FreeBSD kernel kern code
kern_proc.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_ddb.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bitstring.h>
45#include <sys/elf.h>
46#include <sys/eventhandler.h>
47#include <sys/exec.h>
48#include <sys/fcntl.h>
49#include <sys/jail.h>
50#include <sys/kernel.h>
51#include <sys/limits.h>
52#include <sys/lock.h>
53#include <sys/loginclass.h>
54#include <sys/malloc.h>
55#include <sys/mman.h>
56#include <sys/mount.h>
57#include <sys/mutex.h>
58#include <sys/namei.h>
59#include <sys/proc.h>
60#include <sys/ptrace.h>
61#include <sys/refcount.h>
62#include <sys/resourcevar.h>
63#include <sys/rwlock.h>
64#include <sys/sbuf.h>
65#include <sys/sysent.h>
66#include <sys/sched.h>
67#include <sys/smp.h>
68#include <sys/stack.h>
69#include <sys/stat.h>
70#include <sys/dtrace_bsd.h>
71#include <sys/sysctl.h>
72#include <sys/filedesc.h>
73#include <sys/tty.h>
74#include <sys/signalvar.h>
75#include <sys/sdt.h>
76#include <sys/sx.h>
77#include <sys/user.h>
78#include <sys/vnode.h>
79#include <sys/wait.h>
80#ifdef KTRACE
81#include <sys/ktrace.h>
82#endif
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#endif
87
88#include <vm/vm.h>
89#include <vm/vm_param.h>
90#include <vm/vm_extern.h>
91#include <vm/pmap.h>
92#include <vm/vm_map.h>
93#include <vm/vm_object.h>
94#include <vm/vm_page.h>
95#include <vm/uma.h>
96
97#include <fs/devfs/devfs.h>
98
99#ifdef COMPAT_FREEBSD32
100#include <compat/freebsd32/freebsd32.h>
101#include <compat/freebsd32/freebsd32_util.h>
102#endif
103
105
106MALLOC_DEFINE(M_SESSION, "session", "session header");
107static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110static void doenterpgrp(struct proc *, struct pgrp *);
111static void orphanpg(struct pgrp *pg);
112static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115 int preferthread);
116static void pgdelete(struct pgrp *);
117static int pgrp_init(void *mem, int size, int flags);
118static int proc_ctor(void *mem, int size, void *arg, int flags);
119static void proc_dtor(void *mem, int size, void *arg);
120static int proc_init(void *mem, int size, int flags);
121static void proc_fini(void *mem, int size);
122static void pargs_free(struct pargs *pa);
123
124/*
125 * Other process lists
126 */
127struct pidhashhead *pidhashtbl = NULL;
129u_long pidhash;
131struct pgrphashhead *pgrphashtbl;
132u_long pgrphash;
133struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
134struct sx __exclusive_cache_line allproc_lock;
135struct sx __exclusive_cache_line proctree_lock;
136struct mtx __exclusive_cache_line ppeers_lock;
137struct mtx __exclusive_cache_line procid_lock;
138uma_zone_t proc_zone;
139uma_zone_t pgrp_zone;
140
141/*
142 * The offset of various fields in struct proc and struct thread.
143 * These are used by kernel debuggers to enumerate kernel threads and
144 * processes.
145 */
146const int proc_off_p_pid = offsetof(struct proc, p_pid);
147const int proc_off_p_comm = offsetof(struct proc, p_comm);
148const int proc_off_p_list = offsetof(struct proc, p_list);
149const int proc_off_p_hash = offsetof(struct proc, p_hash);
150const int proc_off_p_threads = offsetof(struct proc, p_threads);
151const int thread_off_td_tid = offsetof(struct thread, td_tid);
152const int thread_off_td_name = offsetof(struct thread, td_name);
153const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
154const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
155const int thread_off_td_plist = offsetof(struct thread, td_plist);
156
164
165int kstack_pages = KSTACK_PAGES;
166SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
167 "Kernel stack size in pages");
168static int vmmap_skip_res_cnt = 0;
169SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
171 "Skip calculation of the pages resident count in kern.proc.vmmap");
172
173CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
174#ifdef COMPAT_FREEBSD32
175CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
176#endif
177
178/*
179 * Initialize global process hashing structures.
180 */
181void
183{
184 u_long i;
185
186 sx_init(&allproc_lock, "allproc");
187 sx_init(&proctree_lock, "proctree");
188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
189 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
190 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
191 pidhashlock = (pidhash + 1) / 64;
192 if (pidhashlock > 0)
193 pidhashlock--;
195 M_PROC, M_WAITOK | M_ZERO);
196 for (i = 0; i < pidhashlock + 1; i++)
197 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
198 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
199 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
201 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
203 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 uihashinit();
205}
206
207/*
208 * Prepare a proc for use.
209 */
210static int
211proc_ctor(void *mem, int size, void *arg, int flags)
212{
213 struct proc *p;
214 struct thread *td;
215
216 p = (struct proc *)mem;
217#ifdef KDTRACE_HOOKS
219#endif
220 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
221 td = FIRST_THREAD_IN_PROC(p);
222 if (td != NULL) {
223 /* Make sure all thread constructors are executed */
224 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
225 }
226 return (0);
227}
228
229/*
230 * Reclaim a proc after use.
231 */
232static void
233proc_dtor(void *mem, int size, void *arg)
234{
235 struct proc *p;
236 struct thread *td;
237
238 /* INVARIANTS checks go here */
239 p = (struct proc *)mem;
240 td = FIRST_THREAD_IN_PROC(p);
241 if (td != NULL) {
242#ifdef INVARIANTS
243 KASSERT((p->p_numthreads == 1),
244 ("bad number of threads in exiting process"));
245 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
246#endif
247 /* Free all OSD associated to this thread. */
248 osd_thread_exit(td);
249 td_softdep_cleanup(td);
250 MPASS(td->td_su == NULL);
251
252 /* Make sure all thread destructors are executed */
253 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
254 }
255 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
256#ifdef KDTRACE_HOOKS
258#endif
259 if (p->p_ksi != NULL)
260 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
261}
262
263/*
264 * Initialize type-stable parts of a proc (when newly created).
265 */
266static int
267proc_init(void *mem, int size, int flags)
268{
269 struct proc *p;
270
271 p = (struct proc *)mem;
272 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
273 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
274 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
275 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
276 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
277 cv_init(&p->p_pwait, "ppwait");
278 TAILQ_INIT(&p->p_threads); /* all threads in proc */
279 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
280 p->p_stats = pstats_alloc();
281 p->p_pgrp = NULL;
282 return (0);
283}
284
285/*
286 * UMA should ensure that this function is never called.
287 * Freeing a proc structure would violate type stability.
288 */
289static void
290proc_fini(void *mem, int size)
291{
292#ifdef notnow
293 struct proc *p;
294
295 p = (struct proc *)mem;
296 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
297 pstats_free(p->p_stats);
298 thread_free(FIRST_THREAD_IN_PROC(p));
299 mtx_destroy(&p->p_mtx);
300 if (p->p_ksi != NULL)
301 ksiginfo_free(p->p_ksi);
302#else
303 panic("proc reclaimed");
304#endif
305}
306
307static int
308pgrp_init(void *mem, int size, int flags)
309{
310 struct pgrp *pg;
311
312 pg = mem;
313 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
314 return (0);
315}
316
317/*
318 * PID space management.
319 *
320 * These bitmaps are used by fork_findpid.
321 */
322bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
323bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
324bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
325bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
326
327static bitstr_t *proc_id_array[] = {
332};
333
334void
335proc_id_set(int type, pid_t id)
336{
337
338 KASSERT(type >= 0 && type < nitems(proc_id_array),
339 ("invalid type %d\n", type));
340 mtx_lock(&procid_lock);
341 KASSERT(bit_test(proc_id_array[type], id) == 0,
342 ("bit %d already set in %d\n", id, type));
343 bit_set(proc_id_array[type], id);
344 mtx_unlock(&procid_lock);
345}
346
347void
348proc_id_set_cond(int type, pid_t id)
349{
350
351 KASSERT(type >= 0 && type < nitems(proc_id_array),
352 ("invalid type %d\n", type));
353 if (bit_test(proc_id_array[type], id))
354 return;
355 mtx_lock(&procid_lock);
356 bit_set(proc_id_array[type], id);
357 mtx_unlock(&procid_lock);
358}
359
360void
361proc_id_clear(int type, pid_t id)
362{
363
364 KASSERT(type >= 0 && type < nitems(proc_id_array),
365 ("invalid type %d\n", type));
366 mtx_lock(&procid_lock);
367 KASSERT(bit_test(proc_id_array[type], id) != 0,
368 ("bit %d not set in %d\n", id, type));
369 bit_clear(proc_id_array[type], id);
370 mtx_unlock(&procid_lock);
371}
372
373/*
374 * Is p an inferior of the current process?
375 */
376int
377inferior(struct proc *p)
378{
379
380 sx_assert(&proctree_lock, SX_LOCKED);
381 PROC_LOCK_ASSERT(p, MA_OWNED);
382 for (; p != curproc; p = proc_realparent(p)) {
383 if (p->p_pid == 0)
384 return (0);
385 }
386 return (1);
387}
388
389/*
390 * Shared lock all the pid hash lists.
391 */
392void
394{
395 u_long i;
396
397 for (i = 0; i < pidhashlock + 1; i++)
398 sx_slock(&pidhashtbl_lock[i]);
399}
400
401/*
402 * Shared unlock all the pid hash lists.
403 */
404void
406{
407 u_long i;
408
409 for (i = 0; i < pidhashlock + 1; i++)
410 sx_sunlock(&pidhashtbl_lock[i]);
411}
412
413/*
414 * Similar to pfind_any(), this function finds zombies.
415 */
416struct proc *
418{
419 struct proc *p;
420
421 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
422 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
423 if (p->p_pid == pid) {
424 PROC_LOCK(p);
425 if (p->p_state == PRS_NEW) {
426 PROC_UNLOCK(p);
427 p = NULL;
428 }
429 break;
430 }
431 }
432 return (p);
433}
434
435/*
436 * Locate a process by number.
437 *
438 * By not returning processes in the PRS_NEW state, we allow callers to avoid
439 * testing for that condition to avoid dereferencing p_ucred, et al.
440 */
441static __always_inline struct proc *
442_pfind(pid_t pid, bool zombie)
443{
444 struct proc *p;
445
446 p = curproc;
447 if (p->p_pid == pid) {
448 PROC_LOCK(p);
449 return (p);
450 }
451 sx_slock(PIDHASHLOCK(pid));
452 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
453 if (p->p_pid == pid) {
454 PROC_LOCK(p);
455 if (p->p_state == PRS_NEW ||
456 (!zombie && p->p_state == PRS_ZOMBIE)) {
457 PROC_UNLOCK(p);
458 p = NULL;
459 }
460 break;
461 }
462 }
463 sx_sunlock(PIDHASHLOCK(pid));
464 return (p);
465}
466
467struct proc *
468pfind(pid_t pid)
469{
470
471 return (_pfind(pid, false));
472}
473
474/*
475 * Same as pfind but allow zombies.
476 */
477struct proc *
478pfind_any(pid_t pid)
479{
480
481 return (_pfind(pid, true));
482}
483
484/*
485 * Locate a process group by number.
486 * The caller must hold proctree_lock.
487 */
488struct pgrp *
489pgfind(pid_t pgid)
490{
491 struct pgrp *pgrp;
492
493 sx_assert(&proctree_lock, SX_LOCKED);
494
495 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
496 if (pgrp->pg_id == pgid) {
497 PGRP_LOCK(pgrp);
498 return (pgrp);
499 }
500 }
501 return (NULL);
502}
503
504/*
505 * Locate process and do additional manipulations, depending on flags.
506 */
507int
508pget(pid_t pid, int flags, struct proc **pp)
509{
510 struct proc *p;
511 struct thread *td1;
512 int error;
513
514 p = curproc;
515 if (p->p_pid == pid) {
516 PROC_LOCK(p);
517 } else {
518 p = NULL;
519 if (pid <= PID_MAX) {
520 if ((flags & PGET_NOTWEXIT) == 0)
521 p = pfind_any(pid);
522 else
523 p = pfind(pid);
524 } else if ((flags & PGET_NOTID) == 0) {
525 td1 = tdfind(pid, -1);
526 if (td1 != NULL)
527 p = td1->td_proc;
528 }
529 if (p == NULL)
530 return (ESRCH);
531 if ((flags & PGET_CANSEE) != 0) {
532 error = p_cansee(curthread, p);
533 if (error != 0)
534 goto errout;
535 }
536 }
537 if ((flags & PGET_CANDEBUG) != 0) {
538 error = p_candebug(curthread, p);
539 if (error != 0)
540 goto errout;
541 }
542 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
543 error = EPERM;
544 goto errout;
545 }
546 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
547 error = ESRCH;
548 goto errout;
549 }
550 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
551 /*
552 * XXXRW: Not clear ESRCH is the right error during proc
553 * execve().
554 */
555 error = ESRCH;
556 goto errout;
557 }
558 if ((flags & PGET_HOLD) != 0) {
559 _PHOLD(p);
560 PROC_UNLOCK(p);
561 }
562 *pp = p;
563 return (0);
564errout:
565 PROC_UNLOCK(p);
566 return (error);
567}
568
569/*
570 * Create a new process group.
571 * pgid must be equal to the pid of p.
572 * Begin a new session if required.
