FreeBSD kernel kern code
kern_exec.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1993, David Greenman
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include "opt_capsicum.h"
33#include "opt_hwpmc_hooks.h"
34#include "opt_ktrace.h"
35#include "opt_vm.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/acct.h>
40#include <sys/asan.h>
41#include <sys/capsicum.h>
42#include <sys/compressor.h>
43#include <sys/eventhandler.h>
44#include <sys/exec.h>
45#include <sys/fcntl.h>
46#include <sys/filedesc.h>
47#include <sys/imgact.h>
48#include <sys/imgact_elf.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/malloc.h>
52#include <sys/mman.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/namei.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/ptrace.h>
59#include <sys/reg.h>
60#include <sys/resourcevar.h>
61#include <sys/rwlock.h>
62#include <sys/sched.h>
63#include <sys/sdt.h>
64#include <sys/sf_buf.h>
65#include <sys/shm.h>
66#include <sys/signalvar.h>
67#include <sys/smp.h>
68#include <sys/stat.h>
69#include <sys/syscallsubr.h>
70#include <sys/sysctl.h>
71#include <sys/sysent.h>
72#include <sys/sysproto.h>
73#include <sys/timers.h>
74#include <sys/umtxvar.h>
75#include <sys/vnode.h>
76#include <sys/wait.h>
77#ifdef KTRACE
78#include <sys/ktrace.h>
79#endif
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/pmap.h>
84#include <vm/vm_page.h>
85#include <vm/vm_map.h>
86#include <vm/vm_kern.h>
87#include <vm/vm_extern.h>
88#include <vm/vm_object.h>
89#include <vm/vm_pager.h>
90
91#ifdef HWPMC_HOOKS
92#include <sys/pmckern.h>
93#endif
94
95#include <security/audit/audit.h>
96#include <security/mac/mac_framework.h>
97
98#ifdef KDTRACE_HOOKS
99#include <sys/dtrace_bsd.h>
100dtrace_execexit_func_t dtrace_fasttrap_exec;
101#endif
102
104SDT_PROBE_DEFINE1(proc, , , exec, "char *");
105SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
106SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
107
108MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
109
111SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
113 "Enable file path packing in 'procstat -f' coredump notes");
114
116SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
118 "Enable file path packing in 'procstat -v' coredump notes");
119
120static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
121static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
122static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
123static int do_execve(struct thread *td, struct image_args *args,
124 struct mac *mac_p, struct vmspace *oldvmspace);
125
126/* XXX This should be vm_size_t. */
127SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
128 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
129 "Location of process' ps_strings structure");
130
131/* XXX This should be vm_size_t. */
132SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
133 CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
134 "Top of process stack");
135
136SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
137 NULL, 0, sysctl_kern_stackprot, "I",
138 "Stack memory permissions");
139
140u_long ps_arg_cache_limit = PAGE_SIZE / 16;
141SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
143 "Process' command line characters cache limit");
144
146SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
148 "Disallow execution of binaries built for higher version of the world");
149
150static int map_at_zero = 0;
151SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
152 "Permit processes to map an object at virtual address 0.");
153
154static int core_dump_can_intr = 1;
155SYSCTL_INT(_kern, OID_AUTO, core_dump_can_intr, CTLFLAG_RWTUN,
157 "Core dumping interruptible with SIGKILL");
158
159static int
160sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
161{
162 struct proc *p;
163 vm_offset_t ps_strings;
164
165 p = curproc;
166#ifdef SCTL_MASK32
167 if (req->flags & SCTL_MASK32) {
168 unsigned int val;
169 val = (unsigned int)PROC_PS_STRINGS(p);
170 return (SYSCTL_OUT(req, &val, sizeof(val)));
171 }
172#endif
173 ps_strings = PROC_PS_STRINGS(p);
174 return (SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)));
175}
176
177static int
178sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
179{
180 struct proc *p;
181 vm_offset_t val;
182
183 p = curproc;
184#ifdef SCTL_MASK32
185 if (req->flags & SCTL_MASK32) {
186 unsigned int val32;
187
188 val32 = round_page((unsigned int)p->p_vmspace->vm_stacktop);
189 return (SYSCTL_OUT(req, &val32, sizeof(val32)));
190 }
191#endif
192 val = round_page(p->p_vmspace->vm_stacktop);
193 return (SYSCTL_OUT(req, &val, sizeof(val)));
194}
195
196static int
197sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
198{
199 struct proc *p;
200
201 p = curproc;
202 return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
203 sizeof(p->p_sysent->sv_stackprot)));
204}
205
206/*
207 * Each of the items is a pointer to a `const struct execsw', hence the
208 * double pointer here.
209 */
210static const struct execsw **execsw;
211
212#ifndef _SYS_SYSPROTO_H_
214 char *fname;
215 char **argv;
216 char **envv;
217};
218#endif
219
220int
221sys_execve(struct thread *td, struct execve_args *uap)
222{
223 struct image_args args;
224 struct vmspace *oldvmspace;
225 int error;
226
227 error = pre_execve(td, &oldvmspace);
228 if (error != 0)
229 return (error);
230 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
231 uap->argv, uap->envv);
232 if (error == 0)
233 error = kern_execve(td, &args, NULL, oldvmspace);
234 post_execve(td, error, oldvmspace);
235 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
236 return (error);
237}
238
239#ifndef _SYS_SYSPROTO_H_
241 int fd;
242 char **argv;
243 char **envv;
244};
245#endif
246int
247sys_fexecve(struct thread *td, struct fexecve_args *uap)
248{
249 struct image_args args;
250 struct vmspace *oldvmspace;
251 int error;
252
253 error = pre_execve(td, &oldvmspace);
254 if (error != 0)
255 return (error);
256 error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
257 uap->argv, uap->envv);
258 if (error == 0) {
259 args.fd = uap->fd;
260 error = kern_execve(td, &args, NULL, oldvmspace);
261 }
262 post_execve(td, error, oldvmspace);
263 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
264 return (error);
265}
266
267#ifndef _SYS_SYSPROTO_H_
269 char *fname;
270 char **argv;
271 char **envv;
272 struct mac *mac_p;
273};
274#endif
275
276int
277sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
278{
279#ifdef MAC
280 struct image_args args;
281 struct vmspace *oldvmspace;
282 int error;
283
284 error = pre_execve(td, &oldvmspace);
285 if (error != 0)
286 return (error);
287 error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
288 uap->argv, uap->envv);
289 if (error == 0)
290 error = kern_execve(td, &args, uap->mac_p, oldvmspace);
291 post_execve(td, error, oldvmspace);
292 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
293 return (error);
294#else
295 return (ENOSYS);
296#endif
297}
298
299int
300pre_execve(struct thread *td, struct vmspace **oldvmspace)
301{
302 struct proc *p;
303 int error;
304
305 KASSERT(td == curthread, ("non-current thread %p", td));
306 error = 0;
307 p = td->td_proc;
308 if ((p->p_flag & P_HADTHREADS) != 0) {
309 PROC_LOCK(p);
310 if (thread_single(p, SINGLE_BOUNDARY) != 0)
311 error = ERESTART;
312 PROC_UNLOCK(p);
313 }
314 KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
315 ("nested execve"));
316 *oldvmspace = p->p_vmspace;
317 return (error);
318}
319
320void
321post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
322{
323 struct proc *p;
324
325 KASSERT(td == curthread, ("non-current thread %p", td));
326 p = td->td_proc;
327 if ((p->p_flag & P_HADTHREADS) != 0) {
328 PROC_LOCK(p);
329 /*
330 * If success, we upgrade to SINGLE_EXIT state to
331 * force other threads to suicide.
332 */
333 if (error == EJUSTRETURN)
334 thread_single(p, SINGLE_EXIT);
335 else
336 thread_single_end(p, SINGLE_BOUNDARY);
337 PROC_UNLOCK(p);
338 }
339 exec_cleanup(td, oldvmspace);
340}
341
342/*
343 * kern_execve() has the astonishing property of not always returning to
344 * the caller. If sufficiently bad things happen during the call to
345 * do_execve(), it can end up calling exit1(); as a result, callers must
346 * avoid doing anything which they might need to undo (e.g., allocating
347 * memory).
348 */
349int
350kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
351 struct vmspace *oldvmspace)
352{
353
354 TSEXEC(td->td_proc->p_pid, args->begin_argv);
355 AUDIT_ARG_ARGV(args->begin_argv, args->argc,
356 exec_args_get_begin_envv(args) - args->begin_argv);
357 AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
358 args->endp - exec_args_get_begin_envv(args));
359
360 /* Must have at least one argument. */
361 if (args->argc == 0) {
362 exec_free_args(args);
363 return (EINVAL);
364 }
365 return (do_execve(td, args, mac_p, oldvmspace));
366}
367
368static void
369execve_nosetid(struct image_params *imgp)
370{
371 imgp->credential_setid = false;
372 if (imgp->newcred != NULL) {
373 crfree(imgp->newcred);
374 imgp->newcred = NULL;
375 }
376}
377
378/*
379 * In-kernel implementation of execve(). All arguments are assumed to be
380 * userspace pointers from the passed thread.
