FreeBSD kernel kern code
subr_smp.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * This module holds the global variables and machine independent functions
30 * used for the kernel SMP support.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/ktr.h>
40#include <sys/proc.h>
41#include <sys/bus.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/pcpu.h>
46#include <sys/sched.h>
47#include <sys/smp.h>
48#include <sys/sysctl.h>
49
50#include <machine/cpu.h>
51#include <machine/smp.h>
52
53#include "opt_sched.h"
54
55#ifdef SMP
56MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
57
58volatile cpuset_t stopped_cpus;
59volatile cpuset_t started_cpus;
60volatile cpuset_t suspended_cpus;
61cpuset_t hlt_cpus_mask;
62cpuset_t logical_cpus_mask;
63
64void (*cpustop_restartfunc)(void);
65#endif
66
67static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
68
69/* This is used in modules that need to work in both SMP and UP. */
70cpuset_t all_cpus;
71
73/* export this for libkvm consumers. */
74int mp_maxcpus = MAXCPU;
75
76volatile int smp_started;
78
79static SYSCTL_NODE(_kern, OID_AUTO, smp,
80 CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
81 "Kernel SMP");
82
83SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
84 "Max CPU ID.");
85
86SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
87 0, "Max number of CPUs that the system was compiled for.");
88
89SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
90 NULL, 0, sysctl_kern_smp_active, "I",
91 "Indicates system is running in SMP mode");
92
93int smp_disabled = 0; /* has smp been disabled? */
94SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
95 &smp_disabled, 0, "SMP has been disabled from the loader");
96
97int smp_cpus = 1; /* how many cpu's running */
98SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
99 "Number of CPUs online");
100
101int smp_threads_per_core = 1; /* how many SMT threads are running per core */
102SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
103 &smp_threads_per_core, 0, "Number of SMT threads online per core");
104
105int mp_ncores = -1; /* how many physical cores running */
106SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
107 "Number of physical cores online");
108
109int smp_topology = 0; /* Which topology we're using. */
110SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
111 "Topology override setting; 0 is default provided by hardware.");
112
113#ifdef SMP
114/* Enable forwarding of a signal to a process running on a different CPU */
115static int forward_signal_enabled = 1;
116SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
117 &forward_signal_enabled, 0,
118 "Forwarding of a signal to a process on a different CPU");
119
120/* Variables needed for SMP rendezvous. */
121static volatile int smp_rv_ncpus;
122static void (*volatile smp_rv_setup_func)(void *arg);
123static void (*volatile smp_rv_action_func)(void *arg);
124static void (*volatile smp_rv_teardown_func)(void *arg);
125static void *volatile smp_rv_func_arg;
126static volatile int smp_rv_waiters[4];
127
128/*
129 * Shared mutex to restrict busywaits between smp_rendezvous() and
130 * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
131 * functions trigger at once and cause multiple CPUs to busywait with
132 * interrupts disabled.
133 */
134struct mtx smp_ipi_mtx;
135
136/*
137 * Let the MD SMP code initialize mp_maxid very early if it can.
138 */
139static void
140mp_setmaxid(void *dummy)
141{
142
143 cpu_mp_setmaxid();
144
145 KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
146 KASSERT(mp_ncpus > 1 || mp_maxid == 0,
147 ("%s: one CPU but mp_maxid is not zero", __func__));
148 KASSERT(mp_maxid >= mp_ncpus - 1,
149 ("%s: counters out of sync: max %d, count %d", __func__,
151}
152SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
153
154/*
155 * Call the MD SMP initialization code.
156 */
157static void
158mp_start(void *dummy)
159{
160
161 mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
162
163 /* Probe for MP hardware. */
164 if (smp_disabled != 0 || cpu_mp_probe() == 0) {
165 mp_ncores = 1;
166 mp_ncpus = 1;
167 CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
168 return;
169 }
170
171 cpu_mp_start();
172 printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
173 mp_ncpus);
174
175 /* Provide a default for most architectures that don't have SMT/HTT. */
176 if (mp_ncores < 0)
178
179 cpu_mp_announce();
180}
181SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182
183void
184forward_signal(struct thread *td)
185{
186 int id;
187
188 /*
189 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
190 * this thread, so all we need to do is poke it if it is currently
191 * executing so that it executes ast().
192 */
193 THREAD_LOCK_ASSERT(td, MA_OWNED);
194 KASSERT(TD_IS_RUNNING(td),
195 ("forward_signal: thread is not TDS_RUNNING"));
196
197 CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198
199 if (!smp_started || cold || KERNEL_PANICKED())
200 return;
201 if (!forward_signal_enabled)
202 return;
203
204 /* No need to IPI ourself. */
205 if (td == curthread)
206 return;
207
208 id = td->td_oncpu;
209 if (id == NOCPU)
210 return;
211 ipi_cpu(id, IPI_AST);
212}
213
214/*
215 * When called the executing CPU will send an IPI to all other CPUs
216 * requesting that they halt execution.
217 *
218 * Usually (but not necessarily) called with 'other_cpus' as its arg.
219 *
220 * - Signals all CPUs in map to stop.
221 * - Waits for each to stop.
222 *
223 * Returns:
224 * -1: error
225 * 0: NA
226 * 1: ok
227 *
228 */
229#if defined(__amd64__) || defined(__i386__)
230#define X86 1
231#else
232#define X86 0
233#endif
234static int
235generic_stop_cpus(cpuset_t map, u_int type)
236{
237#ifdef KTR
238 char cpusetbuf[CPUSETBUFSIZ];
239#endif
240 static volatile u_int stopping_cpu = NOCPU;
241 int i;
242 volatile cpuset_t *cpus;
243
244 KASSERT(
245 type == IPI_STOP || type == IPI_STOP_HARD
246#if X86
247 || type == IPI_SUSPEND
248#endif
249 , ("%s: invalid stop type", __func__));
250
251 if (!smp_started)
252 return (0);
253
254 CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
255 cpusetobj_strprint(cpusetbuf, &map), type);
256
257#if X86
258 /*
259 * When suspending, ensure there are are no IPIs in progress.
260 * IPIs that have been issued, but not yet delivered (e.g.
261 * not pending on a vCPU when running under virtualization)
262 * will be lost, violating FreeBSD's assumption of reliable
263 * IPI delivery.
264 */
265 if (type == IPI_SUSPEND)
266 mtx_lock_spin(&smp_ipi_mtx);
267#endif
268
269#if X86
270 if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
271#endif
272 if (stopping_cpu != PCPU_GET(cpuid))
273 while (atomic_cmpset_int(&stopping_cpu, NOCPU,
274 PCPU_GET(cpuid)) == 0)
275 while (stopping_cpu != NOCPU)
276 cpu_spinwait(); /* spin */
277
278 /* send the stop IPI to all CPUs in map */
279 ipi_selected(map, type);
280#if X86
281 }
282#endif
283
284#if X86
285 if (type == IPI_SUSPEND)
286 cpus = &suspended_cpus;
287 else
288#endif
289 cpus = &stopped_cpus;
290
291 i = 0;
292 while (!CPU_SUBSET(cpus, &map)) {
293 /* spin */
294 cpu_spinwait();
295 i++;
296 if (i == 100000000) {
297 printf("timeout stopping cpus\n");
298 break;
299 }
300 }
301
302#if X86
303 if (type == IPI_SUSPEND)
304 mtx_unlock_spin(&smp_ipi_mtx);
305#endif
306
307 stopping_cpu = NOCPU;
308 return (1);
309}
310
311int
312stop_cpus(cpuset_t map)
313{
314
315 return (generic_stop_cpus(map, IPI_STOP));
316}
317
318int
319stop_cpus_hard(cpuset_t map)
320{
321
322 return (generic_stop_cpus(map, IPI_STOP_HARD));
323}
324
325#if X86
326int
327suspend_cpus(cpuset_t map)
328{
329
330 return (generic_stop_cpus(map, IPI_SUSPEND));
331}
332#endif
333
334/*
335 * Called by a CPU to restart stopped CPUs.
336 *
337 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
338 *
339 * - Signals all CPUs in map to restart.
340 * - Waits for each to restart.
341 *
342 * Returns:
343 * -1: error
344 * 0: NA
345 * 1: ok
346 */
347static int
348generic_restart_cpus(cpuset_t map, u_int type)
349{
350#ifdef KTR
351 char cpusetbuf[CPUSETBUFSIZ];
352#endif
353 volatile cpuset_t *cpus;
354
355#if X86
356 KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
357 || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
358
359 if (!smp_started)
360 return (0);
361
362 CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
363
364 if (type == IPI_SUSPEND)
365 cpus = &resuming_cpus;
366 else
367 cpus = &stopped_cpus;
368
369 /* signal other cpus to restart */
370 if (type == IPI_SUSPEND)
371 CPU_COPY_STORE_REL(&map, &toresume_cpus);
372 else
373 CPU_COPY_STORE_REL(&map, &started_cpus);
374
375 /*
376 * Wake up any CPUs stopped with MWAIT. From MI code we can't tell if
377 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
378 * relatively inexpensive.
379 */
380 if (type == IPI_STOP) {
381 struct monitorbuf *mb;
382 u_int id;
383
384 CPU_FOREACH(id) {
385 if (!CPU_ISSET(id, &map))
386 continue;
387
388 mb = &pcpu_find(id)->pc_monitorbuf;
389 atomic_store_int(&mb->stop_state,
390 MONITOR_STOPSTATE_RUNNING);
391 }
392 }
393
394 if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
395 /* wait for each to clear its bit */
396 while (CPU_OVERLAP(cpus, &map))
397 cpu_spinwait();
398 }
399#else /* !X86 */
400 KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
401 ("%s: invalid stop type", __func__));
402
403 if (!smp_started)
404 return (0);
405
406 CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
407
408 cpus = &stopped_cpus;
409
410 /* signal other cpus to restart */
411 CPU_COPY_STORE_REL(&map, &started_cpus);
412
413 /* wait for each to clear its bit */
414 while (CPU_OVERLAP(cpus, &map))
415 cpu_spinwait();
416#endif
417 return (1);
418}
419
420int
421restart_cpus(cpuset_t map)
422{
423
424 return (generic_restart_cpus(map, IPI_STOP));
425}
426
427#if X86
428int
429resume_cpus(cpuset_t map)
430{
431
432 return (generic_restart_cpus(map, IPI_SUSPEND));
433}
434#endif
435#undef X86
436
437/*
438 * All-CPU rendezvous. CPUs are signalled, all execute the setup function
439 * (if specified), rendezvous, execute the action function (if specified),
440 * rendezvous again, execute the teardown function (if specified), and then
441 * resume.
442 *
443 * Note that the supplied external functions _must_ be reentrant and aware
444 * that they are running in parallel and in an unknown lock context.
445 */
446void
447smp_rendezvous_action(void)
448{
449 struct thread *td;
450 void *local_func_arg;
451 void (*local_setup_func)(void*);
452 void (*local_action_func)(void*);
453 void (*local_teardown_func)(void*);
454#ifdef INVARIANTS
455 int owepreempt;
456#endif
457
458 /* Ensure we have up-to-date values. */
459 atomic_add_acq_int(&smp_rv_waiters[0], 1);
460 while (smp_rv_waiters[0] < smp_rv_ncpus)
461 cpu_spinwait();
462
463 /* Fetch rendezvous parameters after acquire barrier. */
464 local_func_arg = smp_rv_func_arg;
465 local_setup_func = smp_rv_setup_func;
466 local_action_func = smp_rv_action_func;
467 local_teardown_func = smp_rv_teardown_func;
468
469 /*
470 * Use a nested critical section to prevent any preemptions
471 * from occurring during a rendezvous action routine.
472 * Specifically, if a rendezvous handler is invoked via an IPI
473 * and the interrupted thread was in the critical_exit()
474 * function after setting td_critnest to 0 but before
475 * performing a deferred preemption, this routine can be
476 * invoked with td_critnest set to 0 and td_owepreempt true.
477 * In that case, a critical_exit() during the rendezvous
478 * action would trigger a preemption which is not permitted in
479 * a rendezvous action. To fix this, wrap all of the
480 * rendezvous action handlers in a critical section. We
481 * cannot use a regular critical section however as having
482 * critical_exit() preempt from this routine would also be
483 * problematic (the preemption must not occur before the IPI
484 * has been acknowledged via an EOI). Instead, we
485 * intentionally ignore td_owepreempt when leaving the
486 * critical section. This should be harmless because we do
487 * not permit rendezvous action routines to schedule threads,
488 * and thus td_owepreempt should never transition from 0 to 1
489 * during this routine.
490 */
491 td = curthread;
492 td->td_critnest++;
493#ifdef INVARIANTS
494 owepreempt = td->td_owepreempt;
495#endif
496
497 /*
498 * If requested, run a setup function before the main action
499 * function. Ensure all CPUs have completed the setup
500 * function before moving on to the action function.
501 */
502 if (local_setup_func != smp_no_rendezvous_barrier) {
503 if (smp_rv_setup_func != NULL)
504 smp_rv_setup_func(smp_rv_func_arg);
505 atomic_add_int(&smp_rv_waiters[1], 1);
506 while (smp_rv_waiters[1] < smp_rv_ncpus)
507 cpu_spinwait();
508 }
509
510 if (local_action_func != NULL)
511 local_action_func(local_func_arg);
512
513 if (local_teardown_func != smp_no_rendezvous_barrier) {
514 /*
515 * Signal that the main action has been completed. If a
516 * full exit rendezvous is requested, then all CPUs will
517 * wait here until all CPUs have finished the main action.
518 */
519 atomic_add_int(&smp_rv_waiters[2], 1);
520 while (smp_rv_waiters[2] < smp_rv_ncpus)
521 cpu_spinwait();
522
523 if (local_teardown_func != NULL)
524 local_teardown_func(local_func_arg);
525 }
526
527 /*
528 * Signal that the rendezvous is fully completed by this CPU.
529 * This means that no member of smp_rv_* pseudo-structure will be
530 * accessed by this target CPU after this point; in particular,
531 * memory pointed by smp_rv_func_arg.
532 *
533 * The release semantic ensures that all accesses performed by
534 * the current CPU are visible when smp_rendezvous_cpus()
535 * returns, by synchronizing with the
536 * atomic_load_acq_int(&smp_rv_waiters[3]).
537 */
538 atomic_add_rel_int(&smp_rv_waiters[3], 1);
539
540 td->td_critnest--;
541 KASSERT(owepreempt == td->td_owepreempt,
542 ("rendezvous action changed td_owepreempt"));
543}
544
545void
546smp_rendezvous_cpus(cpuset_t map,
547 void (* setup_func)(void *),
548 void (* action_func)(void *),
549 void (* teardown_func)(void *),
550 void *arg)
551{
552 int curcpumap, i, ncpus = 0;
553
554 /* See comments in the !SMP case. */
555 if (!smp_started) {
556 spinlock_enter();
557 if (setup_func != NULL)
558 setup_func(arg);
559 if (action_func != NULL)
560 action_func(arg);
561 if (teardown_func != NULL)
562 teardown_func(arg);
563 spinlock_exit();
564 return;
565 }
566
567 /*
568 * Make sure we come here with interrupts enabled. Otherwise we
569 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
570 */
571 MPASS(curthread->td_md.md_spinlock_count == 0);
572
573 CPU_FOREACH(i) {
574 if (CPU_ISSET(i, &map))
575 ncpus++;
576 }
577 if (ncpus == 0)
578 panic("ncpus is 0 with non-zero map");
579
580 mtx_lock_spin(&smp_ipi_mtx);
581
582 /* Pass rendezvous parameters via global variables. */
583 smp_rv_ncpus = ncpus;
584 smp_rv_setup_func = setup_func;
585 smp_rv_action_func = action_func;
586 smp_rv_teardown_func = teardown_func;
587 smp_rv_func_arg = arg;
588 smp_rv_waiters[1] = 0;
589 smp_rv_waiters[2] = 0;
590 smp_rv_waiters[3] = 0;
591 atomic_store_rel_int(&smp_rv_waiters[0], 0);
592
593 /*
594 * Signal other processors, which will enter the IPI with
595 * interrupts off.
596 */
597 curcpumap = CPU_ISSET(curcpu, &map);
598 CPU_CLR(curcpu, &map);
599 ipi_selected(map, IPI_RENDEZVOUS);
600
601 /* Check if the current CPU is in the map */
602 if (curcpumap != 0)
603 smp_rendezvous_action();
604
605 /*
606 * Ensure that the master CPU waits for all the other
607 * CPUs to finish the rendezvous, so that smp_rv_*
608 * pseudo-structure and the arg are guaranteed to not
609 * be in use.
610 *
611 * Load acquire synchronizes with the release add in
612 * smp_rendezvous_action(), which ensures that our caller sees
613 * all memory actions done by the called functions on other
614 * CPUs.
615 */
616 while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
617 cpu_spinwait();
618
619 mtx_unlock_spin(&smp_ipi_mtx);
620}
621
622void
623smp_rendezvous(void (* setup_func)(void *),
624 void (* action_func)(void *),
625 void (* teardown_func)(void *),
626 void *arg)
627{
628 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
629}
630
631static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
632
633static void
634smp_topo_fill(struct cpu_group *cg)
635{
636 int c;
637
638 for (c = 0; c < cg->cg_children; c++)
639 smp_topo_fill(&cg->cg_child[c]);
640 cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
641 cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
642}
643
644struct cpu_group *
645smp_topo(void)
646{
647 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
648 struct cpu_group *top;
649
650 /*
651 * Check for a fake topology request for debugging purposes.
652 */
653 switch (smp_topology) {
654 case 1:
655 /* Dual core with no sharing. */
656 top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
657 break;
658 case 2:
659 /* No topology, all cpus are equal. */
660 top = smp_topo_none();
661 break;
662 case 3:
663 /* Dual core with shared L2. */
664 top = smp_topo_1level(CG_SHARE_L2, 2, 0);
665 break;
666 case 4:
667 /* quad core, shared l3 among each package, private l2. */
668 top = smp_topo_1level(CG_SHARE_L3, 4, 0);
669 break;
670 case 5:
671 /* quad core, 2 dualcore parts on each package share l2. */
672 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
673 break;
674 case 6:
675 /* Single-core 2xHTT */
676 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
677 break;
678 case 7:
679 /* quad core with a shared l3, 8 threads sharing L2. */
680 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
681 CG_FLAG_SMT);
682 break;
683 default:
684 /* Default, ask the system what it wants. */
685 top = cpu_topo();
686 break;
687 }
688 /*
689 * Verify the returned topology.
690 */
691 if (top->cg_count != mp_ncpus)
692 panic("Built bad topology at %p. CPU count %d != %d",
693 top, top->cg_count, mp_ncpus);
694 if (CPU_CMP(&top->cg_mask, &all_cpus))
695 panic("Built bad topology at %p. CPU mask (%s) != (%s)",
696 top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
697 cpusetobj_strprint(cpusetbuf2, &all_cpus));
698
699 /*
700 * Collapse nonsense levels that may be created out of convenience by
701 * the MD layers. They cause extra work in the search functions.
