEM_ZSIZE
Definition: kern_malloc.c:148
struct malloc_type * malloc_desc2type(const char *desc)
Definition: kern_malloc.c:1344
void * contigmalloc_domainset(unsigned long size, struct malloc_type *type, struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary)
Definition: kern_malloc.c:473
void malloc_type_list(malloc_type_list_func_t *func, void *arg)
Definition: kern_malloc.c:1427
void * reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:1056
static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:267
static struct malloc_type * kmemstatistics
Definition: kern_malloc.c:140
static u_int mtp_get_subzone(struct malloc_type *mtp)
Definition: kern_malloc.c:368
static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:1357
void * malloc_domainset_aligned(size_t size, size_t align, struct malloc_type *mtp, struct domainset *ds, int flags)
Definition: kern_malloc.c:794
__FBSDID("$FreeBSD$")
void zfree(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:947
size_t malloc_usable_size(const void *addr)
Definition: kern_malloc.c:1086
static u_long vm_kmem_size_max
Definition: kern_malloc.c:200
static void mallocinit(void *dummy)
Definition: kern_malloc.c:1232
void * malloc_exec(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:758
void * malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, int flags)
Definition: kern_malloc.c:705
void kmeminit(void)
Definition: kern_malloc.c:1131
void * mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
Definition: kern_malloc.c:827
size_t malloc_size(size_t size)
Definition: kern_malloc.c:1070
u_long vm_kmem_size
Definition: kern_malloc.c:188
static void malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, int zindx)
Definition: kern_malloc.c:382
void malloc_uninit(void *data)
Definition: kern_malloc.c:1294
static int kmemcount
Definition: kern_malloc.c:141
#define MALLOC_DEBUG_MAXZONES
Definition: kern_malloc.c:152
static size_t malloc_large_size(uma_slab_t slab)
Definition: kern_malloc.c:579
static u_int vm_malloc_zone_count
Definition: kern_malloc.c:221
SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL)
struct mtx malloc_mtx
Definition: kern_malloc.c:234
static void mtp_set_subzone(struct malloc_type *mtp)
Definition: kern_malloc.c:359
struct @3 kmemzones[]
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, CTLFLAG_RD|CTLTYPE_ULONG|CTLFLAG_MPSAFE, NULL, 0, sysctl_kmem_map_size, "LU", "Current kmem allocation size")
static void * malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, int flags)
Definition: kern_malloc.c:682
void * realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:987
static int numzones
Definition: kern_malloc.c:154
void malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
Definition: kern_malloc.c:412
#define KMEM_ZSHIFT
Definition: kern_malloc.c:143
static u_int vm_kmem_size_scale
Definition: kern_malloc.c:204
static u_long kmem_zmax
Definition: kern_malloc.c:192
static caddr_t __noinline malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, int flags DEBUG_REDZONE_ARG_DEF)
Definition: kern_malloc.c:588
void malloc_init(void *data)
Definition: kern_malloc.c:1270
void * mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, struct domainset *ds, int flags)
Definition: kern_malloc.c:837
#define KMEM_ZMAX
Definition: kern_malloc.c:147
void * malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags)
Definition: kern_malloc.c:787
void malloc_type_freed(struct malloc_type *mtp, unsigned long size)
Definition: kern_malloc.c:426
CTASSERT(VM_KMEM_SIZE_SCALE >=1)
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, "Scale factor for kernel memory size")
SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, "Count of kernel malloc types")
void panic(const char *fmt,...)
int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len)
Definition: kern_sysctl.c:2136
int sysctl_handle_long(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1700
struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req)
Definition: kern_sysctl.c:2503
int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
Definition: kern_time.c:1118
struct iommu_domain ** domain
Definition: msi_if.m:96
uint32_t * data
Definition: msi_if.m:90
uint64_t * addr
Definition: msi_if.m:89
struct resource * res
Definition: pic_if.m:98
static bool kasan_enabled __read_mostly
Definition: subr_asan.c:95
void kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code)
Definition: subr_asan.c:248
void kdb_backtrace(void)
Definition: subr_kdb.c:429
void kmsan_orig(const void *addr, size_t size, int type, uintptr_t pc)
Definition: subr_msan.c:538
void kmsan_mark(const void *addr, size_t size, uint8_t c)
Definition: subr_msan.c:547
uma_zone_t pcpu_zone_64
Definition: subr_pcpu.c:140
int printf(const char *fmt,...)
Definition: subr_prf.c:397
void sbuf_clear_flags(struct sbuf *s, int flags)
Definition: subr_sbuf.c:299
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:833
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:898
int sbuf_bcat(struct sbuf *s, const void *buf, size_t len)
Definition: subr_sbuf.c:509
u_int mp_maxid
Definition: subr_smp.c:77
uint16_t flags
Definition: subr_stats.c:2
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy