FreeBSD kernel kern code
kern_time.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_ktrace.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/limits.h>
42#include <sys/clock.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/sysproto.h>
46#include <sys/resourcevar.h>
47#include <sys/signalvar.h>
48#include <sys/kernel.h>
49#include <sys/sleepqueue.h>
50#include <sys/syscallsubr.h>
51#include <sys/sysctl.h>
52#include <sys/sysent.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/posix4.h>
56#include <sys/time.h>
57#include <sys/timers.h>
58#include <sys/timetc.h>
59#include <sys/vnode.h>
60#ifdef KTRACE
61#include <sys/ktrace.h>
62#endif
63
64#include <vm/vm.h>
65#include <vm/vm_extern.h>
66
67#define MAX_CLOCKS (CLOCK_MONOTONIC+1)
68#define CPUCLOCK_BIT 0x80000000
69#define CPUCLOCK_PROCESS_BIT 0x40000000
70#define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
71#define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid))
72#define MAKE_PROCESS_CPUCLOCK(pid) \
73 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
74
75#define NS_PER_SEC 1000000000
76
77static struct kclock posix_clocks[MAX_CLOCKS];
78static uma_zone_t itimer_zone = NULL;
79
80/*
81 * Time of day and interval timer support.
82 *
83 * These routines provide the kernel entry points to get and set
84 * the time-of-day and per-process interval timers. Subroutines
85 * here provide support for adding and subtracting timeval structures
86 * and decrementing interval timers, optionally reloading the interval
87 * timers when they expire.
88 */
89
90static int settime(struct thread *, struct timeval *);
91static void timevalfix(struct timeval *);
92static int user_clock_nanosleep(struct thread *td, clockid_t clock_id,
93 int flags, const struct timespec *ua_rqtp,
94 struct timespec *ua_rmtp);
95
96static void itimer_start(void);
97static int itimer_init(void *, int, int);
98static void itimer_fini(void *, int);
99static void itimer_enter(struct itimer *);
100static void itimer_leave(struct itimer *);
101static struct itimer *itimer_find(struct proc *, int);
102static void itimers_alloc(struct proc *);
103static int realtimer_create(struct itimer *);
104static int realtimer_gettime(struct itimer *, struct itimerspec *);
105static int realtimer_settime(struct itimer *, int,
106 struct itimerspec *, struct itimerspec *);
107static int realtimer_delete(struct itimer *);
108static void realtimer_clocktime(clockid_t, struct timespec *);
109static void realtimer_expire(void *);
110static void realtimer_expire_l(struct itimer *it, bool proc_locked);
111
112static int register_posix_clock(int, const struct kclock *);
113static void itimer_fire(struct itimer *it);
114static int itimespecfix(struct timespec *ts);
115
116#define CLOCK_CALL(clock, call, arglist) \
117 ((*posix_clocks[clock].call) arglist)
118
119SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
120
121static int
122settime(struct thread *td, struct timeval *tv)
123{
124 struct timeval delta, tv1, tv2;
125 static struct timeval maxtime, laststep;
126 struct timespec ts;
127
128 microtime(&tv1);
129 delta = *tv;
130 timevalsub(&delta, &tv1);
131
132 /*
133 * If the system is secure, we do not allow the time to be
134 * set to a value earlier than 1 second less than the highest
135 * time we have yet seen. The worst a miscreant can do in
136 * this circumstance is "freeze" time. He couldn't go
137 * back to the past.
138 *
139 * We similarly do not allow the clock to be stepped more
140 * than one second, nor more than once per second. This allows
141 * a miscreant to make the clock march double-time, but no worse.
142 */
143 if (securelevel_gt(td->td_ucred, 1) != 0) {
144 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
145 /*
146 * Update maxtime to latest time we've seen.
147 */
148 if (tv1.tv_sec > maxtime.tv_sec)
149 maxtime = tv1;
150 tv2 = *tv;
151 timevalsub(&tv2, &maxtime);
152 if (tv2.tv_sec < -1) {
153 tv->tv_sec = maxtime.tv_sec - 1;
154 printf("Time adjustment clamped to -1 second\n");
155 }
156 } else {
157 if (tv1.tv_sec == laststep.tv_sec)
158 return (EPERM);
159 if (delta.tv_sec > 1) {
160 tv->tv_sec = tv1.tv_sec + 1;
161 printf("Time adjustment clamped to +1 second\n");
162 }
163 laststep = *tv;
164 }
165 }
166
167 ts.tv_sec = tv->tv_sec;
168 ts.tv_nsec = tv->tv_usec * 1000;
169 tc_setclock(&ts);
170 resettodr();
171 return (0);
172}
173
174#ifndef _SYS_SYSPROTO_H_
176 id_t id;
177 int which,
178 clockid_t *clock_id;
179};
180#endif
181/* ARGSUSED */
182int
184{
185 clockid_t clk_id;
186 int error;
187
188 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
189 if (error == 0)
190 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
191 return (error);
192}
193
194int
195kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
196 clockid_t *clk_id)
197{
198 struct proc *p;
199 pid_t pid;
200 lwpid_t tid;
201 int error;
202
203 switch (which) {
204 case CPUCLOCK_WHICH_PID:
205 if (id != 0) {
206 error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
207 if (error != 0)
208 return (error);
209 PROC_UNLOCK(p);
210 pid = id;
211 } else {
212 pid = td->td_proc->p_pid;
213 }
214 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
215 return (0);
216 case CPUCLOCK_WHICH_TID:
217 tid = id == 0 ? td->td_tid : id;
218 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
219 return (0);
220 default:
221 return (EINVAL);
222 }
223}
224
225#ifndef _SYS_SYSPROTO_H_
227 clockid_t clock_id;
228 struct timespec *tp;
229};
230#endif
231/* ARGSUSED */
232int
233sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
234{
235 struct timespec ats;
236 int error;
237
238 error = kern_clock_gettime(td, uap->clock_id, &ats);
239 if (error == 0)
240 error = copyout(&ats, uap->tp, sizeof(ats));
241
242 return (error);
243}
244
245static inline void
246cputick2timespec(uint64_t runtime, struct timespec *ats)
247{
248 runtime = cputick2usec(runtime);
249 ats->tv_sec = runtime / 1000000;
250 ats->tv_nsec = runtime % 1000000 * 1000;
251}
252
253void
254kern_thread_cputime(struct thread *targettd, struct timespec *ats)
255{
256 uint64_t runtime, curtime, switchtime;
257
258 if (targettd == NULL) { /* current thread */
259 spinlock_enter();
260 switchtime = PCPU_GET(switchtime);
261 curtime = cpu_ticks();
262 runtime = curthread->td_runtime;
263 spinlock_exit();
264 runtime += curtime - switchtime;
265 } else {
266 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
267 thread_lock(targettd);
268 runtime = targettd->td_runtime;
269 thread_unlock(targettd);
270 }
271 cputick2timespec(runtime, ats);
272}
273
274void
275kern_process_cputime(struct proc *targetp, struct timespec *ats)
276{
277 uint64_t runtime;
278 struct rusage ru;
279
280 PROC_LOCK_ASSERT(targetp, MA_OWNED);
281 PROC_STATLOCK(targetp);
282 rufetch(targetp, &ru);
283 runtime = targetp->p_rux.rux_runtime;
284 if (curthread->td_proc == targetp)
285 runtime += cpu_ticks() - PCPU_GET(switchtime);
286 PROC_STATUNLOCK(targetp);
287 cputick2timespec(runtime, ats);
288}
289
290static int
291get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
292{
293 struct proc *p, *p2;
294 struct thread *td2;
295 lwpid_t tid;
296 pid_t pid;
297 int error;
298
299 p = td->td_proc;
300 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
301 tid = clock_id & CPUCLOCK_ID_MASK;
302 td2 = tdfind(tid, p->p_pid);
303 if (td2 == NULL)
304 return (EINVAL);
305 kern_thread_cputime(td2, ats);
306 PROC_UNLOCK(td2->td_proc);
307 } else {
308 pid = clock_id & CPUCLOCK_ID_MASK;
309 error = pget(pid, PGET_CANSEE, &p2);
310 if (error != 0)
311 return (EINVAL);
312 kern_process_cputime(p2, ats);
313 PROC_UNLOCK(p2);
314 }
315 return (0);
316}
317
318int
319kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
320{
321 struct timeval sys, user;
322 struct proc *p;
323
324 p = td->td_proc;
325 switch (clock_id) {
326 case CLOCK_REALTIME: /* Default to precise. */
327 case CLOCK_REALTIME_PRECISE:
328 nanotime(ats);
329 break;
330 case CLOCK_REALTIME_FAST:
331 getnanotime(ats);
332 break;
333 case CLOCK_VIRTUAL:
334 PROC_LOCK(p);
335 PROC_STATLOCK(p);
336 calcru(p, &user, &sys);
337 PROC_STATUNLOCK(p);
338 PROC_UNLOCK(p);
339 TIMEVAL_TO_TIMESPEC(&user, ats);
340 break;
341 case CLOCK_PROF:
342 PROC_LOCK(p);
343 PROC_STATLOCK(p);
344 calcru(p, &user, &sys);
345 PROC_STATUNLOCK(p);
346 PROC_UNLOCK(p);
347 timevaladd(&user, &sys);
348 TIMEVAL_TO_TIMESPEC(&user, ats);
349 break;
350 case CLOCK_MONOTONIC: /* Default to precise. */
351 case CLOCK_MONOTONIC_PRECISE:
352 case CLOCK_UPTIME:
353 case CLOCK_UPTIME_PRECISE:
354 nanouptime(ats);
355 break;
356 case CLOCK_UPTIME_FAST:
357 case CLOCK_MONOTONIC_FAST:
358 getnanouptime(ats);
359 break;
360 case CLOCK_SECOND:
361 ats->tv_sec = time_second;
362 ats->tv_nsec = 0;
363 break;
364 case CLOCK_THREAD_CPUTIME_ID:
365 kern_thread_cputime(NULL, ats);
366 break;
367 case CLOCK_PROCESS_CPUTIME_ID:
368 PROC_LOCK(p);
369 kern_process_cputime(p, ats);
370 PROC_UNLOCK(p);
371 break;
372 default:
373 if ((int)clock_id >= 0)
374 return (EINVAL);
375 return (get_cputime(td, clock_id, ats));
376 }
377 return (0);
378}
379
380#ifndef _SYS_SYSPROTO_H_
382 clockid_t clock_id;
383 const struct timespec *tp;
384};
385#endif
386/* ARGSUSED */
387int
388sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
389{
390 struct timespec ats;
391 int error;
392
393 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
394 return (error);
395 return (kern_clock_settime(td, uap->clock_id, &ats));
396}
397
398static int allow_insane_settime = 0;
399SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
401 "do not perform possibly restrictive checks on settime(2) args");
402
403int
404kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
405{
406 struct timeval atv;
407 int error;
408
409 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
410 return (error);
411 if (clock_id != CLOCK_REALTIME)
412 return (EINVAL);
413 if (ats->tv_nsec < 0 || ats->tv_nsec >= NS_PER_SEC || ats->tv_sec < 0)
414 return (EINVAL);
416 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
417 ats->tv_sec < utc_offset()))
418 return (EINVAL);
419 /* XXX Don't convert nsec->usec and back */
420 TIMESPEC_TO_TIMEVAL(&atv, ats);
421 error = settime(td, &atv);
422 return (error);
423}
424
425#ifndef _SYS_SYSPROTO_H_
427 clockid_t clock_id;
428 struct timespec *tp;
429};
430#endif
431int
432sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
433{
434 struct timespec ts;
435 int error;
436
437 if (uap->tp == NULL)
438 return (0);
439
440 error = kern_clock_getres(td, uap->clock_id, &ts);
441 if (error == 0)
442 error = copyout(&ts, uap->tp, sizeof(ts));
443 return (error);
444}
445
446int
447kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
448{
449
450 ts->tv_sec = 0;
451 switch (clock_id) {
452 case CLOCK_REALTIME:
453 case CLOCK_REALTIME_FAST:
454 case CLOCK_REALTIME_PRECISE:
455 case CLOCK_MONOTONIC:
456 case CLOCK_MONOTONIC_FAST:
457 case CLOCK_MONOTONIC_PRECISE:
458 case CLOCK_UPTIME:
459 case CLOCK_UPTIME_FAST:
460 case CLOCK_UPTIME_PRECISE:
461 /*
462 * Round up the result of the division cheaply by adding 1.
463 * Rounding up is especially important if rounding down
464 * would give 0. Perfect rounding is unimportant.
465 */
466 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
467 break;
468 case CLOCK_VIRTUAL:
469 case CLOCK_PROF:
470 /* Accurately round up here because we can do so cheaply. */
471 ts->tv_nsec = howmany(NS_PER_SEC, hz);
472 break;
473 case CLOCK_SECOND:
474 ts->tv_sec = 1;
475 ts->tv_nsec = 0;
476 break;
477 case CLOCK_THREAD_CPUTIME_ID:
478 case CLOCK_PROCESS_CPUTIME_ID:
479 cputime:
480 /* sync with cputick2usec */
481 ts->tv_nsec = 1000000 / cpu_tickrate();
482 if (ts->tv_nsec == 0)
483 ts->tv_nsec = 1000;
484 break;
485 default:
486 if ((int)clock_id < 0)
487 goto cputime;
488 return (EINVAL);
489 }
490 return (0);
491}
492
493int
494kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
495{
496
497 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
498 rmt));
499}
500
501static uint8_t nanowait[MAXCPU];
502
503int
504kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
505 const struct timespec *rqt, struct timespec *rmt)
506{
507 struct timespec ts, now;
508 sbintime_t sbt, sbtt, prec, tmp;
509 time_t over;
510 int error;
511 bool is_abs_real;
512
513 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
514 return (EINVAL);
515 if ((flags & ~TIMER_ABSTIME) != 0)
516 return (EINVAL);
517 switch (clock_id) {
518 case CLOCK_REALTIME:
519 case CLOCK_REALTIME_PRECISE:
520 case CLOCK_REALTIME_FAST:
521 case CLOCK_SECOND:
522 is_abs_real = (flags & TIMER_ABSTIME) != 0;
523 break;
524 case CLOCK_MONOTONIC:
525 case CLOCK_MONOTONIC_PRECISE:
526 case CLOCK_MONOTONIC_FAST:
527 case CLOCK_UPTIME:
528 case CLOCK_UPTIME_PRECISE:
529 case CLOCK_UPTIME_FAST:
530 is_abs_real = false;
531 break;
532 case CLOCK_VIRTUAL:
533 case CLOCK_PROF:
534 case CLOCK_PROCESS_CPUTIME_ID:
535 return (ENOTSUP);
536 case CLOCK_THREAD_CPUTIME_ID:
537 default:
538 return (EINVAL);
539 }
540 do {
541 ts = *rqt;
542 if ((flags & TIMER_ABSTIME) != 0) {
543 if (is_abs_real)
544 td->td_rtcgen =
545 atomic_load_acq_int(&rtc_generation);
546 error = kern_clock_gettime(td, clock_id, &now);
547 KASSERT(error == 0, ("kern_clock_gettime: %d", error));
548 timespecsub(&ts, &now, &ts);
549 }
550 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
551 error = EWOULDBLOCK;
552 break;
553 }
554 if (ts.tv_sec > INT32_MAX / 2) {
555 over = ts.tv_sec - INT32_MAX / 2;
556 ts.tv_sec -= over;
557 } else
558 over = 0;
559 tmp = tstosbt(ts);
560 prec = tmp;
561 prec >>= tc_precexp;
562 if (TIMESEL(&sbt, tmp))
563 sbt += tc_tick_sbt;
564 sbt += tmp;
565 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
566 sbt, prec, C_ABSOLUTE);
567 } while (error == 0 && is_abs_real && td->td_rtcgen == 0);
568 td->td_rtcgen = 0;
569 if (error != EWOULDBLOCK) {
570 if (TIMESEL(&sbtt, tmp))
571 sbtt += tc_tick_sbt;
572 if (sbtt >= sbt)
573 return (0);
574 if (error == ERESTART)
575 error = EINTR;
576 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
577 ts = sbttots(sbt - sbtt);
578 ts.tv_sec += over;
579 if (ts.tv_sec < 0)
580 timespecclear(&ts);
581 *rmt = ts;
582 }
583 return (error);
584 }
585 return (0);
586}
587
588#ifndef _SYS_SYSPROTO_H_
590 struct timespec *rqtp;
591 struct timespec *rmtp;
592};
593#endif
594/* ARGSUSED */
595int
596sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
597{
598
599 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
600 uap->rqtp, uap->rmtp));
601}
602
603#ifndef _SYS_SYSPROTO_H_
605 clockid_t clock_id;
606 int flags;
607 struct timespec *rqtp;
608 struct timespec *rmtp;
609};
610#endif
611/* ARGSUSED */
612int
613sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
614{
615 int error;
616
617 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
618 uap->rmtp);
619 return (kern_posix_error(td, error));
620}
621
622static int
623user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
624 const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
625{
626 struct timespec rmt, rqt;
627 int error, error2;
628
629 error = copyin(ua_rqtp, &rqt, sizeof(rqt));
630 if (error)
631 return (error);
632 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
633 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
634 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
635 if (error2 != 0)
636 error = error2;
637 }
638 return (error);
639}
640
641#ifndef _SYS_SYSPROTO_H_
643 struct timeval *tp;
644 struct timezone *tzp;
645};
646#endif
647/* ARGSUSED */
648int
649sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
650{
651 struct timeval atv;
652 struct timezone rtz;
653 int error = 0;
654
655 if (uap->tp) {
656 microtime(&atv);
657 error = copyout(&atv, uap->tp, sizeof (atv));
658 }
659 if (error == 0 && uap->tzp != NULL) {
660 rtz.tz_minuteswest = 0;
661 rtz.tz_dsttime = 0;
662 error = copyout(&rtz, uap->tzp, sizeof (rtz));
663 }
664 return (error);
665}
666
667#ifndef _SYS_SYSPROTO_H_
669 struct timeval *tv;
670 struct timezone *tzp;
671};
672#endif
673/* ARGSUSED */
674int
675sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
676{
677 struct timeval atv, *tvp;
678 struct timezone atz, *tzp;
679 int error;
680
681 if (uap->tv) {
682 error = copyin(uap->tv, &atv, sizeof(atv));
683 if (error)
684 return (error);
685 tvp = &atv;
686 } else
687 tvp = NULL;
688 if (uap->tzp) {
689 error = copyin(uap->tzp, &atz, sizeof(atz));
690 if (error)
691 return (error);
692 tzp = &atz;
693 } else
694 tzp = NULL;
695 return (kern_settimeofday(td, tvp, tzp));
696}
697
698int
699kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
700{
701 int error;
702
703 error = priv_check(td, PRIV_SETTIMEOFDAY);
704 if (error)
705 return (error);
706 /* Verify all parameters before changing time. */
707 if (tv) {
708 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
709 tv->tv_sec < 0)
710 return (EINVAL);
711 error = settime(td, tv);
712 }
713 return (error);
714}
715
716/*
717 * Get value of an interval timer. The process virtual and profiling virtual
718 * time timers are kept in the p_stats area, since they can be swapped out.
719 * These are kept internally in the way they are specified externally: in
720 * time until they expire.
721 *
722 * The real time interval timer is kept in the process table slot for the
723 * process, and its value (it_value) is kept as an absolute time rather than
724 * as a delta, so that it is easy to keep periodic real-time signals from
725 * drifting.
726 *
727 * Virtual time timers are processed in the hardclock() routine of
728 * kern_clock.c. The real time timer is processed by a timeout routine,
729 * called from the softclock() routine. Since a callout may be delayed in
730 * real time due to interrupt processing in the system, it is possible for
731 * the real time timeout routine (realitexpire, given below), to be delayed
732 * in real time past when it is supposed to occur. It does not suffice,
733 * therefore, to reload the real timer .it_value from the real time timers
734 * .it_interval. Rather, we compute the next time in absolute time the timer
735 * should go off.
736 */
737#ifndef _SYS_SYSPROTO_H_
739 u_int which;
740 struct itimerval *itv;
741};
742#endif
743int
744sys_getitimer(struct thread *td, struct getitimer_args *uap)
745{
746 struct itimerval aitv;
747 int error;
748
749 error = kern_getitimer(td, uap->which, &aitv);
750 if (error != 0)
751 return (error);
752 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
753}
754
755int
756kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
757{
758 struct proc *p = td->td_proc;
759 struct timeval ctv;
760
761 if (which > ITIMER_PROF)
762 return (EINVAL);
763
764 if (which == ITIMER_REAL) {
765 /*
766 * Convert from absolute to relative time in .it_value
767 * part of real time timer. If time for real time timer
768 * has passed return 0, else return difference between
769 * current time and time for the timer to go off.
770 */
771 PROC_LOCK(p);
772 *aitv = p->p_realtimer;
773 PROC_UNLOCK(p);
774 if (timevalisset(&aitv->it_value)) {
775 microuptime(&ctv);
776 if (timevalcmp(&aitv->it_value, &ctv, <))
777 timevalclear(&aitv->it_value);
778 else
779 timevalsub(&aitv->it_value, &ctv);
780 }
781 } else {
782 PROC_ITIMLOCK(p);
783 *aitv = p->p_stats->p_timer[which];
784 PROC_ITIMUNLOCK(p);
785 }
786#ifdef KTRACE
787 if (KTRPOINT(td, KTR_STRUCT))
788 ktritimerval(aitv);
789#endif
790 return (0);
791}
792
793#ifndef _SYS_SYSPROTO_H_
795 u_int which;
796 struct itimerval *itv, *oitv;
797};
798#endif
799int
800sys_setitimer(struct thread *td, struct setitimer_args *uap)
801{
802 struct itimerval aitv, oitv;
803 int error;
804
805 if (uap->itv == NULL) {
806 uap->itv = uap->oitv;
807 return (sys_getitimer(td, (struct getitimer_args *)uap));
808 }
809
810 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
811 return (error);
812 error = kern_setitimer(td, uap->which, &aitv, &oitv);
813 if (error != 0 || uap->oitv == NULL)
814 return (error);
815 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
816}
817
818int
819kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
820 struct itimerval *oitv)
821{
822 struct proc *p = td->td_proc;
823 struct timeval ctv;
824 sbintime_t sbt, pr;
825
826 if (aitv == NULL)
827 return (kern_getitimer(td, which, oitv));
828
829 if (which > ITIMER_PROF)
830 return (EINVAL);
831#ifdef KTRACE
832 if (KTRPOINT(td, KTR_STRUCT))
833 ktritimerval(aitv);
834#endif
835 if (itimerfix(&aitv->it_value) ||
836 aitv->it_value.tv_sec > INT32_MAX / 2)
837 return (EINVAL);
838 if (!timevalisset(&aitv->it_value))
839 timevalclear(&aitv->it_interval);
840 else if (itimerfix(&aitv->it_interval) ||
841 aitv->it_interval.tv_sec > INT32_MAX / 2)
842 return (EINVAL);
843
844 if (which == ITIMER_REAL) {
845 PROC_LOCK(p);
846 if (timevalisset(&p->p_realtimer.it_value))
847 callout_stop(&p->p_itcallout);
848 microuptime(&ctv);
849 if (timevalisset(&aitv->it_value)) {
850 pr = tvtosbt(aitv->it_value) >> tc_precexp;
851 timevaladd(&aitv->it_value, &ctv);
852 sbt = tvtosbt(aitv->it_value);
853 callout_reset_sbt(&p->p_itcallout, sbt, pr,
854 realitexpire, p, C_ABSOLUTE);
855 }
856 *oitv = p->p_realtimer;
857 p->p_realtimer = *aitv;
858 PROC_UNLOCK(p);
859 if (timevalisset(&oitv->it_value)) {
860 if (timevalcmp(&oitv->it_value, &ctv, <))
861 timevalclear(&oitv->it_value);
862 else
863 timevalsub(&oitv->it_value, &ctv);
864 }
865 } else {
866 if (aitv->it_interval.tv_sec == 0 &&
867 aitv->it_interval.tv_usec != 0 &&
868 aitv->it_interval.tv_usec < tick)
869 aitv->it_interval.tv_usec = tick;
870 if (aitv->it_value.tv_sec == 0 &&
871 aitv->it_value.tv_usec != 0 &&
872 aitv->it_value.tv_usec < tick)
873 aitv->it_value.tv_usec = tick;
874 PROC_ITIMLOCK(p);
875 *oitv = p->p_stats->p_timer[which];
876 p->p_stats->p_timer[which] = *aitv;
877 PROC_ITIMUNLOCK(p);
878 }
879#ifdef KTRACE
880 if (KTRPOINT(td, KTR_STRUCT))
881 ktritimerval(oitv);
882#endif
883 return (0);
884}
885
886static void
887realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
888{
889 sbintime_t prec;
890
891 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
892 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
893 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
894}
895
896void
897itimer_proc_continue(struct proc *p)
898{
899 struct timeval ctv;
900 struct itimer *it;
901 int id;
902
903 PROC_LOCK_ASSERT(p, MA_OWNED);
904
905 if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
906 p->p_flag2 &= ~P2_ITSTOPPED;
907 microuptime(&ctv);
908 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
909 realitexpire(p);
910 else
912 }
913
914 if (p->p_itimers != NULL) {
915 for (id = 3; id < TIMER_MAX; id++) {
916 it = p->p_itimers->its_timers[id];
917 if (it == NULL)
918 continue;
919 if ((it->it_flags & ITF_PSTOPPED) != 0) {
920 ITIMER_LOCK(it);
921 if ((it->it_flags & ITF_PSTOPPED) != 0) {
922 it->it_flags &= ~ITF_PSTOPPED;
923 if ((it->it_flags & ITF_DELETING) == 0)
924 realtimer_expire_l(it, true);
925 }
926 ITIMER_UNLOCK(it);
927 }
928 }
929 }
930}
931
932/*
933 * Real interval timer expired:
934 * send process whose timer expired an alarm signal.
935 * If time is not set up to reload, then just return.
936 * Else compute next time timer should go off which is > current time.
937 * This is where delay in processing this timeout causes multiple
938 * SIGALRM calls to be compressed into one.
939 * tvtohz() always adds 1 to allow for the time until the next clock
940 * interrupt being strictly less than 1 clock tick, but we don't want
941 * that here since we want to appear to be in sync with the clock
942 * interrupt even when we're delayed.
943 */
944void
945realitexpire(void *arg)
946{
947 struct proc *p;
948 struct timeval ctv;
949 sbintime_t isbt;
950
951 p = (struct proc *)arg;
952 kern_psignal(p, SIGALRM);
953 if (!timevalisset(&p->p_realtimer.it_interval)) {
954 timevalclear(&p->p_realtimer.it_value);
955 if (p->p_flag & P_WEXIT)
956 wakeup(&p->p_itcallout);
957 return;
958 }
959
960 isbt = tvtosbt(p->p_realtimer.it_interval);
961 if (isbt >= sbt_timethreshold)
962 getmicrouptime(&ctv);
963 else
964 microuptime(&ctv);
965 do {
966 timevaladd(&p->p_realtimer.it_value,
967 &p->p_realtimer.it_interval);
968 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
969
970 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
971 p->p_flag2 |= P2_ITSTOPPED;
972 return;
973 }
974
975 p->p_flag2 &= ~P2_ITSTOPPED;
977}
978
979/*
980 * Check that a proposed value to load into the .it_value or
981 * .it_interval part of an interval timer is acceptable, and
982 * fix it to have at least minimal value (i.e. if it is less
983 * than the resolution of the clock, round it up.)
984 */
985int
986itimerfix(struct timeval *tv)
987{
988
989 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
990 return (EINVAL);
991 if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
992 tv->tv_usec < (u_int)tick / 16)
993 tv->tv_usec = (u_int)tick / 16;
994 return (0);
995}
996
997/*
998 * Decrement an interval timer by a specified number
999 * of microseconds, which must be less than a second,
1000 * i.e. < 1000000. If the timer expires, then reload
1001 * it. In this case, carry over (usec - old value) to
1002 * reduce the value reloaded into the timer so that
1003 * the timer does not drift. This routine assumes
1004 * that it is called in a context where the timers
1005 * on which it is operating cannot change in value.
1006 */
1007int
1008itimerdecr(struct itimerval *itp, int usec)
1009{
1010
1011 if (itp->it_value.tv_usec < usec) {
1012 if (itp->it_value.tv_sec == 0) {
1013 /* expired, and already in next interval */
1014 usec -= itp->it_value.tv_usec;
1015 goto expire;
1016 }
1017 itp->it_value.tv_usec += 1000000;
1018 itp->it_value.tv_sec--;
1019 }
1020 itp->it_value.tv_usec -= usec;
1021 usec = 0;
1022 if (timevalisset(&itp->it_value))
1023 return (1);
1024 /* expired, exactly at end of interval */
1025expire:
1026 if (timevalisset(&itp->it_interval)) {
1027 itp->it_value = itp->it_interval;
1028 itp->it_value.tv_usec -= usec;
1029 if (itp->it_value.tv_usec < 0) {
1030 itp->it_value.tv_usec += 1000000;
1031 itp->it_value.tv_sec--;
1032 }
1033 } else
1034 itp->it_value.tv_usec = 0; /* sec is already 0 */
1035 return (0);
1036}
1037
1038/*
1039 * Add and subtract routines for timevals.
1040 * N.B.: subtract routine doesn't deal with
1041 * results which are before the beginning,
1042 * it just gets very confused in this case.
1043 * Caveat emptor.
1044 */
1045void
1046timevaladd(struct timeval *t1, const struct timeval *t2)
1047{
1048
1049 t1->tv_sec += t2->tv_sec;
1050 t1->tv_usec += t2->tv_usec;
1051 timevalfix(t1);
1052}
1053
1054void
1055timevalsub(struct timeval *t1, const struct timeval *t2)
1056{
1057
1058 t1->tv_sec -= t2->tv_sec;
1059 t1->tv_usec -= t2->tv_usec;
1060 timevalfix(t1);
1061}
1062
1063static void
1064timevalfix(struct timeval *t1)
1065{
1066
1067 if (t1->tv_usec < 0) {
1068 t1->tv_sec--;
1069 t1->tv_usec += 1000000;
1070 }
1071 if (t1->tv_usec >= 1000000) {
1072 t1->tv_sec++;
1073 t1->tv_usec -= 1000000;
1074 }
1075}
1076
1077/*
1078 * ratecheck(): simple time-based rate-limit checking.
1079 */
1080int
1081ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1082{
1083 struct timeval tv, delta;
1084 int rv = 0;
1085
1086 getmicrouptime(&tv); /* NB: 10ms precision */
1087 delta = tv;
1088 timevalsub(&delta, lasttime);
1089
1090 /*
1091 * check for 0,0 is so that the message will be seen at least once,
1092 * even if interval is huge.
1093 */
1094 if (timevalcmp(&delta, mininterval, >=) ||
1095 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1096 *lasttime = tv;
1097 rv = 1;
1098 }
1099
1100 return (rv);
1101}
1102
1103/*
1104 * ppsratecheck(): packets (or events) per second limitation.
1105 *
1106 * Return 0 if the limit is to be enforced (e.g. the caller
1107 * should drop a packet because of the rate limitation).
1108 *
1109 * maxpps of 0 always causes zero to be returned. maxpps of -1
1110 * always causes 1 to be returned; this effectively defeats rate
1111 * limiting.
1112 *
1113 * Note that we maintain the struct timeval for compatibility
1114 * with other bsd systems. We reuse the storage and just monitor
1115 * clock ticks for minimal overhead.
1116 */
1117int
1118ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1119{
1120 int now;
1121
1122 /*
1123 * Reset the last time and counter if this is the first call
1124 * or more than a second has passed since the last update of
1125 * lasttime.
1126 */
1127 now = ticks;
1128 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1129 lasttime->tv_sec = now;
1130 *curpps = 1;
1131 return (maxpps != 0);
1132 } else {
1133 (*curpps)++; /* NB: ignore potential overflow */
1134 return (maxpps < 0 || *curpps <= maxpps);
1135 }
1136}
1137
1138static void
1140{
1141 static const struct kclock rt_clock = {
1142 .timer_create = realtimer_create,
1143 .timer_delete = realtimer_delete,
1144 .timer_settime = realtimer_settime,
1145 .timer_gettime = realtimer_gettime,
1146 };
1147
1148 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1149 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1150 register_posix_clock(CLOCK_REALTIME, &rt_clock);
1151 register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1152 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1153 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1154 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1155}
1156
1157static int
1158register_posix_clock(int clockid, const struct kclock *clk)
1159{
1160 if ((unsigned)clockid >= MAX_CLOCKS) {
1161 printf("%s: invalid clockid\n", __func__);
1162 return (0);
1163 }
1164 posix_clocks[clockid] = *clk;
1165 return (1);
1166}
1167
1168static int
1169itimer_init(void *mem, int size, int flags)
1170{
1171 struct itimer *it;
1172
1173 it = (struct itimer *)mem;
1174 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1175 return (0);
1176}
1177
1178static void
1179itimer_fini(void *mem, int size)
1180{
1181 struct itimer *it;
1182
1183 it = (struct itimer *)mem;
1184 mtx_destroy(&it->it_mtx);
1185}
1186
1187static void
1188itimer_enter(struct itimer *it)
1189{
1190
1191 mtx_assert(&it->it_mtx, MA_OWNED);
1192 it->it_usecount++;
1193}
1194
1195static void
1196itimer_leave(struct itimer *it)
1197{
1198
1199 mtx_assert(&it->it_mtx, MA_OWNED);
1200 KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1201
1202 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1203 wakeup(it);
1204}
1205
1206#ifndef _SYS_SYSPROTO_H_
1208 clockid_t clock_id;
1209 struct sigevent * evp;
1210 int * timerid;
1211};
1212#endif
1213int
1214sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1215{
1216 struct sigevent *evp, ev;
1217 int id;
1218 int error;
1219
1220 if (uap->evp == NULL) {
1221 evp = NULL;
1222 } else {
1223 error = copyin(uap->evp, &ev, sizeof(ev));
1224 if (error != 0)
1225 return (error);
1226 evp = &ev;
1227 }
1228 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1229 if (error == 0) {
1230 error = copyout(&id, uap->timerid, sizeof(int));
1231 if (error != 0)
1232 kern_ktimer_delete(td, id);
1233 }
1234 return (error);
1235}
1236
1237int
1238kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1239 int *timerid, int preset_id)
1240{
1241 struct proc *p = td->td_proc;
1242 struct itimer *it;
1243 int id;
1244 int error;
1245
1246 if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1247 return (EINVAL);
1248
1249 if (posix_clocks[clock_id].timer_create == NULL)
1250 return (EINVAL);
1251
1252 if (evp != NULL) {
1253 if (evp->sigev_notify != SIGEV_NONE &&
1254 evp->sigev_notify != SIGEV_SIGNAL &&
1255 evp->sigev_notify != SIGEV_THREAD_ID)
1256 return (EINVAL);
1257 if ((evp->sigev_notify == SIGEV_SIGNAL ||
1258 evp->sigev_notify == SIGEV_THREAD_ID) &&
1259 !_SIG_VALID(evp->sigev_signo))
1260 return (EINVAL);
1261 }
1262
1263 if (p->p_itimers == NULL)
1264 itimers_alloc(p);
1265
1266 it = uma_zalloc(itimer_zone, M_WAITOK);
1267 it->it_flags = 0;
1268 it->it_usecount = 0;
1269 timespecclear(&it->it_time.it_value);
1270 timespecclear(&it->it_time.it_interval);
1271 it->it_overrun = 0;
1272 it->it_overrun_last = 0;
1273 it->it_clockid = clock_id;
1274 it->it_proc = p;
1275 ksiginfo_init(&it->it_ksi);
1276 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1277 error = CLOCK_CALL(clock_id, timer_create, (it));
1278 if (error != 0)
1279 goto out;
1280
1281 PROC_LOCK(p);
1282 if (preset_id != -1) {
1283 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1284 id = preset_id;
1285 if (p->p_itimers->its_timers[id] != NULL) {
1286 PROC_UNLOCK(p);
1287 error = 0;
1288 goto out;
1289 }
1290 } else {
1291 /*
1292 * Find a free timer slot, skipping those reserved
1293 * for setitimer().
1294 */
1295 for (id = 3; id < TIMER_MAX; id++)
1296 if (p->p_itimers->its_timers[id] == NULL)
1297 break;
1298 if (id == TIMER_MAX) {
1299 PROC_UNLOCK(p);
1300 error = EAGAIN;
1301 goto out;
1302 }
1303 }
1304 p->p_itimers->its_timers[id] = it;
1305 if (evp != NULL)
1306 it->it_sigev = *evp;
1307 else {
1308 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1309 switch (clock_id) {
1310 default:
1311 case CLOCK_REALTIME:
1312 it->it_sigev.sigev_signo = SIGALRM;
1313 break;
1314 case CLOCK_VIRTUAL:
1315 it->it_sigev.sigev_signo = SIGVTALRM;
1316 break;
1317 case CLOCK_PROF:
1318 it->it_sigev.sigev_signo = SIGPROF;
1319 break;
1320 }
1321 it->it_sigev.sigev_value.sival_int = id;
1322 }
1323
1324 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1325 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1326 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1327 it->it_ksi.ksi_code = SI_TIMER;
1328 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1329 it->it_ksi.ksi_timerid = id;
1330 }
1331 PROC_UNLOCK(p);
1332 *timerid = id;
1333 return (0);
1334
1335out:
1336 ITIMER_LOCK(it);
1337 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1338 ITIMER_UNLOCK(it);
1339 uma_zfree(itimer_zone, it);
1340 return (error);
1341}
1342
1343#ifndef _SYS_SYSPROTO_H_
1346};
1347#endif
1348int
1349sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1350{
1351
1352 return (kern_ktimer_delete(td, uap->timerid));
1353}
1354
1355static struct itimer *
1356itimer_find(struct proc *p, int timerid)
1357{
1358 struct itimer *it;
1359
1360 PROC_LOCK_ASSERT(p, MA_OWNED);
1361 if ((p->p_itimers == NULL) ||
1362 (timerid < 0) || (timerid >= TIMER_MAX) ||
1363 (it = p->p_itimers->its_timers[timerid]) == NULL) {
1364 return (NULL);
1365 }
1366 ITIMER_LOCK(it);
1367 if ((it->it_flags & ITF_DELETING) != 0) {
1368 ITIMER_UNLOCK(it);
1369 it = NULL;
1370 }
1371 return (it);
1372}
1373
1374int
1375kern_ktimer_delete(struct thread *td, int timerid)
1376{
1377 struct proc *p = td->td_proc;
1378 struct itimer *it;
1379
1380 PROC_LOCK(p);
1381 it = itimer_find(p, timerid);
1382 if (it == NULL) {
1383 PROC_UNLOCK(p);
1384 return (EINVAL);
1385 }
1386 PROC_UNLOCK(p);
1387
1388 it->it_flags |= ITF_DELETING;
1389 while (it->it_usecount > 0) {
1390 it->it_flags |= ITF_WANTED;
1391 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1392 }
1393 it->it_flags &= ~ITF_WANTED;
1394 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1395 ITIMER_UNLOCK(it);
1396
1397 PROC_LOCK(p);
1398 if (KSI_ONQ(&it->it_ksi))
1399 sigqueue_take(&it->it_ksi);
1400 p->p_itimers->its_timers[timerid] = NULL;
1401 PROC_UNLOCK(p);
1402 uma_zfree(itimer_zone, it);
1403 return (0);
1404}
1405
1406#ifndef _SYS_SYSPROTO_H_
1410 const struct itimerspec * value;
1411 struct itimerspec * ovalue;
1412};
1413#endif
1414int
1415sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1416{
1417 struct itimerspec val, oval, *ovalp;
1418 int error;
1419
1420 error = copyin(uap->value, &val, sizeof(val));
1421 if (error != 0)
1422 return (error);
1423 ovalp = uap->ovalue != NULL ? &oval : NULL;
1424 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1425 if (error == 0 && uap->ovalue != NULL)
1426 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1427 return (error);
1428}
1429
1430int
1431kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1432 struct itimerspec *val, struct itimerspec *oval)
1433{
1434 struct proc *p;
1435 struct itimer *it;
1436 int error;
1437
1438 p = td->td_proc;
1439 PROC_LOCK(p);
1440 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1441 PROC_UNLOCK(p);
1442 error = EINVAL;
1443 } else {
1444 PROC_UNLOCK(p);
1445 itimer_enter(it);
1446 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1447 flags, val, oval));
1448 itimer_leave(it);
1449 ITIMER_UNLOCK(it);
1450 }
1451 return (error);
1452}
1453
1454#ifndef _SYS_SYSPROTO_H_
1457 struct itimerspec * value;
1458};
1459#endif
1460int
1461sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1462{
1463 struct itimerspec val;
1464 int error;
1465
1466 error = kern_ktimer_gettime(td, uap->timerid, &val);
1467 if (error == 0)
1468 error = copyout(&val, uap->value, sizeof(val));
1469 return (error);
1470}
1471
1472int
1473kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1474{
1475 struct proc *p;
1476 struct itimer *it;
1477 int error;
1478
1479 p = td->td_proc;
1480 PROC_LOCK(p);
1481 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1482 PROC_UNLOCK(p);
1483 error = EINVAL;
1484 } else {
1485 PROC_UNLOCK(p);
1486 itimer_enter(it);
1487 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1488 itimer_leave(it);
1489 ITIMER_UNLOCK(it);
1490 }
1491 return (error);
1492}
1493
1494#ifndef _SYS_SYSPROTO_H_
1497};
1498#endif
1499int
1500sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1501{
1502
1503 return (kern_ktimer_getoverrun(td, uap->timerid));
1504}
1505
1506int
1507kern_ktimer_getoverrun(struct thread *td, int timer_id)
1508{
1509 struct proc *p = td->td_proc;
1510 struct itimer *it;
1511 int error ;
1512
1513 PROC_LOCK(p);
1514 if (timer_id < 3 ||
1515 (it = itimer_find(p, timer_id)) == NULL) {
1516 PROC_UNLOCK(p);
1517 error = EINVAL;
1518 } else {
1519 td->td_retval[0] = it->it_overrun_last;
1520 ITIMER_UNLOCK(it);
1521 PROC_UNLOCK(p);
1522 error = 0;
1523 }
1524 return (error);
1525}
1526
1527static int
1528realtimer_create(struct itimer *it)
1529{
1530 callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1531 return (0);
1532}
1533
1534static int
1535realtimer_delete(struct itimer *it)
1536{
1537 mtx_assert(&it->it_mtx, MA_OWNED);
1538
1539 /*
1540 * clear timer's value and interval to tell realtimer_expire
1541 * to not rearm the timer.
1542 */
1543 timespecclear(&it->it_time.it_value);
1544 timespecclear(&it->it_time.it_interval);
1545 ITIMER_UNLOCK(it);
1546 callout_drain(&it->it_callout);
1547 ITIMER_LOCK(it);
1548 return (0);
1549}
1550
1551static int
1552realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1553{
1554 struct timespec cts;
1555
1556 mtx_assert(&it->it_mtx, MA_OWNED);
1557
1558 realtimer_clocktime(it->it_clockid, &cts);
1559 *ovalue = it->it_time;
1560 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1561 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
1562 if (ovalue->it_value.tv_sec < 0 ||
1563 (ovalue->it_value.tv_sec == 0 &&
1564 ovalue->it_value.tv_nsec == 0)) {
1565 ovalue->it_value.tv_sec = 0;
1566 ovalue->it_value.tv_nsec = 1;
1567 }
1568 }
1569 return (0);
1570}
1571
1572static int
1573realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
1574 struct itimerspec *ovalue)
1575{
1576 struct timespec cts, ts;
1577 struct timeval tv;
1578 struct itimerspec val;
1579
1580 mtx_assert(&it->it_mtx, MA_OWNED);
1581
1582 val = *value;
1583 if (itimespecfix(&val.it_value))
1584 return (EINVAL);
1585
1586 if (timespecisset(&val.it_value)) {
1587 if (itimespecfix(&val.it_interval))
1588 return (EINVAL);
1589 } else {
1590 timespecclear(&val.it_interval);
1591 }
1592
1593 if (ovalue != NULL)
1594 realtimer_gettime(it, ovalue);
1595
1596 it->it_time = val;
1597 if (timespecisset(&val.it_value)) {
1598 realtimer_clocktime(it->it_clockid, &cts);
1599 ts = val.it_value;
1600 if ((flags & TIMER_ABSTIME) == 0) {
1601 /* Convert to absolute time. */
1602 timespecadd(&it->it_time.it_value, &cts,
1603 &it->it_time.it_value);
1604 } else {
1605 timespecsub(&ts, &cts, &ts);
1606 /*
1607 * We don't care if ts is negative, tztohz will
1608 * fix it.
