FreeBSD kernel kern code
kern_mutex.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Berkeley Software Design Inc's name may not be used to endorse or
15 * promote products derived from this software without specific prior
16 * written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32 */
33
34/*
35 * Machine independent bits of mutex implementation.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41#include "opt_adaptive_mutexes.h"
42#include "opt_ddb.h"
43#include "opt_hwpmc_hooks.h"
44#include "opt_sched.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/conf.h>
50#include <sys/kdb.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/proc.h>
57#include <sys/resourcevar.h>
58#include <sys/sched.h>
59#include <sys/sbuf.h>
60#include <sys/smp.h>
61#include <sys/sysctl.h>
62#include <sys/turnstile.h>
63#include <sys/vmmeter.h>
64#include <sys/lock_profile.h>
65
66#include <machine/atomic.h>
67#include <machine/bus.h>
68#include <machine/cpu.h>
69
70#include <ddb/ddb.h>
71
72#include <fs/devfs/devfs_int.h>
73
74#include <vm/vm.h>
75#include <vm/vm_extern.h>
76
77#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
78#define ADAPTIVE_MUTEXES
79#endif
80
81#ifdef HWPMC_HOOKS
82#include <sys/pmckern.h>
83PMC_SOFT_DEFINE( , , lock, failed);
84#endif
85
86/*
87 * Return the mutex address when the lock cookie address is provided.
88 * This functionality assumes that struct mtx* have a member named mtx_lock.
89 */
90#define mtxlock2mtx(c) (__containerof(c, struct mtx, mtx_lock))
91
92/*
93 * Internal utility macros.
94 */
95#define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED)
96
97#define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
98
99static void assert_mtx(const struct lock_object *lock, int what);
100#ifdef DDB
101static void db_show_mtx(const struct lock_object *lock);
102#endif
103static void lock_mtx(struct lock_object *lock, uintptr_t how);
104static void lock_spin(struct lock_object *lock, uintptr_t how);
105#ifdef KDTRACE_HOOKS
106static int owner_mtx(const struct lock_object *lock,
107 struct thread **owner);
108#endif
109static uintptr_t unlock_mtx(struct lock_object *lock);
110static uintptr_t unlock_spin(struct lock_object *lock);
111
112/*
113 * Lock classes for sleep and spin mutexes.
114 */
115struct lock_class lock_class_mtx_sleep = {
116 .lc_name = "sleep mutex",
117 .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
118 .lc_assert = assert_mtx,
119#ifdef DDB
120 .lc_ddb_show = db_show_mtx,
121#endif
122 .lc_lock = lock_mtx,
123 .lc_unlock = unlock_mtx,
124#ifdef KDTRACE_HOOKS
125 .lc_owner = owner_mtx,
126#endif
127};
128struct lock_class lock_class_mtx_spin = {
129 .lc_name = "spin mutex",
130 .lc_flags = LC_SPINLOCK | LC_RECURSABLE,
131 .lc_assert = assert_mtx,
132#ifdef DDB
133 .lc_ddb_show = db_show_mtx,
134#endif
135 .lc_lock = lock_spin,
136 .lc_unlock = unlock_spin,
137#ifdef KDTRACE_HOOKS
138 .lc_owner = owner_mtx,
139#endif
140};
141
142#ifdef ADAPTIVE_MUTEXES
143#ifdef MUTEX_CUSTOM_BACKOFF
144static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
145 "mtx debugging");
146
147static struct lock_delay_config __read_frequently mtx_delay;
148
149SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
150 0, "");
151SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
152 0, "");
153
154LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
155#else
156#define mtx_delay locks_delay
157#endif
158#endif
159
160#ifdef MUTEX_SPIN_CUSTOM_BACKOFF
161static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin,
162 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
163 "mtx spin debugging");
164
165static struct lock_delay_config __read_frequently mtx_spin_delay;
166
167SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
168 &mtx_spin_delay.base, 0, "");
169SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
170 &mtx_spin_delay.max, 0, "");
171
172LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
173#else
174#define mtx_spin_delay locks_delay
175#endif
176
177/*
178 * System-wide mutexes
179 */
181struct mtx __exclusive_cache_line Giant;
182
183static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
184
185void
186assert_mtx(const struct lock_object *lock, int what)
187{
188
189 /*
190 * Treat LA_LOCKED as if LA_XLOCKED was asserted.
191 *
192 * Some callers of lc_assert uses LA_LOCKED to indicate that either
193 * a shared lock or write lock was held, while other callers uses
194 * the more strict LA_XLOCKED (used as MA_OWNED).
195 *
196 * Mutex is the only lock class that can not be shared, as a result,
197 * we can reasonably consider the caller really intends to assert
198 * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
199 */
200 if (what & LA_LOCKED) {
201 what &= ~LA_LOCKED;
202 what |= LA_XLOCKED;
203 }
204 mtx_assert((const struct mtx *)lock, what);
205}
206
207void
208lock_mtx(struct lock_object *lock, uintptr_t how)
209{
210
211 mtx_lock((struct mtx *)lock);
212}
213
214void
215lock_spin(struct lock_object *lock, uintptr_t how)
216{
217
218 mtx_lock_spin((struct mtx *)lock);
219}
220
221uintptr_t
222unlock_mtx(struct lock_object *lock)
223{
224 struct mtx *m;
225
226 m = (struct mtx *)lock;
227 mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
228 mtx_unlock(m);
229 return (0);
230}
231
232uintptr_t
233unlock_spin(struct lock_object *lock)
234{
235 struct mtx *m;
236
237 m = (struct mtx *)lock;
238 mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
239 mtx_unlock_spin(m);
240 return (0);
241}
242
243#ifdef KDTRACE_HOOKS
244int
245owner_mtx(const struct lock_object *lock, struct thread **owner)
246{
247 const struct mtx *m;
248 uintptr_t x;
249
250 m = (const struct mtx *)lock;
251 x = m->mtx_lock;
252 *owner = (struct thread *)(x & ~MTX_FLAGMASK);
253 return (*owner != NULL);
254}
255#endif
256
257/*
258 * Function versions of the inlined __mtx_* macros. These are used by
259 * modules and can also be called from assembly language if needed.
260 */
261void
262__mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
263{
264 struct mtx *m;
265 uintptr_t tid, v;
266
267 m = mtxlock2mtx(c);
268
269 KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
270 !TD_IS_IDLETHREAD(curthread),
271 ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
272 curthread, m->lock_object.lo_name, file, line));
273 KASSERT(m->mtx_lock != MTX_DESTROYED,
274 ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
275 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
276 ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
277 file, line));
278 WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
279 LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
280
281 tid = (uintptr_t)curthread;
282 v = MTX_UNOWNED;
283 if (!_mtx_obtain_lock_fetch(m, &v, tid))
284 _mtx_lock_sleep(m, v, opts, file, line);
285 else
286 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
287 m, 0, 0, file, line);
288 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
289 line);
290 WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
291 file, line);
292 TD_LOCKS_INC(curthread);
293}
294
295void
296__mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
297{
298 struct mtx *m;
299
300 m = mtxlock2mtx(c);
301
302 KASSERT(m->mtx_lock != MTX_DESTROYED,
303 ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
304 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
305 ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
306 file, line));
307 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
308 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
309 line);
310 mtx_assert(m, MA_OWNED);
311
312#ifdef LOCK_PROFILING
313 __mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
314#else
315 __mtx_unlock(m, curthread, opts, file, line);
316#endif
317 TD_LOCKS_DEC(curthread);
318}
319
320void
321__mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
322 int line)
323{
324 struct mtx *m;
325#ifdef SMP
326 uintptr_t tid, v;
327#endif
328
329 m = mtxlock2mtx(c);
330
331 KASSERT(m->mtx_lock != MTX_DESTROYED,
332 ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
333 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
334 ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
335 m->lock_object.lo_name, file, line));
336 if (mtx_owned(m))
337 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
338 (opts & MTX_RECURSE) != 0,
339 ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
340 m->lock_object.lo_name, file, line));
341 opts &= ~MTX_RECURSE;
342 WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
343 file, line, NULL);
344#ifdef SMP
345 spinlock_enter();
346 tid = (uintptr_t)curthread;
347 v = MTX_UNOWNED;
348 if (!_mtx_obtain_lock_fetch(m, &v, tid))
349 _mtx_lock_spin(m, v, opts, file, line);
350 else
351 LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire,
352 m, 0, 0, file, line);
353#else
354 __mtx_lock_spin(m, curthread, opts, file, line);
355#endif
356 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
357 line);
358 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
359}
360
361int
362__mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
363 int line)
364{
365 struct mtx *m;
366
367 if (SCHEDULER_STOPPED())
368 return (1);
369
370 m = mtxlock2mtx(c);
371
372 KASSERT(m->mtx_lock != MTX_DESTROYED,
373 ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
374 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
375 ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
376 m->lock_object.lo_name, file, line));
377 KASSERT((opts & MTX_RECURSE) == 0,
378 ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
379 m->lock_object.lo_name, file, line));
380 if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
381 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
382 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
383 return (1);
384 }
385 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
386 return (0);
387}
388
389void
390__mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
391 int line)
392{
393 struct mtx *m;
394
395 m = mtxlock2mtx(c);
396
397 KASSERT(m->mtx_lock != MTX_DESTROYED,
398 ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
399 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
400 ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
401 m->lock_object.lo_name, file, line));
402 WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
403 LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
404 line);
405 mtx_assert(m, MA_OWNED);
406
407 __mtx_unlock_spin(m);
408}
409
410/*
411 * The important part of mtx_trylock{,_flags}()
412 * Tries to acquire lock `m.' If this function is called on a mutex that
413 * is already owned, it will recursively acquire the lock.
414 */
415int
416_mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
417{
418 struct thread *td;
419 uintptr_t tid, v;
420#ifdef LOCK_PROFILING
421 uint64_t waittime = 0;
422 int contested = 0;
423#endif
424 int rval;
425 bool recursed;
426
427 td = curthread;
428 tid = (uintptr_t)td;
429 if (SCHEDULER_STOPPED_TD(td))
430 return (1);
431
432 KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
433 ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
434 curthread, m->lock_object.lo_name, file, line));
435 KASSERT(m->mtx_lock != MTX_DESTROYED,
436 ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
437 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
438 ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
439 file, line));
440
441 rval = 1;
442 recursed = false;
443 v = MTX_UNOWNED;
444 for (;;) {
445 if (_mtx_obtain_lock_fetch(m, &v, tid))
446 break;
447 if (v == MTX_UNOWNED)
448 continue;
449 if (v == tid &&
450 ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
451 (opts & MTX_RECURSE) != 0)) {
452 m->mtx_recurse++;
453 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
454 recursed = true;
455 break;
456 }
457 rval = 0;
458 break;
459 }
460
461 opts &= ~MTX_RECURSE;
462
463 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
464 if (rval) {
465 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
466 file, line);
467 TD_LOCKS_INC(curthread);
468 if (!recursed)
469 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
470 m, contested, waittime, file, line);
471 }
472
473 return (rval);
474}
475
476int
477_mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
478{
479 struct mtx *m;
480
481 m = mtxlock2mtx(c);
482 return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
483}
484
485/*
486 * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
487 *
488 * We call this if the lock is either contested (i.e. we need to go to
489 * sleep waiting for it), or if we need to recurse on it.
490 */
491#if LOCK_DEBUG > 0
492void
493__mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
494 int line)
495#else
496void
497__mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
498#endif
499{
500 struct thread *td;
501 struct mtx *m;
502 struct turnstile *ts;
503 uintptr_t tid;
504 struct thread *owner;
505#ifdef LOCK_PROFILING
506 int contested = 0;
507 uint64_t waittime = 0;
508#endif
509#if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
510 struct lock_delay_arg lda;
511#endif
512#ifdef KDTRACE_HOOKS
513 u_int sleep_cnt = 0;
514 int64_t sleep_time = 0;
515 int64_t all_time = 0;
516#endif
517#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
518 int doing_lockprof = 0;
519#endif
520
521 td = curthread;
522 tid = (uintptr_t)td;
523 m = mtxlock2mtx(c);
524
525#ifdef KDTRACE_HOOKS
526 if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
527 while (v == MTX_UNOWNED) {
528 if (_mtx_obtain_lock_fetch(m, &v, tid))
529 goto out_lockstat;
530 }
531 doing_lockprof = 1;
532 all_time -= lockstat_nsecs(&m->lock_object);
533 }
534#endif
535#ifdef LOCK_PROFILING
536 doing_lockprof = 1;
537#endif
538
539 if (SCHEDULER_STOPPED_TD(td))
540 return;
541
542 if (__predict_false(v == MTX_UNOWNED))
543 v = MTX_READ_VALUE(m);
544
545 if (__predict_false(lv_mtx_owner(v) == td)) {
546 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
547 (opts & MTX_RECURSE) != 0,
548 ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
549 m->lock_object.lo_name, file, line));
550#if LOCK_DEBUG > 0
551 opts &= ~MTX_RECURSE;
552#endif
553 m->mtx_recurse++;
554 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
555 if (LOCK_LOG_TEST(&m->lock_object, opts))
556 CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
557 return;
558 }
559#if LOCK_DEBUG > 0
560 opts &= ~MTX_RECURSE;
561#endif
562
563#if defined(ADAPTIVE_MUTEXES)
564 lock_delay_arg_init(&lda, &mtx_delay);
565#elif defined(KDTRACE_HOOKS)
566 lock_delay_arg_init_noadapt(&lda);
567#endif
568
569#ifdef HWPMC_HOOKS
570 PMC_SOFT_CALL( , , lock, failed);
571#endif
572 lock_profile_obtain_lock_failed(&m->lock_object, false,
573 &contested, &waittime);
574 if (LOCK_LOG_TEST(&m->lock_object, opts))
575 CTR4(KTR_LOCK,
576 "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
577 m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
578
579 for (;;) {
580 if (v == MTX_UNOWNED) {
581 if (_mtx_obtain_lock_fetch(m, &v, tid))
582 break;
583 continue;
584 }
585#ifdef KDTRACE_HOOKS
586 lda.spin_cnt++;
587#endif
588#ifdef ADAPTIVE_MUTEXES
589 /*
590 * If the owner is running on another CPU, spin until the
591 * owner stops running or the state of the lock changes.
592 */
593 owner = lv_mtx_owner(v);
594 if (TD_IS_RUNNING(owner)) {
595 if (LOCK_LOG_TEST(&m->lock_object, 0))
596 CTR3(KTR_LOCK,
597 "%s: spinning on %p held by %p",
598 __func__, m, owner);
599 KTR_STATE1(KTR_SCHED, "thread",
600 sched_tdname((struct thread *)tid),
601 "spinning", "lockname:\"%s\"",
602 m->lock_object.lo_name);
603 do {
604 lock_delay(&lda);
605 v = MTX_READ_VALUE(m);
606 owner = lv_mtx_owner(v);
607 } while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
608 KTR_STATE0(KTR_SCHED, "thread",
609 sched_tdname((struct thread *)tid),
610 "running");
611 continue;
612 }
613#endif
614
615 ts = turnstile_trywait(&m->lock_object);
616 v = MTX_READ_VALUE(m);
617retry_turnstile:
618
619 /*
620 * Check if the lock has been released while spinning for
621 * the turnstile chain lock.
622 */
623 if (v == MTX_UNOWNED) {
625 continue;
626 }
627
628#ifdef ADAPTIVE_MUTEXES
629 /*
630 * The current lock owner might have started executing
631 * on another CPU (or the lock could have changed
632 * owners) while we were waiting on the turnstile
633 * chain lock. If so, drop the turnstile lock and try
634 * again.
635 */
636 owner = lv_mtx_owner(v);
637 if (TD_IS_RUNNING(owner)) {
639 continue;
640 }
641#endif
642
643 /*
644 * If the mutex isn't already contested and a failure occurs
645 * setting the contested bit, the mutex was either released
646 * or the state of the MTX_RECURSED bit changed.
647 */
648 if ((v & MTX_CONTESTED) == 0 &&
649 !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
650 goto retry_turnstile;
651 }
652
653 /*
654 * We definitely must sleep for this lock.
655 */
656 mtx_assert(m, MA_NOTOWNED);
657
658 /*
659 * Block on the turnstile.
660 */
661#ifdef KDTRACE_HOOKS
662 sleep_time -= lockstat_nsecs(&m->lock_object);
663#endif
664#ifndef ADAPTIVE_MUTEXES
665 owner = mtx_owner(m);
666#endif
667 MPASS(owner == mtx_owner(m));
668 turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
669#ifdef KDTRACE_HOOKS
670 sleep_time += lockstat_nsecs(&m->lock_object);
671 sleep_cnt++;
672#endif
673 v = MTX_READ_VALUE(m);
674 }
675#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
676 if (__predict_true(!doing_lockprof))
677 return;
678#endif
679#ifdef KDTRACE_HOOKS
680 all_time += lockstat_nsecs(&m->lock_object);
681 if (sleep_time)
682 LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
683
684 /*
685 * Only record the loops spinning and not sleeping.
686 */
687 if (lda.spin_cnt > sleep_cnt)
688 LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
689out_lockstat:
690#endif
691 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
692 waittime, file, line);
693}
694
695#ifdef SMP
696/*
697 * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
698 *
699 * This is only called if we need to actually spin for the lock. Recursion
700 * is handled inline.
701 */
702#if LOCK_DEBUG > 0
703void
704_mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
705 const char *file, int line)
706#else
707void
708_mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
709#endif
710{
711 struct mtx *m;
712 struct lock_delay_arg lda;
713 uintptr_t tid;
714#ifdef LOCK_PROFILING
715 int contested = 0;
716 uint64_t waittime = 0;
717#endif
718#ifdef KDTRACE_HOOKS
719 int64_t spin_time = 0;
720#endif
721#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
722 int doing_lockprof = 0;
723#endif
724
725 tid = (uintptr_t)curthread;
726 m = mtxlock2mtx(c);
727
728#ifdef KDTRACE_HOOKS
729 if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
730 while (v == MTX_UNOWNED) {
731 if (_mtx_obtain_lock_fetch(m, &v, tid))
732 goto out_lockstat;
733 }
734 doing_lockprof = 1;
735 spin_time -= lockstat_nsecs(&m->lock_object);
736 }
737#endif
738#ifdef LOCK_PROFILING
739 doing_lockprof = 1;
740#endif
741
742 if (__predict_false(v == MTX_UNOWNED))
743 v = MTX_READ_VALUE(m);
744
745 if (__predict_false(v == tid)) {
746 m->mtx_recurse++;
747 return;
748 }
749
750 if (SCHEDULER_STOPPED())
751 return;
752
753 if (LOCK_LOG_TEST(&m->lock_object, opts))
754 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
755 KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
756 "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
757
758 lock_delay_arg_init(&lda, &mtx_spin_delay);
759
760#ifdef HWPMC_HOOKS
761 PMC_SOFT_CALL( , , lock, failed);
762#endif
763 lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime);
764
765 for (;;) {
766 if (v == MTX_UNOWNED) {
767 if (_mtx_obtain_lock_fetch(m, &v, tid))
768 break;
769 continue;
770 }
771 /* Give interrupts a chance while we spin. */
772 spinlock_exit();
773 do {
774 if (__predict_true(lda.spin_cnt < 10000000)) {
775 lock_delay(&lda);
776 } else {
778 }
779 v = MTX_READ_VALUE(m);
780 } while (v != MTX_UNOWNED);
781 spinlock_enter();
782 }
783
784 if (LOCK_LOG_TEST(&m->lock_object, opts))
785 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
786 KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
787 "running");
788
789#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
790 if (__predict_true(!doing_lockprof))
791 return;
792#endif
793#ifdef KDTRACE_HOOKS
794 spin_time += lockstat_nsecs(&m->lock_object);
795 if (lda.spin_cnt != 0)
796 LOCKSTAT_RECORD1(spin__spin, m, spin_time);
797out_lockstat:
798#endif
799 LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m,
800 contested, waittime, file, line);
801}
802#endif /* SMP */
803
804#ifdef INVARIANTS
805static void
806thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
807{
808
809 KASSERT(m->mtx_lock != MTX_DESTROYED,
810 ("thread_lock() of destroyed mutex @ %s:%d", file, line));
811 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
812 ("thread_lock() of sleep mutex %s @ %s:%d",
813 m->lock_object.lo_name, file, line));
814 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0,
815 ("thread_lock: got a recursive mutex %s @ %s:%d\n",
816 m->lock_object.lo_name, file, line));
817 WITNESS_CHECKORDER(&m->lock_object,
818 opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
819}
820#else
821#define thread_lock_validate(m, opts, file, line) do { } while (0)
822#endif
823
824#ifndef LOCK_PROFILING
825#if LOCK_DEBUG > 0
826void
827_thread_lock(struct thread *td, int opts, const char *file, int line)
828#else
829void
830_thread_lock(struct thread *td)
831#endif
832{
833 struct mtx *m;
834 uintptr_t tid;
835
836 tid = (uintptr_t)curthread;
837
838 if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
839 goto slowpath_noirq;
840 spinlock_enter();
841 m = td->td_lock;
842 thread_lock_validate(m, 0, file, line);
843 if (__predict_false(m == &blocked_lock))
844 goto slowpath_unlocked;
845 if (__predict_false(!_mtx_obtain_lock(m, tid)))
846 goto slowpath_unlocked;
847 if (__predict_true(m == td->td_lock)) {
848 WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
849 return;
850 }
851 _mtx_release_lock_quick(m);
852slowpath_unlocked:
853 spinlock_exit();
854slowpath_noirq:
855#if LOCK_DEBUG > 0
856 thread_lock_flags_(td, opts, file, line);
857#else
858 thread_lock_flags_(td, 0, 0, 0);
859#endif
860}
861#endif
862
863void
864thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
865{
866 struct mtx *m;
867 uintptr_t tid, v;
868 struct lock_delay_arg lda;
869#ifdef LOCK_PROFILING
870 int contested = 0;
871 uint64_t waittime = 0;
872#endif
873#ifdef KDTRACE_HOOKS
874 int64_t spin_time = 0;
875#endif
876#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
877 int doing_lockprof = 1;
878#endif
879
880 tid = (uintptr_t)curthread;
881
882 if (SCHEDULER_STOPPED()) {
883 /*
884 * Ensure that spinlock sections are balanced even when the
885 * scheduler is stopped, since we may otherwise inadvertently
886 * re-enable interrupts while dumping core.
887 */
888 spinlock_enter();
889 return;
890 }
891
892 lock_delay_arg_init(&lda, &mtx_spin_delay);
893
894#ifdef HWPMC_HOOKS
895 PMC_SOFT_CALL( , , lock, failed);
896#endif
897
898#ifdef LOCK_PROFILING
899 doing_lockprof = 1;
900#elif defined(KDTRACE_HOOKS)
901 doing_lockprof = lockstat_enabled;
902#endif
903#ifdef KDTRACE_HOOKS
904 if (__predict_false(doing_lockprof))
905 spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
906#endif
907 spinlock_enter();
908
909 for (;;) {
910retry:
911 m = td->td_lock;
912 thread_lock_validate(m, opts, file, line);
913 v = MTX_READ_VALUE(m);
914 for (;;) {
915 if (v == MTX_UNOWNED) {
916 if (_mtx_obtain_lock_fetch(m, &v, tid))
917 break;
918 continue;
919 }
920 MPASS(v != tid);
921 lock_profile_obtain_lock_failed(&m->lock_object, true,
922 &contested, &waittime);
923 /* Give interrupts a chance while we spin. */
924 spinlock_exit();
925 do {
926 if (__predict_true(lda.spin_cnt < 10000000)) {
927 lock_delay(&lda);
928 } else {
930 }
931 if (m != td->td_lock) {
932 spinlock_enter();
933 goto retry;
934 }
935 v = MTX_READ_VALUE(m);
936 } while (v != MTX_UNOWNED);
937 spinlock_enter();
938 }
939 if (m == td->td_lock)
940 break;
941 _mtx_release_lock_quick(m);
942 }
943 LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
944 line);
945 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
946
947#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
948 if (__predict_true(!doing_lockprof))
949 return;
950#endif
951#ifdef KDTRACE_HOOKS
952 spin_time += lockstat_nsecs(&m->lock_object);
953#endif
954 LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested,
955 waittime, file, line);
956#ifdef KDTRACE_HOOKS
957 if (lda.spin_cnt != 0)
958 LOCKSTAT_RECORD1(thread__spin, m, spin_time);
959#endif
960}
961
962struct mtx *
963thread_lock_block(struct thread *td)
964{
965 struct mtx *lock;
966
967 lock = td->td_lock;
968 mtx_assert(lock, MA_OWNED);
969 td->td_lock = &blocked_lock;
970
971 return (lock);
972}
973
974void
975thread_lock_unblock(struct thread *td, struct mtx *new)
976{
977
978 mtx_assert(new, MA_OWNED);
979 KASSERT(td->td_lock == &blocked_lock,
980 ("thread %p lock %p not blocked_lock %p",
981 td, td->td_lock, &blocked_lock));
982 atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
983}
984
985void
986thread_lock_block_wait(struct thread *td)
987{
988
989 while (td->td_lock == &blocked_lock)
990 cpu_spinwait();
991
992 /* Acquire fence to be certain that all thread state is visible. */
993 atomic_thread_fence_acq();
994}
995
996void
997thread_lock_set(struct thread *td, struct mtx *new)
998{
999 struct mtx *lock;
1000
1001 mtx_assert(new, MA_OWNED);
1002 lock = td->td_lock;
1003 mtx_assert(lock, MA_OWNED);
1004 td->td_lock = new;
1005 mtx_unlock_spin(lock);
1006}
1007
1008/*
1009 * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
1010 *
1011 * We are only called here if the lock is recursed, contested (i.e. we
1012 * need to wake up a blocked thread) or lockstat probe is active.
1013 */
1014#if LOCK_DEBUG > 0
1015void
1016__mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
1017 const char *file, int line)
1018#else
1019void
1020__mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
1021#endif
1022{
1023 struct mtx *m;
1024 struct turnstile *ts;
1025 uintptr_t tid;
1026
1027 if (SCHEDULER_STOPPED())
1028 return;
1029
1030 tid = (uintptr_t)curthread;
1031 m = mtxlock2mtx(c);
1032
1033 if (__predict_false(v == tid))
1034 v = MTX_READ_VALUE(m);
1035
1036 if (__predict_false(v & MTX_RECURSED)) {
1037 if (--(m->mtx_recurse) == 0)
1038 atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
1039 if (LOCK_LOG_TEST(&m->lock_object, opts))
1040 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
1041 return;
1042 }
1043
1044 LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
1045 if (v == tid && _mtx_release_lock(m, tid))
1046 return;
1047
1048 /*
1049 * We have to lock the chain before the turnstile so this turnstile
1050 * can be removed from the hash list if it is empty.
1051 */
1052 turnstile_chain_lock(&m->lock_object);
1053 _mtx_release_lock_quick(m);
1054 ts = turnstile_lookup(&m->lock_object);
1055 MPASS(ts != NULL);
1056 if (LOCK_LOG_TEST(&m->lock_object, opts))
1057 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
1058 turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
1059
1060 /*
1061 * This turnstile is now no longer associated with the mutex. We can
1062 * unlock the chain lock so a new turnstile may take it's place.
1063 */
1065 turnstile_chain_unlock(&m->lock_object);
1066}
1067
1068/*
1069 * All the unlocking of MTX_SPIN locks is done inline.
1070 * See the __mtx_unlock_spin() macro for the details.
1071 */
1072
1073/*
1074 * The backing function for the INVARIANTS-enabled mtx_assert()
1075 */
1076#ifdef INVARIANT_SUPPORT
1077void
1078__mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
1079{
1080 const struct mtx *m;
1081
1082 if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED())
1083 return;
1084
1085 m = mtxlock2mtx(c);
1086
1087 switch (what) {
1088 case MA_OWNED:
1089 case MA_OWNED | MA_RECURSED:
1090 case MA_OWNED | MA_NOTRECURSED:
1091 if (!mtx_owned(m))
1092 panic("mutex %s not owned at %s:%d",
1093 m->lock_object.lo_name, file, line);
1094 if (mtx_recursed(m)) {
1095 if ((what & MA_NOTRECURSED) != 0)
1096 panic("mutex %s recursed at %s:%d",
1097 m->lock_object.lo_name, file, line);
1098 } else if ((what & MA_RECURSED) != 0) {
1099 panic("mutex %s unrecursed at %s:%d",
1100 m->lock_object.lo_name, file, line);
1101 }
1102 break;
1103 case MA_NOTOWNED:
1104 if (mtx_owned(m))
1105 panic("mutex %s owned at %s:%d",
1106 m->lock_object.lo_name, file, line);
1107 break;
1108 default:
1109 panic("unknown mtx_assert at %s:%d", file, line);
1110 }
1111}
1112#endif
1113
1114/*
1115 * General init routine used by the MTX_SYSINIT() macro.
1116 */
1117void
1118mtx_sysinit(void *arg)
1119{
1120 struct mtx_args *margs = arg;
1121
1122 mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
1123 margs->ma_opts);
1124}
1125
1126/*
1127 * Mutex initialization routine; initialize lock `m' of type contained in
1128 * `opts' with options contained in `opts' and name `name.' The optional
1129 * lock type `type' is used as a general lock category name for use with
1130 * witness.
1131 */
1132void
1133_mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
1134{
1135 struct mtx *m;
1136 struct lock_class *class;
1137 int flags;
1138
1139 m = mtxlock2mtx(c);
1140
1141 MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
1142 MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
1143 ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
1144 ("%s: mtx_lock not aligned for %s: %p", __func__, name,
1145 &m->mtx_lock));
1146
1147 /* Determine lock class and lock flags. */
1148 if (opts & MTX_SPIN)
1149 class = &lock_class_mtx_spin;
1150 else
1151 class = &lock_class_mtx_sleep;
1152 flags = 0;
1153 if (opts & MTX_QUIET)
1154 flags |= LO_QUIET;
1155 if (opts & MTX_RECURSE)
1156 flags |= LO_RECURSABLE;
1157 if ((opts & MTX_NOWITNESS) == 0)
1158 flags |= LO_WITNESS;
1159 if (opts & MTX_DUPOK)
1160 flags |= LO_DUPOK;
1161 if (opts & MTX_NOPROFILE)
1162 flags |= LO_NOPROFILE;
1163 if (opts & MTX_NEW)
1164 flags |= LO_NEW;
1165
1166 /* Initialize mutex. */
1167 lock_init(&m->lock_object, class, name, type, flags);
1168
1169 m->mtx_lock = MTX_UNOWNED;
1170 m->mtx_recurse = 0;
1171}
1172
1173/*
1174 * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be
1175 * passed in as a flag here because if the corresponding mtx_init() was
1176 * called with MTX_QUIET set, then it will already be set in the mutex's
1177 * flags.