573 */
574int
575enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
576{
577
578 sx_assert(&proctree_lock, SX_XLOCKED);
579
580 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
581 KASSERT(p->p_pid == pgid,
582 ("enterpgrp: new pgrp and pid != pgid"));
583 KASSERT(pgfind(pgid) == NULL,
584 ("enterpgrp: pgrp with pgid exists"));
585 KASSERT(!SESS_LEADER(p),
586 ("enterpgrp: session leader attempted setpgrp"));
587
588 if (sess != NULL) {
589 /*
590 * new session
591 */
592 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
593 PROC_LOCK(p);
594 p->p_flag &= ~P_CONTROLT;
595 PROC_UNLOCK(p);
596 PGRP_LOCK(pgrp);
597 sess->s_leader = p;
598 sess->s_sid = p->p_pid;
599 proc_id_set(PROC_ID_SESSION, p->p_pid);
600 refcount_init(&sess->s_count, 1);
601 sess->s_ttyvp = NULL;
602 sess->s_ttydp = NULL;
603 sess->s_ttyp = NULL;
604 bcopy(p->p_session->s_login, sess->s_login,
605 sizeof(sess->s_login));
606 pgrp->pg_session = sess;
607 KASSERT(p == curproc,
608 ("enterpgrp: mksession and p != curproc"));
609 } else {
610 pgrp->pg_session = p->p_session;
611 sess_hold(pgrp->pg_session);
612 PGRP_LOCK(pgrp);
613 }
614 pgrp->pg_id = pgid;
615 proc_id_set(PROC_ID_GROUP, p->p_pid);
616 LIST_INIT(&pgrp->pg_members);
617 pgrp->pg_flags = 0;
618
619 /*
620 * As we have an exclusive lock of proctree_lock,
621 * this should not deadlock.
622 */
623 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
624 SLIST_INIT(&pgrp->pg_sigiolst);
625 PGRP_UNLOCK(pgrp);
626
627 doenterpgrp(p, pgrp);
628
629 return (0);
630}
631
632/*
633 * Move p to an existing process group
634 */
635int
636enterthispgrp(struct proc *p, struct pgrp *pgrp)
637{
638
639 sx_assert(&proctree_lock, SX_XLOCKED);
640 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
641 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
642 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
643 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
644 KASSERT(pgrp->pg_session == p->p_session,
645 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
646 __func__, pgrp->pg_session, p->p_session, p));
647 KASSERT(pgrp != p->p_pgrp,
648 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
649
650 doenterpgrp(p, pgrp);
651
652 return (0);
653}
654
655/*
656 * If true, any child of q which belongs to group pgrp, qualifies the
657 * process group pgrp as not orphaned.
658 */
659static bool
660isjobproc(struct proc *q, struct pgrp *pgrp)
661{
662 sx_assert(&proctree_lock, SX_LOCKED);
663
664 return (q->p_pgrp != pgrp &&
665 q->p_pgrp->pg_session == pgrp->pg_session);
666}
667
668static struct proc *
669jobc_reaper(struct proc *p)
670{
671 struct proc *pp;
672
673 sx_assert(&proctree_lock, SA_LOCKED);
674
675 for (pp = p;;) {
676 pp = pp->p_reaper;
677 if (pp->p_reaper == pp ||
678 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
679 return (pp);
680 }
681}
682
683static struct proc *
684jobc_parent(struct proc *p, struct proc *p_exiting)
685{
686 struct proc *pp;
687
688 sx_assert(&proctree_lock, SA_LOCKED);
689
690 pp = proc_realparent(p);
691 if (pp->p_pptr == NULL || pp == p_exiting ||
692 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
693 return (pp);
694 return (jobc_reaper(pp));
695}
696
697static int
698pgrp_calc_jobc(struct pgrp *pgrp)
699{
700 struct proc *q;
701 int cnt;
702
703#ifdef INVARIANTS
704 if (!mtx_owned(&pgrp->pg_mtx))
705 sx_assert(&proctree_lock, SA_LOCKED);
706#endif
707
708 cnt = 0;
709 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
710 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
711 q->p_pptr == NULL)
712 continue;
713 if (isjobproc(jobc_parent(q, NULL), pgrp))
714 cnt++;
715 }
716 return (cnt);
717}
718
719/*
720 * Move p to a process group
721 */
722static void
723doenterpgrp(struct proc *p, struct pgrp *pgrp)
724{
725 struct pgrp *savepgrp;
726 struct proc *pp;
727
728 sx_assert(&proctree_lock, SX_XLOCKED);
729 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
730 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
731 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
732 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
733
734 savepgrp = p->p_pgrp;
735 pp = jobc_parent(p, NULL);
736
737 PGRP_LOCK(pgrp);
738 PGRP_LOCK(savepgrp);
739 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
740 orphanpg(savepgrp);
741 PROC_LOCK(p);
742 LIST_REMOVE(p, p_pglist);
743 p->p_pgrp = pgrp;
744 PROC_UNLOCK(p);
745 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
746 if (isjobproc(pp, pgrp))
747 pgrp->pg_flags &= ~PGRP_ORPHANED;
748 PGRP_UNLOCK(savepgrp);
749 PGRP_UNLOCK(pgrp);
750 if (LIST_EMPTY(&savepgrp->pg_members))
751 pgdelete(savepgrp);
752}
753
754/*
755 * remove process from process group
756 */
757int
758leavepgrp(struct proc *p)
759{
760 struct pgrp *savepgrp;
761
762 sx_assert(&proctree_lock, SX_XLOCKED);
763 savepgrp = p->p_pgrp;
764 PGRP_LOCK(savepgrp);
765 PROC_LOCK(p);
766 LIST_REMOVE(p, p_pglist);
767 p->p_pgrp = NULL;
768 PROC_UNLOCK(p);
769 PGRP_UNLOCK(savepgrp);
770 if (LIST_EMPTY(&savepgrp->pg_members))
771 pgdelete(savepgrp);
772 return (0);
773}
774
775/*
776 * delete a process group
777 */
778static void
779pgdelete(struct pgrp *pgrp)
780{
781 struct session *savesess;
782 struct tty *tp;
783
784 sx_assert(&proctree_lock, SX_XLOCKED);
785 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
786 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
787
788 /*
789 * Reset any sigio structures pointing to us as a result of
790 * F_SETOWN with our pgid. The proctree lock ensures that
791 * new sigio structures will not be added after this point.
792 */
793 funsetownlst(&pgrp->pg_sigiolst);
794
795 PGRP_LOCK(pgrp);
796 tp = pgrp->pg_session->s_ttyp;
797 LIST_REMOVE(pgrp, pg_hash);
798 savesess = pgrp->pg_session;
799 PGRP_UNLOCK(pgrp);
800
801 /* Remove the reference to the pgrp before deallocating it. */
802 if (tp != NULL) {
803 tty_lock(tp);
804 tty_rel_pgrp(tp, pgrp);
805 }
806
807 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
808 uma_zfree(pgrp_zone, pgrp);
809 sess_release(savesess);
810}
811
812
813static void
814fixjobc_kill(struct proc *p)
815{
816 struct proc *q;
817 struct pgrp *pgrp;
818
819 sx_assert(&proctree_lock, SX_LOCKED);
820 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
821 pgrp = p->p_pgrp;
822 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
823 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
824
825 /*
826 * p no longer affects process group orphanage for children.
827 * It is marked by the flag because p is only physically
828 * removed from its process group on wait(2).
829 */
830 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
831 p->p_treeflag |= P_TREE_GRPEXITED;
832
833 /*
834 * Check if exiting p orphans its own group.
835 */
836 pgrp = p->p_pgrp;
837 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
838 PGRP_LOCK(pgrp);
839 if (pgrp_calc_jobc(pgrp) == 0)
840 orphanpg(pgrp);
841 PGRP_UNLOCK(pgrp);
842 }
843
844 /*
845 * Check this process' children to see whether they qualify
846 * their process groups after reparenting to reaper.
847 */
848 LIST_FOREACH(q, &p->p_children, p_sibling) {
849 pgrp = q->p_pgrp;
850 PGRP_LOCK(pgrp);
851 if (pgrp_calc_jobc(pgrp) == 0) {
852 /*
853 * We want to handle exactly the children that
854 * has p as realparent. Then, when calculating
855 * jobc_parent for children, we should ignore
856 * P_TREE_GRPEXITED flag already set on p.
857 */
858 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
859 orphanpg(pgrp);
860 } else
861 pgrp->pg_flags &= ~PGRP_ORPHANED;
862 PGRP_UNLOCK(pgrp);
863 }
864 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
865 pgrp = q->p_pgrp;
866 PGRP_LOCK(pgrp);
867 if (pgrp_calc_jobc(pgrp) == 0) {
868 if (isjobproc(p, pgrp))
869 orphanpg(pgrp);
870 } else
871 pgrp->pg_flags &= ~PGRP_ORPHANED;
872 PGRP_UNLOCK(pgrp);
873 }
874}
875
876void
878{
879 struct session *sp;
880 struct tty *tp;
881 struct proc *p;
882 struct vnode *ttyvp;
883
884 p = curproc;
885 MPASS(p->p_flag & P_WEXIT);
886 sx_assert(&proctree_lock, SX_LOCKED);
887
888 if (SESS_LEADER(p)) {
889 sp = p->p_session;
890
891 /*
892 * s_ttyp is not zero'd; we use this to indicate that
893 * the session once had a controlling terminal. (for
894 * logging and informational purposes)
895 */
896 SESS_LOCK(sp);
897 ttyvp = sp->s_ttyvp;
898 tp = sp->s_ttyp;
899 sp->s_ttyvp = NULL;
900 sp->s_ttydp = NULL;
901 sp->s_leader = NULL;
902 SESS_UNLOCK(sp);
903
904 /*
905 * Signal foreground pgrp and revoke access to
906 * controlling terminal if it has not been revoked
907 * already.
908 *
909 * Because the TTY may have been revoked in the mean
910 * time and could already have a new session associated
911 * with it, make sure we don't send a SIGHUP to a
912 * foreground process group that does not belong to this
913 * session.
914 */
915
916 if (tp != NULL) {
917 tty_lock(tp);
918 if (tp->t_session == sp)
919 tty_signal_pgrp(tp, SIGHUP);
920 tty_unlock(tp);
921 }
922
923 if (ttyvp != NULL) {
924 sx_xunlock(&proctree_lock);
925 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
926 VOP_REVOKE(ttyvp, REVOKEALL);
927 VOP_UNLOCK(ttyvp);
928 }
929 devfs_ctty_unref(ttyvp);
930 sx_xlock(&proctree_lock);
931 }
932 }
933 fixjobc_kill(p);
934}
935
936/*
937 * A process group has become orphaned, mark it as such for signal
938 * delivery code. If there are any stopped processes in the group,
939 * hang-up all process in that group.
940 */
941static void
942orphanpg(struct pgrp *pg)
943{
944 struct proc *p;
945
946 PGRP_LOCK_ASSERT(pg, MA_OWNED);
947
948 pg->pg_flags |= PGRP_ORPHANED;
949
950 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
951 PROC_LOCK(p);
952 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
953 PROC_UNLOCK(p);
954 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
955 PROC_LOCK(p);
956 kern_psignal(p, SIGHUP);
957 kern_psignal(p, SIGCONT);
958 PROC_UNLOCK(p);
959 }
960 return;
961 }
962 PROC_UNLOCK(p);
963 }
964}
965
966void
967sess_hold(struct session *s)
968{
969
970 refcount_acquire(&s->s_count);
971}
972
973void
974sess_release(struct session *s)
975{
976
977 if (refcount_release(&s->s_count)) {
978 if (s->s_ttyp != NULL) {
979 tty_lock(s->s_ttyp);
980 tty_rel_sess(s->s_ttyp, s);
981 }
982 proc_id_clear(PROC_ID_SESSION, s->s_sid);
983 mtx_destroy(&s->s_mtx);
984 free(s, M_SESSION);
985 }
986}
987
988#ifdef DDB
989
990static void
991db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
992{
993 db_printf(
994 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
995 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
996 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
997 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
998}
999
1000DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1001{
1002 struct pgrp *pgrp;
1003 struct proc *p;
1004 int i;
1005
1006 for (i = 0; i <= pgrphash; i++) {
1007 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1008 db_printf("indx %d\n", i);
1009 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1010 db_printf(
1011 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1012 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1013 pgrp->pg_session->s_count,
1014 LIST_FIRST(&pgrp->pg_members));
1015 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1016 db_print_pgrp_one(pgrp, p);
1017 }
1018 }
1019 }
1020}
1021#endif /* DDB */
1022
1023/*
1024 * Calculate the kinfo_proc members which contain process-wide
1025 * informations.
1026 * Must be called with the target process locked.
1027 */
1028static void
1029fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1030{
1031 struct thread *td;
1032
1033 PROC_LOCK_ASSERT(p, MA_OWNED);
1034
1035 kp->ki_estcpu = 0;
1036 kp->ki_pctcpu = 0;
1037 FOREACH_THREAD_IN_PROC(p, td) {
1038 thread_lock(td);
1039 kp->ki_pctcpu += sched_pctcpu(td);
1040 kp->ki_estcpu += sched_estcpu(td);
1041 thread_unlock(td);
1042 }
1043}
1044
1045/*
1046 * Fill in any information that is common to all threads in the process.
1047 * Must be called with the target process locked.
1048 */
1049static void
1050fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1051{
1052 struct thread *td0;
1053 struct ucred *cred;
1054 struct sigacts *ps;
1055 struct timeval boottime;
1056
1057 PROC_LOCK_ASSERT(p, MA_OWNED);
1058
1059 kp->ki_structsize = sizeof(*kp);
1060 kp->ki_paddr = p;
1061 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1062 kp->ki_args = p->p_args;
1063 kp->ki_textvp = p->p_textvp;
1064#ifdef KTRACE
1065 kp->ki_tracep = ktr_get_tracevp(p, false);
1066 kp->ki_traceflag = p->p_traceflag;
1067#endif
1068 kp->ki_fd = p->p_fd;
1069 kp->ki_pd = p->p_pd;
1070 kp->ki_vmspace = p->p_vmspace;
1071 kp->ki_flag = p->p_flag;
1072 kp->ki_flag2 = p->p_flag2;
1073 cred = p->p_ucred;
1074 if (cred) {
1075 kp->ki_uid = cred->cr_uid;
1076 kp->ki_ruid = cred->cr_ruid;
1077 kp->ki_svuid = cred->cr_svuid;
1078 kp->ki_cr_flags = 0;
1079 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1080 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1081 /* XXX bde doesn't like KI_NGROUPS */
1082 if (cred->cr_ngroups > KI_NGROUPS) {
1083 kp->ki_ngroups = KI_NGROUPS;
1084 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1085 } else
1086 kp->ki_ngroups = cred->cr_ngroups;
1087 bcopy(cred->cr_groups, kp->ki_groups,
1088 kp->ki_ngroups * sizeof(gid_t));
1089 kp->ki_rgid = cred->cr_rgid;
1090 kp->ki_svgid = cred->cr_svgid;
1091 /* If jailed(cred), emulate the old P_JAILED flag. */
1092 if (jailed(cred)) {
1093 kp->ki_flag |= P_JAILED;
1094 /* If inside the jail, use 0 as a jail ID. */
1095 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1096 kp->ki_jid = cred->cr_prison->pr_id;
1097 }
1098 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1099 sizeof(kp->ki_loginclass));
1100 }
1101 ps = p->p_sigacts;
1102 if (ps) {
1103 mtx_lock(&ps->ps_mtx);
1104 kp->ki_sigignore = ps->ps_sigignore;
1105 kp->ki_sigcatch = ps->ps_sigcatch;
1106 mtx_unlock(&ps->ps_mtx);
1107 }
1108 if (p->p_state != PRS_NEW &&
1109 p->p_state != PRS_ZOMBIE &&
1110 p->p_vmspace != NULL) {
1111 struct vmspace *vm = p->p_vmspace;
1112
1113 kp->ki_size = vm->vm_map.size;
1114 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1115 FOREACH_THREAD_IN_PROC(p, td0) {
1116 if (!TD_IS_SWAPPED(td0))
1117 kp->ki_rssize += td0->td_kstack_pages;
1118 }
1119 kp->ki_swrss = vm->vm_swrss;
1120 kp->ki_tsize = vm->vm_tsize;
1121 kp->ki_dsize = vm->vm_dsize;
1122 kp->ki_ssize = vm->vm_ssize;
1123 } else if (p->p_state == PRS_ZOMBIE)
1124 kp->ki_stat = SZOMB;
1125 if (kp->ki_flag & P_INMEM)
1126 kp->ki_sflag = PS_INMEM;
1127 else
1128 kp->ki_sflag = 0;
1129 /* Calculate legacy swtime as seconds since 'swtick'. */
1130 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1131 kp->ki_pid = p->p_pid;
1132 kp->ki_nice = p->p_nice;
1133 kp->ki_fibnum = p->p_fibnum;
1134 kp->ki_start = p->p_stats->p_start;
1135 getboottime(&boottime);
1136 timevaladd(&kp->ki_start, &boottime);
1137 PROC_STATLOCK(p);
1138 rufetch(p, &kp->ki_rusage);
1139 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1140 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1141 PROC_STATUNLOCK(p);
1142 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1143 /* Some callers want child times in a single value. */
1144 kp->ki_childtime = kp->ki_childstime;
1145 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1146
1147 FOREACH_THREAD_IN_PROC(p, td0)
1148 kp->ki_cow += td0->td_cow;
1149
1150 if (p->p_comm[0] != '\0')
1151 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1152 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1153 p->p_sysent->sv_name[0] != '\0')
1154 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1155 kp->ki_siglist = p->p_siglist;
1156 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1157 kp->ki_acflag = p->p_acflag;
1158 kp->ki_lock = p->p_lock;
1159 if (p->p_pptr) {
1160 kp->ki_ppid = p->p_oppid;
1161 if (p->p_flag & P_TRACED)
1162 kp->ki_tracer = p->p_pptr->p_pid;
1163 }
1164}
1165
1166/*
1167 * Fill job-related process information.
1168 */
1169static void
1170fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1171{
1172 struct tty *tp;
1173 struct session *sp;
1174 struct pgrp *pgrp;
1175
1176 sx_assert(&proctree_lock, SA_LOCKED);
1177 PROC_LOCK_ASSERT(p, MA_OWNED);
1178
1179 pgrp = p->p_pgrp;
1180 if (pgrp == NULL)
1181 return;
1182
1183 kp->ki_pgid = pgrp->pg_id;
1184 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1185
1186 sp = pgrp->pg_session;
1187 tp = NULL;
1188
1189 if (sp != NULL) {
1190 kp->ki_sid = sp->s_sid;
1191 SESS_LOCK(sp);
1192 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1193 if (sp->s_ttyvp)
1194 kp->ki_kiflag |= KI_CTTY;
1195 if (SESS_LEADER(p))
1196 kp->ki_kiflag |= KI_SLEADER;
1197 tp = sp->s_ttyp;
1198 SESS_UNLOCK(sp);
1199 }
1200
1201 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1202 kp->ki_tdev = tty_udev(tp);
1203 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1204 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1205 if (tp->t_session)
1206 kp->ki_tsid = tp->t_session->s_sid;
1207 } else {
1208 kp->ki_tdev = NODEV;
1209 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1210 }
1211}
1212
1213/*
1214 * Fill in information that is thread specific. Must be called with
1215 * target process locked. If 'preferthread' is set, overwrite certain
1216 * process-related fields that are maintained for both threads and
1217 * processes.
1218 */
1219static void
1220fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1221{
1222 struct proc *p;
1223
1224 p = td->td_proc;
1225 kp->ki_tdaddr = td;
1226 PROC_LOCK_ASSERT(p, MA_OWNED);
1227
1228 if (preferthread)
1229 PROC_STATLOCK(p);
1230 thread_lock(td);
1231 if (td->td_wmesg != NULL)
1232 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1233 else
1234 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1235 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1236 sizeof(kp->ki_tdname)) {
1237 strlcpy(kp->ki_moretdname,
1238 td->td_name + sizeof(kp->ki_tdname) - 1,
1239 sizeof(kp->ki_moretdname));
1240 } else {
1241 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1242 }
1243 if (TD_ON_LOCK(td)) {
1244 kp->ki_kiflag |= KI_LOCKBLOCK;
1245 strlcpy(kp->ki_lockname, td->td_lockname,
1246 sizeof(kp->ki_lockname));
1247 } else {
1248 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1249 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1250 }
1251
1252 if (p->p_state == PRS_NORMAL) { /* approximate. */
1253 if (TD_ON_RUNQ(td) ||
1254 TD_CAN_RUN(td) ||
1255 TD_IS_RUNNING(td)) {
1256 kp->ki_stat = SRUN;
1257 } else if (P_SHOULDSTOP(p)) {
1258 kp->ki_stat = SSTOP;
1259 } else if (TD_IS_SLEEPING(td)) {
1260 kp->ki_stat = SSLEEP;
1261 } else if (TD_ON_LOCK(td)) {
1262 kp->ki_stat = SLOCK;
1263 } else {
1264 kp->ki_stat = SWAIT;
1265 }
1266 } else if (p->p_state == PRS_ZOMBIE) {
1267 kp->ki_stat = SZOMB;
1268 } else {
1269 kp->ki_stat = SIDL;
1270 }
1271
1272 /* Things in the thread */
1273 kp->ki_wchan = td->td_wchan;
1274 kp->ki_pri.pri_level = td->td_priority;
1275 kp->ki_pri.pri_native = td->td_base_pri;
1276
1277 /*
1278 * Note: legacy fields; clamp at the old NOCPU value and/or
1279 * the maximum u_char CPU value.
1280 */
1281 if (td->td_lastcpu == NOCPU)
1282 kp->ki_lastcpu_old = NOCPU_OLD;
1283 else if (td->td_lastcpu > MAXCPU_OLD)
1284 kp->ki_lastcpu_old = MAXCPU_OLD;
1285 else
1286 kp->ki_lastcpu_old = td->td_lastcpu;
1287
1288 if (td->td_oncpu == NOCPU)
1289 kp->ki_oncpu_old = NOCPU_OLD;
1290 else if (td->td_oncpu > MAXCPU_OLD)
1291 kp->ki_oncpu_old = MAXCPU_OLD;
1292 else
1293 kp->ki_oncpu_old = td->td_oncpu;
1294
1295 kp->ki_lastcpu = td->td_lastcpu;
1296 kp->ki_oncpu = td->td_oncpu;
1297 kp->ki_tdflags = td->td_flags;
1298 kp->ki_tid = td->td_tid;
1299 kp->ki_numthreads = p->p_numthreads;
1300 kp->ki_pcb = td->td_pcb;
1301 kp->ki_kstack = (void *)td->td_kstack;
1302 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1303 kp->ki_pri.pri_class = td->td_pri_class;
1304 kp->ki_pri.pri_user = td->td_user_pri;
1305
1306 if (preferthread) {
1307 rufetchtd(td, &kp->ki_rusage);
1308 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1309 kp->ki_pctcpu = sched_pctcpu(td);
1310 kp->ki_estcpu = sched_estcpu(td);
1311 kp->ki_cow = td->td_cow;
1312 }
1313
1314 /* We can't get this anymore but ps etc never used it anyway. */
1315 kp->ki_rqindex = 0;
1316
1317 if (preferthread)
1318 kp->ki_siglist = td->td_siglist;
1319 kp->ki_sigmask = td->td_sigmask;
1320 thread_unlock(td);
1321 if (preferthread)
1322 PROC_STATUNLOCK(p);
1323}
1324
1325/*
1326 * Fill in a kinfo_proc structure for the specified process.
1327 * Must be called with the target process locked.
1328 */
1329void
1330fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1331{
1332 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1333
1334 bzero(kp, sizeof(*kp));
1335
1337 fill_kinfo_proc_only(p, kp);
1338 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1339 fill_kinfo_aggregate(p, kp);
1340}
1341
1342struct pstats *
1344{
1345
1346 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1347}
1348
1349/*
1350 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1351 */
1352void
1353pstats_fork(struct pstats *src, struct pstats *dst)
1354{
1355
1356 bzero(&dst->pstat_startzero,
1357 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1358 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1359 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1360}
1361
1362void
1363pstats_free(struct pstats *ps)
1364{
1365
1366 free(ps, M_SUBPROC);
1367}
1368
1369#ifdef COMPAT_FREEBSD32
1370
1371/*
1372 * This function is typically used to copy out the kernel address, so
1373 * it can be replaced by assignment of zero.
1374 */
1375static inline uint32_t
1376ptr32_trim(const void *ptr)
1377{
1378 uintptr_t uptr;
1379
1380 uptr = (uintptr_t)ptr;
1381 return ((uptr > UINT_MAX) ? 0 : uptr);
1382}
1383
1384#define PTRTRIM_CP(src,dst,fld) \
1385 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1386
1387static void
1388freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1389{
1390 int i;
1391
1392 bzero(ki32, sizeof(struct kinfo_proc32));
1393 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1394 CP(*ki, *ki32, ki_layout);
1395 PTRTRIM_CP(*ki, *ki32, ki_args);
1396 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1397 PTRTRIM_CP(*ki, *ki32, ki_addr);
1398 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1399 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1400 PTRTRIM_CP(*ki, *ki32, ki_fd);
1401 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1402 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1403 CP(*ki, *ki32, ki_pid);
1404 CP(*ki, *ki32, ki_ppid);
1405 CP(*ki, *ki32, ki_pgid);
1406 CP(*ki, *ki32, ki_tpgid);
1407 CP(*ki, *ki32, ki_sid);
1408 CP(*ki, *ki32, ki_tsid);
1409 CP(*ki, *ki32, ki_jobc);
1410 CP(*ki, *ki32, ki_tdev);
1411 CP(*ki, *ki32, ki_tdev_freebsd11);
1412 CP(*ki, *ki32, ki_siglist);
1413 CP(*ki, *ki32, ki_sigmask);
1414 CP(*ki, *ki32, ki_sigignore);
1415 CP(*ki, *ki32, ki_sigcatch);
1416 CP(*ki, *ki32, ki_uid);
1417 CP(*ki, *ki32, ki_ruid);
1418 CP(*ki, *ki32, ki_svuid);
1419 CP(*ki, *ki32, ki_rgid);
1420 CP(*ki, *ki32, ki_svgid);
1421 CP(*ki, *ki32, ki_ngroups);
1422 for (i = 0; i < KI_NGROUPS; i++)
1423 CP(*ki, *ki32, ki_groups[i]);
1424 CP(*ki, *ki32, ki_size);
1425 CP(*ki, *ki32, ki_rssize);
1426 CP(*ki, *ki32, ki_swrss);
1427 CP(*ki, *ki32, ki_tsize);
1428 CP(*ki, *ki32, ki_dsize);
1429 CP(*ki, *ki32, ki_ssize);
1430 CP(*ki, *ki32, ki_xstat);
1431 CP(*ki, *ki32, ki_acflag);
1432 CP(*ki, *ki32, ki_pctcpu);
1433 CP(*ki, *ki32, ki_estcpu);
1434 CP(*ki, *ki32, ki_slptime);
1435 CP(*ki, *ki32, ki_swtime);
1436 CP(*ki, *ki32, ki_cow);
1437 CP(*ki, *ki32, ki_runtime);
1438 TV_CP(*ki, *ki32, ki_start);
1439 TV_CP(*ki, *ki32, ki_childtime);
1440 CP(*ki, *ki32, ki_flag);
1441 CP(*ki, *ki32, ki_kiflag);
1442 CP(*ki, *ki32, ki_traceflag);
1443 CP(*ki, *ki32, ki_stat);
1444 CP(*ki, *ki32, ki_nice);
1445 CP(*ki, *ki32, ki_lock);
1446 CP(*ki, *ki32, ki_rqindex);
1447 CP(*ki, *ki32, ki_oncpu);
1448 CP(*ki, *ki32, ki_lastcpu);
1449
1450 /* XXX TODO: wrap cpu value as appropriate */
1451 CP(*ki, *ki32, ki_oncpu_old);
1452 CP(*ki, *ki32, ki_lastcpu_old);
1453
1454 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1455 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1456 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1457 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1458 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1459 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1460 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1461 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1462 CP(*ki, *ki32, ki_tracer);
1463 CP(*ki, *ki32, ki_flag2);
1464 CP(*ki, *ki32, ki_fibnum);
1465 CP(*ki, *ki32, ki_cr_flags);
1466 CP(*ki, *ki32, ki_jid);
1467 CP(*ki, *ki32, ki_numthreads);
1468 CP(*ki, *ki32, ki_tid);
1469 CP(*ki, *ki32, ki_pri);
1470 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1471 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1472 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1473 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1474 PTRTRIM_CP(*ki, *ki32, ki_udata);
1475 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1476 CP(*ki, *ki32, ki_sflag);
1477 CP(*ki, *ki32, ki_tdflags);
1478}
1479#endif
1480
1481static ssize_t
1482kern_proc_out_size(struct proc *p, int flags)
1483{
1484 ssize_t size = 0;
1485
1486 PROC_LOCK_ASSERT(p, MA_OWNED);
1487
1488 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1489#ifdef COMPAT_FREEBSD32
1490 if ((flags & KERN_PROC_MASK32) != 0) {
1491 size += sizeof(struct kinfo_proc32);
1492 } else
1493#endif
1494 size += sizeof(struct kinfo_proc);
1495 } else {
1496#ifdef COMPAT_FREEBSD32
1497 if ((flags & KERN_PROC_MASK32) != 0)
1498 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1499 else
1500#endif
1501 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1502 }
1503 PROC_UNLOCK(p);
1504 return (size);
1505}
1506
1507int
1508kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1509{
1510 struct thread *td;
1511 struct kinfo_proc ki;
1512#ifdef COMPAT_FREEBSD32
1513 struct kinfo_proc32 ki32;
1514#endif
1515 int error;
1516
1517 PROC_LOCK_ASSERT(p, MA_OWNED);
1518 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1519
1520 error = 0;
1521 fill_kinfo_proc(p, &ki);
1522 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1523#ifdef COMPAT_FREEBSD32
1524 if ((flags & KERN_PROC_MASK32) != 0) {
1525 freebsd32_kinfo_proc_out(&ki, &ki32);
1526 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1527 error = ENOMEM;
1528 } else
1529#endif
1530 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1531 error = ENOMEM;
1532 } else {
1533 FOREACH_THREAD_IN_PROC(p, td) {
1534 fill_kinfo_thread(td, &ki, 1);
1535#ifdef COMPAT_FREEBSD32
1536 if ((flags & KERN_PROC_MASK32) != 0) {
1537 freebsd32_kinfo_proc_out(&ki, &ki32);
1538 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1539 error = ENOMEM;
1540 } else
1541#endif
1542 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1543 error = ENOMEM;
1544 if (error != 0)
1545 break;
1546 }
1547 }
1548 PROC_UNLOCK(p);
1549 return (error);
1550}
1551
1552static int
1553sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1554{
1555 struct sbuf sb;
1556 struct kinfo_proc ki;
1557 int error, error2;
1558
1559 if (req->oldptr == NULL)
1560 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1561
1562 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1563 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1564 error = kern_proc_out(p, &sb, flags);
1565 error2 = sbuf_finish(&sb);
1566 sbuf_delete(&sb);
1567 if (error != 0)
1568 return (error);
1569 else if (error2 != 0)
1570 return (error2);
1571 return (0);
1572}
1573
1574int
1575proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1576{
1577 struct proc *p;
1578 int error, i, j;
1579
1580 for (i = 0; i < pidhashlock + 1; i++) {
1581 sx_slock(&proctree_lock);
1582 sx_slock(&pidhashtbl_lock[i]);
1583 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1584 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1585 if (p->p_state == PRS_NEW)
1586 continue;
1587 error = cb(p, cbarg);
1588 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1589 if (error != 0) {
1590 sx_sunlock(&pidhashtbl_lock[i]);
1591 sx_sunlock(&proctree_lock);
1592 return (error);
1593 }
1594 }
1595 }
1596 sx_sunlock(&pidhashtbl_lock[i]);
1597 sx_sunlock(&proctree_lock);
1598 }
1599 return (0);
1600}
1601
1603 struct sysctl_req *req;
1606 int *name;
1607};
1608
1609static int
1610sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1611{
1612 struct kern_proc_out_args *arg = origarg;
1613 int *name = arg->name;
1614 int oid_number = arg->oid_number;
1615 int flags = arg->flags;
1616 struct sysctl_req *req = arg->req;
1617 int error = 0;
1618
1619 PROC_LOCK(p);
1620
1621 KASSERT(p->p_ucred != NULL,
1622 ("process credential is NULL for non-NEW proc"));
1623 /*
1624 * Show a user only appropriate processes.