1609 */
1610 }
1611 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1612 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1613 it);
1614 } else {
1615 callout_stop(&it->it_callout);
1616 }
1617
1618 return (0);
1619}
1620
1621static void
1622realtimer_clocktime(clockid_t id, struct timespec *ts)
1623{
1624 if (id == CLOCK_REALTIME)
1625 getnanotime(ts);
1626 else /* CLOCK_MONOTONIC */
1628}
1629
1630int
1631itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1632{
1633 struct itimer *it;
1634
1635 PROC_LOCK_ASSERT(p, MA_OWNED);
1636 it = itimer_find(p, timerid);
1637 if (it != NULL) {
1638 ksi->ksi_overrun = it->it_overrun;
1639 it->it_overrun_last = it->it_overrun;
1640 it->it_overrun = 0;
1641 ITIMER_UNLOCK(it);
1642 return (0);
1643 }
1644 return (EINVAL);
1645}
1646
1647static int
1648itimespecfix(struct timespec *ts)
1649{
1650
1651 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= NS_PER_SEC)
1652 return (EINVAL);
1653 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
1654 return (EINVAL);
1655 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1656 ts->tv_nsec = tick * 1000;
1657 return (0);
1658}
1659
1660#define timespectons(tsp) \
1661 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
1662#define timespecfromns(ns) (struct timespec){ \
1663 .tv_sec = (ns) / NS_PER_SEC, \
1664 .tv_nsec = (ns) % NS_PER_SEC \
1665}
1666
1667static void
1668realtimer_expire_l(struct itimer *it, bool proc_locked)
1669{
1670 struct timespec cts, ts;
1671 struct timeval tv;
1672 struct proc *p;
1673 uint64_t interval, now, overruns, value;
1674
1675 realtimer_clocktime(it->it_clockid, &cts);
1676 /* Only fire if time is reached. */
1677 if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1678 if (timespecisset(&it->it_time.it_interval)) {
1679 timespecadd(&it->it_time.it_value,
1680 &it->it_time.it_interval,
1681 &it->it_time.it_value);
1682
1683 interval = timespectons(&it->it_time.it_interval);
1684 value = timespectons(&it->it_time.it_value);
1685 now = timespectons(&cts);
1686
1687 if (now >= value) {
1688 /*
1689 * We missed at least one period.
1690 */
1691 overruns = howmany(now - value + 1, interval);
1692 if (it->it_overrun + overruns >=
1693 it->it_overrun &&
1694 it->it_overrun + overruns <= INT_MAX) {
1695 it->it_overrun += (int)overruns;
1696 } else {
1697 it->it_overrun = INT_MAX;
1698 it->it_ksi.ksi_errno = ERANGE;
1699 }
1700 value =
1701 now + interval - (now - value) % interval;
1702 it->it_time.it_value = timespecfromns(value);
1703 }
1704 } else {
1705 /* single shot timer ? */
1706 timespecclear(&it->it_time.it_value);
1707 }
1708
1709 p = it->it_proc;
1710 if (timespecisset(&it->it_time.it_value)) {
1711 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1712 it->it_flags |= ITF_PSTOPPED;
1713 } else {
1714 timespecsub(&it->it_time.it_value, &cts, &ts);
1715 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1716 callout_reset(&it->it_callout, tvtohz(&tv),
1717 realtimer_expire, it);
1718 }
1719 }
1720
1721 itimer_enter(it);
1722 ITIMER_UNLOCK(it);
1723 if (proc_locked)
1724 PROC_UNLOCK(p);
1725 itimer_fire(it);
1726 if (proc_locked)
1727 PROC_LOCK(p);
1728 ITIMER_LOCK(it);
1729 itimer_leave(it);
1730 } else if (timespecisset(&it->it_time.it_value)) {
1731 p = it->it_proc;
1732 if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1733 it->it_flags |= ITF_PSTOPPED;
1734 } else {
1735 ts = it->it_time.it_value;
1736 timespecsub(&ts, &cts, &ts);
1737 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1738 callout_reset(&it->it_callout, tvtohz(&tv),
1739 realtimer_expire, it);
1740 }
1741 }
1742}
1743
1744/* Timeout callback for realtime timer */
1745static void
1747{
1748 realtimer_expire_l(arg, false);
1749}
1750
1751static void
1752itimer_fire(struct itimer *it)
1753{
1754 struct proc *p = it->it_proc;
1755 struct thread *td;
1756
1757 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1758 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1759 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1760 ITIMER_LOCK(it);
1761 timespecclear(&it->it_time.it_value);
1762 timespecclear(&it->it_time.it_interval);
1763 callout_stop(&it->it_callout);
1764 ITIMER_UNLOCK(it);
1765 return;
1766 }
1767 if (!KSI_ONQ(&it->it_ksi)) {
1768 it->it_ksi.ksi_errno = 0;
1769 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1770 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1771 } else {
1772 if (it->it_overrun < INT_MAX)
1773 it->it_overrun++;
1774 else
1775 it->it_ksi.ksi_errno = ERANGE;
1776 }
1777 PROC_UNLOCK(p);
1778 }
1779}
1780
1781static void
1782itimers_alloc(struct proc *p)
1783{
1784 struct itimers *its;
1785
1786 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1787 PROC_LOCK(p);
1788 if (p->p_itimers == NULL) {
1789 p->p_itimers = its;
1790 PROC_UNLOCK(p);
1791 }
1792 else {
1793 PROC_UNLOCK(p);
1794 free(its, M_SUBPROC);
1795 }
1796}
1797
1798/* Clean up timers when some process events are being triggered. */
1799static void
1800itimers_event_exit_exec(int start_idx, struct proc *p)
1801{
1802 struct itimers *its;
1803 struct itimer *it;
1804 int i;
1805
1806 its = p->p_itimers;
1807 if (its == NULL)
1808 return;
1809
1810 for (i = start_idx; i < TIMER_MAX; ++i) {
1811 if ((it = its->its_timers[i]) != NULL)
1812 kern_ktimer_delete(curthread, i);
1813 }
1814 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
1815 its->its_timers[2] == NULL) {
1816 /* Synchronize with itimer_proc_continue(). */
1817 PROC_LOCK(p);
1818 p->p_itimers = NULL;
1819 PROC_UNLOCK(p);
1820 free(its, M_SUBPROC);
1821 }
1822}
1823
1824void
1825itimers_exec(struct proc *p)
1826{
1827 /*
1828 * According to susv3, XSI interval timers should be inherited
1829 * by new image.
1830 */
1832}
1833
1834void
1835itimers_exit(struct proc *p)
1836{
1838}
struct timespec * ts
Definition: clock_if.m:39
int tvtohz(struct timeval *tv)
Definition: kern_clock.c:529
volatile int ticks
Definition: kern_clock.c:380
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
static struct pollrec pr[POLL_LIST_LEN]
Definition: kern_poll.c:261
int priv_check(struct thread *td, int priv)
Definition: kern_priv.c:271
int pget(pid_t pid, int flags, struct proc **pp)
Definition: kern_proc.c:508
int securelevel_gt(struct ucred *cr, int level)
Definition: kern_prot.c:1315
void rufetch(struct proc *p, struct rusage *ru)
void calcru(struct proc *p, struct timeval *up, struct timeval *sp)
void sigqueue_take(ksiginfo_t *ksi)
Definition: kern_sig.c:380
void kern_psignal(struct proc *p, int sig)
Definition: kern_sig.c:2117
int tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
Definition: kern_sig.c:2183
int sigev_findtd(struct proc *p, struct sigevent *sigev, struct thread **ttd)
Definition: kern_sig.c:2136
void wakeup(const void *ident)
Definition: kern_synch.c:349
sbintime_t tc_tick_sbt
Definition: kern_tc.c:140
volatile int rtc_generation
Definition: kern_tc.c:149
void nanouptime(struct timespec *tsp)
Definition: kern_tc.c:397
cpu_tick_f * cpu_ticks
Definition: kern_tc.c:2174
uint64_t tc_getfrequency(void)
Definition: kern_tc.c:1258
sbintime_t sbt_timethreshold
Definition: kern_tc.c:137
void getnanouptime(struct timespec *tsp)
Definition: kern_tc.c:447
int tc_precexp
Definition: kern_tc.c:141
void tc_setclock(struct timespec *ts)
Definition: kern_tc.c:1292
volatile time_t time_second
Definition: kern_tc.c:105
void getmicrouptime(struct timeval *tvp)
Definition: kern_tc.c:456
void getnanotime(struct timespec *tsp)
Definition: kern_tc.c:472
void microtime(struct timeval *tvp)
Definition: kern_tc.c:431
void microuptime(struct timeval *tvp)
Definition: kern_tc.c:406
uint64_t cpu_tickrate(void)
Definition: kern_tc.c:2144
void nanotime(struct timespec *tsp)
Definition: kern_tc.c:422
uint64_t cputick2usec(uint64_t tick)
Definition: kern_tc.c:2163
struct thread * tdfind(lwpid_t tid, pid_t pid)
Definition: kern_thread.c:1729
int sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
Definition: kern_time.c:675
static void itimer_start(void)
Definition: kern_time.c:1139
SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL)