381 */
382static int
383do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
384 struct vmspace *oldvmspace)
385{
386 struct proc *p = td->td_proc;
387 struct nameidata nd;
388 struct ucred *oldcred;
389 struct uidinfo *euip = NULL;
390 uintptr_t stack_base;
391 struct image_params image_params, *imgp;
392 struct vattr attr;
393 int (*img_first)(struct image_params *);
394 struct pargs *oldargs = NULL, *newargs = NULL;
395 struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
396#ifdef KTRACE
397 struct ktr_io_params *kiop;
398#endif
399 struct vnode *oldtextvp, *newtextvp;
400 struct vnode *oldtextdvp, *newtextdvp;
401 char *oldbinname, *newbinname;
402 bool credential_changing;
403#ifdef MAC
404 struct label *interpvplabel = NULL;
405 bool will_transition;
406#endif
407#ifdef HWPMC_HOOKS
408 struct pmckern_procexec pe;
409#endif
410 int error, i, orig_osrel;
411 uint32_t orig_fctl0;
412 Elf_Brandinfo *orig_brandinfo;
413 size_t freepath_size;
414 static const char fexecv_proc_title[] = "(fexecv)";
415
416 imgp = &image_params;
417 oldtextvp = oldtextdvp = NULL;
418 newtextvp = newtextdvp = NULL;
419 newbinname = oldbinname = NULL;
420#ifdef KTRACE
421 kiop = NULL;
422#endif
423
424 /*
425 * Lock the process and set the P_INEXEC flag to indicate that
426 * it should be left alone until we're done here. This is
427 * necessary to avoid race conditions - e.g. in ptrace() -
428 * that might allow a local user to illicitly obtain elevated
429 * privileges.
430 */
431 PROC_LOCK(p);
432 KASSERT((p->p_flag & P_INEXEC) == 0,
433 ("%s(): process already has P_INEXEC flag", __func__));
434 p->p_flag |= P_INEXEC;
435 PROC_UNLOCK(p);
436
437 /*
438 * Initialize part of the common data
439 */
440 bzero(imgp, sizeof(*imgp));
441 imgp->proc = p;
442 imgp->attr = &attr;
443 imgp->args = args;
444 oldcred = p->p_ucred;
445 orig_osrel = p->p_osrel;
446 orig_fctl0 = p->p_fctl0;
447 orig_brandinfo = p->p_elf_brandinfo;
448
449#ifdef MAC
450 error = mac_execve_enter(imgp, mac_p);
451 if (error)
452 goto exec_fail;
453#endif
454
455 SDT_PROBE1(proc, , , exec, args->fname);
456
457interpret:
458 if (args->fname != NULL) {
459#ifdef CAPABILITY_MODE
460 /*
461 * While capability mode can't reach this point via direct
462 * path arguments to execve(), we also don't allow
463 * interpreters to be used in capability mode (for now).
464 * Catch indirect lookups and return a permissions error.
465 */
466 if (IN_CAPABILITY_MODE(td)) {
467 error = ECAPMODE;
468 goto exec_fail;
469 }
470#endif
471
472 /*
473 * Translate the file name. namei() returns a vnode
474 * pointer in ni_vp among other things.
475 */
476 NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
477 SAVENAME | AUDITVNODE1 | WANTPARENT, UIO_SYSSPACE,
478 args->fname);
479
480 error = namei(&nd);
481 if (error)
482 goto exec_fail;
483
484 newtextvp = nd.ni_vp;
485 newtextdvp = nd.ni_dvp;
486 nd.ni_dvp = NULL;
487 newbinname = malloc(nd.ni_cnd.cn_namelen + 1, M_PARGS,
488 M_WAITOK);
489 memcpy(newbinname, nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
490 newbinname[nd.ni_cnd.cn_namelen] = '\0';
491 imgp->vp = newtextvp;
492
493 /*
494 * Do the best to calculate the full path to the image file.
495 */
496 if (args->fname[0] == '/') {
497 imgp->execpath = args->fname;
498 } else {
499 VOP_UNLOCK(imgp->vp);
500 freepath_size = MAXPATHLEN;
501 if (vn_fullpath_hardlink(newtextvp, newtextdvp,
502 newbinname, nd.ni_cnd.cn_namelen, &imgp->execpath,
503 &imgp->freepath, &freepath_size) != 0)
504 imgp->execpath = args->fname;
505 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
506 }
507 } else {
508 AUDIT_ARG_FD(args->fd);
509
510 /*
511 * If the descriptors was not opened with O_PATH, then
512 * we require that it was opened with O_EXEC or
513 * O_RDONLY. In either case, exec_check_permissions()
514 * below checks _current_ file access mode regardless
515 * of the permissions additionally checked at the
516 * open(2).
517 */
518 error = fgetvp_exec(td, args->fd, &cap_fexecve_rights,
519 &newtextvp);
520 if (error != 0)
521 goto exec_fail;
522
523 if (vn_fullpath(newtextvp, &imgp->execpath,
524 &imgp->freepath) != 0)
525 imgp->execpath = args->fname;
526 vn_lock(newtextvp, LK_SHARED | LK_RETRY);
527 AUDIT_ARG_VNODE1(newtextvp);
528 imgp->vp = newtextvp;
529 }
530
531 /*
532 * Check file permissions. Also 'opens' file and sets its vnode to
533 * text mode.
534 */
535 error = exec_check_permissions(imgp);
536 if (error)
537 goto exec_fail_dealloc;
538
539 imgp->object = imgp->vp->v_object;
540 if (imgp->object != NULL)
541 vm_object_reference(imgp->object);
542
543 error = exec_map_first_page(imgp);
544 if (error)
545 goto exec_fail_dealloc;
546
547 imgp->proc->p_osrel = 0;
548 imgp->proc->p_fctl0 = 0;
549 imgp->proc->p_elf_brandinfo = NULL;
550
551 /*
552 * Implement image setuid/setgid.
553 *
554 * Determine new credentials before attempting image activators
555 * so that it can be used by process_exec handlers to determine
556 * credential/setid changes.
557 *
558 * Don't honor setuid/setgid if the filesystem prohibits it or if
559 * the process is being traced.
560 *
561 * We disable setuid/setgid/etc in capability mode on the basis
562 * that most setugid applications are not written with that
563 * environment in mind, and will therefore almost certainly operate
564 * incorrectly. In principle there's no reason that setugid
565 * applications might not be useful in capability mode, so we may want
566 * to reconsider this conservative design choice in the future.
567 *
568 * XXXMAC: For the time being, use NOSUID to also prohibit
569 * transitions on the file system.
570 */
571 credential_changing = false;
572 credential_changing |= (attr.va_mode & S_ISUID) &&
573 oldcred->cr_uid != attr.va_uid;
574 credential_changing |= (attr.va_mode & S_ISGID) &&
575 oldcred->cr_gid != attr.va_gid;
576#ifdef MAC
577 will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
578 interpvplabel, imgp) != 0;
579 credential_changing |= will_transition;
580#endif
581
582 /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
583 if (credential_changing)
584 imgp->proc->p_pdeathsig = 0;
585
586 if (credential_changing &&
587#ifdef CAPABILITY_MODE
588 ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
589#endif
590 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
591 (p->p_flag & P_TRACED) == 0) {
592 imgp->credential_setid = true;
593 VOP_UNLOCK(imgp->vp);
594 imgp->newcred = crdup(oldcred);
595 if (attr.va_mode & S_ISUID) {
596 euip = uifind(attr.va_uid);
597 change_euid(imgp->newcred, euip);
598 }
599 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
600 if (attr.va_mode & S_ISGID)
601 change_egid(imgp->newcred, attr.va_gid);
602 /*
603 * Implement correct POSIX saved-id behavior.
604 *
605 * XXXMAC: Note that the current logic will save the
606 * uid and gid if a MAC domain transition occurs, even
607 * though maybe it shouldn't.
608 */
609 change_svuid(imgp->newcred, imgp->newcred->cr_uid);
610 change_svgid(imgp->newcred, imgp->newcred->cr_gid);
611 } else {
612 /*
613 * Implement correct POSIX saved-id behavior.
614 *
615 * XXX: It's not clear that the existing behavior is
616 * POSIX-compliant. A number of sources indicate that the
617 * saved uid/gid should only be updated if the new ruid is
618 * not equal to the old ruid, or the new euid is not equal
619 * to the old euid and the new euid is not equal to the old
620 * ruid. The FreeBSD code always updates the saved uid/gid.
621 * Also, this code uses the new (replaced) euid and egid as
622 * the source, which may or may not be the right ones to use.