702 */
703 while (top->cg_children == 1) {
704 top = &top->cg_child[0];
705 top->cg_parent = NULL;
706 }
707 smp_topo_fill(top);
708 return (top);
709}
710
711struct cpu_group *
712smp_topo_alloc(u_int count)
713{
714 static u_int index;
715 u_int curr;
716
717 curr = index;
718 index += count;
719 return (&group[curr]);
720}
721
722struct cpu_group *
723smp_topo_none(void)
724{
725 struct cpu_group *top;
726
727 top = &group[0];
728 top->cg_parent = NULL;
729 top->cg_child = NULL;
730 top->cg_mask = all_cpus;
731 top->cg_count = mp_ncpus;
732 top->cg_children = 0;
733 top->cg_level = CG_SHARE_NONE;
734 top->cg_flags = 0;
735
736 return (top);
737}
738
739static int
740smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
741 int count, int flags, int start)
742{
743 char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
744 cpuset_t mask;
745 int i;
746
747 CPU_ZERO(&mask);
748 for (i = 0; i < count; i++, start++)
749 CPU_SET(start, &mask);
750 child->cg_parent = parent;
751 child->cg_child = NULL;
752 child->cg_children = 0;
753 child->cg_level = share;
754 child->cg_count = count;
755 child->cg_flags = flags;
756 child->cg_mask = mask;
757 parent->cg_children++;
758 for (; parent != NULL; parent = parent->cg_parent) {
759 if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
760 panic("Duplicate children in %p. mask (%s) child (%s)",
761 parent,
762 cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
763 cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
764 CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
765 parent->cg_count += child->cg_count;
766 }
767
768 return (start);
769}
770
771struct cpu_group *
772smp_topo_1level(int share, int count, int flags)
773{
774 struct cpu_group *child;
775 struct cpu_group *top;
776 int packages;
777 int cpu;
778 int i;
779
780 cpu = 0;
781 top = &group[0];
782 packages = mp_ncpus / count;
783 top->cg_child = child = &group[1];
784 top->cg_level = CG_SHARE_NONE;
785 for (i = 0; i < packages; i++, child++)
786 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
787 return (top);
788}
789
790struct cpu_group *
791smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
792 int l1flags)
793{
794 struct cpu_group *top;
795 struct cpu_group *l1g;
796 struct cpu_group *l2g;
797 int cpu;
798 int i;
799 int j;
800
801 cpu = 0;
802 top = &group[0];
803 l2g = &group[1];
804 top->cg_child = l2g;
805 top->cg_level = CG_SHARE_NONE;
806 top->cg_children = mp_ncpus / (l2count * l1count);
807 l1g = l2g + top->cg_children;
808 for (i = 0; i < top->cg_children; i++, l2g++) {
809 l2g->cg_parent = top;
810 l2g->cg_child = l1g;
811 l2g->cg_level = l2share;
812 for (j = 0; j < l2count; j++, l1g++)
813 cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
814 l1flags, cpu);
815 }
816 return (top);
817}
818
819struct cpu_group *
820smp_topo_find(struct cpu_group *top, int cpu)
821{
822 struct cpu_group *cg;
823 cpuset_t mask;
824 int children;
825 int i;
826
827 CPU_SETOF(cpu, &mask);
828 cg = top;
829 for (;;) {
830 if (!CPU_OVERLAP(&cg->cg_mask, &mask))
831 return (NULL);
832 if (cg->cg_children == 0)
833 return (cg);
834 children = cg->cg_children;
835 for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
836 if (CPU_OVERLAP(&cg->cg_mask, &mask))
837 break;
838 }
839 return (NULL);
840}
841#else /* !SMP */
842
843void
845 void (*setup_func)(void *),
846 void (*action_func)(void *),
847 void (*teardown_func)(void *),
848 void *arg)
849{
850 /*
851 * In the !SMP case we just need to ensure the same initial conditions
852 * as the SMP case.
853 */
854 spinlock_enter();
855 if (setup_func != NULL)
856 setup_func(arg);
857 if (action_func != NULL)
858 action_func(arg);
859 if (teardown_func != NULL)
860 teardown_func(arg);
861 spinlock_exit();
862}
863
864void
865smp_rendezvous(void (*setup_func)(void *),
866 void (*action_func)(void *),
867 void (*teardown_func)(void *),
868 void *arg)
869{
870
871 smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
872 arg);
873}
874
875/*
876 * Provide dummy SMP support for UP kernels. Modules that need to use SMP
877 * APIs will still work using this dummy support.
878 */
879static void
881{
882 mp_ncpus = 1;
883 mp_ncores = 1;
884 mp_maxid = PCPU_GET(cpuid);
885 CPU_SETOF(mp_maxid, &all_cpus);
886 KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
887}
888SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
890#endif /* SMP */
891
892void
894{
895#ifdef SMP
896 KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
897#endif
898}
899
900void
902 void (* setup_func)(void *),
903 void (* action_func)(void *),
904 void (* teardown_func)(void *),
905 void (* wait_func)(void *, int),
906 struct smp_rendezvous_cpus_retry_arg *arg)
907{
908 int cpu;
909
910 CPU_COPY(&map, &arg->cpus);
911
912 /*
913 * Only one CPU to execute on.