#define CLOCK_CALL(clock, call, arglist)
Definition: kern_time.c:116
int itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
Definition: kern_time.c:1631
void itimer_proc_continue(struct proc *p)
Definition: kern_time.c:897
int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
Definition: kern_time.c:1473
int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
Definition: kern_time.c:699
static int realtimer_create(struct itimer *)
Definition: kern_time.c:1528
static void itimers_event_exit_exec(int start_idx, struct proc *p)
Definition: kern_time.c:1800
int sys_setitimer(struct thread *td, struct setitimer_args *uap)
Definition: kern_time.c:800
void itimers_exec(struct proc *p)
Definition: kern_time.c:1825
int sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
Definition: kern_time.c:388
static void itimer_enter(struct itimer *)
Definition: kern_time.c:1188
static int register_posix_clock(int, const struct kclock *)
Definition: kern_time.c:1158
static int settime(struct thread *, struct timeval *)
Definition: kern_time.c:122
int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
Definition: kern_time.c:1118
int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval)
Definition: kern_time.c:1431
int sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
Definition: kern_time.c:596
int sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
Definition: kern_time.c:613
void timevaladd(struct timeval *t1, const struct timeval *t2)
Definition: kern_time.c:1046
static struct kclock posix_clocks[MAX_CLOCKS]
Definition: kern_time.c:77
SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, &allow_insane_settime, 0, "do not perform possibly restrictive checks on settime(2) args")
void kern_thread_cputime(struct thread *targettd, struct timespec *ats)
Definition: kern_time.c:254
int sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
Definition: kern_time.c:432
int kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, struct itimerval *oitv)
Definition: kern_time.c:819
static void realtimer_expire(void *)
Definition: kern_time.c:1746
static int itimer_init(void *, int, int)
Definition: kern_time.c:1169
int itimerfix(struct timeval *tv)
Definition: kern_time.c:986
int sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
Definition: kern_time.c:1349
int sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
Definition: kern_time.c:233
#define MAX_CLOCKS
Definition: kern_time.c:67
int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
Definition: kern_time.c:447
int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
Definition: kern_time.c:319
int sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
Definition: kern_time.c:1214
int itimerdecr(struct itimerval *itp, int usec)
Definition: kern_time.c:1008
static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
Definition: kern_time.c:623
void timevalsub(struct timeval *t1, const struct timeval *t2)
Definition: kern_time.c:1055
void realitexpire(void *arg)
Definition: kern_time.c:945
int sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
Definition: kern_time.c:1461
#define MAKE_THREAD_CPUCLOCK(tid)
Definition: kern_time.c:71
static struct itimer * itimer_find(struct proc *, int)
Definition: kern_time.c:1356
__FBSDID("$FreeBSD$")
static void cputick2timespec(uint64_t runtime, struct timespec *ats)
Definition: kern_time.c:246
int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id)
Definition: kern_time.c:1238
static int realtimer_delete(struct itimer *)
Definition: kern_time.c:1535
static void realtimer_clocktime(clockid_t, struct timespec *)
Definition: kern_time.c:1622
static int realtimer_gettime(struct itimer *, struct itimerspec *)
Definition: kern_time.c:1552
int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id)
Definition: kern_time.c:195
int kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec *rqt, struct timespec *rmt)
Definition: kern_time.c:504
static int allow_insane_settime
Definition: kern_time.c:398
int sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
Definition: kern_time.c:649
static void itimer_fini(void *, int)
Definition: kern_time.c:1179
int kern_ktimer_delete(struct thread *td, int timerid)
Definition: kern_time.c:1375
static void itimer_fire(struct itimer *it)
Definition: kern_time.c:1752
#define timespecfromns(ns)
Definition: kern_time.c:1662
static int realtimer_settime(struct itimer *, int, struct itimerspec *, struct itimerspec *)
Definition: kern_time.c:1573
static void timevalfix(struct timeval *)
Definition: kern_time.c:1064
int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
Definition: kern_time.c:494
#define CPUCLOCK_ID_MASK
Definition: kern_time.c:70
int kern_ktimer_getoverrun(struct thread *td, int timer_id)
Definition: kern_time.c:1507
#define timespectons(tsp)
Definition: kern_time.c:1660
int sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
Definition: kern_time.c:1415
int kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
Definition: kern_time.c:756
int sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
Definition: kern_time.c:183
static int itimespecfix(struct timespec *ts)
Definition: kern_time.c:1648
void kern_process_cputime(struct proc *targetp, struct timespec *ats)
Definition: kern_time.c:275
static uma_zone_t itimer_zone
Definition: kern_time.c:78
#define CPUCLOCK_PROCESS_BIT
Definition: kern_time.c:69
static void realtimer_expire_l(struct itimer *it, bool proc_locked)
Definition: kern_time.c:1668
int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
Definition: kern_time.c:404
static void realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
Definition: kern_time.c:887
static int get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
Definition: kern_time.c:291
int sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
Definition: kern_time.c:1500
int ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
Definition: kern_time.c:1081
int sys_getitimer(struct thread *td, struct getitimer_args *uap)
Definition: kern_time.c:744
void itimers_exit(struct proc *p)
Definition: kern_time.c:1835
#define MAKE_PROCESS_CPUCLOCK(pid)
Definition: kern_time.c:72
static uint8_t nanowait[MAXCPU]
Definition: kern_time.c:501
static void itimer_leave(struct itimer *)
Definition: kern_time.c:1196
static void itimers_alloc(struct proc *)
Definition: kern_time.c:1782
#define NS_PER_SEC
Definition: kern_time.c:75
caddr_t value
Definition: linker_if.m:63
void p31b_setcfg(int num, int value)
Definition: posix4_mib.c:129
int clockid_t * clock_id
Definition: kern_time.c:178
clockid_t clock_id
Definition: kern_time.c:427
struct timespec * tp
Definition: kern_time.c:428
clockid_t clock_id
Definition: kern_time.c:227
struct timespec * tp
Definition: kern_time.c:228
struct timespec * rmtp
Definition: kern_time.c:608
clockid_t clock_id
Definition: kern_time.c:605
struct timespec * rqtp
Definition: kern_time.c:607
clockid_t clock_id
Definition: kern_time.c:382
const struct timespec * tp
Definition: kern_time.c:383
struct itimerval * itv
Definition: kern_time.c:740
struct timezone * tzp
Definition: kern_time.c:644
struct timeval * tp
Definition: kern_time.c:643
struct sigevent * evp
Definition: kern_time.c:1209
clockid_t clock_id
Definition: kern_time.c:1208
struct itimerspec * value
Definition: kern_time.c:1457
const struct itimerspec * value
Definition: kern_time.c:1410
struct itimerspec * ovalue
Definition: kern_time.c:1411
struct timespec * rqtp
Definition: kern_time.c:590
struct timespec * rmtp
Definition: kern_time.c:591
struct itimerval * oitv
Definition: kern_time.c:796
struct itimerval * itv
Definition: kern_time.c:796
struct timeval * tv
Definition: kern_time.c:669
struct timezone * tzp
Definition: kern_time.c:670
const char * ev
Definition: subr_boot.c:64
int utc_offset(void)
Definition: subr_clock.c:382
int hz
Definition: subr_param.c:85
int tick
Definition: subr_param.c:86
int printf(const char *fmt,...)
Definition: subr_prf.c:397
void resettodr(void)
Definition: subr_rtc.c:377
uint16_t flags
Definition: subr_stats.c:2
int kern_posix_error(struct thread *td, int error)
Definition: sys_generic.c:2070