FreeBSD kernel kern code
uipc_sockbuf.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_kern_tls.h"
38#include "opt_param.h"
39
40#include <sys/param.h>
41#include <sys/aio.h> /* for aio_swake proto */
42#include <sys/kernel.h>
43#include <sys/ktls.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/resourcevar.h>
51#include <sys/signalvar.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sx.h>
55#include <sys/sysctl.h>
56
57/*
58 * Function pointer set by the AIO routines so that the socket buffer code
59 * can call back into the AIO module if it is loaded.
60 */
61void (*aio_swake)(struct socket *, struct sockbuf *);
62
63/*
64 * Primitive routines for operating on socket buffers
65 */
66
67u_long sb_max = SB_MAX;
68u_long sb_max_adj =
69 (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70
71static u_long sb_efficiency = 8; /* parameter for sbreserve() */
72
73#ifdef KERN_TLS
74static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75 struct mbuf *n);
76#endif
77static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
78static void sbflush_internal(struct sockbuf *sb);
79
80/*
81 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82 */
83static void
84sbm_clrprotoflags(struct mbuf *m, int flags)
85{
86 int mask;
87
88 mask = ~M_PROTOFLAGS;
89 if (flags & PRUS_NOTREADY)
90 mask |= M_NOTREADY;
91 while (m) {
92 m->m_flags &= mask;
93 m = m->m_next;
94 }
95}
96
97/*
98 * Compress M_NOTREADY mbufs after they have been readied by sbready().
99 *
100 * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101 * be copied at the time of sbcompress(). This function combines small
102 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
103 * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104 * ready.
105 */
106static void
107sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108{
109 struct mbuf *m, *n;
110 int ext_size;
111
112 SOCKBUF_LOCK_ASSERT(sb);
113
114 if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 return;
116
117 for (m = m0; m != end; m = m->m_next) {
118 MPASS((m->m_flags & M_NOTREADY) == 0);
119 /*
120 * NB: In sbcompress(), 'n' is the last mbuf in the
121 * socket buffer and 'm' is the new mbuf being copied
122 * into the trailing space of 'n'. Here, the roles
123 * are reversed and 'n' is the next mbuf after 'm'
124 * that is being copied into the trailing space of
125 * 'm'.
126 */
127 n = m->m_next;
128#ifdef KERN_TLS
129 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 (m->m_flags & M_EXTPG) &&
132 (n->m_flags & M_EXTPG) &&
133 !mbuf_has_tls_session(m) &&
134 !mbuf_has_tls_session(n)) {
135 int hdr_len, trail_len;
136
137 hdr_len = n->m_epg_hdrlen;
138 trail_len = m->m_epg_trllen;
139 if (trail_len != 0 && hdr_len != 0 &&
140 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 /* copy n's header to m's trailer */
142 memcpy(&m->m_epg_trail[trail_len],
143 n->m_epg_hdr, hdr_len);
144 m->m_epg_trllen += hdr_len;
145 m->m_len += hdr_len;
146 n->m_epg_hdrlen = 0;
147 n->m_len -= hdr_len;
148 }
149 }
150#endif
151
152 /* Compress small unmapped mbufs into plain mbufs. */
153 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 !mbuf_has_tls_session(m)) {
155 ext_size = m->m_ext.ext_size;
156 if (mb_unmapped_compress(m) == 0) {
157 sb->sb_mbcnt -= ext_size;
158 sb->sb_ccnt -= 1;
159 }
160 }
161
162 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 M_WRITABLE(m) &&
164 (m->m_flags & M_EXTPG) == 0 &&
165 !mbuf_has_tls_session(n) &&
166 !mbuf_has_tls_session(m) &&
167 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 n->m_len <= M_TRAILINGSPACE(m) &&
169 m->m_type == n->m_type) {
170 KASSERT(sb->sb_lastrecord != n,
171 ("%s: merging start of record (%p) into previous mbuf (%p)",
172 __func__, n, m));
173 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 m->m_len += n->m_len;
175 m->m_next = n->m_next;
176 m->m_flags |= n->m_flags & M_EOR;
177 if (sb->sb_mbtail == n)
178 sb->sb_mbtail = m;
179
180 sb->sb_mbcnt -= MSIZE;
181 sb->sb_mcnt -= 1;
182 if (n->m_flags & M_EXT) {
183 sb->sb_mbcnt -= n->m_ext.ext_size;
184 sb->sb_ccnt -= 1;
185 }
186 m_free(n);
187 n = m->m_next;
188 }
189 }
190 SBLASTRECORDCHK(sb);
191 SBLASTMBUFCHK(sb);
192}
193
194/*
195 * Mark ready "count" units of I/O starting with "m". Most mbufs
196 * count as a single unit of I/O except for M_EXTPG mbufs which
197 * are backed by multiple pages.
198 */
199int
200sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201{
202 struct mbuf *m;
203 u_int blocker;
204
205 SOCKBUF_LOCK_ASSERT(sb);
206 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208
209 m = m0;
210 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211
212 while (count > 0) {
213 KASSERT(m->m_flags & M_NOTREADY,
214 ("%s: m %p !M_NOTREADY", __func__, m));
215 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
216 if (count < m->m_epg_nrdy) {
217 m->m_epg_nrdy -= count;
218 count = 0;
219 break;
220 }
221 count -= m->m_epg_nrdy;
222 m->m_epg_nrdy = 0;
223 } else
224 count--;
225
226 m->m_flags &= ~(M_NOTREADY | blocker);
227 if (blocker)
228 sb->sb_acc += m->m_len;
229 m = m->m_next;
230 }
231
232 /*
233 * If the first mbuf is still not fully ready because only
234 * some of its backing pages were readied, no further progress
235 * can be made.
236 */
237 if (m0 == m) {
238 MPASS(m->m_flags & M_NOTREADY);
239 return (EINPROGRESS);
240 }
241
242 if (!blocker) {
243 sbready_compress(sb, m0, m);
244 return (EINPROGRESS);
245 }
246
247 /* This one was blocking all the queue. */
248 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
249 KASSERT(m->m_flags & M_BLOCKED,
250 ("%s: m %p !M_BLOCKED", __func__, m));
251 m->m_flags &= ~M_BLOCKED;
252 sb->sb_acc += m->m_len;
253 }
254
255 sb->sb_fnrdy = m;
256 sbready_compress(sb, m0, m);
257
258 return (0);
259}
260
261/*
262 * Adjust sockbuf state reflecting allocation of m.
263 */
264void
265sballoc(struct sockbuf *sb, struct mbuf *m)
266{
267
268 SOCKBUF_LOCK_ASSERT(sb);
269
270 sb->sb_ccc += m->m_len;
271
272 if (sb->sb_fnrdy == NULL) {
273 if (m->m_flags & M_NOTREADY)
274 sb->sb_fnrdy = m;
275 else
276 sb->sb_acc += m->m_len;
277 } else
278 m->m_flags |= M_BLOCKED;
279
280 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
281 sb->sb_ctl += m->m_len;
282
283 sb->sb_mbcnt += MSIZE;
284 sb->sb_mcnt += 1;
285
286 if (m->m_flags & M_EXT) {
287 sb->sb_mbcnt += m->m_ext.ext_size;
288 sb->sb_ccnt += 1;
289 }
290}
291
292/*
293 * Adjust sockbuf state reflecting freeing of m.
294 */
295void
296sbfree(struct sockbuf *sb, struct mbuf *m)
297{
298
299#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
300 SOCKBUF_LOCK_ASSERT(sb);
301#endif
302
303 sb->sb_ccc -= m->m_len;
304
305 if (!(m->m_flags & M_NOTAVAIL))
306 sb->sb_acc -= m->m_len;
307
308 if (m == sb->sb_fnrdy) {
309 struct mbuf *n;
310
311 KASSERT(m->m_flags & M_NOTREADY,
312 ("%s: m %p !M_NOTREADY", __func__, m));
313
314 n = m->m_next;
315 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
316 n->m_flags &= ~M_BLOCKED;
317 sb->sb_acc += n->m_len;
318 n = n->m_next;
319 }
320 sb->sb_fnrdy = n;
321 }
322
323 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
324 sb->sb_ctl -= m->m_len;
325
326 sb->sb_mbcnt -= MSIZE;
327 sb->sb_mcnt -= 1;
328 if (m->m_flags & M_EXT) {
329 sb->sb_mbcnt -= m->m_ext.ext_size;
330 sb->sb_ccnt -= 1;
331 }
332
333 if (sb->sb_sndptr == m) {
334 sb->sb_sndptr = NULL;
335 sb->sb_sndptroff = 0;
336 }
337 if (sb->sb_sndptroff != 0)
338 sb->sb_sndptroff -= m->m_len;
339}
340
341#ifdef KERN_TLS
342/*
343 * Similar to sballoc/sbfree but does not adjust state associated with
344 * the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
345 * are not ready.
346 */
347void
348sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
349{
350
351 SOCKBUF_LOCK_ASSERT(sb);
352
353 sb->sb_ccc += m->m_len;
354 sb->sb_tlscc += m->m_len;
355
356 sb->sb_mbcnt += MSIZE;
357 sb->sb_mcnt += 1;
358
359 if (m->m_flags & M_EXT) {
360 sb->sb_mbcnt += m->m_ext.ext_size;
361 sb->sb_ccnt += 1;
362 }
363}
364
365void
366sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
367{
368
369#if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
370 SOCKBUF_LOCK_ASSERT(sb);
371#endif
372
373 sb->sb_ccc -= m->m_len;
374 sb->sb_tlscc -= m->m_len;
375
376 sb->sb_mbcnt -= MSIZE;
377 sb->sb_mcnt -= 1;
378
379 if (m->m_flags & M_EXT) {
380 sb->sb_mbcnt -= m->m_ext.ext_size;
381 sb->sb_ccnt -= 1;
382 }
383}
384#endif
385
386/*
387 * Socantsendmore indicates that no more data will be sent on the socket; it
388 * would normally be applied to a socket when the user informs the system
389 * that no more data is to be sent, by the protocol code (in case
390 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
391 * received, and will normally be applied to the socket by a protocol when it
392 * detects that the peer will send no more data. Data queued for reading in
393 * the socket may yet be read.
394 */
395void
396socantsendmore_locked(struct socket *so)
397{
398
399 SOCKBUF_LOCK_ASSERT(&so->so_snd);
400
401 so->so_snd.sb_state |= SBS_CANTSENDMORE;
402 sowwakeup_locked(so);
403 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
404}
405
406void
407socantsendmore(struct socket *so)
408{
409
410 SOCKBUF_LOCK(&so->so_snd);
412 mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
413}
414
415void
416socantrcvmore_locked(struct socket *so)
417{
418
419 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
420
421 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
422#ifdef KERN_TLS
423 if (so->so_rcv.sb_flags & SB_TLS_RX)
424 ktls_check_rx(&so->so_rcv);
425#endif
426 sorwakeup_locked(so);
427 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
428}
429
430void
431socantrcvmore(struct socket *so)
432{
433
434 SOCKBUF_LOCK(&so->so_rcv);
436 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
437}
438
439void
440soroverflow_locked(struct socket *so)
441{
442
443 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
444
445 if (so->so_options & SO_RERROR) {
446 so->so_rerror = ENOBUFS;
447 sorwakeup_locked(so);
448 } else
449 SOCKBUF_UNLOCK(&so->so_rcv);
450
451 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
452}
453
454void
455soroverflow(struct socket *so)
456{
457
458 SOCKBUF_LOCK(&so->so_rcv);
460 mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
461}
462
463/*
464 * Wait for data to arrive at/drain from a socket buffer.
465 */
466int
467sbwait(struct sockbuf *sb)
468{
469
470 SOCKBUF_LOCK_ASSERT(sb);
471
472 sb->sb_flags |= SB_WAIT;
473 return (msleep_sbt(&sb->sb_acc, SOCKBUF_MTX(sb),
474 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
475 sb->sb_timeo, 0, 0));
476}
477
478/*
479 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
480 * via SIGIO if the socket has the SS_ASYNC flag set.
481 *
482 * Called with the socket buffer lock held; will release the lock by the end
483 * of the function. This allows the caller to acquire the socket buffer lock
484 * while testing for the need for various sorts of wakeup and hold it through
485 * to the point where it's no longer required. We currently hold the lock
486 * through calls out to other subsystems (with the exception of kqueue), and
487 * then release it to avoid lock order issues. It's not clear that's
488 * correct.
489 */
490void
491sowakeup(struct socket *so, struct sockbuf *sb)
492{
493 int ret;
494
495 SOCKBUF_LOCK_ASSERT(sb);
496
497 selwakeuppri(sb->sb_sel, PSOCK);
498 if (!SEL_WAITING(sb->sb_sel))
499 sb->sb_flags &= ~SB_SEL;
500 if (sb->sb_flags & SB_WAIT) {
501 sb->sb_flags &= ~SB_WAIT;
502 wakeup(&sb->sb_acc);
503 }
504 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
505 if (sb->sb_upcall != NULL) {
506 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
507 if (ret == SU_ISCONNECTED) {
508 KASSERT(sb == &so->so_rcv,
509 ("SO_SND upcall returned SU_ISCONNECTED"));
510 soupcall_clear(so, SO_RCV);
511 }
512 } else
513 ret = SU_OK;
514 if (sb->sb_flags & SB_AIO)
515 sowakeup_aio(so, sb);
516 SOCKBUF_UNLOCK(sb);
517 if (ret == SU_ISCONNECTED)
518 soisconnected(so);
519 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
520 pgsigio(&so->so_sigio, SIGIO, 0);
521 mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
522}
523
524/*
525 * Socket buffer (struct sockbuf) utility routines.
526 *
527 * Each socket contains two socket buffers: one for sending data and one for
528 * receiving data. Each buffer contains a queue of mbufs, information about
529 * the number of mbufs and amount of data in the queue, and other fields
530 * allowing select() statements and notification on data availability to be
531 * implemented.
532 *
533 * Data stored in a socket buffer is maintained as a list of records. Each
534 * record is a list of mbufs chained together with the m_next field. Records
535 * are chained together with the m_nextpkt field. The upper level routine
536 * soreceive() expects the following conventions to be observed when placing
537 * information in the receive buffer:
538 *
539 * 1. If the protocol requires each message be preceded by the sender's name,
540 * then a record containing that name must be present before any
541 * associated data (mbuf's must be of type MT_SONAME).
542 * 2. If the protocol supports the exchange of ``access rights'' (really just
543 * additional data associated with the message), and there are ``rights''
544 * to be received, then a record containing this data should be present
545 * (mbuf's must be of type MT_RIGHTS).
546 * 3. If a name or rights record exists, then it must be followed by a data
547 * record, perhaps of zero length.
548 *
549 * Before using a new socket structure it is first necessary to reserve
550 * buffer space to the socket, by calling sbreserve(). This should commit
551 * some of the available buffer space in the system buffer pool for the
552 * socket (currently, it does nothing but enforce limits). The space should
553 * be released by calling sbrelease() when the socket is destroyed.
554 */
555int
556soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
557{
558 struct thread *td = curthread;
559
560 SOCKBUF_LOCK(&so->so_snd);
561 SOCKBUF_LOCK(&so->so_rcv);
562 if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
563 goto bad;
564 if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
565 goto bad2;
566 if (so->so_rcv.sb_lowat == 0)
567 so->so_rcv.sb_lowat = 1;
568 if (so->so_snd.sb_lowat == 0)
569 so->so_snd.sb_lowat = MCLBYTES;
570 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
571 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
572 SOCKBUF_UNLOCK(&so->so_rcv);
573 SOCKBUF_UNLOCK(&so->so_snd);
574 return (0);
575bad2:
576 sbrelease_locked(&so->so_snd, so);
577bad:
578 SOCKBUF_UNLOCK(&so->so_rcv);
579 SOCKBUF_UNLOCK(&so->so_snd);
580 return (ENOBUFS);
581}
582
583static int
584sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
585{
586 int error = 0;
587 u_long tmp_sb_max = sb_max;
588
589 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
590 if (error || !req->newptr)
591 return (error);
592 if (tmp_sb_max < MSIZE + MCLBYTES)
593 return (EINVAL);
594 sb_max = tmp_sb_max;
595 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
596 return (0);
597}
598
599/*
600 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
601 * become limiting if buffering efficiency is near the normal case.
602 */
603int
604sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
605 struct thread *td)
606{
607 rlim_t sbsize_limit;
608
609 SOCKBUF_LOCK_ASSERT(sb);
610
611 /*
612 * When a thread is passed, we take into account the thread's socket
613 * buffer size limit. The caller will generally pass curthread, but
614 * in the TCP input path, NULL will be passed to indicate that no
615 * appropriate thread resource limits are available. In that case,
616 * we don't apply a process limit.
617 */
618 if (cc > sb_max_adj)
619 return (0);
620 if (td != NULL) {
621 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
622 } else
623 sbsize_limit = RLIM_INFINITY;
624 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
625 sbsize_limit))
626 return (0);
627 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
628 if (sb->sb_lowat > sb->sb_hiwat)
629 sb->sb_lowat = sb->sb_hiwat;
630 return (1);
631}
632
633int
634sbsetopt(struct socket *so, int cmd, u_long cc)
635{
636 struct sockbuf *sb;
637 short *flags;
638 u_int *hiwat, *lowat;
639 int error;
640
641 sb = NULL;
642 SOCK_LOCK(so);
643 if (SOLISTENING(so)) {
644 switch (cmd) {
645 case SO_SNDLOWAT:
646 case SO_SNDBUF:
647 lowat = &so->sol_sbsnd_lowat;
648 hiwat = &so->sol_sbsnd_hiwat;
649 flags = &so->sol_sbsnd_flags;
650 break;
651 case SO_RCVLOWAT:
652 case SO_RCVBUF:
653 lowat = &so->sol_sbrcv_lowat;
654 hiwat = &so->sol_sbrcv_hiwat;
655 flags = &so->sol_sbrcv_flags;
656 break;
657 }
658 } else {
659 switch (cmd) {
660 case SO_SNDLOWAT:
661 case SO_SNDBUF:
662 sb = &so->so_snd;
663 break;
664 case SO_RCVLOWAT:
665 case SO_RCVBUF:
666 sb = &so->so_rcv;
667 break;
668 }
669 flags = &sb->sb_flags;
670 hiwat = &sb->sb_hiwat;
671 lowat = &sb->sb_lowat;
672 SOCKBUF_LOCK(sb);
673 }
674
675 error = 0;
676 switch (cmd) {
677 case SO_SNDBUF:
678 case SO_RCVBUF:
679 if (SOLISTENING(so)) {
680 if (cc > sb_max_adj) {
681 error = ENOBUFS;
682 break;
683 }
684 *hiwat = cc;
685 if (*lowat > *hiwat)
686 *lowat = *hiwat;
687 } else {
688 if (!sbreserve_locked(sb, cc, so, curthread))
689 error = ENOBUFS;
690 }
691 if (error == 0)
692 *flags &= ~SB_AUTOSIZE;
693 break;
694 case SO_SNDLOWAT:
695 case SO_RCVLOWAT:
696 /*
697 * Make sure the low-water is never greater than the
698 * high-water.
699 */
700 *lowat = (cc > *hiwat) ? *hiwat : cc;
701 break;
702 }
703
704 if (!SOLISTENING(so))
705 SOCKBUF_UNLOCK(sb);
706 SOCK_UNLOCK(so);
707 return (error);
708}
709
710/*
711 * Free mbufs held by a socket, and reserved mbuf space.
712 */
713void
714sbrelease_internal(struct sockbuf *sb, struct socket *so)
715{
716
718 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
719 RLIM_INFINITY);
720 sb->sb_mbmax = 0;
721}
722
723void
724sbrelease_locked(struct sockbuf *sb, struct socket *so)
725{
726
727 SOCKBUF_LOCK_ASSERT(sb);
728
729 sbrelease_internal(sb, so);
730}
731
732void
733sbrelease(struct sockbuf *sb, struct socket *so)
734{
735
736 SOCKBUF_LOCK(sb);
737 sbrelease_locked(sb, so);
738 SOCKBUF_UNLOCK(sb);
739}
740
741void
742sbdestroy(struct sockbuf *sb, struct socket *so)
743{
744
745 sbrelease_internal(sb, so);
746#ifdef KERN_TLS
747 if (sb->sb_tls_info != NULL)
748 ktls_free(sb->sb_tls_info);
749 sb->sb_tls_info = NULL;
750#endif
751}
752
753/*
754 * Routines to add and remove data from an mbuf queue.
755 *
756 * The routines sbappend() or sbappendrecord() are normally called to append
757 * new mbufs to a socket buffer, after checking that adequate space is
758 * available, comparing the function sbspace() with the amount of data to be
759 * added. sbappendrecord() differs from sbappend() in that data supplied is
760 * treated as the beginning of a new record. To place a sender's address,
761 * optional access rights, and data in a socket receive buffer,
762 * sbappendaddr() should be used. To place access rights and data in a
763 * socket receive buffer, sbappendrights() should be used. In either case,
764 * the new data begins a new record. Note that unlike sbappend() and
765 * sbappendrecord(), these routines check for the caller that there will be
766 * enough space to store the data. Each fails if there is not enough space,
767 * or if it cannot find mbufs to store additional information in.
768 *
769 * Reliable protocols may use the socket send buffer to hold data awaiting
770 * acknowledgement. Data is normally copied from a socket send buffer in a
771 * protocol with m_copy for output to a peer, and then removing the data from
772 * the socket buffer with sbdrop() or sbdroprecord() when the data is
773 * acknowledged by the peer.
774 */
775#ifdef SOCKBUF_DEBUG
776void
777sblastrecordchk(struct sockbuf *sb, const char *file, int line)
778{
779 struct mbuf *m = sb->sb_mb;
780
781 SOCKBUF_LOCK_ASSERT(sb);
782
783 while (m && m->m_nextpkt)
784 m = m->m_nextpkt;
785
786 if (m != sb->sb_lastrecord) {
787 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
788 __func__, sb->sb_mb, sb->sb_lastrecord, m);
789 printf("packet chain:\n");
790 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
791 printf("\t%p\n", m);
792 panic("%s from %s:%u", __func__, file, line);
793 }
794}
795
796void
797sblastmbufchk(struct sockbuf *sb, const char *file, int line)
798{
799 struct mbuf *m = sb->sb_mb;
800 struct mbuf *n;
801
802 SOCKBUF_LOCK_ASSERT(sb);
803
804 while (m && m->m_nextpkt)
805 m = m->m_nextpkt;
806
807 while (m && m->m_next)
808 m = m->m_next;
809
810 if (m != sb->sb_mbtail) {
811 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
812 __func__, sb->sb_mb, sb->sb_mbtail, m);
813 printf("packet tree:\n");
814 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
815 printf("\t");
816 for (n = m; n != NULL; n = n->m_next)
817 printf("%p ", n);
818 printf("\n");
819 }
820 panic("%s from %s:%u", __func__, file, line);
821 }
822
823#ifdef KERN_TLS
824 m = sb->sb_mtls;
825 while (m && m->m_next)
826 m = m->m_next;
827
828 if (m != sb->sb_mtlstail) {
829 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
830 __func__, sb->sb_mtls, sb->sb_mtlstail, m);
831 printf("TLS packet tree:\n");
832 printf("\t");
833 for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
834 printf("%p ", m);
835 }
836 printf("\n");
837 panic("%s from %s:%u", __func__, file, line);
838 }
839#endif
840}
841#endif /* SOCKBUF_DEBUG */
842
843#define SBLINKRECORD(sb, m0) do { \
844 SOCKBUF_LOCK_ASSERT(sb); \
845 if ((sb)->sb_lastrecord != NULL) \
846 (sb)->sb_lastrecord->m_nextpkt = (m0); \
847 else \
848 (sb)->sb_mb = (m0); \
849 (sb)->sb_lastrecord = (m0); \
850} while (/*CONSTCOND*/0)
851
852/*
853 * Append mbuf chain m to the last record in the socket buffer sb. The
854 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
855 * are discarded and mbufs are compacted where possible.
856 */
857void
858sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
859{
860 struct mbuf *n;
861
862 SOCKBUF_LOCK_ASSERT(sb);
863
864 if (m == NULL)
865 return;
867 SBLASTRECORDCHK(sb);
868 n = sb->sb_mb;
869 if (n) {
870 while (n->m_nextpkt)
871 n = n->m_nextpkt;
872 do {
873 if (n->m_flags & M_EOR) {
874 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
875 return;
876 }
877 } while (n->m_next && (n = n->m_next));
878 } else {
879 /*
880 * XXX Would like to simply use sb_mbtail here, but
881 * XXX I need to verify that I won't miss an EOR that
882 * XXX way.
883 */
884 if ((n = sb->sb_lastrecord) != NULL) {
885 do {
886 if (n->m_flags & M_EOR) {
887 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
888 return;
889 }
890 } while (n->m_next && (n = n->m_next));
891 } else {
892 /*
893 * If this is the first record in the socket buffer,
894 * it's also the last record.
895 */
896 sb->sb_lastrecord = m;
897 }
898 }
899 sbcompress(sb, m, n);
900 SBLASTRECORDCHK(sb);
901}
902
903/*
904 * Append mbuf chain m to the last record in the socket buffer sb. The
905 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
906 * are discarded and mbufs are compacted where possible.
907 */
908void
909sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
910{
911
912 SOCKBUF_LOCK(sb);
913 sbappend_locked(sb, m, flags);
914 SOCKBUF_UNLOCK(sb);
915}
916
917#ifdef KERN_TLS
918/*
919 * Append an mbuf containing encrypted TLS data. The data
920 * is marked M_NOTREADY until it has been decrypted and
921 * stored as a TLS record.
922 */
923static void
924sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
925{
926 struct mbuf *n;
927
928 SBLASTMBUFCHK(sb);
929
930 /* Remove all packet headers and mbuf tags to get a pure data chain. */
931 m_demote(m, 1, 0);
932
933 for (n = m; n != NULL; n = n->m_next)
934 n->m_flags |= M_NOTREADY;
935 sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
936 ktls_check_rx(sb);
937}
938#endif
939
940/*
941 * This version of sbappend() should only be used when the caller absolutely
942 * knows that there will never be more than one record in the socket buffer,
943 * that is, a stream protocol (such as TCP).
944 */
945void
946sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
947{
948 SOCKBUF_LOCK_ASSERT(sb);
949
950 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
951
952#ifdef KERN_TLS
953 /*
954 * Decrypted TLS records are appended as records via
955 * sbappendrecord(). TCP passes encrypted TLS records to this
956 * function which must be scheduled for decryption.
957 */
958 if (sb->sb_flags & SB_TLS_RX) {
959 sbappend_ktls_rx(sb, m);
960 return;
961 }
962#endif
963
964 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
965
966 SBLASTMBUFCHK(sb);
967
968#ifdef KERN_TLS
969 if (sb->sb_tls_info != NULL)
970 ktls_seq(sb, m);
971#endif
972
973 /* Remove all packet headers and mbuf tags to get a pure data chain. */
974 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
975
976 sbcompress(sb, m, sb->sb_mbtail);
977
978 sb->sb_lastrecord = sb->sb_mb;
979 SBLASTRECORDCHK(sb);
980}
981
982/*
983 * This version of sbappend() should only be used when the caller absolutely
984 * knows that there will never be more than one record in the socket buffer,
985 * that is, a stream protocol (such as TCP).
986 */
987void
988sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
989{
990
991 SOCKBUF_LOCK(sb);
993 SOCKBUF_UNLOCK(sb);
994}
995
996#ifdef SOCKBUF_DEBUG
997void
998sbcheck(struct sockbuf *sb, const char *file, int line)
999{
1000 struct mbuf *m, *n, *fnrdy;
1001 u_long acc, ccc, mbcnt;
1002#ifdef KERN_TLS
1003 u_long tlscc;
1004#endif
1005
1006 SOCKBUF_LOCK_ASSERT(sb);
1007
1008 acc = ccc = mbcnt = 0;
1009 fnrdy = NULL;
1010
1011 for (m = sb->sb_mb; m; m = n) {
1012 n = m->m_nextpkt;
1013 for (; m; m = m->m_next) {
1014 if (m->m_len == 0) {
1015 printf("sb %p empty mbuf %p\n", sb, m);
1016 goto fail;
1017 }
1018 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1019 if (m != sb->sb_fnrdy) {
1020 printf("sb %p: fnrdy %p != m %p\n",
1021 sb, sb->sb_fnrdy, m);
1022 goto fail;
1023 }
1024 fnrdy = m;
1025 }
1026 if (fnrdy) {
1027 if (!(m->m_flags & M_NOTAVAIL)) {
1028 printf("sb %p: fnrdy %p, m %p is avail\n",
1029 sb, sb->sb_fnrdy, m);
1030 goto fail;
1031 }
1032 } else
1033 acc += m->m_len;
1034 ccc += m->m_len;
1035 mbcnt += MSIZE;
1036 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1037 mbcnt += m->m_ext.ext_size;
1038 }
1039 }
1040#ifdef KERN_TLS
1041 /*
1042 * Account for mbufs "detached" by ktls_detach_record() while
1043 * they are decrypted by ktls_decrypt(). tlsdcc gives a count
1044 * of the detached bytes that are included in ccc. The mbufs
1045 * and clusters are not included in the socket buffer
1046 * accounting.
1047 */
1048 ccc += sb->sb_tlsdcc;
1049
1050 tlscc = 0;
1051 for (m = sb->sb_mtls; m; m = m->m_next) {
1052 if (m->m_nextpkt != NULL) {
1053 printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1054 goto fail;
1055 }
1056 if ((m->m_flags & M_NOTREADY) == 0) {
1057 printf("sb %p TLS mbuf %p ready\n", sb, m);
1058 goto fail;
1059 }
1060 tlscc += m->m_len;
1061 ccc += m->m_len;
1062 mbcnt += MSIZE;
1063 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1064 mbcnt += m->m_ext.ext_size;
1065 }
1066
1067 if (sb->sb_tlscc != tlscc) {
1068 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1069 sb->sb_tlsdcc);
1070 goto fail;
1071 }
1072#endif
1073 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1074 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1075 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1076#ifdef KERN_TLS
1077 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1078 sb->sb_tlsdcc);
1079#endif
1080 goto fail;
1081 }
1082 return;
1083fail:
1084 panic("%s from %s:%u", __func__, file, line);
1085}
1086#endif
1087
1088/*
1089 * As above, except the mbuf chain begins a new record.
1090 */
1091void
1092sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1093{
1094 struct mbuf *m;
1095
1096 SOCKBUF_LOCK_ASSERT(sb);
1097
1098 if (m0 == NULL)
1099 return;
1100 m_clrprotoflags(m0);
1101 /*
1102 * Put the first mbuf on the queue. Note this permits zero length
1103 * records.
1104 */
1105 sballoc(sb, m0);
1106 SBLASTRECORDCHK(sb);
1107 SBLINKRECORD(sb, m0);
1108 sb->sb_mbtail = m0;
1109 m = m0->m_next;
1110 m0->m_next = 0;
1111 if (m && (m0->m_flags & M_EOR)) {
1112 m0->m_flags &= ~M_EOR;
1113 m->m_flags |= M_EOR;
1114 }
1115 /* always call sbcompress() so it can do SBLASTMBUFCHK() */
1116 sbcompress(sb, m, m0);
1117}
1118
1119/*
1120 * As above, except the mbuf chain begins a new record.
1121 */
1122void
1123sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1124{
1125
1126 SOCKBUF_LOCK(sb);
1127 sbappendrecord_locked(sb, m0);
1128 SOCKBUF_UNLOCK(sb);
1129}
1130
1131/* Helper routine that appends data, control, and address to a sockbuf. */
1132static int
1133sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1134 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1135{
1136 struct mbuf *m, *n, *nlast;
1137#if MSIZE <= 256
1138 if (asa->sa_len > MLEN)
1139 return (0);
1140#endif
1141 m = m_get(M_NOWAIT, MT_SONAME);
1142 if (m == NULL)
1143 return (0);
1144 m->m_len = asa->sa_len;
1145 bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1146 if (m0) {
1147 M_ASSERT_NO_SND_TAG(m0);
1148 m_clrprotoflags(m0);
1149 m_tag_delete_chain(m0, NULL);
1150 /*
1151 * Clear some persistent info from pkthdr.
1152 * We don't use m_demote(), because some netgraph consumers
1153 * expect M_PKTHDR presence.
1154 */
1155 m0->m_pkthdr.rcvif = NULL;
1156 m0->m_pkthdr.flowid = 0;
1157 m0->m_pkthdr.csum_flags = 0;
1158 m0->m_pkthdr.fibnum = 0;
1159 m0->m_pkthdr.rsstype = 0;
1160 }
1161 if (ctrl_last)
1162 ctrl_last->m_next = m0; /* concatenate data to control */
1163 else
1164 control = m0;
1165 m->m_next = control;
1166 for (n = m; n->m_next != NULL; n = n->m_next)
1167 sballoc(sb, n);
1168 sballoc(sb, n);
1169 nlast = n;
1170 SBLINKRECORD(sb, m);
1171
1172 sb->sb_mbtail = nlast;
1173 SBLASTMBUFCHK(sb);
1174
1175 SBLASTRECORDCHK(sb);
1176 return (1);
1177}
1178
1179/*
1180 * Append address and data, and optionally, control (ancillary) data to the
1181 * receive queue of a socket. If present, m0 must include a packet header
1182 * with total length. Returns 0 if no space in sockbuf or insufficient
1183 * mbufs.
1184 */
1185int
1186sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1187 struct mbuf *m0, struct mbuf *control)
1188{
1189 struct mbuf *ctrl_last;
1190 int space = asa->sa_len;
1191
1192 SOCKBUF_LOCK_ASSERT(sb);
1193
1194 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1195 panic("sbappendaddr_locked");
1196 if (m0)
1197 space += m0->m_pkthdr.len;
1198 space += m_length(control, &ctrl_last);
1199
1200 if (space > sbspace(sb))
1201 return (0);
1202 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1203}
1204
1205/*
1206 * Append address and data, and optionally, control (ancillary) data to the
1207 * receive queue of a socket. If present, m0 must include a packet header
1208 * with total length. Returns 0 if insufficient mbufs. Does not validate space
1209 * on the receiving sockbuf.
1210 */
1211int
1212sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1213 struct mbuf *m0, struct mbuf *control)
1214{
1215 struct mbuf *ctrl_last;
1216
1217 SOCKBUF_LOCK_ASSERT(sb);
1218
1219 ctrl_last = (control == NULL) ? NULL : m_last(control);
1220 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1221}
1222
1223/*
1224 * Append address and data, and optionally, control (ancillary) data to the
1225 * receive queue of a socket. If present, m0 must include a packet header
1226 * with total length. Returns 0 if no space in sockbuf or insufficient
1227 * mbufs.
1228 */
1229int
1230sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1231 struct mbuf *m0, struct mbuf *control)
1232{
1233 int retval;
1234
1235 SOCKBUF_LOCK(sb);
1236 retval = sbappendaddr_locked(sb, asa, m0, control);
1237 SOCKBUF_UNLOCK(sb);
1238 return (retval);
1239}
1240
1241void
1242sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1243 struct mbuf *control, int flags)
1244{
1245 struct mbuf *m, *mlast;
1246
1248 m_last(control)->m_next = m0;
1249
1250 SBLASTRECORDCHK(sb);
1251
1252 for (m = control; m->m_next; m = m->m_next)
1253 sballoc(sb, m);
1254 sballoc(sb, m);
1255 mlast = m;
1256 SBLINKRECORD(sb, control);
1257
1258 sb->sb_mbtail = mlast;
1259 SBLASTMBUFCHK(sb);
1260
1261 SBLASTRECORDCHK(sb);
1262}
1263
1264void
1265sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1266 int flags)
1267{
1268
1269 SOCKBUF_LOCK(sb);
1270 sbappendcontrol_locked(sb, m0, control, flags);
1271 SOCKBUF_UNLOCK(sb);
1272}
1273
1274/*
1275 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1276 * (n). If (n) is NULL, the buffer is presumed empty.
1277 *
1278 * When the data is compressed, mbufs in the chain may be handled in one of
1279 * three ways:
1280 *
1281 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1282 * record boundary, and no change in data type).
1283 *
1284 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1285 * an mbuf already in the socket buffer. This can occur if an
1286 * appropriate mbuf exists, there is room, both mbufs are not marked as
1287 * not ready, and no merging of data types will occur.
1288 *
1289 * (3) The mbuf may be appended to the end of the existing mbuf chain.
1290 *
1291 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1292 * end-of-record.
1293 */
1294void
1295sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1296{
1297 int eor = 0;
1298 struct mbuf *o;
1299
1300 SOCKBUF_LOCK_ASSERT(sb);
1301
1302 while (m) {
1303 eor |= m->m_flags & M_EOR;
1304 if (m->m_len == 0 &&
1305 (eor == 0 ||
1306 (((o = m->m_next) || (o = n)) &&
1307 o->m_type == m->m_type))) {
1308 if (sb->sb_lastrecord == m)
1309 sb->sb_lastrecord = m->m_next;
1310 m = m_free(m);
1311 continue;
1312 }
1313 if (n && (n->m_flags & M_EOR) == 0 &&
1314 M_WRITABLE(n) &&
1315 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1316 !(m->m_flags & M_NOTREADY) &&
1317 !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1318 !mbuf_has_tls_session(m) &&
1319 !mbuf_has_tls_session(n) &&
1320 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1321 m->m_len <= M_TRAILINGSPACE(n) &&
1322 n->m_type == m->m_type) {
1323 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1324 n->m_len += m->m_len;
1325 sb->sb_ccc += m->m_len;
1326 if (sb->sb_fnrdy == NULL)
1327 sb->sb_acc += m->m_len;
1328 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1329 /* XXX: Probably don't need.*/
1330 sb->sb_ctl += m->m_len;
1331 m = m_free(m);
1332 continue;
1333 }
1334 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1335 (m->m_flags & M_NOTREADY) == 0 &&
1336 !mbuf_has_tls_session(m))
1337 (void)mb_unmapped_compress(m);
1338 if (n)
1339 n->m_next = m;
1340 else
1341 sb->sb_mb = m;
1342 sb->sb_mbtail = m;
1343 sballoc(sb, m);
1344 n = m;
1345 m->m_flags &= ~M_EOR;
1346 m = m->m_next;
1347 n->m_next = 0;
1348 }
1349 if (eor) {
1350 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1351 n->m_flags |= eor;
1352 }
1353 SBLASTMBUFCHK(sb);
1354}
1355
1356#ifdef KERN_TLS
1357/*
1358 * A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
1359 * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1360 * a bit simpler (no EOR markers, always MT_DATA, etc.).
1361 */
1362static void
1363sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1364{
1365
1366 SOCKBUF_LOCK_ASSERT(sb);
1367
1368 while (m) {
1369 KASSERT((m->m_flags & M_EOR) == 0,
1370 ("TLS RX mbuf %p with EOR", m));
1371 KASSERT(m->m_type == MT_DATA,
1372 ("TLS RX mbuf %p is not MT_DATA", m));
1373 KASSERT((m->m_flags & M_NOTREADY) != 0,
1374 ("TLS RX mbuf %p ready", m));
1375 KASSERT((m->m_flags & M_EXTPG) == 0,
1376 ("TLS RX mbuf %p unmapped", m));
1377
1378 if (m->m_len == 0) {
1379 m = m_free(m);
1380 continue;
1381 }
1382
1383 /*
1384 * Even though both 'n' and 'm' are NOTREADY, it's ok
1385 * to coalesce the data.
1386 */
1387 if (n &&
1388 M_WRITABLE(n) &&
1389 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1390 !(n->m_flags & (M_EXTPG)) &&
1391 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1392 m->m_len <= M_TRAILINGSPACE(n)) {
1393 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1394 n->m_len += m->m_len;
1395 sb->sb_ccc += m->m_len;
1396 sb->sb_tlscc += m->m_len;
1397 m = m_free(m);
1398 continue;
1399 }
1400 if (n)
1401 n->m_next = m;
1402 else
1403 sb->sb_mtls = m;
1404 sb->sb_mtlstail = m;
1405 sballoc_ktls_rx(sb, m);
1406 n = m;
1407 m = m->m_next;
1408 n->m_next = NULL;
1409 }
1410 SBLASTMBUFCHK(sb);
1411}
1412#endif
1413
1414/*
1415 * Free all mbufs in a sockbuf. Check that all resources are reclaimed.
1416 */
1417static void
1418sbflush_internal(struct sockbuf *sb)
1419{
1420
1421 while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1422 /*
1423 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1424 * we would loop forever. Panic instead.
1425 */
1426 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1427 break;
1428 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1429 }
1430 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1431 ("%s: ccc %u mb %p mbcnt %u", __func__,
1432 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1433}
1434
1435void
1436sbflush_locked(struct sockbuf *sb)
1437{
1438
1439 SOCKBUF_LOCK_ASSERT(sb);
1440 sbflush_internal(sb);
1441}
1442
1443void
1444sbflush(struct sockbuf *sb)
1445{
1446
1447 SOCKBUF_LOCK(sb);
1448 sbflush_locked(sb);
1449 SOCKBUF_UNLOCK(sb);
1450}
1451
1452/*
1453 * Cut data from (the front of) a sockbuf.
1454 */
1455static struct mbuf *
1456sbcut_internal(struct sockbuf *sb, int len)
1457{
1458 struct mbuf *m, *next, *mfree;
1459 bool is_tls;
1460
1461 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1462 __func__, len));
1463 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1464 __func__, len, sb->sb_ccc));
1465
1466 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1467 is_tls = false;
1468 mfree = NULL;
1469
1470 while (len > 0) {
1471 if (m == NULL) {
1472#ifdef KERN_TLS
1473 if (next == NULL && !is_tls) {
1474 if (sb->sb_tlsdcc != 0) {
1475 MPASS(len >= sb->sb_tlsdcc);
1476 len -= sb->sb_tlsdcc;
1477 sb->sb_ccc -= sb->sb_tlsdcc;
1478 sb->sb_tlsdcc = 0;
1479 if (len == 0)
1480 break;
1481 }
1482 next = sb->sb_mtls;
1483 is_tls = true;
1484 }
1485#endif
1486 KASSERT(next, ("%s: no next, len %d", __func__, len));
1487 m = next;
1488 next = m->m_nextpkt;
1489 }
1490 if (m->m_len > len) {
1491 KASSERT(!(m->m_flags & M_NOTAVAIL),
1492 ("%s: m %p M_NOTAVAIL", __func__, m));
1493 m->m_len -= len;
1494 m->m_data += len;
1495 sb->sb_ccc -= len;
1496 sb->sb_acc -= len;
1497 if (sb->sb_sndptroff != 0)
1498 sb->sb_sndptroff -= len;
1499 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1500 sb->sb_ctl -= len;
1501 break;
1502 }
1503 len -= m->m_len;
1504#ifdef KERN_TLS
1505 if (is_tls)
1506 sbfree_ktls_rx(sb, m);
1507 else
1508#endif
1509 sbfree(sb, m);
1510 /*
1511 * Do not put M_NOTREADY buffers to the free list, they
1512 * are referenced from outside.
1513 */
1514 if (m->m_flags & M_NOTREADY && !is_tls)
1515 m = m->m_next;
1516 else {
1517 struct mbuf *n;
1518
1519 n = m->m_next;
1520 m->m_next = mfree;
1521 mfree = m;
1522 m = n;
1523 }
1524 }
1525 /*
1526 * Free any zero-length mbufs from the buffer.
1527 * For SOCK_DGRAM sockets such mbufs represent empty records.
1528 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1529 * when sosend_generic() needs to send only control data.
1530 */
1531 while (m && m->m_len == 0) {
1532 struct mbuf *n;
1533
1534 sbfree(sb, m);
1535 n = m->m_next;
1536 m->m_next = mfree;
1537 mfree = m;
1538 m = n;
1539 }
1540#ifdef KERN_TLS
1541 if (is_tls) {
1542 sb->sb_mb = NULL;
1543 sb->sb_mtls = m;
1544 if (m == NULL)
1545 sb->sb_mtlstail = NULL;
1546 } else
1547#endif
1548 if (m) {
1549 sb->sb_mb = m;
1550 m->m_nextpkt = next;
1551 } else
1552 sb->sb_mb = next;
1553 /*
1554 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
1555 * sb_lastrecord is up-to-date if we dropped part of the last record.
1556 */
1557 m = sb->sb_mb;
1558 if (m == NULL) {
1559 sb->sb_mbtail = NULL;
1560 sb->sb_lastrecord = NULL;
1561 } else if (m->m_nextpkt == NULL) {
1562 sb->sb_lastrecord = m;
1563 }
1564
1565 return (mfree);
1566}
1567
1568/*
1569 * Drop data from (the front of) a sockbuf.
1570 */
1571void
1572sbdrop_locked(struct sockbuf *sb, int len)
1573{
1574
1575 SOCKBUF_LOCK_ASSERT(sb);
1576 m_freem(sbcut_internal(sb, len));
1577}
1578
1579/*
1580 * Drop data from (the front of) a sockbuf,
1581 * and return it to caller.
1582 */
1583struct mbuf *
1584sbcut_locked(struct sockbuf *sb, int len)
1585{
1586
1587 SOCKBUF_LOCK_ASSERT(sb);
1588 return (sbcut_internal(sb, len));
1589}
1590
1591void
1592sbdrop(struct sockbuf *sb, int len)
1593{
1594 struct mbuf *mfree;
1595
1596 SOCKBUF_LOCK(sb);
1597 mfree = sbcut_internal(sb, len);
1598 SOCKBUF_UNLOCK(sb);
1599
1600 m_freem(mfree);
1601}
1602
1603struct mbuf *
1604sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1605{
1606 struct mbuf *m;
1607
1608 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1609 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1610 *moff = off;
1611 if (sb->sb_sndptr == NULL) {
1612 sb->sb_sndptr = sb->sb_mb;
1613 sb->sb_sndptroff = 0;
1614 }
1615 return (sb->sb_mb);
1616 } else {
1617 m = sb->sb_sndptr;
1618 off -= sb->sb_sndptroff;
1619 }
1620 *moff = off;
1621 return (m);
1622}
1623
1624void
1625sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1626{
1627 /*
1628 * A small copy was done, advance forward the sb_sbsndptr to cover
1629 * it.
1630 */
1631 struct mbuf *m;
1632
1633 if (mb != sb->sb_sndptr) {
1634 /* Did not copyout at the same mbuf */
1635 return;
1636 }
1637 m = mb;
1638 while (m && (len > 0)) {
1639 if (len >= m->m_len) {
1640 len -= m->m_len;
1641 if (m->m_next) {
1642 sb->sb_sndptroff += m->m_len;
1643 sb->sb_sndptr = m->m_next;
1644 }
1645 m = m->m_next;
1646 } else {
1647 len = 0;
1648 }
1649 }
1650}
1651
1652/*
1653 * Return the first mbuf and the mbuf data offset for the provided
1654 * send offset without changing the "sb_sndptroff" field.
1655 */
1656struct mbuf *
1657sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1658{
1659 struct mbuf *m;
1660
1661 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1662
1663 /*
1664 * If the "off" is below the stored offset, which happens on
1665 * retransmits, just use "sb_mb":
1666 */
1667 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1668 m = sb->sb_mb;
1669 } else {
1670 m = sb->sb_sndptr;
1671 off -= sb->sb_sndptroff;
1672 }
1673 while (off > 0 && m != NULL) {
1674 if (off < m->m_len)
1675 break;
1676 off -= m->m_len;
1677 m = m->m_next;
1678 }
1679 *moff = off;
1680 return (m);
1681}
1682
1683/*
1684 * Drop a record off the front of a sockbuf and move the next record to the
1685 * front.
1686 */
1687void
1688sbdroprecord_locked(struct sockbuf *sb)
1689{
1690 struct mbuf *m;
1691
1692 SOCKBUF_LOCK_ASSERT(sb);
1693
1694 m = sb->sb_mb;
1695 if (m) {
1696 sb->sb_mb = m->m_nextpkt;
1697 do {
1698 sbfree(sb, m);
1699 m = m_free(m);
1700 } while (m);
1701 }
1702 SB_EMPTY_FIXUP(sb);
1703}
1704
1705/*
1706 * Drop a record off the front of a sockbuf and move the next record to the
1707 * front.
1708 */
1709void
1710sbdroprecord(struct sockbuf *sb)
1711{
1712
1713 SOCKBUF_LOCK(sb);
1715 SOCKBUF_UNLOCK(sb);
1716}
1717
1718/*
1719 * Create a "control" mbuf containing the specified data with the specified
1720 * type for presentation on a socket buffer.
1721 */
1722struct mbuf *
1723sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
1724{
1725 struct cmsghdr *cp;
1726 struct mbuf *m;
1727
1728 MBUF_CHECKSLEEP(wait);
1729 if (CMSG_SPACE((u_int)size) > MCLBYTES)
1730 return ((struct mbuf *) NULL);
1731 if (CMSG_SPACE((u_int)size) > MLEN)
1732 m = m_getcl(wait, MT_CONTROL, 0);
1733 else
1734 m = m_get(wait, MT_CONTROL);
1735 if (m == NULL)
1736 return ((struct mbuf *) NULL);
1737 cp = mtod(m, struct cmsghdr *);
1738 m->m_len = 0;
1739 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1740 ("sbcreatecontrol: short mbuf"));
1741 /*
1742 * Don't leave the padding between the msg header and the
1743 * cmsg data and the padding after the cmsg data un-initialized.
1744 */
1745 bzero(cp, CMSG_SPACE((u_int)size));
1746 if (p != NULL)
1747 (void)memcpy(CMSG_DATA(cp), p, size);
1748 m->m_len = CMSG_SPACE(size);
1749 cp->cmsg_len = CMSG_LEN(size);
1750 cp->cmsg_level = level;
1751 cp->cmsg_type = type;
1752 return (m);
1753}
1754
1755struct mbuf *
1756sbcreatecontrol(caddr_t p, int size, int type, int level)
1757{
1758
1759 return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
1760}
1761
1762/*
1763 * This does the same for socket buffers that sotoxsocket does for sockets:
1764 * generate an user-format data structure describing the socket buffer. Note
1765 * that the xsockbuf structure, since it is always embedded in a socket, does
1766 * not include a self pointer nor a length. We make this entry point public
1767 * in case some other mechanism needs it.
1768 */
1769void
1770sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1771{
1772
1773 xsb->sb_cc = sb->sb_ccc;
1774 xsb->sb_hiwat = sb->sb_hiwat;
1775 xsb->sb_mbcnt = sb->sb_mbcnt;
1776 xsb->sb_mcnt = sb->sb_mcnt;
1777 xsb->sb_ccnt = sb->sb_ccnt;
1778 xsb->sb_mbmax = sb->sb_mbmax;
1779 xsb->sb_lowat = sb->sb_lowat;
1780 xsb->sb_flags = sb->sb_flags;
1781 xsb->sb_timeo = sb->sb_timeo;
1782}
1783
1784/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1785static int dummy;
1786SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1787SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1788 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1790 "Maximum socket buffer size");
1791SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1792 &sb_efficiency, 0, "Socket buffer size waste factor");
const struct cf_level * level
Definition: cpufreq_if.m:45
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
void m_freem(struct mbuf *mb)
Definition: kern_mbuf.c:1587
int mb_unmapped_compress(struct mbuf *m)
Definition: kern_mbuf.c:882
int chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
rlim_t() lim_cur(struct thread *td, int which)
void panic(const char *fmt,...)
void pgsigio(struct sigio **sigiop, int sig, int checkctty)
Definition: kern_sig.c:4041
void wakeup(const void *ident)
Definition: kern_synch.c:349
int sysctl_handle_long(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1700
int mask
Definition: subr_acl_nfs4.c:70
int printf(const char *fmt,...)
Definition: subr_prf.c:397
uint16_t flags
Definition: subr_stats.c:2
void selwakeuppri(struct selinfo *sip, int pri)
Definition: sys_generic.c:1924
void sowakeup_aio(struct socket *so, struct sockbuf *sb)
Definition: sys_socket.c:753
void ktls_seq(struct sockbuf *sb, struct mbuf *m)
Definition: uipc_ktls.c:1650
void ktls_check_rx(struct sockbuf *sb)
Definition: uipc_ktls.c:1807
void m_tag_delete_chain(struct mbuf *m, struct m_tag *t)
Definition: uipc_mbuf2.c:344
void m_demote(struct mbuf *m0, int all, int flags)
Definition: uipc_mbuf.c:279
void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
Definition: uipc_mbuf.c:654
u_int m_length(struct mbuf *m0, struct mbuf **last)
Definition: uipc_mbuf.c:1445
void soroverflow(struct socket *so)
Definition: uipc_sockbuf.c:455
int sbwait(struct sockbuf *sb)
Definition: uipc_sockbuf.c:467
#define SBLINKRECORD(sb, m0)
Definition: uipc_sockbuf.c:843
void socantsendmore_locked(struct socket *so)
Definition: uipc_sockbuf.c:396
static void sbflush_internal(struct sockbuf *sb)
static int sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
void soroverflow_locked(struct socket *so)
Definition: uipc_sockbuf.c:440
void sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
int sbsetopt(struct socket *so, int cmd, u_long cc)
Definition: uipc_sockbuf.c:634
void sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
void sbrelease(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:733
void sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, int flags)
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW|CTLFLAG_SKIP, &dummy, 0, "")
void sbfree(struct sockbuf *sb, struct mbuf *m)
Definition: uipc_sockbuf.c:296
static u_long sb_efficiency
Definition: uipc_sockbuf.c:71
void socantsendmore(struct socket *so)
Definition: uipc_sockbuf.c:407
void sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
u_long sb_max_adj
Definition: uipc_sockbuf.c:68
static struct mbuf * sbcut_internal(struct sockbuf *sb, int len)
void sbflush_locked(struct sockbuf *sb)
static void sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
Definition: uipc_sockbuf.c:107
static void sbm_clrprotoflags(struct mbuf *m, int flags)
Definition: uipc_sockbuf.c:84
void sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
Definition: uipc_sockbuf.c:946
int soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
Definition: uipc_sockbuf.c:556
void sbdestroy(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:742
static int dummy
void sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
void sbflush(struct sockbuf *sb)
__FBSDID("$FreeBSD$")
int sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, struct mbuf *control)
void sbdroprecord(struct sockbuf *sb)
int sbready(struct sockbuf *sb, struct mbuf *m0, int count)
Definition: uipc_sockbuf.c:200
struct mbuf * sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
void sbdrop(struct sockbuf *sb, int len)
void socantrcvmore_locked(struct socket *so)
Definition: uipc_sockbuf.c:416
void(* aio_swake)(struct socket *, struct sockbuf *)
Definition: uipc_sockbuf.c:61
void sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, int flags)
void sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
Definition: uipc_sockbuf.c:909
void sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
Definition: uipc_sockbuf.c:858
void sballoc(struct sockbuf *sb, struct mbuf *m)
Definition: uipc_sockbuf.c:265
void sbdroprecord_locked(struct sockbuf *sb)
void sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
Definition: uipc_sockbuf.c:988
void sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
int sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so, struct thread *td)
Definition: uipc_sockbuf.c:604
struct mbuf * sbcut_locked(struct sockbuf *sb, int len)
void sbdrop_locked(struct sockbuf *sb, int len)
SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW|CTLFLAG_MPSAFE, &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size")
static int sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
Definition: uipc_sockbuf.c:584
struct mbuf * sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
void sbrelease_internal(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:714
struct mbuf * sbcreatecontrol(caddr_t p, int size, int type, int level)
int sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, struct mbuf *control)
struct mbuf * sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
u_long sb_max
Definition: uipc_sockbuf.c:67
SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency, 0, "Socket buffer size waste factor")
void socantrcvmore(struct socket *so)
Definition: uipc_sockbuf.c:431
int sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, struct mbuf *control)
void sbrelease_locked(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:724
void sowakeup(struct socket *so, struct sockbuf *sb)
Definition: uipc_sockbuf.c:491
void soisconnected(struct socket *so)
Definition: uipc_socket.c:4049
void soupcall_clear(struct socket *so, int which)
Definition: uipc_socket.c:4254