914 */
915 if (!smp_started) {
916 spinlock_enter();
917 if (setup_func != NULL)
918 setup_func(arg);
919 if (action_func != NULL)
920 action_func(arg);
921 if (teardown_func != NULL)
922 teardown_func(arg);
923 spinlock_exit();
924 return;
925 }
926
927 /*
928 * Execute an action on all specified CPUs while retrying until they
929 * all acknowledge completion.
930 */
931 for (;;) {
933 arg->cpus,
934 setup_func,
935 action_func,
936 teardown_func,
937 arg);
938
939 if (CPU_EMPTY(&arg->cpus))
940 break;
941
942 CPU_FOREACH(cpu) {
943 if (!CPU_ISSET(cpu, &arg->cpus))
944 continue;
945 wait_func(arg, cpu);
946 }
947 }
948}
949
950void
951smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
952{
953
954 CPU_CLR_ATOMIC(curcpu, &arg->cpus);
955}
956
957/*
958 * If (prio & PDROP) == 0:
959 * Wait for specified idle threads to switch once. This ensures that even
960 * preempted threads have cycled through the switch function once,
961 * exiting their codepaths. This allows us to change global pointers
962 * with no other synchronization.
963 * If (prio & PDROP) != 0:
964 * Force the specified CPUs to switch context at least once.
965 */
966int
967quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
968{
969 struct pcpu *pcpu;
970 u_int *gen;
971 int error;
972 int cpu;
973
974 error = 0;
975 if ((prio & PDROP) == 0) {
976 gen = malloc(sizeof(u_int) * MAXCPU, M_TEMP, M_WAITOK);
977 for (cpu = 0; cpu <= mp_maxid; cpu++) {
978 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
979 continue;
980 pcpu = pcpu_find(cpu);
981 gen[cpu] = pcpu->pc_idlethread->td_generation;
982 }
983 }
984 for (cpu = 0; cpu <= mp_maxid; cpu++) {
985 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
986 continue;
987 pcpu = pcpu_find(cpu);
988 thread_lock(curthread);
989 sched_bind(curthread, cpu);
990 thread_unlock(curthread);
991 if ((prio & PDROP) != 0)
992 continue;
993 while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
994 error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
995 if (error != EWOULDBLOCK)
996 goto out;
997 error = 0;
998 }
999 }
1000out:
1001 thread_lock(curthread);
1002 sched_unbind(curthread);
1003 thread_unlock(curthread);
1004 if ((prio & PDROP) == 0)
1005 free(gen, M_TEMP);
1006
1007 return (error);
1008}
1009
1010int
1011quiesce_all_cpus(const char *wmesg, int prio)
1012{
1013
1014 return quiesce_cpus(all_cpus, wmesg, prio);
1015}
1016
1017/*
1018 * Observe all CPUs not executing in critical section.
1019 * We are not in one so the check for us is safe. If the found
1020 * thread changes to something else we know the section was
1021 * exited as well.
1022 */
1023void
1025{
1026 struct thread *td, *newtd;
1027 struct pcpu *pcpu;
1028 int cpu;
1029
1030 MPASS(curthread->td_critnest == 0);
1031
1032 CPU_FOREACH(cpu) {
1033 pcpu = cpuid_to_pcpu[cpu];
1034 td = pcpu->pc_curthread;
1035 for (;;) {
1036 if (td->td_critnest == 0)
1037 break;
1038 cpu_spinwait();
1039 newtd = (struct thread *)
1040 atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1041 if (td != newtd)
1042 break;
1043 }
1044 }
1045}
1046
1047static void
1048cpus_fence_seq_cst_issue(void *arg __unused)
1049{
1050
1051 atomic_thread_fence_seq_cst();
1052}
1053
1054/*
1055 * Send an IPI forcing a sequentially consistent fence.
1056 *
1057 * Allows replacement of an explicitly fence with a compiler barrier.
1058 * Trades speed up during normal execution for a significant slowdown when
1059 * the barrier is needed.
1060 */
1061void
1063{
1064
1065#ifdef SMP
1070 NULL
1071 );
1072#else
1074#endif
1075}
1076
1077/* Extra care is taken with this sysctl because the data type is volatile */
1078static int
1079sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1080{
1081 int error, active;
1082
1083 active = smp_started;
1084 error = SYSCTL_OUT(req, &active, sizeof(active));
1085 return (error);
1086}
1087
1088#ifdef SMP
1089void
1090topo_init_node(struct topo_node *node)
1091{
1092
1093 bzero(node, sizeof(*node));
1094 TAILQ_INIT(&node->children);
1095}
1096
1097void
1098topo_init_root(struct topo_node *root)
1099{
1100
1101 topo_init_node(root);
1102 root->type = TOPO_TYPE_SYSTEM;
1103}
1104
1105/*
1106 * Add a child node with the given ID under the given parent.