1178 */
1179void
1180_mtx_destroy(volatile uintptr_t *c)
1181{
1182 struct mtx *m;
1183
1184 m = mtxlock2mtx(c);
1185
1186 if (!mtx_owned(m))
1187 MPASS(mtx_unowned(m));
1188 else {
1189 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
1190
1191 /* Perform the non-mtx related part of mtx_unlock_spin(). */
1192 if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) {
1193 lock_profile_release_lock(&m->lock_object, true);
1194 spinlock_exit();
1195 } else {
1196 TD_LOCKS_DEC(curthread);
1197 lock_profile_release_lock(&m->lock_object, false);
1198 }
1199
1200 /* Tell witness this isn't locked to make it happy. */
1201 WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
1202 __LINE__);
1203 }
1204
1205 m->mtx_lock = MTX_DESTROYED;
1206 lock_destroy(&m->lock_object);
1207}
1208
1209/*
1210 * Intialize the mutex code and system mutexes. This is called from the MD
1211 * startup code prior to mi_startup(). The per-CPU data space needs to be
1212 * setup before this is called.
1213 */
1214void
1216{
1217
1218 /* Setup turnstiles so that sleep mutexes work. */
1220
1221 /*
1222 * Initialize mutexes.
1223 */
1224 mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
1225 mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
1226 blocked_lock.mtx_lock = 0xdeadc0de; /* Always blocked. */
1227 mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
1228 mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
1229 mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
1230 mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
1231 mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
1232 mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
1233 mtx_lock(&Giant);
1234}
1235
1236static void __noinline
1237_mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
1238{
1239 struct thread *td;
1240
1241 ldap->spin_cnt++;
1242 if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED())
1243 cpu_lock_delay();
1244 else {
1245 td = mtx_owner(m);
1246
1247 /* If the mutex is unlocked, try again. */
1248 if (td == NULL)
1249 return;
1250
1251 printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
1252 m, m->lock_object.lo_name, td, td->td_tid);
1253#ifdef WITNESS
1254 witness_display_spinlock(&m->lock_object, td, printf);
1255#endif
1256 panic("spin lock held too long");
1257 }
1258 cpu_spinwait();
1259}
1260
1261void
1263{
1264 struct lock_delay_arg lda;
1265
1266 KASSERT(m->mtx_lock != MTX_DESTROYED,
1267 ("%s() of destroyed mutex %p", __func__, m));
1268 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
1269 ("%s() of sleep mutex %p (%s)", __func__, m,
1270 m->lock_object.lo_name));
1271 KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1272 m->lock_object.lo_name));
1273
1274 lda.spin_cnt = 0;
1275
1276 while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
1277 if (__predict_true(lda.spin_cnt < 10000000)) {
1278 cpu_spinwait();
1279 lda.spin_cnt++;
1280 } else {
1282 }
1283 }
1284}
1285
1286void
1288{
1289 struct thread *owner;
1290 uintptr_t v;
1291
1292 KASSERT(m->mtx_lock != MTX_DESTROYED,
1293 ("%s() of destroyed mutex %p", __func__, m));
1294 KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
1295 ("%s() not a sleep mutex %p (%s)", __func__, m,
1296 m->lock_object.lo_name));
1297 KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
1298 m->lock_object.lo_name));
1299
1300 for (;;) {
1301 v = atomic_load_acq_ptr(&m->mtx_lock);
1302 if (v == MTX_UNOWNED) {
1303 break;
1304 }
1305 owner = lv_mtx_owner(v);
1306 if (!TD_IS_RUNNING(owner)) {
1307 mtx_lock(m);
1308 mtx_unlock(m);
1309 break;
1310 }
1311 cpu_spinwait();
1312 }
1313}
1314
1315#ifdef DDB
1316void
1317db_show_mtx(const struct lock_object *lock)
1318{
1319 struct thread *td;
1320 const struct mtx *m;
1321
1322 m = (const struct mtx *)lock;
1323
1324 db_printf(" flags: {");
1325 if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
1326 db_printf("SPIN");
1327 else
1328 db_printf("DEF");
1329 if (m->lock_object.lo_flags & LO_RECURSABLE)
1330 db_printf(", RECURSE");
1331 if (m->lock_object.lo_flags & LO_DUPOK)
1332 db_printf(", DUPOK");
1333 db_printf("}\n");
1334 db_printf(" state: {");
1335 if (mtx_unowned(m))
1336 db_printf("UNOWNED");
1337 else if (mtx_destroyed(m))
1338 db_printf("DESTROYED");
1339 else {
1340 db_printf("OWNED");
1341 if (m->mtx_lock & MTX_CONTESTED)
1342 db_printf(", CONTESTED");
1343 if (m->mtx_lock & MTX_RECURSED)
1344 db_printf(", RECURSED");
1345 }
1346 db_printf("}\n");
1347 if (!mtx_unowned(m) && !mtx_destroyed(m)) {
1348 td = mtx_owner(m);
1349 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
1350 td->td_tid, td->td_proc->p_pid, td->td_name);
1351 if (mtx_recursed(m))
1352 db_printf(" recursed: %d\n", m->mtx_recurse);
1353 }
1354}
1355#endif
struct timespec * ts
Definition: clock_if.m:39
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
SYSCTL_NODE(_kern, OID_AUTO, binmisc, CTLFLAG_RW|CTLFLAG_MPSAFE, 0, "Image activator for miscellaneous binaries")
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, &__elfN(aslr_enabled), 0, ": enable address map randomization")
struct proc proc0
Definition: init_main.c:109
struct mtx devmtx
Definition: kern_conf.c:56
volatile bool __read_frequently lockstat_enabled
Definition: kern_lockstat.c:75
uint64_t lockstat_nsecs(struct lock_object *lo)
Definition: kern_lockstat.c:78
#define mtx_destroyed(m)
Definition: kern_mutex.c:97
void __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
Definition: kern_mutex.c:1020
struct lock_class lock_class_mtx_sleep
Definition: kern_mutex.c:115
#define mtx_unowned(m)
Definition: kern_mutex.c:95
void __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:296
int __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:362
#define thread_lock_validate(m, opts, file, line)
Definition: kern_mutex.c:821
void __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
Definition: kern_mutex.c:497
static void lock_spin(struct lock_object *lock, uintptr_t how)
Definition: kern_mutex.c:215
void mtx_spin_wait_unlocked(struct mtx *m)
Definition: kern_mutex.c:1262
void mutex_init(void)
Definition: kern_mutex.c:1215
#define mtx_spin_delay
Definition: kern_mutex.c:174
static void lock_mtx(struct lock_object *lock, uintptr_t how)
Definition: kern_mutex.c:208
static uintptr_t unlock_mtx(struct lock_object *lock)
Definition: kern_mutex.c:222
static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *)
Definition: kern_mutex.c:1237
__FBSDID("$FreeBSD$")
void thread_lock_unblock(struct thread *td, struct mtx *new)
Definition: kern_mutex.c:975
void thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
Definition: kern_mutex.c:864
void __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:390
void thread_lock_block_wait(struct thread *td)
Definition: kern_mutex.c:986
void thread_lock_set(struct thread *td, struct mtx *new)
Definition: kern_mutex.c:997
void _thread_lock(struct thread *td)
Definition: kern_mutex.c:830
void _mtx_destroy(volatile uintptr_t *c)
Definition: kern_mutex.c:1180
static void assert_mtx(const struct lock_object *lock, int what)
Definition: kern_mutex.c:186
void __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:321
#define mtxlock2mtx(c)
Definition: kern_mutex.c:90
int _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:477
struct mtx __exclusive_cache_line Giant
Definition: kern_mutex.c:181
void __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
Definition: kern_mutex.c:262
void mtx_wait_unlocked(struct mtx *m)
Definition: kern_mutex.c:1287
struct lock_class lock_class_mtx_spin
Definition: kern_mutex.c:128
int _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
Definition: kern_mutex.c:416
struct mtx * thread_lock_block(struct thread *td)
Definition: kern_mutex.c:963
static uintptr_t unlock_spin(struct lock_object *lock)
Definition: kern_mutex.c:233
void _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
Definition: kern_mutex.c:1133
void mtx_sysinit(void *arg)
Definition: kern_mutex.c:1118
struct mtx blocked_lock
Definition: kern_mutex.c:180
int __read_mostly dumping
void panic(const char *fmt,...)
char * sched_tdname(struct thread *td)
Definition: sched_4bsd.c:1735
u_char __read_frequently kdb_active
Definition: subr_kdb.c:56
SYSCTL_U16(_debug_lock, OID_AUTO, delay_base, CTLFLAG_RW, &locks_delay.base, 0, "")
void lock_destroy(struct lock_object *lock)
Definition: subr_lock.c:108
void lock_init(struct lock_object *lock, struct lock_class *class, const char *name, const char *type, int flags)
Definition: subr_lock.c:83
void lock_delay(struct lock_delay_arg *la)
Definition: subr_lock.c:132
int printf(const char *fmt,...)
Definition: subr_prf.c:397
uint16_t flags
Definition: subr_stats.c:2
void turnstile_chain_lock(struct lock_object *lock)
void turnstile_cancel(struct turnstile *ts)
void turnstile_unpend(struct turnstile *ts)
void init_turnstiles(void)
void turnstile_broadcast(struct turnstile *ts, int queue)
struct turnstile * turnstile_lookup(struct lock_object *lock)
void turnstile_chain_unlock(struct lock_object *lock)
void turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
struct turnstile * turnstile_trywait(struct lock_object *lock)
void witness_display_spinlock(struct lock_object *lock, struct thread *owner, int(*prnt)(const char *fmt,...))
struct mtx mtx
Definition: uipc_ktls.c:0