623 */
624 if (oldcred->cr_svuid != oldcred->cr_uid ||
625 oldcred->cr_svgid != oldcred->cr_gid) {
626 VOP_UNLOCK(imgp->vp);
627 imgp->newcred = crdup(oldcred);
628 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
629 change_svuid(imgp->newcred, imgp->newcred->cr_uid);
630 change_svgid(imgp->newcred, imgp->newcred->cr_gid);
631 }
632 }
633 /* The new credentials are installed into the process later. */
634
635 /*
636 * If the current process has a special image activator it
637 * wants to try first, call it. For example, emulating shell
638 * scripts differently.
639 */
640 error = -1;
641 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
642 error = img_first(imgp);
643
644 /*
645 * Loop through the list of image activators, calling each one.
646 * An activator returns -1 if there is no match, 0 on success,
647 * and an error otherwise.
648 */
649 for (i = 0; error == -1 && execsw[i]; ++i) {
650 if (execsw[i]->ex_imgact == NULL ||
651 execsw[i]->ex_imgact == img_first) {
652 continue;
653 }
654 error = (*execsw[i]->ex_imgact)(imgp);
655 }
656
657 if (error) {
658 if (error == -1)
659 error = ENOEXEC;
660 goto exec_fail_dealloc;
661 }
662
663 /*
664 * Special interpreter operation, cleanup and loop up to try to
665 * activate the interpreter.
666 */
667 if (imgp->interpreted) {
669 /*
670 * The text reference needs to be removed for scripts.
671 * There is a short period before we determine that
672 * something is a script where text reference is active.
673 * The vnode lock is held over this entire period
674 * so nothing should illegitimately be blocked.
675 */
676 MPASS(imgp->textset);
677 VOP_UNSET_TEXT_CHECKED(newtextvp);
678 imgp->textset = false;
679 /* free name buffer and old vnode */
680#ifdef MAC
681 mac_execve_interpreter_enter(newtextvp, &interpvplabel);
682#endif
683 if (imgp->opened) {
684 VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
685 imgp->opened = false;
686 }
687 vput(newtextvp);
688 imgp->vp = newtextvp = NULL;
689 if (args->fname != NULL) {
690 if (newtextdvp != NULL) {
691 vrele(newtextdvp);
692 newtextdvp = NULL;
693 }
694 NDFREE(&nd, NDF_ONLY_PNBUF);
695 free(newbinname, M_PARGS);
696 newbinname = NULL;
697 }
698 vm_object_deallocate(imgp->object);
699 imgp->object = NULL;
700 execve_nosetid(imgp);
701 imgp->execpath = NULL;
702 free(imgp->freepath, M_TEMP);
703 imgp->freepath = NULL;
704 /* set new name to that of the interpreter */
705 args->fname = imgp->interpreter_name;
706 goto interpret;
707 }
708
709 /*
710 * NB: We unlock the vnode here because it is believed that none
711 * of the sv_copyout_strings/sv_fixup operations require the vnode.
712 */
713 VOP_UNLOCK(imgp->vp);
714
716 P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
717 error = ENOEXEC;
718 uprintf("Osrel %d for image %s too high\n", p->p_osrel,
719 imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
720 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
721 goto exec_fail_dealloc;
722 }
723
724 /*
725 * Copy out strings (args and env) and initialize stack base.
726 */
727 error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
728 if (error != 0) {
729 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
730 goto exec_fail_dealloc;
731 }
732
733 /*
734 * Stack setup.
735 */
736 error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
737 if (error != 0) {
738 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
739 goto exec_fail_dealloc;
740 }
741
742 /*
743 * For security and other reasons, the file descriptor table cannot be
744 * shared after an exec.
745 */
746 fdunshare(td);
747 pdunshare(td);
748 /* close files on exec */
749 fdcloseexec(td);
750
751 /*
752 * Malloc things before we need locks.
753 */
754 i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
755 /* Cache arguments if they fit inside our allowance */
756 if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
757 newargs = pargs_alloc(i);
758 bcopy(imgp->args->begin_argv, newargs->ar_args, i);
759 }
760
761 /*
762 * For security and other reasons, signal handlers cannot
763 * be shared after an exec. The new process gets a copy of the old
764 * handlers. In execsigs(), the new process will have its signals
765 * reset.
766 */
767 if (sigacts_shared(p->p_sigacts)) {
768 oldsigacts = p->p_sigacts;
769 newsigacts = sigacts_alloc();
770 sigacts_copy(newsigacts, oldsigacts);
771 }
772
773 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
774
775 PROC_LOCK(p);
776 if (oldsigacts)
777 p->p_sigacts = newsigacts;
778 /* Stop profiling */
779 stopprofclock(p);
780
781 /* reset caught signals */
782 execsigs(p);
783
784 /* name this process - nameiexec(p, ndp) */
785 bzero(p->p_comm, sizeof(p->p_comm));
786 if (args->fname)
787 bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
788 min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
789 else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
790 bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
791 bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
792#ifdef KTR
793 sched_clear_tdname(td);
794#endif
795
796 /*
797 * mark as execed, wakeup the process that vforked (if any) and tell
798 * it that it now has its own resources back
799 */
800 p->p_flag |= P_EXEC;
801 if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
802 p->p_flag2 &= ~P2_NOTRACE;
803 if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
804 p->p_flag2 &= ~P2_STKGAP_DISABLE;
805 if (p->p_flag & P_PPWAIT) {
806 p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
807 cv_broadcast(&p->p_pwait);
808 /* STOPs are no longer ignored, arrange for AST */
809 signotify(td);
810 }
811
812 if ((imgp->sysent->sv_setid_allowed != NULL &&
813 !(*imgp->sysent->sv_setid_allowed)(td, imgp)) ||
814 (p->p_flag2 & P2_NO_NEW_PRIVS) != 0)
815 execve_nosetid(imgp);
816
817 /*
818 * Implement image setuid/setgid installation.
819 */
820 if (imgp->credential_setid) {
821 /*
822 * Turn off syscall tracing for set-id programs, except for
823 * root. Record any set-id flags first to make sure that
824 * we do not regain any tracing during a possible block.
825 */
826 setsugid(p);
827#ifdef KTRACE
828 kiop = ktrprocexec(p);
829#endif
830 /*
831 * Close any file descriptors 0..2 that reference procfs,
832 * then make sure file descriptors 0..2 are in use.
833 *
834 * Both fdsetugidsafety() and fdcheckstd() may call functions
835 * taking sleepable locks, so temporarily drop our locks.
836 */
837 PROC_UNLOCK(p);
838 VOP_UNLOCK(imgp->vp);
839 fdsetugidsafety(td);
840 error = fdcheckstd(td);
841 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
842 if (error != 0)
843 goto exec_fail_dealloc;
844 PROC_LOCK(p);
845#ifdef MAC
846 if (will_transition) {
847 mac_vnode_execve_transition(oldcred, imgp->newcred,
848 imgp->vp, interpvplabel, imgp);
849 }
850#endif
851 } else {
852 if (oldcred->cr_uid == oldcred->cr_ruid &&
853 oldcred->cr_gid == oldcred->cr_rgid)
854 p->p_flag &= ~P_SUGID;
855 }
856 /*
857 * Set the new credentials.
858 */
859 if (imgp->newcred != NULL) {
860 proc_set_cred(p, imgp->newcred);
861 crfree(oldcred);
862 oldcred = NULL;
863 }
864
865 /*
866 * Store the vp for use in kern.proc.pathname. This vnode was
867 * referenced by namei() or by fexecve variant of fname handling.
868 */
869 oldtextvp = p->p_textvp;
870 p->p_textvp = newtextvp;
871 oldtextdvp = p->p_textdvp;
872 p->p_textdvp = newtextdvp;
873 newtextdvp = NULL;
874 oldbinname = p->p_binname;
875 p->p_binname = newbinname;
876 newbinname = NULL;
877
878#ifdef KDTRACE_HOOKS
879 /*
880 * Tell the DTrace fasttrap provider about the exec if it
881 * has declared an interest.
882 */
883 if (dtrace_fasttrap_exec)
884 dtrace_fasttrap_exec(p);
885#endif
886
887 /*
888 * Notify others that we exec'd, and clear the P_INEXEC flag
889 * as we're now a bona fide freshly-execed process.
890 */
891 KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
892 p->p_flag &= ~P_INEXEC;
893
894 /* clear "fork but no exec" flag, as we _are_ execing */
895 p->p_acflag &= ~AFORK;
896
897 /*
898 * Free any previous argument cache and replace it with
899 * the new argument cache, if any.
900 */
901 oldargs = p->p_args;
902 p->p_args = newargs;
903 newargs = NULL;
904
905 PROC_UNLOCK(p);
906
907#ifdef HWPMC_HOOKS
908 /*
909 * Check if system-wide sampling is in effect or if the
910 * current process is using PMCs. If so, do exec() time
911 * processing. This processing needs to happen AFTER the
912 * P_INEXEC flag is cleared.
913 */
914 if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
915 VOP_UNLOCK(imgp->vp);
916 pe.pm_credentialschanged = credential_changing;
917 pe.pm_entryaddr = imgp->entry_addr;
918
919 PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
920 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
921 }
922#endif
923
924 /* Set values passed into the program in registers. */
925 (*p->p_sysent->sv_setregs)(td, imgp, stack_base);
926
927 VOP_MMAPPED(imgp->vp);
928
929 SDT_PROBE1(proc, , , exec__success, args->fname);
930
931exec_fail_dealloc:
932 if (error != 0) {
933 p->p_osrel = orig_osrel;
934 p->p_fctl0 = orig_fctl0;
935 p->p_elf_brandinfo = orig_brandinfo;
936 }
937
938 if (imgp->firstpage != NULL)
940
941 if (imgp->vp != NULL) {
942 if (imgp->opened)
943 VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
944 if (imgp->textset)
945 VOP_UNSET_TEXT_CHECKED(imgp->vp);
946 if (error != 0)
947 vput(imgp->vp);
948 else
949 VOP_UNLOCK(imgp->vp);
950 if (args->fname != NULL)
951 NDFREE(&nd, NDF_ONLY_PNBUF);
952 if (newtextdvp != NULL)
953 vrele(newtextdvp);
954 free(newbinname, M_PARGS);
955 }
956
957 if (imgp->object != NULL)
958 vm_object_deallocate(imgp->object);
959
960 free(imgp->freepath, M_TEMP);
961
962 if (error == 0) {
963 if (p->p_ptevents & PTRACE_EXEC) {
964 PROC_LOCK(p);
965 if (p->p_ptevents & PTRACE_EXEC)
966 td->td_dbgflags |= TDB_EXEC;
967 PROC_UNLOCK(p);
968 }
969 } else {
970exec_fail:
971 /* we're done here, clear P_INEXEC */
972 PROC_LOCK(p);
973 p->p_flag &= ~P_INEXEC;
974 PROC_UNLOCK(p);
975
976 SDT_PROBE1(proc, , , exec__failure, error);
977 }
978
979 if (imgp->newcred != NULL && oldcred != NULL)
980 crfree(imgp->newcred);
981
982#ifdef MAC
983 mac_execve_exit(imgp);
984 mac_execve_interpreter_exit(interpvplabel);
985#endif
986 exec_free_args(args);
987
988 /*
989 * Handle deferred decrement of ref counts.
990 */
991 if (oldtextvp != NULL)
992 vrele(oldtextvp);
993 if (oldtextdvp != NULL)
994 vrele(oldtextdvp);
995 free(oldbinname, M_PARGS);
996#ifdef KTRACE
997 ktr_io_params_free(kiop);
998#endif
999 pargs_drop(oldargs);
1000 pargs_drop(newargs);
1001 if (oldsigacts != NULL)
1002 sigacts_free(oldsigacts);
1003 if (euip != NULL)
1004 uifree(euip);
1005
1006 if (error && imgp->vmspace_destroyed) {
1007 /* sorry, no more process anymore. exit gracefully */
1008 exec_cleanup(td, oldvmspace);
1009 exit1(td, 0, SIGABRT);
1010 /* NOT REACHED */
1011 }
1012
1013#ifdef KTRACE
1014 if (error == 0)
1015 ktrprocctor(p);
1016#endif
1017
1018 /*
1019 * We don't want cpu_set_syscall_retval() to overwrite any of
1020 * the register values put in place by exec_setregs().
1021 * Implementations of cpu_set_syscall_retval() will leave
1022 * registers unmodified when returning EJUSTRETURN.
1023 */
1024 return (error == 0 ? EJUSTRETURN : error);
1025}
1026
1027void
1028exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
1029{
1030 if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
1031 KASSERT(td->td_proc->p_vmspace != oldvmspace,
1032 ("oldvmspace still used"));
1033 vmspace_free(oldvmspace);
1034 td->td_pflags &= ~TDP_EXECVMSPC;
1035 }
1036}
1037
1038int
1039exec_map_first_page(struct image_params *imgp)
1040{
1041 vm_object_t object;
1042 vm_page_t m;
1043 int error;
1044
1045 if (imgp->firstpage != NULL)
1047
1048 object = imgp->vp->v_object;
1049 if (object == NULL)
1050 return (EACCES);
1051#if VM_NRESERVLEVEL > 0
1052 if ((object->flags & OBJ_COLORED) == 0) {
1053 VM_OBJECT_WLOCK(object);
1054 vm_object_color(object, 0);
1055 VM_OBJECT_WUNLOCK(object);
1056 }
1057#endif
1058 error = vm_page_grab_valid_unlocked(&m, object, 0,
1059 VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
1060 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
1061
1062 if (error != VM_PAGER_OK)
1063 return (EIO);
1064 imgp->firstpage = sf_buf_alloc(m, 0);
1065 imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
1066
1067 return (0);
1068}
1069
1070void
1071exec_unmap_first_page(struct image_params *imgp)
1072{
1073 vm_page_t m;
1074
1075 if (imgp->firstpage != NULL) {
1076 m = sf_buf_page(imgp->firstpage);
1077 sf_buf_free(imgp->firstpage);
1078 imgp->firstpage = NULL;
1079 vm_page_unwire(m, PQ_ACTIVE);
1080 }
1081}
1082
1083void
1084exec_onexec_old(struct thread *td)
1085{
1087 umtx_exec(td->td_proc);
1088}
1089
1090/*
1091 * This is an optimization which removes the unmanaged shared page
1092 * mapping. In combination with pmap_remove_pages(), which cleans all
1093 * managed mappings in the process' vmspace pmap, no work will be left
1094 * for pmap_remove(min, max).
1095 */
1096void
1098{
1099 struct vmspace *vmspace;
1100 struct sysentvec *sv;
1101
1102 vmspace = p->p_vmspace;
1103 if (refcount_load(&vmspace->vm_refcnt) != 1)
1104 return;
1105
1106 sv = p->p_sysent;
1107 if (sv->sv_shared_page_obj == NULL)
1108 return;
1109
1110 pmap_remove(vmspace_pmap(vmspace), sv->sv_shared_page_base,
1111 sv->sv_shared_page_base + sv->sv_shared_page_len);
1112}
1113
1114/*
1115 * Run down the current address space and install a new one. Map the shared
1116 * page.
1117 */
1118int
1119exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
1120{
1121 int error;
1122 struct proc *p = imgp->proc;
1123 struct vmspace *vmspace = p->p_vmspace;
1124 struct thread *td = curthread;
1125 vm_object_t obj;
1126 vm_offset_t sv_minuser;
1127 vm_map_t map;
1128
1129 imgp->vmspace_destroyed = true;
1130 imgp->sysent = sv;
1131
1132 if (p->p_sysent->sv_onexec_old != NULL)
1133 p->p_sysent->sv_onexec_old(td);
1134 itimers_exec(p);
1135
1136 EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
1137
1138 /*
1139 * Blow away entire process VM, if address space not shared,
1140 * otherwise, create a new VM space so that other threads are
1141 * not disrupted
1142 */
1143 map = &vmspace->vm_map;
1144 if (map_at_zero)
1145 sv_minuser = sv->sv_minuser;
1146 else
1147 sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
1148 if (refcount_load(&vmspace->vm_refcnt) == 1 &&
1149 vm_map_min(map) == sv_minuser &&
1150 vm_map_max(map) == sv->sv_maxuser &&
1151 cpu_exec_vmspace_reuse(p, map)) {
1153 shmexit(vmspace);
1154 pmap_remove_pages(vmspace_pmap(vmspace));
1155 vm_map_remove(map, vm_map_min(map), vm_map_max(map));
1156 /*
1157 * An exec terminates mlockall(MCL_FUTURE).
1158 * ASLR and W^X states must be re-evaluated.
1159 */
1160 vm_map_lock(map);
1161 vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
1162 MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX);
1163 vm_map_unlock(map);
1164 } else {
1165 error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
1166 if (error)
1167 return (error);
1168 vmspace = p->p_vmspace;
1169 map = &vmspace->vm_map;
1170 }
1171 map->flags |= imgp->map_flags;
1172
1173 /* Map a shared page */
1174 obj = sv->sv_shared_page_obj;
1175 if (obj != NULL) {
1176 vm_object_reference(obj);
1177 error = vm_map_fixed(map, obj, 0,
1178 sv->sv_shared_page_base, sv->sv_shared_page_len,
1179 VM_PROT_READ | VM_PROT_EXECUTE,
1180 VM_PROT_READ | VM_PROT_EXECUTE,
1181 MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
1182 if (error != KERN_SUCCESS) {
1183 vm_object_deallocate(obj);
1184 return (vm_mmap_to_errno(error));
1185 }
1186 }
1187
1188 return (sv->sv_onexec != NULL ? sv->sv_onexec(p, imgp) : 0);
1189}
1190
1191/*
1192 * Compute the stack size limit and map the main process stack.
1193 */
1194int
1195exec_map_stack(struct image_params *imgp)
1196{
1197 struct rlimit rlim_stack;
1198 struct sysentvec *sv;
1199 struct proc *p;
1200 vm_map_t map;
1201 struct vmspace *vmspace;
1202 vm_offset_t stack_addr, stack_top;
1203 u_long ssiz;
1204 int error, find_space, stack_off;
1205 vm_prot_t stack_prot;
1206
1207 p = imgp->proc;
1208 sv = p->p_sysent;
1209
1210 if (imgp->stack_sz != 0) {
1211 ssiz = trunc_page(imgp->stack_sz);
1212 PROC_LOCK(p);
1213 lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
1214 PROC_UNLOCK(p);
1215 if (ssiz > rlim_stack.rlim_max)
1216 ssiz = rlim_stack.rlim_max;
1217 if (ssiz > rlim_stack.rlim_cur) {
1218 rlim_stack.rlim_cur = ssiz;
1219 kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
1220 }
1221 } else if (sv->sv_maxssiz != NULL) {
1222 ssiz = *sv->sv_maxssiz;
1223 } else {
1224 ssiz = maxssiz;
1225 }
1226
1227 vmspace = p->p_vmspace;
1228 map = &vmspace->vm_map;
1229
1230 stack_prot = sv->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ?
1231 imgp->stack_prot : sv->sv_stackprot;
1232 if ((map->flags & MAP_ASLR_STACK) != 0) {
1233 stack_addr = round_page((vm_offset_t)p->p_vmspace->vm_daddr +
1234 lim_max(curthread, RLIMIT_DATA));
1235 find_space = VMFS_ANY_SPACE;
1236 } else {
1237 stack_addr = sv->sv_usrstack - ssiz;
1238 find_space = VMFS_NO_SPACE;
1239 }
1240 error = vm_map_find(map, NULL, 0, &stack_addr, (vm_size_t)ssiz,
1241 sv->sv_usrstack, find_space, stack_prot, VM_PROT_ALL,
1242 MAP_STACK_GROWS_DOWN);
1243 if (error != KERN_SUCCESS) {
1244 uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
1245 "failed, mach error %d errno %d\n", (uintmax_t)ssiz,
1246 stack_prot, error, vm_mmap_to_errno(error));
1247 return (vm_mmap_to_errno(error));
1248 }
1249
1250 stack_top = stack_addr + ssiz;
1251 if ((map->flags & MAP_ASLR_STACK) != 0) {
1252 /* Randomize within the first page of the stack. */
1253 arc4rand(&stack_off, sizeof(stack_off), 0);
1254 stack_top -= rounddown2(stack_off & PAGE_MASK, sizeof(void *));
1255 }
1256
1257 /*
1258 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
1259 * are still used to enforce the stack rlimit on the process stack.
1260 */
1261 vmspace->vm_maxsaddr = (char *)stack_addr;
1262 vmspace->vm_stacktop = stack_top;
1263 vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
1264
1265 return (0);
1266}
1267
1268/*
1269 * Copy out argument and environment strings from the old process address
1270 * space into the temporary string buffer.
1271 */
1272int
1273exec_copyin_args(struct image_args *args, const char *fname,
1274 enum uio_seg segflg, char **argv, char **envv)
1275{
1276 u_long arg, env;
1277 int error;
1278
1279 bzero(args, sizeof(*args));
1280 if (argv == NULL)
1281 return (EFAULT);
1282
1283 /*
1284 * Allocate demand-paged memory for the file name, argument, and
1285 * environment strings.
1286 */
1287 error = exec_alloc_args(args);
1288 if (error != 0)
1289 return (error);
1290
1291 /*
1292 * Copy the file name.
1293 */
1294 error = exec_args_add_fname(args, fname, segflg);
1295 if (error != 0)
1296 goto err_exit;
1297
1298 /*
1299 * extract arguments first
1300 */
1301 for (;;) {
1302 error = fueword(argv++, &arg);
1303 if (error == -1) {
1304 error = EFAULT;
1305 goto err_exit;
1306 }
1307 if (arg == 0)
1308 break;
1309 error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
1310 UIO_USERSPACE);
1311 if (error != 0)
1312 goto err_exit;
1313 }
1314
1315 /*
1316 * extract environment strings
1317 */
1318 if (envv) {
1319 for (;;) {
1320 error = fueword(envv++, &env);
1321 if (error == -1) {
1322 error = EFAULT;
1323 goto err_exit;
1324 }
1325 if (env == 0)
1326 break;
1327 error = exec_args_add_env(args,
1328 (char *)(uintptr_t)env, UIO_USERSPACE);
1329 if (error != 0)
1330 goto err_exit;
1331 }
1332 }
1333
1334 return (0);
1335
1336err_exit:
1337 exec_free_args(args);
1338 return (error);
1339}
1340
1342 vm_offset_t addr;
1343 u_int gen;
1344 SLIST_ENTRY(exec_args_kva) next;
1345};
1346
1348
1349static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
1350static struct mtx exec_args_kva_mtx;
1351static u_int exec_args_gen;
1352
1353static void
1354exec_prealloc_args_kva(void *arg __unused)
1355{
1356 struct exec_args_kva *argkva;
1357 u_int i;
1358
1359 SLIST_INIT(&exec_args_kva_freelist);
1360 mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
1361 for (i = 0; i < exec_map_entries; i++) {
1362 argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
1363 argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
1364 argkva->gen = exec_args_gen;
1365 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1366 }
1367}
1368SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
1369
1370static vm_offset_t
1372{
1373 struct exec_args_kva *argkva;
1374
1375 argkva = (void *)atomic_readandclear_ptr(
1376 (uintptr_t *)DPCPU_PTR(exec_args_kva));
1377 if (argkva == NULL) {
1378 mtx_lock(&exec_args_kva_mtx);
1379 while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
1380 (void)mtx_sleep(&exec_args_kva_freelist,
1381 &exec_args_kva_mtx, 0, "execkva", 0);
1382 SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
1383 mtx_unlock(&exec_args_kva_mtx);
1384 }
1385 kasan_mark((void *)argkva->addr, exec_map_entry_size,
1386 exec_map_entry_size, 0);
1387 *(struct exec_args_kva **)cookie = argkva;
1388 return (argkva->addr);
1389}
1390
1391static void
1393{
1394 vm_offset_t base;
1395
1396 base = argkva->addr;
1397 kasan_mark((void *)argkva->addr, 0, exec_map_entry_size,
1398 KASAN_EXEC_ARGS_FREED);
1399 if (argkva->gen != gen) {
1400 (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
1401 MADV_FREE);
1402 argkva->gen = gen;
1403 }
1404 if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
1405 (uintptr_t)NULL, (uintptr_t)argkva)) {
1406 mtx_lock(&exec_args_kva_mtx);
1407 SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
1408 wakeup_one(&exec_args_kva_freelist);
1409 mtx_unlock(&exec_args_kva_mtx);
1410 }
1411}
1412
1413static void
1415{
1416
1417 exec_release_args_kva(cookie, exec_args_gen);
1418}
1419
1420static void
1421exec_args_kva_lowmem(void *arg __unused)
1422{
1423 SLIST_HEAD(, exec_args_kva) head;
1424 struct exec_args_kva *argkva;
1425 u_int gen;
1426 int i;
1427
1428 gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
1429
1430 /*
1431 * Force an madvise of each KVA range. Any currently allocated ranges
1432 * will have MADV_FREE applied once they are freed.
1433 */
1434 SLIST_INIT(&head);
1435 mtx_lock(&exec_args_kva_mtx);
1436 SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
1437 mtx_unlock(&exec_args_kva_mtx);
1438 while ((argkva = SLIST_FIRST(&head)) != NULL) {
1439 SLIST_REMOVE_HEAD(&head, next);
1440 exec_release_args_kva(argkva, gen);
1441 }
1442
1443 CPU_FOREACH(i) {
1444 argkva = (void *)atomic_readandclear_ptr(
1445 (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
1446 if (argkva != NULL)
1447 exec_release_args_kva(argkva, gen);
1448 }
1449}
1451 EVENTHANDLER_PRI_ANY);
1452
1453/*
1454 * Allocate temporary demand-paged, zero-filled memory for the file name,
1455 * argument, and environment strings.
1456 */
1457int
1458exec_alloc_args(struct image_args *args)
1459{
1460
1461 args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
1462 return (0);
1463}
1464
1465void
1466exec_free_args(struct image_args *args)
1467{
1468
1469 if (args->buf != NULL) {
1470 exec_free_args_kva(args->bufkva);
1471 args->buf = NULL;
1472 }
1473 if (args->fname_buf != NULL) {
1474 free(args->fname_buf, M_TEMP);
1475 args->fname_buf = NULL;
1476 }
1477}
1478
1479/*
1480 * A set to functions to fill struct image args.
1481 *
1482 * NOTE: exec_args_add_fname() must be called (possibly with a NULL
1483 * fname) before the other functions. All exec_args_add_arg() calls must
1484 * be made before any exec_args_add_env() calls. exec_args_adjust_args()
1485 * may be called any time after exec_args_add_fname().
1486 *
1487 * exec_args_add_fname() - install path to be executed
1488 * exec_args_add_arg() - append an argument string
1489 * exec_args_add_env() - append an env string
1490 * exec_args_adjust_args() - adjust location of the argument list to
1491 * allow new arguments to be prepended
1492 */
1493int
1494exec_args_add_fname(struct image_args *args, const char *fname,
1495 enum uio_seg segflg)
1496{
1497 int error;
1498 size_t length;
1499
1500 KASSERT(args->fname == NULL, ("fname already appended"));
1501 KASSERT(args->endp == NULL, ("already appending to args"));
1502
1503 if (fname != NULL) {
1504 args->fname = args->buf;
1505 error = segflg == UIO_SYSSPACE ?
1506 copystr(fname, args->fname, PATH_MAX, &length) :
1507 copyinstr(fname, args->fname, PATH_MAX, &length);
1508 if (error != 0)
1509 return (error == ENAMETOOLONG ? E2BIG : error);
1510 } else
1511 length = 0;
1512
1513 /* Set up for _arg_*()/_env_*() */
1514 args->endp = args->buf + length;
1515 /* begin_argv must be set and kept updated */
1516 args->begin_argv = args->endp;
1517 KASSERT(exec_map_entry_size - length >= ARG_MAX,
1518 ("too little space remaining for arguments %zu < %zu",
1519 exec_map_entry_size - length, (size_t)ARG_MAX));
1520 args->stringspace = ARG_MAX;
1521
1522 return (0);
1523}
1524
1525static int
1526exec_args_add_str(struct image_args *args, const char *str,
1527 enum uio_seg segflg, int *countp)
1528{
1529 int error;
1530 size_t length;
1531
1532 KASSERT(args->endp != NULL, ("endp not initialized"));
1533 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1534
1535 error = (segflg == UIO_SYSSPACE) ?
1536 copystr(str, args->endp, args->stringspace, &length) :
1537 copyinstr(str, args->endp, args->stringspace, &length);
1538 if (error != 0)
1539 return (error == ENAMETOOLONG ? E2BIG : error);
1540 args->stringspace -= length;
1541 args->endp += length;
1542 (*countp)++;
1543
1544 return (0);
1545}
1546
1547int
1548exec_args_add_arg(struct image_args *args, const char *argp,
1549 enum uio_seg segflg)
1550{
1551
1552 KASSERT(args->envc == 0, ("appending args after env"));
1553
1554 return (exec_args_add_str(args, argp, segflg, &args->argc));
1555}
1556
1557int
1558exec_args_add_env(struct image_args *args, const char *envp,
1559 enum uio_seg segflg)
1560{
1561
1562 if (args->envc == 0)
1563 args->begin_envv = args->endp;
1564
1565 return (exec_args_add_str(args, envp, segflg, &args->envc));
1566}
1567
1568int
1569exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
1570{
1571 ssize_t offset;
1572
1573 KASSERT(args->endp != NULL, ("endp not initialized"));
1574 KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
1575
1576 offset = extend - consume;
1577 if (args->stringspace < offset)
1578 return (E2BIG);
1579 memmove(args->begin_argv + extend, args->begin_argv + consume,
1580 args->endp - args->begin_argv + consume);
1581 if (args->envc > 0)
1582 args->begin_envv += offset;
1583 args->endp += offset;
1584 args->stringspace -= offset;
1585 return (0);
1586}
1587
1588char *
1589exec_args_get_begin_envv(struct image_args *args)
1590{
1591
1592 KASSERT(args->endp != NULL, ("endp not initialized"));
1593
1594 if (args->envc > 0)
1595 return (args->begin_envv);
1596 return (args->endp);
1597}
1598
1599/*
1600 * Copy strings out to the new process address space, constructing new arg
1601 * and env vector tables. Return a pointer to the base so that it can be used
1602 * as the initial stack pointer.
1603 */
1604int
1605exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
1606{
1607 int argc, envc;
1608 char **vectp;
1609 char *stringp;
1610 uintptr_t destp, ustringp;
1611 struct ps_strings *arginfo;
1612 struct proc *p;
1613 struct sysentvec *sysent;
1614 size_t execpath_len;
1615 int error, szsigcode;
1616 char canary[sizeof(long) * 8];
1617
1618 p = imgp->proc;
1619 sysent = p->p_sysent;
1620
1621 destp = PROC_PS_STRINGS(p);
1622 arginfo = imgp->ps_strings = (void *)destp;
1623
1624 /*
1625 * Install sigcode.
1626 */
1627 if (sysent->sv_sigcode_base == 0 && sysent->sv_szsigcode != NULL) {
1628 szsigcode = *(sysent->sv_szsigcode);
1629 destp -= szsigcode;
1630 destp = rounddown2(destp, sizeof(void *));
1631 error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode);
1632 if (error != 0)
1633 return (error);
1634 }
1635
1636 /*
1637 * Copy the image path for the rtld.
1638 */
1639 if (imgp->execpath != NULL && imgp->auxargs != NULL) {
1640 execpath_len = strlen(imgp->execpath) + 1;
1641 destp -= execpath_len;
1642 destp = rounddown2(destp, sizeof(void *));
1643 imgp->execpathp = (void *)destp;
1644 error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
1645 if (error != 0)
1646 return (error);
1647 }
1648
1649 /*
1650 * Prepare the canary for SSP.
1651 */
1652 arc4rand(canary, sizeof(canary), 0);
1653 destp -= sizeof(canary);
1654 imgp->canary = (void *)destp;
1655 error = copyout(canary, imgp->canary, sizeof(canary));
1656 if (error != 0)
1657 return (error);
1658 imgp->canarylen = sizeof(canary);
1659
1660 /*
1661 * Prepare the pagesizes array.
1662 */
1663 imgp->pagesizeslen = sizeof(pagesizes[0]) * MAXPAGESIZES;
1664 destp -= imgp->pagesizeslen;
1665 destp = rounddown2(destp, sizeof(void *));
1666 imgp->pagesizes = (void *)destp;
1667 error = copyout(pagesizes, imgp->pagesizes, imgp->pagesizeslen);
1668 if (error != 0)
1669 return (error);
1670
1671 /*
1672 * Allocate room for the argument and environment strings.
1673 */
1674 destp -= ARG_MAX - imgp->args->stringspace;
1675 destp = rounddown2(destp, sizeof(void *));
1676 ustringp = destp;
1677
1678 if (imgp->auxargs) {
1679 /*
1680 * Allocate room on the stack for the ELF auxargs
1681 * array. It has up to AT_COUNT entries.
1682 */
1683 destp -= AT_COUNT * sizeof(Elf_Auxinfo);
1684 destp = rounddown2(destp, sizeof(void *));
1685 }
1686
1687 vectp = (char **)destp;
1688
1689 /*
1690 * Allocate room for the argv[] and env vectors including the
1691 * terminating NULL pointers.
1692 */
1693 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
1694
1695 /*
1696 * vectp also becomes our initial stack base
1697 */
1698 *stack_base = (uintptr_t)vectp;
1699
1700 stringp = imgp->args->begin_argv;
1701 argc = imgp->args->argc;
1702 envc = imgp->args->envc;
1703
1704 /*
1705 * Copy out strings - arguments and environment.
1706 */
1707 error = copyout(stringp, (void *)ustringp,
1708 ARG_MAX - imgp->args->stringspace);
1709 if (error != 0)
1710 return (error);
1711
1712 /*
1713 * Fill in "ps_strings" struct for ps, w, etc.
1714 */
1715 imgp->argv = vectp;
1716 if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
1717 suword32(&arginfo->ps_nargvstr, argc) != 0)
1718 return (EFAULT);
1719
1720 /*
1721 * Fill in argument portion of vector table.
1722 */
1723 for (; argc > 0; --argc) {
1724 if (suword(vectp++, ustringp) != 0)
1725 return (EFAULT);
1726 while (*stringp++ != 0)
1727 ustringp++;
1728 ustringp++;
1729 }
1730
1731 /* a null vector table pointer separates the argp's from the envp's */
1732 if (suword(vectp++, 0) != 0)
1733 return (EFAULT);
1734
1735 imgp->envv = vectp;
1736 if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
1737 suword32(&arginfo->ps_nenvstr, envc) != 0)
1738 return (EFAULT);
1739
1740 /*
1741 * Fill in environment portion of vector table.
1742 */
1743 for (; envc > 0; --envc) {
1744 if (suword(vectp++, ustringp) != 0)
1745 return (EFAULT);
1746 while (*stringp++ != 0)
1747 ustringp++;
1748 ustringp++;
1749 }
1750
1751 /* end of vector table is a null pointer */
1752 if (suword(vectp, 0) != 0)
1753 return (EFAULT);
1754
1755 if (imgp->auxargs) {
1756 vectp++;
1757 error = imgp->sysent->sv_copyout_auxargs(imgp,
1758 (uintptr_t)vectp);
1759 if (error != 0)
1760 return (error);
1761 }
1762
1763 return (0);
1764}
1765
1766/*
1767 * Check permissions of file to execute.
1768 * Called with imgp->vp locked.
1769 * Return 0 for success or error code on failure.
1770 */
1771int
1772exec_check_permissions(struct image_params *imgp)
1773{
1774 struct vnode *vp = imgp->vp;
1775 struct vattr *attr = imgp->attr;
1776 struct thread *td;
1777 int error;
1778
1779 td = curthread;
1780
1781 /* Get file attributes */
1782 error = VOP_GETATTR(vp, attr, td->td_ucred);
1783 if (error)
1784 return (error);
1785
1786#ifdef MAC
1787 error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
1788 if (error)
1789 return (error);
1790#endif
1791
1792 /*
1793 * 1) Check if file execution is disabled for the filesystem that
1794 * this file resides on.
1795 * 2) Ensure that at least one execute bit is on. Otherwise, a
1796 * privileged user will always succeed, and we don't want this
1797 * to happen unless the file really is executable.
1798 * 3) Ensure that the file is a regular file.
1799 */
1800 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1801 (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
1802 (attr->va_type != VREG))
1803 return (EACCES);
1804
1805 /*
1806 * Zero length files can't be exec'd
1807 */
1808 if (attr->va_size == 0)
1809 return (ENOEXEC);
1810
1811 /*
1812 * Check for execute permission to file based on current credentials.
1813 */
1814 error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
1815 if (error)
1816 return (error);
1817
1818 /*
1819 * Check number of open-for-writes on the file and deny execution
1820 * if there are any.
1821 *
1822 * Add a text reference now so no one can write to the
1823 * executable while we're activating it.
1824 *
1825 * Remember if this was set before and unset it in case this is not
1826 * actually an executable image.
1827 */
1828 error = VOP_SET_TEXT(vp);
1829 if (error != 0)
1830 return (error);
1831 imgp->textset = true;
1832
1833 /*
1834 * Call filesystem specific open routine (which does nothing in the
1835 * general case).
1836 */
1837 error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
1838 if (error == 0)
1839 imgp->opened = true;
1840 return (error);
1841}
1842
1843/*
1844 * Exec handler registration
1845 */
1846int
1847exec_register(const struct execsw *execsw_arg)
1848{
1849 const struct execsw **es, **xs, **newexecsw;
1850 u_int count = 2; /* New slot and trailing NULL */
1851
1852 if (execsw)
1853 for (es = execsw; *es; es++)
1854 count++;
1855 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1856 xs = newexecsw;
1857 if (execsw)
1858 for (es = execsw; *es; es++)
1859 *xs++ = *es;
1860 *xs++ = execsw_arg;
1861 *xs = NULL;
1862 if (execsw)
1863 free(execsw, M_TEMP);
1864 execsw = newexecsw;
1865 return (0);
1866}
1867
1868int
1869exec_unregister(const struct execsw *execsw_arg)
1870{
1871 const struct execsw **es, **xs, **newexecsw;
1872 int count = 1;
1873
1874 if (execsw == NULL)
1875 panic("unregister with no handlers left?\n");
1876
1877 for (es = execsw; *es; es++) {
1878 if (*es == execsw_arg)
1879 break;
1880 }
1881 if (*es == NULL)
1882 return (ENOENT);
1883 for (es = execsw; *es; es++)
1884 if (*es != execsw_arg)
1885 count++;
1886 newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1887 xs = newexecsw;
1888 for (es = execsw; *es; es++)
1889 if (*es != execsw_arg)
1890 *xs++ = *es;
1891 *xs = NULL;
1892 if (execsw)
1893 free(execsw, M_TEMP);
1894 execsw = newexecsw;
1895 return (0);
1896}
1897
1898/*
1899 * Write out a core segment to the compression stream.
1900 */
1901static int
1902compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
1903{
1904 size_t chunk_len;
1905 int error;
1906
1907 while (len > 0) {
1908 chunk_len = MIN(len, CORE_BUF_SIZE);
1909
1910 /*
1911 * We can get EFAULT error here.
1912 * In that case zero out the current chunk of the segment.
1913 */
1914 error = copyin(base, buf, chunk_len);
1915 if (error != 0)
1916 bzero(buf, chunk_len);
1917 error = compressor_write(cp->comp, buf, chunk_len);
1918 if (error != 0)
1919 break;
1920 base += chunk_len;
1921 len -= chunk_len;
1922 }
1923 return (error);
1924}
1925
1926int
1927core_write(struct coredump_params *cp, const void *base, size_t len,
1928 off_t offset, enum uio_seg seg, size_t *resid)
1929{
1930
1931 return (vn_rdwr_inchunks(UIO_WRITE, cp->vp, __DECONST(void *, base),
1932 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1933 cp->active_cred, cp->file_cred, resid, cp->td));
1934}
1935
1936int
1937core_output(char *base, size_t len, off_t offset, struct coredump_params *cp,
1938 void *tmpbuf)
1939{
1940 vm_map_t map;
1941 struct mount *mp;
1942 size_t resid, runlen;
1943 int error;
1944 bool success;
1945
1946 KASSERT((uintptr_t)base % PAGE_SIZE == 0,
1947 ("%s: user address %p is not page-aligned", __func__, base));
1948
1949 if (cp->comp != NULL)
1950 return (compress_chunk(cp, base, tmpbuf, len));
1951
1952 map = &cp->td->td_proc->p_vmspace->vm_map;
1953 for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
1954 /*
1955 * Attempt to page in all virtual pages in the range. If a
1956 * virtual page is not backed by the pager, it is represented as
1957 * a hole in the file. This can occur with zero-filled
1958 * anonymous memory or truncated files, for example.
1959 */
1960 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
1962 return (EINTR);
1963 error = vm_fault(map, (uintptr_t)base + runlen,
1964 VM_PROT_READ, VM_FAULT_NOFILL, NULL);
1965 if (runlen == 0)
1966 success = error == KERN_SUCCESS;
1967 else if ((error == KERN_SUCCESS) != success)
1968 break;
1969 }
1970
1971 if (success) {
1972 error = core_write(cp, base, runlen, offset,
1973 UIO_USERSPACE, &resid);
1974 if (error != 0) {
1975 if (error != EFAULT)
1976 break;
1977
1978 /*
1979 * EFAULT may be returned if the user mapping
1980 * could not be accessed, e.g., because a mapped
1981 * file has been truncated. Skip the page if no
1982 * progress was made, to protect against a
1983 * hypothetical scenario where vm_fault() was
1984 * successful but core_write() returns EFAULT
1985 * anyway.
1986 */
1987 runlen -= resid;
1988 if (runlen == 0) {
1989 success = false;
1990 runlen = PAGE_SIZE;
1991 }
1992 }
1993 }
1994 if (!success) {
1995 error = vn_start_write(cp->vp, &mp, V_WAIT);
1996 if (error != 0)
1997 break;
1998 vn_lock(cp->vp, LK_EXCLUSIVE | LK_RETRY);
1999 error = vn_truncate_locked(cp->vp, offset + runlen,
2000 false, cp->td->td_ucred);
2001 VOP_UNLOCK(cp->vp);
2003 if (error != 0)
2004 break;
2005 }
2006 }
2007 return (error);
2008}
2009
2010/*
2011 * Drain into a core file.
2012 */
2013int
2014sbuf_drain_core_output(void *arg, const char *data, int len)
2015{
2016 struct coredump_params *cp;
2017 struct proc *p;
2018 int error, locked;
2019
2020 cp = arg;
2021 p = cp->td->td_proc;
2022
2023 /*
2024 * Some kern_proc out routines that print to this sbuf may
2025 * call us with the process lock held. Draining with the
2026 * non-sleepable lock held is unsafe. The lock is needed for
2027 * those routines when dumping a live process. In our case we
2028 * can safely release the lock before draining and acquire
2029 * again after.
2030 */
2031 locked = PROC_LOCKED(p);
2032 if (locked)
2033 PROC_UNLOCK(p);
2034 if (cp->comp != NULL)
2035 error = compressor_write(cp->comp, __DECONST(char *, data),
2036 len);
2037 else
2038 error = core_write(cp, __DECONST(void *, data), len, cp->offset,
2039 UIO_SYSSPACE, NULL);
2040 if (locked)
2041 PROC_LOCK(p);
2042 if (error != 0)
2043 return (-error);
2044 cp->offset += len;
2045 return (len);
2046}
int * count
Definition: cpufreq_if.m:63
struct sysent sysent[]
Definition: init_sysent.c:63
void stopprofclock(struct proc *p)
Definition: kern_clock.c:608
int fdcheckstd(struct thread *td)
void pdunshare(struct thread *td)
void fdunshare(struct thread *td)
int fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
void fdsetugidsafety(struct thread *td)
void fdcloseexec(struct thread *td)
static int map_at_zero
Definition: kern_exec.c:150
void exec_onexec_old(struct thread *td)
Definition: kern_exec.c:1084
int exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
Definition: kern_exec.c:1119
int coredump_pack_vmmapinfo
Definition: kern_exec.c:115
static void execve_nosetid(struct image_params *imgp)
Definition: kern_exec.c:369
SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL)
SDT_PROBE_DEFINE1(proc,,, exec, "char *")
EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, EVENTHANDLER_PRI_ANY)
void exec_free_args(struct image_args *args)
Definition: kern_exec.c:1466
int coredump_pack_fileinfo
Definition: kern_exec.c:110
void exec_unmap_first_page(struct image_params *imgp)
Definition: kern_exec.c:1071
int exec_register(const struct execsw *execsw_arg)
Definition: kern_exec.c:1847
static void exec_free_args_kva(void *cookie)
Definition: kern_exec.c:1414
static int disallow_high_osrel
Definition: kern_exec.c:145
void exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
Definition: kern_exec.c:1028
static const struct execsw ** execsw
Definition: kern_exec.c:210
int exec_check_permissions(struct image_params *imgp)
Definition: kern_exec.c:1772
int exec_map_stack(struct image_params *imgp)
Definition: kern_exec.c:1195
SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, "Process' command line characters cache limit")
DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva)
SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", "Location of process' ps_strings structure")
static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
Definition: kern_exec.c:197
static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace)
Definition: kern_exec.c:383
int exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
Definition: kern_exec.c:1605
int sys_fexecve(struct thread *td, struct fexecve_args *uap)
Definition: kern_exec.c:247
static vm_offset_t exec_alloc_args_kva(void **cookie)
Definition: kern_exec.c:1371
static void exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
Definition: kern_exec.c:1392
void exec_free_abi_mappings(struct proc *p)
Definition: kern_exec.c:1097
__FBSDID("$FreeBSD$")
int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace)
Definition: kern_exec.c:350
int exec_map_first_page(struct image_params *imgp)
Definition: kern_exec.c:1039
static int compress_chunk(struct coredump_params *cp, char *base, char *buf, size_t len)
Definition: kern_exec.c:1902
static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
Definition: kern_exec.c:178
u_long ps_arg_cache_limit
Definition: kern_exec.c:140
int exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
Definition: kern_exec.c:1569
static int core_dump_can_intr
Definition: kern_exec.c:154
int sbuf_drain_core_output(void *arg, const char *data, int len)
Definition: kern_exec.c:2014
static void exec_args_kva_lowmem(void *arg __unused)
Definition: kern_exec.c:1421
int exec_args_add_arg(struct image_args *args, const char *argp, enum uio_seg segflg)
Definition: kern_exec.c:1548
static SLIST_HEAD(exec_args_kva)
Definition: kern_exec.c:1349
char * exec_args_get_begin_envv(struct image_args *args)
Definition: kern_exec.c:1589
MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments")
int exec_args_add_fname(struct image_args *args, const char *fname, enum uio_seg segflg)
Definition: kern_exec.c:1494
int exec_args_add_env(struct image_args *args, const char *envp, enum uio_seg segflg)
Definition: kern_exec.c:1558
int sys_execve(struct thread *td, struct execve_args *uap)
Definition: kern_exec.c:221
SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, &coredump_pack_fileinfo, 0, "Enable file path packing in 'procstat -f' coredump notes")
void post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
Definition: kern_exec.c:321
SDT_PROVIDER_DECLARE(proc)
int exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, char **argv, char **envv)
Definition: kern_exec.c:1273
int sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
Definition: kern_exec.c:277
int exec_unregister(const struct execsw *execsw_arg)
Definition: kern_exec.c:1869
int pre_execve(struct thread *td, struct vmspace **oldvmspace)
Definition: kern_exec.c:300
int core_output(char *base, size_t len, off_t offset, struct coredump_params *cp, void *tmpbuf)
Definition: kern_exec.c:1937
static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
Definition: kern_exec.c:160
int exec_alloc_args(struct image_args *args)
Definition: kern_exec.c:1458
int core_write(struct coredump_params *cp, const void *base, size_t len, off_t offset, enum uio_seg seg, size_t *resid)
Definition: kern_exec.c:1927
static int exec_args_add_str(struct image_args *args, const char *str, enum uio_seg segflg, int *countp)
Definition: kern_exec.c:1526
void exit1(struct thread *td, int rval, int signo)
Definition: kern_exit.c:222
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
u_long pagesizes[MAXPAGESIZES]
Definition: kern_mib.c:249
struct pargs * pargs_alloc(int len)
Definition: kern_proc.c:1765
void pargs_drop(struct pargs *pa)
Definition: kern_proc.c:1793
struct ucred * crdup(struct ucred *cr)
Definition: kern_prot.c:2124
void setsugid(struct proc *p)
Definition: kern_prot.c:2395
void change_egid(struct ucred *newcred, gid_t egid)
Definition: kern_prot.c:2425
void change_euid(struct ucred *newcred, struct uidinfo *euip)
Definition: kern_prot.c:2409
void change_svuid(struct ucred *newcred, uid_t svuid)
Definition: kern_prot.c:2471
void change_svgid(struct ucred *newcred, gid_t svgid)
Definition: kern_prot.c:2484
void proc_set_cred(struct proc *p, struct ucred *newcred)
Definition: kern_prot.c:2181
void crfree(struct ucred *cr)
Definition: kern_prot.c:2035
void uifree(struct uidinfo *uip)
rlim_t lim_max(struct thread *td, int which)
int kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
struct uidinfo * uifind(uid_t uid)
void lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
void panic(const char *fmt,...)
void signotify(struct thread *td)
Definition: kern_sig.c:644
int sigacts_shared(struct sigacts *ps)
Definition: kern_sig.c:4158
void sigfastblock_clear(struct thread *td)
Definition: kern_sig.c:4330
struct sigacts * sigacts_alloc(void)
Definition: kern_sig.c:4119
void sigacts_copy(struct sigacts *dest, struct sigacts *src)
Definition: kern_sig.c:4148
void sigacts_free(struct sigacts *ps)
Definition: kern_sig.c:4130
bool curproc_sigkilled(void)
Definition: kern_sig.c:3351
void execsigs(struct proc *p)
Definition: kern_sig.c:999
void wakeup_one(const void *ident)
Definition: kern_synch.c:369
void thread_single_end(struct proc *p, int mode)
Definition: kern_thread.c:1628
int thread_single(struct proc *p, int mode)
Definition: kern_thread.c:1188
void itimers_exec(struct proc *p)
Definition: kern_time.c:1825
void umtx_exec(struct proc *p)
Definition: kern_umtx.c:4956
uint32_t * data
Definition: msi_if.m:90
struct mac * mac_p
Definition: kern_exec.c:272
vm_offset_t addr
Definition: kern_exec.c:1342
char ** envv
Definition: kern_exec.c:216
char * fname
Definition: kern_exec.c:214
char ** argv
Definition: kern_exec.c:215
char ** argv
Definition: kern_exec.c:242
char ** envv
Definition: kern_exec.c:243
void kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code)
Definition: subr_asan.c:248
__read_mostly cap_rights_t cap_fexecve_rights
int compressor_write(struct compressor *stream, void *data, size_t len)
u_long maxssiz
Definition: subr_param.c:109
u_long sgrowsiz
Definition: subr_param.c:110
int uprintf(const char *fmt,...)
Definition: subr_prf.c:171
struct sf_buf * sf_buf_alloc(struct vm_page *m, int flags)
Definition: subr_sfbuf.c:114
void sf_buf_free(struct sf_buf *sf)
Definition: subr_sfbuf.c:177
void shmexit(struct vmspace *vm)
Definition: sysv_ipc.c:70
struct mtx mtx
Definition: uipc_ktls.c:0
int vn_commname(struct vnode *vp, char *buf, u_int buflen)
Definition: vfs_cache.c:3726
int vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
Definition: vfs_cache.c:3170
int vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp, const char *hrdl_name, size_t hrdl_name_length, char **retbuf, char **freebuf, size_t *buflen)
Definition: vfs_cache.c:3620
void() NDFREE(struct nameidata *ndp, const u_int flags)
Definition: vfs_lookup.c:1555
int namei(struct nameidata *ndp)
Definition: vfs_lookup.c:535
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334
void vput(struct vnode *vp)
Definition: vfs_subr.c:3348
struct stat * buf
int vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
Definition: vfs_vnops.c:1901
int vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, size_t *aresid, struct thread *td)
Definition: vfs_vnops.c:718
void vn_finished_write(struct mount *mp)
Definition: vfs_vnops.c:2009
int vn_truncate_locked(struct vnode *vp, off_t length, bool sync, struct ucred *cred)
Definition: vfs_vnops.c:1651