1107 * Do nothing if there is already a child with that ID.
1108 */
1109struct topo_node *
1110topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1111 topo_node_type type, uintptr_t subtype)
1112{
1113 struct topo_node *node;
1114
1115 TAILQ_FOREACH_REVERSE(node, &parent->children,
1116 topo_children, siblings) {
1117 if (node->hwid == hwid
1118 && node->type == type && node->subtype == subtype) {
1119 return (node);
1120 }
1121 }
1122
1123 node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1124 topo_init_node(node);
1125 node->parent = parent;
1126 node->hwid = hwid;
1127 node->type = type;
1128 node->subtype = subtype;
1129 TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1130 parent->nchildren++;
1131
1132 return (node);
1133}
1134
1135/*
1136 * Find a child node with the given ID under the given parent.
1137 */
1138struct topo_node *
1139topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1140 topo_node_type type, uintptr_t subtype)
1141{
1142
1143 struct topo_node *node;
1144
1145 TAILQ_FOREACH(node, &parent->children, siblings) {
1146 if (node->hwid == hwid
1147 && node->type == type && node->subtype == subtype) {
1148 return (node);
1149 }
1150 }
1151
1152 return (NULL);
1153}
1154
1155/*
1156 * Given a node change the order of its parent's child nodes such
1157 * that the node becomes the firt child while preserving the cyclic
1158 * order of the children. In other words, the given node is promoted
1159 * by rotation.
1160 */
1161void
1162topo_promote_child(struct topo_node *child)
1163{
1164 struct topo_node *next;
1165 struct topo_node *node;
1166 struct topo_node *parent;
1167
1168 parent = child->parent;
1169 next = TAILQ_NEXT(child, siblings);
1170 TAILQ_REMOVE(&parent->children, child, siblings);
1171 TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1172
1173 while (next != NULL) {
1174 node = next;
1175 next = TAILQ_NEXT(node, siblings);
1176 TAILQ_REMOVE(&parent->children, node, siblings);
1177 TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1178 child = node;
1179 }
1180}
1181
1182/*
1183 * Iterate to the next node in the depth-first search (traversal) of
1184 * the topology tree.
1185 */
1186struct topo_node *
1187topo_next_node(struct topo_node *top, struct topo_node *node)
1188{
1189 struct topo_node *next;
1190
1191 if ((next = TAILQ_FIRST(&node->children)) != NULL)
1192 return (next);
1193
1194 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1195 return (next);
1196
1197 while (node != top && (node = node->parent) != top)
1198 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1199 return (next);
1200
1201 return (NULL);
1202}
1203
1204/*
1205 * Iterate to the next node in the depth-first search of the topology tree,
1206 * but without descending below the current node.
1207 */
1208struct topo_node *
1209topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1210{
1211 struct topo_node *next;
1212
1213 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1214 return (next);
1215
1216 while (node != top && (node = node->parent) != top)
1217 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1218 return (next);
1219
1220 return (NULL);
1221}
1222
1223/*
1224 * Assign the given ID to the given topology node that represents a logical
1225 * processor.
1226 */
1227void
1228topo_set_pu_id(struct topo_node *node, cpuid_t id)
1229{
1230
1231 KASSERT(node->type == TOPO_TYPE_PU,
1232 ("topo_set_pu_id: wrong node type: %u", node->type));
1233 KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1234 ("topo_set_pu_id: cpuset already not empty"));
1235 node->id = id;
1236 CPU_SET(id, &node->cpuset);
1237 node->cpu_count = 1;
1238 node->subtype = 1;
1239
1240 while ((node = node->parent) != NULL) {
1241 KASSERT(!CPU_ISSET(id, &node->cpuset),
1242 ("logical ID %u is already set in node %p", id, node));
1243 CPU_SET(id, &node->cpuset);
1244 node->cpu_count++;
1245 }
1246}
1247
1248static struct topology_spec {
1249 topo_node_type type;
1250 bool match_subtype;
1251 uintptr_t subtype;
1252} topology_level_table[TOPO_LEVEL_COUNT] = {
1253 [TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1254 [TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1255 [TOPO_LEVEL_CACHEGROUP] = {
1256 .type = TOPO_TYPE_CACHE,
1257 .match_subtype = true,
1258 .subtype = CG_SHARE_L3,
1259 },
1260 [TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1261 [TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1262};
1263
1264static bool
1265topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1266 struct topo_analysis *results)
1267{
1268 struct topology_spec *spec;
1269 struct topo_node *node;
1270 int count;
1271
1272 if (level >= TOPO_LEVEL_COUNT)
1273 return (true);
1274
1275 spec = &topology_level_table[level];
1276 count = 0;
1277 node = topo_next_node(root, root);
1278
1279 while (node != NULL) {
1280 if (node->type != spec->type ||
1281 (spec->match_subtype && node->subtype != spec->subtype)) {
1282 node = topo_next_node(root, node);
1283 continue;
1284 }
1285 if (!all && CPU_EMPTY(&node->cpuset)) {
1286 node = topo_next_nonchild_node(root, node);
1287 continue;
1288 }
1289
1290 count++;
1291
1292 if (!topo_analyze_table(node, all, level + 1, results))
1293 return (false);
1294
1295 node = topo_next_nonchild_node(root, node);
1296 }
1297
1298 /* No explicit subgroups is essentially one subgroup. */
1299 if (count == 0) {
1300 count = 1;
1301
1302 if (!topo_analyze_table(root, all, level + 1, results))
1303 return (false);
1304 }
1305
1306 if (results->entities[level] == -1)
1307 results->entities[level] = count;
1308 else if (results->entities[level] != count)
1309 return (false);
1310
1311 return (true);
1312}
1313
1314/*
1315 * Check if the topology is uniform, that is, each package has the same number
1316 * of cores in it and each core has the same number of threads (logical
1317 * processors) in it. If so, calculate the number of packages, the number of
1318 * groups per package, the number of cachegroups per group, and the number of
1319 * logical processors per cachegroup. 'all' parameter tells whether to include
1320 * administratively disabled logical processors into the analysis.