1625 */
1626 if (p_cansee(curthread, p))
1627 goto skip;
1628 /*
1629 * TODO - make more efficient (see notes below).
1630 * do by session.
1631 */
1632 switch (oid_number) {
1633 case KERN_PROC_GID:
1634 if (p->p_ucred->cr_gid != (gid_t)name[0])
1635 goto skip;
1636 break;
1637
1638 case KERN_PROC_PGRP:
1639 /* could do this by traversing pgrp */
1640 if (p->p_pgrp == NULL ||
1641 p->p_pgrp->pg_id != (pid_t)name[0])
1642 goto skip;
1643 break;
1644
1645 case KERN_PROC_RGID:
1646 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1647 goto skip;
1648 break;
1649
1650 case KERN_PROC_SESSION:
1651 if (p->p_session == NULL ||
1652 p->p_session->s_sid != (pid_t)name[0])
1653 goto skip;
1654 break;
1655
1656 case KERN_PROC_TTY:
1657 if ((p->p_flag & P_CONTROLT) == 0 ||
1658 p->p_session == NULL)
1659 goto skip;
1660 /* XXX proctree_lock */
1661 SESS_LOCK(p->p_session);
1662 if (p->p_session->s_ttyp == NULL ||
1663 tty_udev(p->p_session->s_ttyp) !=
1664 (dev_t)name[0]) {
1665 SESS_UNLOCK(p->p_session);
1666 goto skip;
1667 }
1668 SESS_UNLOCK(p->p_session);
1669 break;
1670
1671 case KERN_PROC_UID:
1672 if (p->p_ucred->cr_uid != (uid_t)name[0])
1673 goto skip;
1674 break;
1675
1676 case KERN_PROC_RUID:
1677 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1678 goto skip;
1679 break;
1680
1681 case KERN_PROC_PROC:
1682 break;
1683
1684 default:
1685 break;
1686 }
1687 error = sysctl_out_proc(p, req, flags);
1688 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1689 return (error);
1690skip:
1691 PROC_UNLOCK(p);
1692 return (0);
1693}
1694
1695static int
1696sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1697{
1698 struct kern_proc_out_args iterarg;
1699 int *name = (int *)arg1;
1700 u_int namelen = arg2;
1701 struct proc *p;
1702 int flags, oid_number;
1703 int error = 0;
1704
1705 oid_number = oidp->oid_number;
1706 if (oid_number != KERN_PROC_ALL &&
1707 (oid_number & KERN_PROC_INC_THREAD) == 0)
1708 flags = KERN_PROC_NOTHREADS;
1709 else {
1710 flags = 0;
1711 oid_number &= ~KERN_PROC_INC_THREAD;
1712 }
1713#ifdef COMPAT_FREEBSD32
1714 if (req->flags & SCTL_MASK32)
1715 flags |= KERN_PROC_MASK32;
1716#endif
1717 if (oid_number == KERN_PROC_PID) {
1718 if (namelen != 1)
1719 return (EINVAL);
1720 error = sysctl_wire_old_buffer(req, 0);
1721 if (error)
1722 return (error);
1723 sx_slock(&proctree_lock);
1724 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1725 if (error == 0)
1726 error = sysctl_out_proc(p, req, flags);
1727 sx_sunlock(&proctree_lock);
1728 return (error);
1729 }
1730
1731 switch (oid_number) {
1732 case KERN_PROC_ALL:
1733 if (namelen != 0)
1734 return (EINVAL);
1735 break;
1736 case KERN_PROC_PROC:
1737 if (namelen != 0 && namelen != 1)
1738 return (EINVAL);
1739 break;
1740 default:
1741 if (namelen != 1)
1742 return (EINVAL);
1743 break;
1744 }
1745
1746 if (req->oldptr == NULL) {
1747 /* overestimate by 5 procs */
1748 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1749 if (error)
1750 return (error);
1751 } else {
1752 error = sysctl_wire_old_buffer(req, 0);
1753 if (error != 0)
1754 return (error);
1755 }
1756 iterarg.flags = flags;
1757 iterarg.oid_number = oid_number;
1758 iterarg.req = req;
1759 iterarg.name = name;
1760 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1761 return (error);
1762}
1763
1764struct pargs *
1766{
1767 struct pargs *pa;
1768
1769 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1770 M_WAITOK);
1771 refcount_init(&pa->ar_ref, 1);
1772 pa->ar_length = len;
1773 return (pa);
1774}
1775
1776static void
1777pargs_free(struct pargs *pa)
1778{
1779
1780 free(pa, M_PARGS);
1781}
1782
1783void
1784pargs_hold(struct pargs *pa)
1785{
1786
1787 if (pa == NULL)
1788 return;
1789 refcount_acquire(&pa->ar_ref);
1790}
1791
1792void
1793pargs_drop(struct pargs *pa)
1794{
1795
1796 if (pa == NULL)
1797 return;
1798 if (refcount_release(&pa->ar_ref))
1799 pargs_free(pa);
1800}
1801
1802static int
1803proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1804 size_t len)
1805{
1806 ssize_t n;
1807
1808 /*
1809 * This may return a short read if the string is shorter than the chunk
1810 * and is aligned at the end of the page, and the following page is not
1811 * mapped.
1812 */
1813 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1814 if (n <= 0)
1815 return (ENOMEM);
1816 return (0);
1817}
1818
1819#define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1820
1825};
1826
1827#ifdef COMPAT_FREEBSD32
1828static int
1829get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1830 size_t *vsizep, enum proc_vector_type type)
1831{
1832 struct freebsd32_ps_strings pss;
1833 Elf32_Auxinfo aux;
1834 vm_offset_t vptr, ptr;
1835 uint32_t *proc_vector32;
1836 char **proc_vector;
1837 size_t vsize, size;
1838 int i, error;
1839
1840 error = 0;
1841 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1842 sizeof(pss))
1843 return (ENOMEM);
1844 switch (type) {
1845 case PROC_ARG:
1846 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1847 vsize = pss.ps_nargvstr;
1848 if (vsize > ARG_MAX)
1849 return (ENOEXEC);
1850 size = vsize * sizeof(int32_t);
1851 break;
1852 case PROC_ENV:
1853 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1854 vsize = pss.ps_nenvstr;
1855 if (vsize > ARG_MAX)
1856 return (ENOEXEC);
1857 size = vsize * sizeof(int32_t);
1858 break;
1859 case PROC_AUX:
1860 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1861 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1862 if (vptr % 4 != 0)
1863 return (ENOEXEC);
1864 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1865 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1866 sizeof(aux))
1867 return (ENOMEM);
1868 if (aux.a_type == AT_NULL)
1869 break;
1870 ptr += sizeof(aux);
1871 }
1872 if (aux.a_type != AT_NULL)
1873 return (ENOEXEC);
1874 vsize = i + 1;
1875 size = vsize * sizeof(aux);
1876 break;
1877 default:
1878 KASSERT(0, ("Wrong proc vector type: %d", type));
1879 return (EINVAL);
1880 }
1881 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1882 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1883 error = ENOMEM;
1884 goto done;
1885 }
1886 if (type == PROC_AUX) {
1887 *proc_vectorp = (char **)proc_vector32;
1888 *vsizep = vsize;
1889 return (0);
1890 }
1891 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1892 for (i = 0; i < (int)vsize; i++)
1893 proc_vector[i] = PTRIN(proc_vector32[i]);
1894 *proc_vectorp = proc_vector;
1895 *vsizep = vsize;
1896done:
1897 free(proc_vector32, M_TEMP);
1898 return (error);
1899}
1900#endif
1901
1902static int
1903get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1904 size_t *vsizep, enum proc_vector_type type)
1905{
1906 struct ps_strings pss;
1907 Elf_Auxinfo aux;
1908 vm_offset_t vptr, ptr;
1909 char **proc_vector;
1910 size_t vsize, size;
1911 int i;
1912
1913#ifdef COMPAT_FREEBSD32
1914 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1915 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1916#endif
1917 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1918 sizeof(pss))
1919 return (ENOMEM);
1920 switch (type) {
1921 case PROC_ARG:
1922 vptr = (vm_offset_t)pss.ps_argvstr;
1923 vsize = pss.ps_nargvstr;
1924 if (vsize > ARG_MAX)
1925 return (ENOEXEC);
1926 size = vsize * sizeof(char *);
1927 break;
1928 case PROC_ENV:
1929 vptr = (vm_offset_t)pss.ps_envstr;
1930 vsize = pss.ps_nenvstr;
1931 if (vsize > ARG_MAX)
1932 return (ENOEXEC);
1933 size = vsize * sizeof(char *);
1934 break;
1935 case PROC_AUX:
1936 /*
1937 * The aux array is just above env array on the stack. Check
1938 * that the address is naturally aligned.
1939 */
1940 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1941 * sizeof(char *);
1942#if __ELF_WORD_SIZE == 64
1943 if (vptr % sizeof(uint64_t) != 0)
1944#else
1945 if (vptr % sizeof(uint32_t) != 0)
1946#endif
1947 return (ENOEXEC);
1948 /*
1949 * We count the array size reading the aux vectors from the
1950 * stack until AT_NULL vector is returned. So (to keep the code
1951 * simple) we read the process stack twice: the first time here
1952 * to find the size and the second time when copying the vectors
1953 * to the allocated proc_vector.
1954 */
1955 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1956 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1957 sizeof(aux))
1958 return (ENOMEM);
1959 if (aux.a_type == AT_NULL)
1960 break;
1961 ptr += sizeof(aux);
1962 }
1963 /*
1964 * If the PROC_AUXV_MAX entries are iterated over, and we have
1965 * not reached AT_NULL, it is most likely we are reading wrong
1966 * data: either the process doesn't have auxv array or data has
1967 * been modified. Return the error in this case.
1968 */
1969 if (aux.a_type != AT_NULL)
1970 return (ENOEXEC);
1971 vsize = i + 1;
1972 size = vsize * sizeof(aux);
1973 break;
1974 default:
1975 KASSERT(0, ("Wrong proc vector type: %d", type));
1976 return (EINVAL); /* In case we are built without INVARIANTS. */
1977 }
1978 proc_vector = malloc(size, M_TEMP, M_WAITOK);
1979 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1980 free(proc_vector, M_TEMP);
1981 return (ENOMEM);
1982 }
1983 *proc_vectorp = proc_vector;
1984 *vsizep = vsize;
1985
1986 return (0);
1987}
1988
1989#define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
1990
1991static int
1992get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1994{
1995 size_t done, len, nchr, vsize;
1996 int error, i;
1997 char **proc_vector, *sptr;
1998 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1999
2000 PROC_ASSERT_HELD(p);
2001
2002 /*
2003 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2004 */
2005 nchr = 2 * (PATH_MAX + ARG_MAX);
2006
2007 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2008 if (error != 0)
2009 return (error);
2010 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2011 /*
2012 * The program may have scribbled into its argv array, e.g. to
2013 * remove some arguments. If that has happened, break out
2014 * before trying to read from NULL.
2015 */
2016 if (proc_vector[i] == NULL)
2017 break;
2018 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2019 error = proc_read_string(td, p, sptr, pss_string,
2020 sizeof(pss_string));
2021 if (error != 0)
2022 goto done;
2023 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2024 if (done + len >= nchr)
2025 len = nchr - done - 1;
2026 sbuf_bcat(sb, pss_string, len);
2027 if (len != GET_PS_STRINGS_CHUNK_SZ)
2028 break;
2030 }
2031 sbuf_bcat(sb, "", 1);
2032 done += len + 1;
2033 }
2034done:
2035 free(proc_vector, M_TEMP);
2036 return (error);
2037}
2038
2039int
2040proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2041{
2042
2043 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2044}
2045
2046int
2047proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2048{
2049
2050 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2051}
2052
2053int
2054proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2055{
2056 size_t vsize, size;
2057 char **auxv;
2058 int error;
2059
2060 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2061 if (error == 0) {
2062#ifdef COMPAT_FREEBSD32
2063 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2064 size = vsize * sizeof(Elf32_Auxinfo);
2065 else
2066#endif
2067 size = vsize * sizeof(Elf_Auxinfo);
2068 if (sbuf_bcat(sb, auxv, size) != 0)
2069 error = ENOMEM;
2070 free(auxv, M_TEMP);
2071 }
2072 return (error);
2073}
2074
2075/*
2076 * This sysctl allows a process to retrieve the argument list or process
2077 * title for another process without groping around in the address space
2078 * of the other process. It also allow a process to set its own "process
2079 * title to a string of its own choice.
2080 */
2081static int
2082sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2083{
2084 int *name = (int *)arg1;
2085 u_int namelen = arg2;
2086 struct pargs *newpa, *pa;
2087 struct proc *p;
2088 struct sbuf sb;
2089 int flags, error = 0, error2;
2090 pid_t pid;
2091
2092 if (namelen != 1)
2093 return (EINVAL);
2094
2095 p = curproc;
2096 pid = (pid_t)name[0];
2097 if (pid == -1) {
2098 pid = p->p_pid;
2099 }
2100
2101 /*
2102 * If the query is for this process and it is single-threaded, there
2103 * is nobody to modify pargs, thus we can just read.
2104 */
2105 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2106 (pa = p->p_args) != NULL)
2107 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2108
2109 flags = PGET_CANSEE;
2110 if (req->newptr != NULL)
2111 flags |= PGET_ISCURRENT;
2112 error = pget(pid, flags, &p);
2113 if (error)
2114 return (error);
2115
2116 pa = p->p_args;
2117 if (pa != NULL) {
2118 pargs_hold(pa);
2119 PROC_UNLOCK(p);
2120 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2121 pargs_drop(pa);
2122 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2123 _PHOLD(p);
2124 PROC_UNLOCK(p);
2126 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2127 error = proc_getargv(curthread, p, &sb);
2128 error2 = sbuf_finish(&sb);
2129 PRELE(p);
2130 sbuf_delete(&sb);
2131 if (error == 0 && error2 != 0)
2132 error = error2;
2133 } else {
2134 PROC_UNLOCK(p);
2135 }
2136 if (error != 0 || req->newptr == NULL)
2137 return (error);
2138
2139 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2140 return (ENOMEM);
2141
2142 if (req->newlen == 0) {
2143 /*
2144 * Clear the argument pointer, so that we'll fetch arguments
2145 * with proc_getargv() until further notice.
2146 */
2147 newpa = NULL;
2148 } else {
2149 newpa = pargs_alloc(req->newlen);
2150 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2151 if (error != 0) {
2152 pargs_free(newpa);
2153 return (error);
2154 }
2155 }
2156 PROC_LOCK(p);
2157 pa = p->p_args;
2158 p->p_args = newpa;
2159 PROC_UNLOCK(p);
2160 pargs_drop(pa);
2161 return (0);
2162}
2163
2164/*
2165 * This sysctl allows a process to retrieve environment of another process.
2166 */
2167static int
2168sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2169{
2170 int *name = (int *)arg1;
2171 u_int namelen = arg2;
2172 struct proc *p;
2173 struct sbuf sb;
2174 int error, error2;
2175
2176 if (namelen != 1)
2177 return (EINVAL);
2178
2179 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2180 if (error != 0)
2181 return (error);
2182 if ((p->p_flag & P_SYSTEM) != 0) {
2183 PRELE(p);
2184 return (0);
2185 }
2186
2188 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2189 error = proc_getenvv(curthread, p, &sb);
2190 error2 = sbuf_finish(&sb);
2191 PRELE(p);
2192 sbuf_delete(&sb);
2193 return (error != 0 ? error : error2);
2194}
2195
2196/*
2197 * This sysctl allows a process to retrieve ELF auxiliary vector of
2198 * another process.
2199 */
2200static int
2201sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2202{
2203 int *name = (int *)arg1;
2204 u_int namelen = arg2;
2205 struct proc *p;
2206 struct sbuf sb;
2207 int error, error2;
2208
2209 if (namelen != 1)
2210 return (EINVAL);
2211
2212 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2213 if (error != 0)
2214 return (error);
2215 if ((p->p_flag & P_SYSTEM) != 0) {
2216 PRELE(p);
2217 return (0);
2218 }
2220 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2221 error = proc_getauxv(curthread, p, &sb);
2222 error2 = sbuf_finish(&sb);
2223 PRELE(p);
2224 sbuf_delete(&sb);
2225 return (error != 0 ? error : error2);
2226}
2227
2228/*
2229 * Look up the canonical executable path running in the specified process.
2230 * It tries to return the same hardlink name as was used for execve(2).
2231 * This allows the programs that modify their behavior based on their progname,
2232 * to operate correctly.
2233 *
2234 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2235 * calling conventions.
2236 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2237 * allocated and freed by caller.
2238 * freebuf should be freed by caller, from the M_TEMP malloc type.
2239 */
2240int
2241proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2242 char **freebuf)
2243{
2244 struct nameidata nd;
2245 struct vnode *vp, *dvp;
2246 size_t freepath_size;
2247 int error;
2248 bool do_fullpath;
2249
2250 PROC_LOCK_ASSERT(p, MA_OWNED);
2251
2252 vp = p->p_textvp;
2253 if (vp == NULL) {
2254 PROC_UNLOCK(p);
2255 *retbuf = "";
2256 *freebuf = NULL;
2257 return (0);
2258 }
2259 vref(vp);
2260 dvp = p->p_textdvp;
2261 if (dvp != NULL)
2262 vref(dvp);
2263 if (p->p_binname != NULL)
2264 strlcpy(binname, p->p_binname, MAXPATHLEN);
2265 PROC_UNLOCK(p);
2266
2267 do_fullpath = true;
2268 *freebuf = NULL;
2269 if (dvp != NULL && binname[0] != '\0') {
2270 freepath_size = MAXPATHLEN;
2271 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2272 retbuf, freebuf, &freepath_size) == 0) {
2273 /*
2274 * Recheck the looked up path. The binary
2275 * might have been renamed or replaced, in
2276 * which case we should not report old name.
2277 */
2278 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2279 error = namei(&nd);
2280 if (error == 0) {
2281 if (nd.ni_vp == vp)
2282 do_fullpath = false;
2283 vrele(nd.ni_vp);
2284 NDFREE(&nd, NDF_ONLY_PNBUF);
2285 }
2286 }
2287 }
2288 if (do_fullpath) {
2289 free(*freebuf, M_TEMP);
2290 *freebuf = NULL;
2291 error = vn_fullpath(vp, retbuf, freebuf);
2292 }
2293 vrele(vp);
2294 if (dvp != NULL)
2295 vrele(dvp);
2296 return (error);
2297}
2298
2299/*
2300 * This sysctl allows a process to retrieve the path of the executable for
2301 * itself or another process.
2302 */
2303static int
2304sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2305{
2306 pid_t *pidp = (pid_t *)arg1;
2307 unsigned int arglen = arg2;
2308 struct proc *p;
2309 char *retbuf, *freebuf, *binname;
2310 int error;
2311
2312 if (arglen != 1)
2313 return (EINVAL);
2314 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2315 binname[0] = '\0';
2316 if (*pidp == -1) { /* -1 means this process */
2317 error = 0;
2318 p = req->td->td_proc;
2319 PROC_LOCK(p);
2320 } else {
2321 error = pget(*pidp, PGET_CANSEE, &p);
2322 }
2323
2324 if (error == 0)
2325 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2326 free(binname, M_TEMP);
2327 if (error != 0)
2328 return (error);
2329 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2330 free(freebuf, M_TEMP);
2331 return (error);
2332}
2333
2334static int
2335sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2336{
2337 struct proc *p;
2338 char *sv_name;
2339 int *name;
2340 int namelen;
2341 int error;
2342
2343 namelen = arg2;
2344 if (namelen != 1)
2345 return (EINVAL);
2346
2347 name = (int *)arg1;
2348 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2349 if (error != 0)
2350 return (error);
2351 sv_name = p->p_sysent->sv_name;
2352 PROC_UNLOCK(p);
2353 return (sysctl_handle_string(oidp, sv_name, 0, req));
2354}
2355
2356#ifdef KINFO_OVMENTRY_SIZE
2357CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2358#endif
2359
2360#ifdef COMPAT_FREEBSD7
2361static int
2362sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2363{
2364 vm_map_entry_t entry, tmp_entry;
2365 unsigned int last_timestamp, namelen;
2366 char *fullpath, *freepath;
2367 struct kinfo_ovmentry *kve;
2368 struct vattr va;
2369 struct ucred *cred;
2370 int error, *name;
2371 struct vnode *vp;
2372 struct proc *p;
2373 vm_map_t map;
2374 struct vmspace *vm;
2375
2376 namelen = arg2;
2377 if (namelen != 1)
2378 return (EINVAL);
2379
2380 name = (int *)arg1;
2381 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2382 if (error != 0)
2383 return (error);
2384 vm = vmspace_acquire_ref(p);
2385 if (vm == NULL) {
2386 PRELE(p);
2387 return (ESRCH);
2388 }
2389 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2390
2391 map = &vm->vm_map;
2392 vm_map_lock_read(map);
2393 VM_MAP_ENTRY_FOREACH(entry, map) {
2394 vm_object_t obj, tobj, lobj;
2395 vm_offset_t addr;
2396
2397 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2398 continue;
2399
2400 bzero(kve, sizeof(*kve));
2401 kve->kve_structsize = sizeof(*kve);
2402
2403 kve->kve_private_resident = 0;
2404 obj = entry->object.vm_object;
2405 if (obj != NULL) {
2406 VM_OBJECT_RLOCK(obj);
2407 if (obj->shadow_count == 1)
2408 kve->kve_private_resident =
2409 obj->resident_page_count;
2410 }
2411 kve->kve_resident = 0;
2412 addr = entry->start;
2413 while (addr < entry->end) {
2414 if (pmap_extract(map->pmap, addr))
2415 kve->kve_resident++;
2416 addr += PAGE_SIZE;
2417 }
2418
2419 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2420 if (tobj != obj) {
2421 VM_OBJECT_RLOCK(tobj);
2422 kve->kve_offset += tobj->backing_object_offset;
2423 }
2424 if (lobj != obj)
2425 VM_OBJECT_RUNLOCK(lobj);
2426 lobj = tobj;
2427 }
2428
2429 kve->kve_start = (void*)entry->start;
2430 kve->kve_end = (void*)entry->end;
2431 kve->kve_offset += (off_t)entry->offset;
2432
2433 if (entry->protection & VM_PROT_READ)
2434 kve->kve_protection |= KVME_PROT_READ;
2435 if (entry->protection & VM_PROT_WRITE)
2436 kve->kve_protection |= KVME_PROT_WRITE;
2437 if (entry->protection & VM_PROT_EXECUTE)
2438 kve->kve_protection |= KVME_PROT_EXEC;
2439
2440 if (entry->eflags & MAP_ENTRY_COW)
2441 kve->kve_flags |= KVME_FLAG_COW;
2442 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2443 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2444 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2445 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2446
2447 last_timestamp = map->timestamp;
2448 vm_map_unlock_read(map);
2449
2450 kve->kve_fileid = 0;
2451 kve->kve_fsid = 0;
2452 freepath = NULL;
2453 fullpath = "";
2454 if (lobj) {
2455 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2456 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2457 kve->kve_type = KVME_TYPE_UNKNOWN;
2458 if (vp != NULL)
2459 vref(vp);
2460 if (lobj != obj)
2461 VM_OBJECT_RUNLOCK(lobj);
2462
2463 kve->kve_ref_count = obj->ref_count;
2464 kve->kve_shadow_count = obj->shadow_count;
2465 VM_OBJECT_RUNLOCK(obj);
2466 if (vp != NULL) {
2467 vn_fullpath(vp, &fullpath, &freepath);
2468 cred = curthread->td_ucred;
2469 vn_lock(vp, LK_SHARED | LK_RETRY);
2470 if (VOP_GETATTR(vp, &va, cred) == 0) {
2471 kve->kve_fileid = va.va_fileid;
2472 /* truncate */
2473 kve->kve_fsid = va.va_fsid;
2474 }
2475 vput(vp);
2476 }
2477 } else {
2478 kve->kve_type = KVME_TYPE_NONE;
2479 kve->kve_ref_count = 0;
2480 kve->kve_shadow_count = 0;
2481 }
2482
2483 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2484 if (freepath != NULL)
2485 free(freepath, M_TEMP);
2486
2487 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2488 vm_map_lock_read(map);
2489 if (error)
2490 break;
2491 if (last_timestamp != map->timestamp) {
2492 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2493 entry = tmp_entry;
2494 }
2495 }
2496 vm_map_unlock_read(map);
2497 vmspace_free(vm);
2498 PRELE(p);
2499 free(kve, M_TEMP);
2500 return (error);
2501}
2502#endif /* COMPAT_FREEBSD7 */
2503
2504#ifdef KINFO_VMENTRY_SIZE
2505CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2506#endif
2507
2508void
2509kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2510 int *resident_count, bool *super)
2511{
2512 vm_object_t obj, tobj;
2513 vm_page_t m, m_adv;
2514 vm_offset_t addr;
2515 vm_paddr_t pa;
2516 vm_pindex_t pi, pi_adv, pindex;
2517
2518 *super = false;
2519 *resident_count = 0;
2521 return;
2522
2523 pa = 0;
2524 obj = entry->object.vm_object;
2525 addr = entry->start;
2526 m_adv = NULL;
2527 pi = OFF_TO_IDX(entry->offset);
2528 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2529 if (m_adv != NULL) {
2530 m = m_adv;
2531 } else {
2532 pi_adv = atop(entry->end - addr);
2533 pindex = pi;
2534 for (tobj = obj;; tobj = tobj->backing_object) {
2535 m = vm_page_find_least(tobj, pindex);
2536 if (m != NULL) {
2537 if (m->pindex == pindex)
2538 break;
2539 if (pi_adv > m->pindex - pindex) {
2540 pi_adv = m->pindex - pindex;
2541 m_adv = m;
2542 }
2543 }
2544 if (tobj->backing_object == NULL)
2545 goto next;
2546 pindex += OFF_TO_IDX(tobj->
2547 backing_object_offset);
2548 }
2549 }
2550 m_adv = NULL;
2551 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2552 (addr & (pagesizes[1] - 1)) == 0 &&
2553 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2554 *super = true;
2555 pi_adv = atop(pagesizes[1]);
2556 } else {
2557 /*
2558 * We do not test the found page on validity.
2559 * Either the page is busy and being paged in,
2560 * or it was invalidated. The first case
2561 * should be counted as resident, the second
2562 * is not so clear; we do account both.
2563 */
2564 pi_adv = 1;
2565 }
2566 *resident_count += pi_adv;
2567next:;
2568 }
2569}
2570
2571/*
2572 * Must be called with the process locked and will return unlocked.
2573 */
2574int
2575kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2576{
2577 vm_map_entry_t entry, tmp_entry;
2578 struct vattr va;
2579 vm_map_t map;
2580 vm_object_t lobj, nobj, obj, tobj;
2581 char *fullpath, *freepath;
2582 struct kinfo_vmentry *kve;
2583 struct ucred *cred;
2584 struct vnode *vp;
2585 struct vmspace *vm;
2586 vm_offset_t addr;
2587 unsigned int last_timestamp;
2588 int error;
2589 bool guard, super;
2590
2591 PROC_LOCK_ASSERT(p, MA_OWNED);
2592
2593 _PHOLD(p);
2594 PROC_UNLOCK(p);
2595 vm = vmspace_acquire_ref(p);
2596 if (vm == NULL) {
2597 PRELE(p);
2598 return (ESRCH);
2599 }
2600 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2601
2602 error = 0;
2603 map = &vm->vm_map;
2604 vm_map_lock_read(map);
2605 VM_MAP_ENTRY_FOREACH(entry, map) {
2606 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2607 continue;
2608
2609 addr = entry->end;
2610 bzero(kve, sizeof(*kve));
2611 obj = entry->object.vm_object;
2612 if (obj != NULL) {
2613 if ((obj->flags & OBJ_ANON) != 0)
2614 kve->kve_obj = (uintptr_t)obj;
2615
2616 for (tobj = obj; tobj != NULL;
2617 tobj = tobj->backing_object) {
2618 VM_OBJECT_RLOCK(tobj);
2619 kve->kve_offset += tobj->backing_object_offset;
2620 lobj = tobj;
2621 }
2622 if (obj->backing_object == NULL)
2623 kve->kve_private_resident =
2624 obj->resident_page_count;
2625 kern_proc_vmmap_resident(map, entry,
2626 &kve->kve_resident, &super);
2627 if (super)
2628 kve->kve_flags |= KVME_FLAG_SUPER;
2629 for (tobj = obj; tobj != NULL; tobj = nobj) {
2630 nobj = tobj->backing_object;
2631 if (tobj != obj && tobj != lobj)
2632 VM_OBJECT_RUNLOCK(tobj);
2633 }
2634 } else {
2635 lobj = NULL;
2636 }
2637
2638 kve->kve_start = entry->start;
2639 kve->kve_end = entry->end;
2640 kve->kve_offset += entry->offset;
2641
2642 if (entry->protection & VM_PROT_READ)
2643 kve->kve_protection |= KVME_PROT_READ;
2644 if (entry->protection & VM_PROT_WRITE)
2645 kve->kve_protection |= KVME_PROT_WRITE;
2646 if (entry->protection & VM_PROT_EXECUTE)
2647 kve->kve_protection |= KVME_PROT_EXEC;
2648
2649 if (entry->eflags & MAP_ENTRY_COW)
2650 kve->kve_flags |= KVME_FLAG_COW;
2651 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2652 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2653 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2654 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2655 if (entry->eflags & MAP_ENTRY_GROWS_UP)
2656 kve->kve_flags |= KVME_FLAG_GROWS_UP;
2657 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2658 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2659 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2660 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2661
2662 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2663
2664 last_timestamp = map->timestamp;
2665 vm_map_unlock_read(map);
2666
2667 freepath = NULL;
2668 fullpath = "";
2669 if (lobj != NULL) {
2670 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2671 if (vp != NULL)
2672 vref(vp);
2673 if (lobj != obj)
2674 VM_OBJECT_RUNLOCK(lobj);
2675
2676 kve->kve_ref_count = obj->ref_count;
2677 kve->kve_shadow_count = obj->shadow_count;
2678 VM_OBJECT_RUNLOCK(obj);
2679 if (vp != NULL) {
2680 vn_fullpath(vp, &fullpath, &freepath);
2681 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2682 cred = curthread->td_ucred;
2683 vn_lock(vp, LK_SHARED | LK_RETRY);
2684 if (VOP_GETATTR(vp, &va, cred) == 0) {
2685 kve->kve_vn_fileid = va.va_fileid;
2686 kve->kve_vn_fsid = va.va_fsid;
2687 kve->kve_vn_fsid_freebsd11 =
2688 kve->kve_vn_fsid; /* truncate */
2689 kve->kve_vn_mode =
2690 MAKEIMODE(va.va_type, va.va_mode);
2691 kve->kve_vn_size = va.va_size;
2692 kve->kve_vn_rdev = va.va_rdev;
2693 kve->kve_vn_rdev_freebsd11 =
2694 kve->kve_vn_rdev; /* truncate */
2695 kve->kve_status = KF_ATTR_VALID;
2696 }
2697 vput(vp);
2698 }
2699 } else {
2700 kve->kve_type = guard ? KVME_TYPE_GUARD :
2701 KVME_TYPE_NONE;
2702 kve->kve_ref_count = 0;
2703 kve->kve_shadow_count = 0;
2704 }
2705
2706 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2707 if (freepath != NULL)
2708 free(freepath, M_TEMP);
2709
2710 /* Pack record size down */
2711 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2712 kve->kve_structsize =
2713 offsetof(struct kinfo_vmentry, kve_path) +
2714 strlen(kve->kve_path) + 1;
2715 else
2716 kve->kve_structsize = sizeof(*kve);
2717 kve->kve_structsize = roundup(kve->kve_structsize,
2718 sizeof(uint64_t));
2719
2720 /* Halt filling and truncate rather than exceeding maxlen */
2721 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2722 error = 0;
2723 vm_map_lock_read(map);
2724 break;
2725 } else if (maxlen != -1)
2726 maxlen -= kve->kve_structsize;
2727
2728 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2729 error = ENOMEM;
2730 vm_map_lock_read(map);
2731 if (error != 0)
2732 break;
2733 if (last_timestamp != map->timestamp) {
2734 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2735 entry = tmp_entry;
2736 }
2737 }
2738 vm_map_unlock_read(map);
2739 vmspace_free(vm);
2740 PRELE(p);
2741 free(kve, M_TEMP);
2742 return (error);
2743}
2744
2745static int
2746sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2747{
2748 struct proc *p;
2749 struct sbuf sb;
2750 u_int namelen;
2751 int error, error2, *name;
2752
2753 namelen = arg2;
2754 if (namelen != 1)
2755 return (EINVAL);
2756
2757 name = (int *)arg1;
2758 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2759 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2760 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2761 if (error != 0) {
2762 sbuf_delete(&sb);
2763 return (error);
2764 }
2765 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2766 error2 = sbuf_finish(&sb);
2767 sbuf_delete(&sb);
2768 return (error != 0 ? error : error2);
2769}
2770
2771#if defined(STACK) || defined(DDB)
2772static int
2773sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2774{
2775 struct kinfo_kstack *kkstp;
2776 int error, i, *name, numthreads;
2777 lwpid_t *lwpidarray;
2778 struct thread *td;
2779 struct stack *st;
2780 struct sbuf sb;
2781 struct proc *p;
2782 u_int namelen;
2783
2784 namelen = arg2;
2785 if (namelen != 1)
2786 return (EINVAL);
2787
2788 name = (int *)arg1;
2789 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2790 if (error != 0)
2791 return (error);
2792
2793 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2794 st = stack_create(M_WAITOK);
2795
2796 lwpidarray = NULL;
2797 PROC_LOCK(p);
2798 do {
2799 if (lwpidarray != NULL) {
2800 free(lwpidarray, M_TEMP);
2801 lwpidarray = NULL;
2802 }
2803 numthreads = p->p_numthreads;
2804 PROC_UNLOCK(p);
2805 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2806 M_WAITOK | M_ZERO);
2807 PROC_LOCK(p);
2808 } while (numthreads < p->p_numthreads);
2809
2810 /*
2811 * XXXRW: During the below loop, execve(2) and countless other sorts
2812 * of changes could have taken place. Should we check to see if the
2813 * vmspace has been replaced, or the like, in order to prevent
2814 * giving a snapshot that spans, say, execve(2), with some threads
2815 * before and some after? Among other things, the credentials could
2816 * have changed, in which case the right to extract debug info might
2817 * no longer be assured.
2818 */
2819 i = 0;
2820 FOREACH_THREAD_IN_PROC(p, td) {
2821 KASSERT(i < numthreads,
2822 ("sysctl_kern_proc_kstack: numthreads"));
2823 lwpidarray[i] = td->td_tid;
2824 i++;
2825 }
2826 PROC_UNLOCK(p);
2827 numthreads = i;
2828 for (i = 0; i < numthreads; i++) {
2829 td = tdfind(lwpidarray[i], p->p_pid);
2830 if (td == NULL) {
2831 continue;
2832 }
2833 bzero(kkstp, sizeof(*kkstp));
2834 (void)sbuf_new(&sb, kkstp->kkst_trace,
2835 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2836 thread_lock(td);
2837 kkstp->kkst_tid = td->td_tid;
2838 if (TD_IS_SWAPPED(td))
2839 kkstp->kkst_state = KKST_STATE_SWAPPED;
2840 else if (stack_save_td(st, td) == 0)
2841 kkstp->kkst_state = KKST_STATE_STACKOK;
2842 else
2843 kkstp->kkst_state = KKST_STATE_RUNNING;
2844 thread_unlock(td);
2845 PROC_UNLOCK(p);
2846 stack_sbuf_print(&sb, st);
2847 sbuf_finish(&sb);
2848 sbuf_delete(&sb);
2849 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2850 if (error)
2851 break;
2852 }
2853 PRELE(p);
2854 if (lwpidarray != NULL)
2855 free(lwpidarray, M_TEMP);
2857 free(kkstp, M_TEMP);
2858 return (error);
2859}
2860#endif
2861
2862/*
2863 * This sysctl allows a process to retrieve the full list of groups from
2864 * itself or another process.
2865 */
2866static int
2867sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2868{
2869 pid_t *pidp = (pid_t *)arg1;
2870 unsigned int arglen = arg2;
2871 struct proc *p;
2872 struct ucred *cred;
2873 int error;
2874
2875 if (arglen != 1)
2876 return (EINVAL);
2877 if (*pidp == -1) { /* -1 means this process */
2878 p = req->td->td_proc;
2879 PROC_LOCK(p);
2880 } else {
2881 error = pget(*pidp, PGET_CANSEE, &p);
2882 if (error != 0)
2883 return (error);
2884 }
2885
2886 cred = crhold(p->p_ucred);
2887 PROC_UNLOCK(p);
2888
2889 error = SYSCTL_OUT(req, cred->cr_groups,
2890 cred->cr_ngroups * sizeof(gid_t));
2891 crfree(cred);
2892 return (error);
2893}
2894
2895/*
2896 * This sysctl allows a process to retrieve or/and set the resource limit for
2897 * another process.
2898 */
2899static int
2900sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2901{
2902 int *name = (int *)arg1;
2903 u_int namelen = arg2;
2904 struct rlimit rlim;
2905 struct proc *p;
2906 u_int which;
2907 int flags, error;
2908
2909 if (namelen != 2)
2910 return (EINVAL);
2911
2912 which = (u_int)name[1];
2913 if (which >= RLIM_NLIMITS)
2914 return (EINVAL);
2915
2916 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2917 return (EINVAL);
2918
2919 flags = PGET_HOLD | PGET_NOTWEXIT;
2920 if (req->newptr != NULL)
2921 flags |= PGET_CANDEBUG;
2922 else
2923 flags |= PGET_CANSEE;
2924 error = pget((pid_t)name[0], flags, &p);
2925 if (error != 0)
2926 return (error);
2927
2928 /*
2929 * Retrieve limit.
2930 */
2931 if (req->oldptr != NULL) {
2932 PROC_LOCK(p);
2933 lim_rlimit_proc(p, which, &rlim);
2934 PROC_UNLOCK(p);
2935 }
2936 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2937 if (error != 0)
2938 goto errout;
2939
2940 /*
2941 * Set limit.
2942 */
2943 if (req->newptr != NULL) {
2944 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2945 if (error == 0)
2946 error = kern_proc_setrlimit(curthread, p, which, &rlim);
2947 }
2948
2949errout:
2950 PRELE(p);
2951 return (error);
2952}
2953
2954/*
2955 * This sysctl allows a process to retrieve ps_strings structure location of
2956 * another process.
2957 */
2958static int
2960{
2961 int *name = (int *)arg1;
2962 u_int namelen = arg2;
2963 struct proc *p;
2964 vm_offset_t ps_strings;
2965 int error;
2966#ifdef COMPAT_FREEBSD32
2967 uint32_t ps_strings32;
2968#endif
2969
2970 if (namelen != 1)
2971 return (EINVAL);
2972
2973 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2974 if (error != 0)
2975 return (error);
2976#ifdef COMPAT_FREEBSD32
2977 if ((req->flags & SCTL_MASK32) != 0) {
2978 /*
2979 * We return 0 if the 32 bit emulation request is for a 64 bit
2980 * process.
2981 */
2982 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2983 PTROUT(PROC_PS_STRINGS(p)) : 0;
2984 PROC_UNLOCK(p);
2985 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2986 return (error);
2987 }
2988#endif
2989 ps_strings = PROC_PS_STRINGS(p);
2990 PROC_UNLOCK(p);
2991 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2992 return (error);
2993}
2994
2995/*
2996 * This sysctl allows a process to retrieve umask of another process.
2997 */
2998static int
2999sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3000{
3001 int *name = (int *)arg1;
3002 u_int namelen = arg2;
3003 struct proc *p;
3004 int error;
3005 u_short cmask;
3006 pid_t pid;
3007
3008 if (namelen != 1)
3009 return (EINVAL);
3010
3011 pid = (pid_t)name[0];
3012 p = curproc;
3013 if (pid == p->p_pid || pid == 0) {
3014 cmask = p->p_pd->pd_cmask;
3015 goto out;
3016 }
3017
3018 error = pget(pid, PGET_WANTREAD, &p);
3019 if (error != 0)
3020 return (error);
3021
3022 cmask = p->p_pd->pd_cmask;
3023 PRELE(p);
3024out:
3025 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3026 return (error);
3027}
3028
3029/*
3030 * This sysctl allows a process to set and retrieve binary osreldate of
3031 * another process.
3032 */
3033static int
3034sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3035{
3036 int *name = (int *)arg1;
3037 u_int namelen = arg2;
3038 struct proc *p;
3039 int flags, error, osrel;
3040
3041 if (namelen != 1)
3042 return (EINVAL);
3043
3044 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3045 return (EINVAL);
3046
3047 flags = PGET_HOLD | PGET_NOTWEXIT;
3048 if (req->newptr != NULL)
3049 flags |= PGET_CANDEBUG;
3050 else
3051 flags |= PGET_CANSEE;
3052 error = pget((pid_t)name[0], flags, &p);
3053 if (error != 0)
3054 return (error);
3055
3056 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3057 if (error != 0)
3058 goto errout;
3059
3060 if (req->newptr != NULL) {
3061 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3062 if (error != 0)
3063 goto errout;
3064 if (osrel < 0) {
3065 error = EINVAL;
3066 goto errout;
3067 }
3068 p->p_osrel = osrel;
3069 }
3070errout:
3071 PRELE(p);
3072 return (error);
3073}
3074
3075static int
3076sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3077{
3078 int *name = (int *)arg1;
3079 u_int namelen = arg2;
3080 struct proc *p;
3081 struct kinfo_sigtramp kst;
3082 const struct sysentvec *sv;
3083 int error;
3084#ifdef COMPAT_FREEBSD32
3085 struct kinfo_sigtramp32 kst32;
3086#endif
3087
3088 if (namelen != 1)
3089 return (EINVAL);
3090
3091 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3092 if (error != 0)
3093 return (error);
3094 sv = p->p_sysent;
3095#ifdef COMPAT_FREEBSD32
3096 if ((req->flags & SCTL_MASK32) != 0) {
3097 bzero(&kst32, sizeof(kst32));
3098 if (SV_PROC_FLAG(p, SV_ILP32)) {
3099 if (sv->sv_sigcode_base != 0) {
3100 kst32.ksigtramp_start = sv->sv_sigcode_base;
3101 kst32.ksigtramp_end = sv->sv_sigcode_base +
3102 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3103 *sv->sv_szsigcode :
3104 (uintptr_t)sv->sv_szsigcode);
3105 } else {
3106 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3107 *sv->sv_szsigcode;
3108 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3109 }
3110 }
3111 PROC_UNLOCK(p);
3112 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3113 return (error);
3114 }
3115#endif
3116 bzero(&kst, sizeof(kst));
3117 if (sv->sv_sigcode_base != 0) {
3118 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
3119 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
3120 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3121 (uintptr_t)sv->sv_szsigcode);
3122 } else {
3123 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3124 *sv->sv_szsigcode;
3125 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3126 }
3127 PROC_UNLOCK(p);
3128 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3129 return (error);
3130}
3131
3132static int
3134{
3135 int *name = (int *)arg1;
3136 u_int namelen = arg2;
3137 pid_t pid;
3138 struct proc *p;
3139 struct thread *td1;
3140 uintptr_t addr;
3141#ifdef COMPAT_FREEBSD32
3142 uint32_t addr32;
3143#endif
3144 int error;
3145
3146 if (namelen != 1 || req->newptr != NULL)
3147 return (EINVAL);
3148
3149 pid = (pid_t)name[0];
3150 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3151 if (error != 0)
3152 return (error);
3153
3154 PROC_LOCK(p);
3155#ifdef COMPAT_FREEBSD32
3156 if (SV_CURPROC_FLAG(SV_ILP32)) {
3157 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3158 error = EINVAL;
3159 goto errlocked;
3160 }
3161 }
3162#endif
3163 if (pid <= PID_MAX) {
3164 td1 = FIRST_THREAD_IN_PROC(p);
3165 } else {
3166 FOREACH_THREAD_IN_PROC(p, td1) {
3167 if (td1->td_tid == pid)
3168 break;
3169 }
3170 }
3171 if (td1 == NULL) {
3172 error = ESRCH;
3173 goto errlocked;
3174 }
3175 /*
3176 * The access to the private thread flags. It is fine as far
3177 * as no out-of-thin-air values are read from td_pflags, and
3178 * usermode read of the td_sigblock_ptr is racy inherently,
3179 * since target process might have already changed it
3180 * meantime.
3181 */
3182 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3183 addr = (uintptr_t)td1->td_sigblock_ptr;
3184 else
3185 error = ENOTTY;
3186
3187errlocked:
3188 _PRELE(p);
3189 PROC_UNLOCK(p);
3190 if (error != 0)
3191 return (error);
3192
3193#ifdef COMPAT_FREEBSD32
3194 if (SV_CURPROC_FLAG(SV_ILP32)) {
3195 addr32 = addr;
3196 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3197 } else
3198#endif
3199 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3200 return (error);
3201}
3202
3203static int
3204sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3205{
3206 struct kinfo_vm_layout kvm;
3207 struct proc *p;
3208 struct vmspace *vmspace;
3209 int error, *name;
3210
3211 name = (int *)arg1;
3212 if ((u_int)arg2 != 1)
3213 return (EINVAL);
3214
3215 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3216 if (error != 0)
3217 return (error);
3218#ifdef COMPAT_FREEBSD32
3219 if (SV_CURPROC_FLAG(SV_ILP32)) {
3220 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3221 PROC_UNLOCK(p);
3222 return (EINVAL);
3223 }
3224 }
3225#endif
3226 vmspace = vmspace_acquire_ref(p);
3227 PROC_UNLOCK(p);
3228
3229 memset(&kvm, 0, sizeof(kvm));
3230 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3231 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3232 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3233 kvm.kvm_text_size = vmspace->vm_tsize;
3234 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3235 kvm.kvm_data_size = vmspace->vm_dsize;
3236 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3237 kvm.kvm_stack_size = vmspace->vm_ssize;
3238 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3239 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3240 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3241 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3242 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3243 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3244 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3245 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3246 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3247 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3248
3249#ifdef COMPAT_FREEBSD32
3250 if (SV_CURPROC_FLAG(SV_ILP32)) {
3251 struct kinfo_vm_layout32 kvm32;
3252
3253 memset(&kvm32, 0, sizeof(kvm32));
3254 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3255 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3256 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3257 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3258 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3259 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3260 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3261 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3262 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3263 vmspace_free(vmspace);
3264 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3265 goto out;
3266 }
3267#endif
3268
3269 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3270#ifdef COMPAT_FREEBSD32
3271out:
3272#endif
3273 vmspace_free(vmspace);
3274 return (error);
3275}
3276
3277SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3278 "Process table");
3279
3280SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3281 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3282 "Return entire process table");
3283
3284static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3285 sysctl_kern_proc, "Process table");
3286
3287static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3288 sysctl_kern_proc, "Process table");
3289
3290static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3291 sysctl_kern_proc, "Process table");
3292
3293static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3294 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3295
3296static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3297 sysctl_kern_proc, "Process table");
3298
3299static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3300 sysctl_kern_proc, "Process table");
3301
3302static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3303 sysctl_kern_proc, "Process table");
3304
3305static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3306 sysctl_kern_proc, "Process table");
3307
3308static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3309 sysctl_kern_proc, "Return process table, no threads");
3310
3311static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3312 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3313 sysctl_kern_proc_args, "Process argument list");
3314
3315static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3316 sysctl_kern_proc_env, "Process environment");
3317
3318static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3319 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3320
3321static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3322 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3323
3324static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3325 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3326 "Process syscall vector name (ABI type)");
3327
3328static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3329 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3330
3331static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3332 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3333
3334static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3335 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3336
3337static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3338 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3339
3340static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3341 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3342
3343static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3344 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3345
3346static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3347 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3348
3349static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3350 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3351
3352static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3353 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3354 "Return process table, including threads");
3355
3356#ifdef COMPAT_FREEBSD7
3357static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3358 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3359#endif
3360
3361static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3362 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3363
3364#if defined(STACK) || defined(DDB)
3365static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3366 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3367#endif
3368
3369static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3370 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3371
3372static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3373 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3374 "Process resource limits");
3375
3376static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3377 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3378 "Process ps_strings location");
3379
3380static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3381 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3382
3383static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3384 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3385 "Process binary osreldate");
3386
3387static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3388 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3389 "Process signal trampoline location");
3390
3391static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3392 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3393 "Thread sigfastblock address");
3394
3395static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3396 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3397 "Process virtual address space layout info");
3398
3400
3401/*
3402 * stop_all_proc() purpose is to stop all process which have usermode,
3403 * except current process for obvious reasons. This makes it somewhat
3404 * unreliable when invoked from multithreaded process. The service
3405 * must not be user-callable anyway.
3406 */
3407void
3409{
3410 struct proc *cp, *p;
3411 int r, gen;
3412 bool restart, seen_stopped, seen_exiting, stopped_some;
3413
3414 cp = curproc;
3415allproc_loop:
3416 sx_xlock(&allproc_lock);
3417 gen = allproc_gen;
3418 seen_exiting = seen_stopped = stopped_some = restart = false;
3419 LIST_REMOVE(cp, p_list);
3420 LIST_INSERT_HEAD(&allproc, cp, p_list);
3421 for (;;) {
3422 p = LIST_NEXT(cp, p_list);
3423 if (p == NULL)
3424 break;
3425 LIST_REMOVE(cp, p_list);
3426 LIST_INSERT_AFTER(p, cp, p_list);
3427 PROC_LOCK(p);
3428 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3429 PROC_UNLOCK(p);
3430 continue;
3431 }
3432 if ((p->p_flag & P_WEXIT) != 0) {
3433 seen_exiting = true;
3434 PROC_UNLOCK(p);
3435 continue;
3436 }
3437 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3438 /*
3439 * Stopped processes are tolerated when there
3440 * are no other processes which might continue
3441 * them. P_STOPPED_SINGLE but not
3442 * P_TOTAL_STOP process still has at least one
3443 * thread running.
3444 */
3445 seen_stopped = true;
3446 PROC_UNLOCK(p);
3447 continue;
3448 }
3449 sx_xunlock(&allproc_lock);
3450 _PHOLD(p);
3451 r = thread_single(p, SINGLE_ALLPROC);
3452 if (r != 0)
3453 restart = true;
3454 else
3455 stopped_some = true;
3456 _PRELE(p);
3457 PROC_UNLOCK(p);
3458 sx_xlock(&allproc_lock);
3459 }
3460 /* Catch forked children we did not see in iteration. */
3461 if (gen != allproc_gen)
3462 restart = true;
3463 sx_xunlock(&allproc_lock);
3464 if (restart || stopped_some || seen_exiting || seen_stopped) {
3465 kern_yield(PRI_USER);
3466 goto allproc_loop;
3467 }
3468}
3469
3470void
3472{
3473 struct proc *cp, *p;
3474
3475 cp = curproc;
3476 sx_xlock(&allproc_lock);
3477again:
3478 LIST_REMOVE(cp, p_list);
3479 LIST_INSERT_HEAD(&allproc, cp, p_list);
3480 for (;;) {
3481 p = LIST_NEXT(cp, p_list);
3482 if (p == NULL)
3483 break;
3484 LIST_REMOVE(cp, p_list);
3485 LIST_INSERT_AFTER(p, cp, p_list);
3486 PROC_LOCK(p);
3487 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3488 sx_xunlock(&allproc_lock);
3489 _PHOLD(p);
3490 thread_single_end(p, SINGLE_ALLPROC);
3491 _PRELE(p);
3492 PROC_UNLOCK(p);
3493 sx_xlock(&allproc_lock);
3494 } else {
3495 PROC_UNLOCK(p);
3496 }
3497 }
3498 /* Did the loop above missed any stopped process ? */
3499 FOREACH_PROC_IN_SYSTEM(p) {
3500 /* No need for proc lock. */
3501 if ((p->p_flag & P_TOTAL_STOP) != 0)
3502 goto again;
3503 }
3504 sx_xunlock(&allproc_lock);
3505}
3506
3507/* #define TOTAL_STOP_DEBUG 1 */
3508#ifdef TOTAL_STOP_DEBUG
3509volatile static int ap_resume;
3510#include <sys/mount.h>
3511
3512static int
3513sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3514{
3515 int error, val;
3516
3517 val = 0;
3518 ap_resume = 0;
3519 error = sysctl_handle_int(oidp, &val, 0, req);
3520 if (error != 0 || req->newptr == NULL)
3521 return (error);
3522 if (val != 0) {
3523 stop_all_proc();
3525 while (ap_resume == 0)
3526 ;
3527 syncer_resume();
3529 }
3530 return (0);
3531}
3532
3533SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3534 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3535 sysctl_debug_stop_all_proc, "I",
3536 "");
3537#endif
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
static struct bt_table st
volatile int ticks
Definition: kern_clock.c:380
void cv_init(struct cv *cvp, const char *desc)
Definition: kern_condvar.c:77
int vntype_to_kinfo(int vtype)
void funsetownlst(struct sigiolst *sigiolst)
void kdtrace_proc_dtor(struct proc *p)
Definition: kern_dtrace.c:78
void kdtrace_proc_ctor(struct proc *p)
Definition: kern_dtrace.c:71
u_long ps_arg_cache_limit
Definition: kern_exec.c:140
struct proc * proc_realparent(struct proc *child)
Definition: kern_exit.c:114
bitstr_t proc_id_reapmap
bitstr_t proc_id_pidmap
bitstr_t proc_id_grpidmap
bitstr_t proc_id_sessidmap
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
u_long pagesizes[MAXPAGESIZES]
Definition: kern_mib.c:249
static void pgdelete(struct pgrp *)
Definition: kern_proc.c:779
static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2746
const int thread_off_td_plist
Definition: kern_proc.c:155
struct pargs * pargs_alloc(int len)
Definition: kern_proc.c:1765
void pidhash_slockall(void)
Definition: kern_proc.c:393
static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:3076
static bitstr_t * proc_id_array[]
Definition: kern_proc.c:327
int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
Definition: kern_proc.c:2575
void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, int *resident_count, bool *super)
Definition: kern_proc.c:2509
void sess_hold(struct session *s)
Definition: kern_proc.c:967
static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type)
Definition: kern_proc.c:1992
struct sx * pidhashtbl_lock
Definition: kern_proc.c:128
static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2304
const int proc_off_p_threads
Definition: kern_proc.c:150
void procinit(void)
Definition: kern_proc.c:182
void pstats_fork(struct pstats *src, struct pstats *dst)
Definition: kern_proc.c:1353
static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2959
static bool isjobproc(struct proc *q, struct pgrp *pgrp)
Definition: kern_proc.c:660
static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
Definition: kern_proc.c:1220
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD|CTLFLAG_MPSAFE, 0, "Process table")
const int thread_off_td_oncpu
Definition: kern_proc.c:153
static struct proc * jobc_parent(struct proc *p, struct proc *p_exiting)
Definition: kern_proc.c:684
uma_zone_t proc_zone
Definition: kern_proc.c:138
static int proc_init(void *mem, int size, int flags)
Definition: kern_proc.c:267
void pargs_hold(struct pargs *pa)
Definition: kern_proc.c:1784
struct proc * pfind_any(pid_t pid)
Definition: kern_proc.c:478
const int proc_off_p_comm
Definition: kern_proc.c:147
int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
Definition: kern_proc.c:2040
static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2999
void killjobc(void)
Definition: kern_proc.c:877
static void pargs_free(struct pargs *pa)
Definition: kern_proc.c:1777
struct pstats * pstats_alloc(void)
Definition: kern_proc.c:1343
int inferior(struct proc *p)
Definition: kern_proc.c:377
static int pgrp_init(void *mem, int size, int flags)
Definition: kern_proc.c:308
struct sx __exclusive_cache_line proctree_lock
Definition: kern_proc.c:135
bitstr_t bit_decl(proc_id_pidmap, PID_MAX)
static void fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
Definition: kern_proc.c:1170
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table")
void proc_id_set(int type, pid_t id)
Definition: kern_proc.c:335
void pargs_drop(struct pargs *pa)
Definition: kern_proc.c:1793
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "Kernel stack size in pages")
EVENTHANDLER_LIST_DEFINE(process_ctor)
const int proc_off_p_pid
Definition: kern_proc.c:146
static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2168
const int thread_off_td_pcb
Definition: kern_proc.c:154
const int thread_off_td_name
Definition: kern_proc.c:152
int pget(pid_t pid, int flags, struct proc **pp)
Definition: kern_proc.c:508
static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2900
static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
Definition: kern_proc.c:1050
struct mtx __exclusive_cache_line ppeers_lock
Definition: kern_proc.c:136
int enterthispgrp(struct proc *p, struct pgrp *pgrp)
Definition: kern_proc.c:636
static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2867
static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
Definition: kern_proc.c:1029
int kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
Definition: kern_proc.c:1508
int proc_iterate(int(*cb)(struct proc *, void *), void *cbarg)
Definition: kern_proc.c:1575
static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:3034
const int proc_off_p_hash
Definition: kern_proc.c:149
__FBSDID("$FreeBSD$")
void pidhash_sunlockall(void)
Definition: kern_proc.c:405
uma_zone_t pgrp_zone
Definition: kern_proc.c:139
static __always_inline struct proc * _pfind(pid_t pid, bool zombie)
Definition: kern_proc.c:442
static int sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:3204
void resume_all_proc(void)
Definition: kern_proc.c:3471
const int thread_off_td_tid
Definition: kern_proc.c:151
struct proclist allproc
Definition: kern_proc.c:133
void sess_release(struct session *s)
Definition: kern_proc.c:974
struct mtx __exclusive_cache_line procid_lock
Definition: kern_proc.c:137
struct proc * pfind(pid_t pid)
Definition: kern_proc.c:468
#define PROC_AUXV_MAX
Definition: kern_proc.c:1819
SDT_PROVIDER_DEFINE(proc)
void pstats_free(struct pstats *ps)
Definition: kern_proc.c:1363
static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2201
static ssize_t kern_proc_out_size(struct proc *p, int flags)
Definition: kern_proc.c:1482
static int pgrp_calc_jobc(struct pgrp *pgrp)
Definition: kern_proc.c:698
static void proc_dtor(void *mem, int size, void *arg)
Definition: kern_proc.c:233
int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
Definition: kern_proc.c:575
u_long pidhashlock
Definition: kern_proc.c:130
static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2082
int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
Definition: kern_proc.c:2054
static void proc_fini(void *mem, int size)
Definition: kern_proc.c:290
CTASSERT(sizeof(struct kinfo_proc)==KINFO_PROC_SIZE)
static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len)
Definition: kern_proc.c:1803
static void orphanpg(struct pgrp *pg)
Definition: kern_proc.c:942
struct pgrphashhead * pgrphashtbl
Definition: kern_proc.c:131
u_long pidhash
Definition: kern_proc.c:129
int kstack_pages
Definition: kern_proc.c:165
static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:1696
const int proc_off_p_list
Definition: kern_proc.c:148
MALLOC_DEFINE(M_SESSION, "session", "session header")
void stop_all_proc(void)
Definition: kern_proc.c:3408
static void fixjobc_kill(struct proc *p)
Definition: kern_proc.c:814
void proc_id_set_cond(int type, pid_t id)
Definition: kern_proc.c:348
int allproc_gen
Definition: kern_proc.c:3399
u_long pgrphash
Definition: kern_proc.c:132
static void doenterpgrp(struct proc *, struct pgrp *)
Definition: kern_proc.c:723
void proc_id_clear(int type, pid_t id)
Definition: kern_proc.c:361
#define GET_PS_STRINGS_CHUNK_SZ
Definition: kern_proc.c:1989
void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
Definition: kern_proc.c:1330
static int sysctl_kern_proc_iterate(struct proc *p, void *origarg)
Definition: kern_proc.c:1610
proc_vector_type
Definition: kern_proc.c:1821
@ PROC_ARG
Definition: kern_proc.c:1822
@ PROC_ENV
Definition: kern_proc.c:1823
@ PROC_AUX
Definition: kern_proc.c:1824
static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:2335
static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type)
Definition: kern_proc.c:1903
static int proc_ctor(void *mem, int size, void *arg, int flags)
Definition: kern_proc.c:211
int leavepgrp(struct proc *p)
Definition: kern_proc.c:758
static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
Definition: kern_proc.c:1553
static int sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
Definition: kern_proc.c:3133
static int vmmap_skip_res_cnt
Definition: kern_proc.c:168
int proc_get_binpath(struct proc *p, char *binname, char **retbuf, char **freebuf)
Definition: kern_proc.c:2241
struct proc * pfind_any_locked(pid_t pid)
Definition: kern_proc.c:417
struct sx __exclusive_cache_line allproc_lock
Definition: kern_proc.c:134
struct pgrp * pgfind(pid_t pgid)
Definition: kern_proc.c:489
static struct proc * jobc_reaper(struct proc *p)
Definition: kern_proc.c:669
struct pidhashhead * pidhashtbl
Definition: kern_proc.c:127
int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
Definition: kern_proc.c:2047
int p_cansee(struct thread *td, struct proc *p)
Definition: kern_prot.c:1462
int p_candebug(struct thread *td, struct proc *p)
Definition: kern_prot.c:1681
struct ucred * crhold(struct ucred *cr)
Definition: kern_prot.c:2014
void crfree(struct ucred *cr)
Definition: kern_prot.c:2035
void rufetch(struct proc *p, struct rusage *ru)
int kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, struct rlimit *limp)
void calccru(struct proc *p, struct timeval *up, struct timeval *sp)
void calcru(struct proc *p, struct timeval *up, struct timeval *sp)
void lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
void rufetchtd(struct thread *td, struct rusage *ru)
void uihashinit()
void panic(const char *fmt,...)
void kern_psignal(struct proc *p, int sig)
Definition: kern_sig.c:2117
void ksiginfo_free(ksiginfo_t *ksi)
Definition: kern_sig.c:304
void sx_init_flags(struct sx *sx, const char *description, int opts)
Definition: kern_sx.c:236
void kern_yield(int prio)
Definition: kern_synch.c:660
int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len)
Definition: kern_sysctl.c:2136
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1644
int sysctl_handle_string(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1778
struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req)
Definition: kern_sysctl.c:2503
void getboottime(struct timeval *boottime)
Definition: kern_tc.c:487
uint64_t cputick2usec(uint64_t tick)
Definition: kern_tc.c:2163
static void thread_dtor(void *mem, int size, void *arg)
Definition: kern_thread.c:375
void thread_single_end(struct proc *p, int mode)
Definition: kern_thread.c:1628
struct thread * tdfind(lwpid_t tid, pid_t pid)
Definition: kern_thread.c:1729
int thread_single(struct proc *p, int mode)
Definition: kern_thread.c:1188
void thread_free(struct thread *td)
Definition: kern_thread.c:808
static int thread_ctor(void *mem, int size, void *arg, int flags)
Definition: kern_thread.c:345
void timevaladd(struct timeval *t1, const struct timeval *t2)
Definition: kern_time.c:1046
uint64_t * addr
Definition: msi_if.m:89
struct intr_irqsrc ** src
Definition: msi_if.m:76
fixpt_t sched_pctcpu(struct thread *td)
Definition: sched_4bsd.c:1592
u_int sched_estcpu(struct thread *td)
Definition: sched_4bsd.c:1636
int sched_sizeof_proc(void)
Definition: sched_4bsd.c:1580
struct sysctl_req * req
Definition: kern_proc.c:1603
void * hashinit(int elements, struct malloc_type *type, u_long *hashmask)
Definition: subr_hash.c:86
int maxproc
Definition: subr_param.c:90
int hz
Definition: subr_param.c:85
void sbuf_clear_flags(struct sbuf *s, int flags)
Definition: subr_sbuf.c:299
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:833
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:898
int sbuf_bcat(struct sbuf *s, const void *buf, size_t len)
Definition: subr_sbuf.c:509
struct sbuf * sbuf_new(struct sbuf *s, char *buf, int length, int flags)
Definition: subr_sbuf.c:196
void stack_destroy(struct stack *st)
Definition: subr_stack.c:64
struct stack * stack_create(int flags)
Definition: subr_stack.c:55
void stack_sbuf_print(struct sbuf *sb, const struct stack *st)
Definition: subr_stack.c:203
uint16_t flags
Definition: subr_stats.c:2
ssize_t proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, size_t len)
Definition: sys_process.c:444
dev_t tty_udev(struct tty *tp)
Definition: tty.c:1990
void tty_rel_sess(struct tty *tp, struct session *sess)
Definition: tty.c:1185
void tty_signal_pgrp(struct tty *tp, int sig)
Definition: tty.c:1506
void tty_rel_pgrp(struct tty *tp, struct pgrp *pg)
Definition: tty.c:1172
struct mtx mtx
Definition: uipc_ktls.c:0
int vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
Definition: vfs_cache.c:3170
int vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp, const char *hrdl_name, size_t hrdl_name_length, char **retbuf, char **freebuf, size_t *buflen)
Definition: vfs_cache.c:3620
void() NDFREE(struct nameidata *ndp, const u_int flags)
Definition: vfs_lookup.c:1555
int namei(struct nameidata *ndp)
Definition: vfs_lookup.c:535
void vref(struct vnode *vp)
Definition: vfs_subr.c:3065
void syncer_suspend(void)
Definition: vfs_subr.c:2833
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334
void vput(struct vnode *vp)
Definition: vfs_subr.c:3348
void syncer_resume(void)
Definition: vfs_subr.c:2840
struct stat * buf