1321 */
1322int
1323topo_analyze(struct topo_node *topo_root, int all,
1324 struct topo_analysis *results)
1325{
1326
1327 results->entities[TOPO_LEVEL_PKG] = -1;
1328 results->entities[TOPO_LEVEL_CORE] = -1;
1329 results->entities[TOPO_LEVEL_THREAD] = -1;
1330 results->entities[TOPO_LEVEL_GROUP] = -1;
1331 results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1332
1333 if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1334 return (0);
1335
1336 KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1337 ("bug in topology or analysis"));
1338
1339 return (1);
1340}
1341
1342#endif /* SMP */
const struct cf_level * level
Definition: cpufreq_if.m:45
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
device_t parent
Definition: device_if.m:187
MALLOC_DEFINE(M_BINMISC, KMOD_NAME, "misc binary image activator")
char * cpusetobj_strprint(char *buf, const cpuset_t *set)
Definition: kern_cpuset.c:1384
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
void panic(const char *fmt,...)
void *** start
Definition: linker_if.m:98
device_t child
Definition: msi_if.m:58
cpuset_t cpus
Definition: pic_if.m:166
void sched_bind(struct thread *td, int cpu)
Definition: sched_4bsd.c:1531
void sched_unbind(struct thread *td)
Definition: sched_4bsd.c:1552
int mask
Definition: subr_acl_nfs4.c:70
struct pcpu * pcpu_find(u_int cpuid)
Definition: subr_pcpu.c:283
int printf(const char *fmt,...)
Definition: subr_prf.c:397
void smp_no_rendezvous_barrier(void *dummy)
Definition: subr_smp.c:893
void smp_rendezvous_cpus(cpuset_t map, void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void *arg)
Definition: subr_smp.c:844
int smp_threads_per_core
Definition: subr_smp.c:101
int mp_maxcpus
Definition: subr_smp.c:74
void smp_rendezvous_cpus_retry(cpuset_t map, void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void(*wait_func)(void *, int), struct smp_rendezvous_cpus_retry_arg *arg)
Definition: subr_smp.c:901
int smp_cpus
Definition: subr_smp.c:97
static void cpus_fence_seq_cst_issue(void *arg __unused)
Definition: subr_smp.c:1048
SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_smp_active, "I", "Indicates system is running in SMP mode")
int mp_ncores
Definition: subr_smp.c:105
void smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
Definition: subr_smp.c:951
void cpus_fence_seq_cst(void)
Definition: subr_smp.c:1062
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setvariables_for_up, NULL)
static void mp_setvariables_for_up(void *dummy)
Definition: subr_smp.c:880
int quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
Definition: subr_smp.c:967
u_int mp_maxid
Definition: subr_smp.c:77
__FBSDID("$FreeBSD$")
int smp_topology
Definition: subr_smp.c:109
void smp_rendezvous(void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void *arg)
Definition: subr_smp.c:865
SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0, "Max CPU ID.")
int quiesce_all_cpus(const char *wmesg, int prio)
Definition: subr_smp.c:1011
cpuset_t all_cpus
Definition: subr_smp.c:70
void quiesce_all_critical(void)
Definition: subr_smp.c:1024
static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, "Kernel SMP")
int smp_disabled
Definition: subr_smp.c:93
volatile int smp_started
Definition: subr_smp.c:76
static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
Definition: subr_smp.c:1079
int mp_ncpus
Definition: subr_smp.c:72
uint16_t flags
Definition: subr_stats.c:2
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy