FreeBSD kernel ATH device code
if_ath.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35/*
36 * Driver for the Atheros Wireless LAN controller.
37 *
38 * This software is derived from work of Atsushi Onoe; his contribution
39 * is greatly appreciated.
40 */
41
42#include "opt_inet.h"
43#include "opt_ath.h"
44/*
45 * This is needed for register operations which are performed
46 * by the driver - eg, calls to ath_hal_gettsf32().
47 *
48 * It's also required for any AH_DEBUG checks in here, eg the
49 * module dependencies.
50 */
51#include "opt_ah.h"
52#include "opt_wlan.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysctl.h>
57#include <sys/mbuf.h>
58#include <sys/malloc.h>
59#include <sys/lock.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/socket.h>
63#include <sys/sockio.h>
64#include <sys/errno.h>
65#include <sys/callout.h>
66#include <sys/bus.h>
67#include <sys/endian.h>
68#include <sys/kthread.h>
69#include <sys/taskqueue.h>
70#include <sys/priv.h>
71#include <sys/module.h>
72#include <sys/ktr.h>
73#include <sys/smp.h> /* for mp_ncpus */
74
75#include <machine/bus.h>
76
77#include <net/if.h>
78#include <net/if_var.h>
79#include <net/if_dl.h>
80#include <net/if_media.h>
81#include <net/if_types.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_llc.h>
85
86#include <net80211/ieee80211_var.h>
87#include <net80211/ieee80211_regdomain.h>
88#ifdef IEEE80211_SUPPORT_SUPERG
89#include <net80211/ieee80211_superg.h>
90#endif
91#ifdef IEEE80211_SUPPORT_TDMA
92#include <net80211/ieee80211_tdma.h>
93#endif
94
95#include <net/bpf.h>
96
97#ifdef INET
98#include <netinet/in.h>
99#include <netinet/if_ether.h>
100#endif
101
102#include <dev/ath/if_athvar.h>
103#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
105
106#include <dev/ath/if_ath_debug.h>
107#include <dev/ath/if_ath_misc.h>
108#include <dev/ath/if_ath_tsf.h>
109#include <dev/ath/if_ath_tx.h>
111#include <dev/ath/if_ath_led.h>
113#include <dev/ath/if_ath_rx.h>
121#include <dev/ath/if_athdfs.h>
122#include <dev/ath/if_ath_ioctl.h>
124
125#ifdef ATH_TX99_DIAG
126#include <dev/ath/ath_tx99/ath_tx99.h>
127#endif
128
129#ifdef ATH_DEBUG_ALQ
130#include <dev/ath/if_ath_alq.h>
131#endif
132
133/*
134 * Only enable this if you're working on PS-POLL support.
135 */
136#define ATH_SW_PSQ
137
138/*
139 * ATH_BCBUF determines the number of vap's that can transmit
140 * beacons and also (currently) the number of vap's that can
141 * have unique mac addresses/bssid. When staggering beacons
142 * 4 is probably a good max as otherwise the beacons become
143 * very closely spaced and there is limited time for cab q traffic
144 * to go out. You can burst beacons instead but that is not good
145 * for stations in power save and at some point you really want
146 * another radio (and channel).
147 *
148 * The limit on the number of mac addresses is tied to our use of
149 * the U/L bit and tracking addresses in a byte; it would be
150 * worthwhile to allow more for applications like proxy sta.
151 */
153
154static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
155 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
156 const uint8_t [IEEE80211_ADDR_LEN],
157 const uint8_t [IEEE80211_ADDR_LEN]);
158static void ath_vap_delete(struct ieee80211vap *);
159static int ath_init(struct ath_softc *);
160static void ath_stop(struct ath_softc *);
161static int ath_reset_vap(struct ieee80211vap *, u_long);
162static int ath_transmit(struct ieee80211com *, struct mbuf *);
163static void ath_watchdog(void *);
164static void ath_parent(struct ieee80211com *);
165static void ath_fatal_proc(void *, int);
166static void ath_bmiss_vap(struct ieee80211vap *);
167static void ath_bmiss_proc(void *, int);
168static void ath_tsfoor_proc(void *, int);
169static void ath_key_update_begin(struct ieee80211vap *);
170static void ath_key_update_end(struct ieee80211vap *);
171static void ath_update_mcast_hw(struct ath_softc *);
172static void ath_update_mcast(struct ieee80211com *);
173static void ath_update_promisc(struct ieee80211com *);
174static void ath_updateslot(struct ieee80211com *);
175static void ath_bstuck_proc(void *, int);
176static void ath_reset_proc(void *, int);
177static int ath_desc_alloc(struct ath_softc *);
178static void ath_desc_free(struct ath_softc *);
179static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
180 const uint8_t [IEEE80211_ADDR_LEN]);
181static void ath_node_cleanup(struct ieee80211_node *);
182static void ath_node_free(struct ieee80211_node *);
183static void ath_node_getsignal(const struct ieee80211_node *,
184 int8_t *, int8_t *);
185static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
186static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
187static int ath_tx_setup(struct ath_softc *, int, int);
188static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
189static void ath_tx_cleanup(struct ath_softc *);
190static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
191 int dosched);
192static void ath_tx_proc_q0(void *, int);
193static void ath_tx_proc_q0123(void *, int);
194static void ath_tx_proc(void *, int);
195static void ath_txq_sched_tasklet(void *, int);
196static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
197static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
198static void ath_scan_start(struct ieee80211com *);
199static void ath_scan_end(struct ieee80211com *);
200static void ath_set_channel(struct ieee80211com *);
201#ifdef ATH_ENABLE_11N
202static void ath_update_chw(struct ieee80211com *);
203#endif /* ATH_ENABLE_11N */
204static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
205static void ath_calibrate(void *);
206static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
207static void ath_setup_stationkey(struct ieee80211_node *);
208static void ath_newassoc(struct ieee80211_node *, int);
209static int ath_setregdomain(struct ieee80211com *,
210 struct ieee80211_regdomain *, int,
211 struct ieee80211_channel []);
212static void ath_getradiocaps(struct ieee80211com *, int, int *,
213 struct ieee80211_channel []);
214static int ath_getchannels(struct ath_softc *);
215
216static int ath_rate_setup(struct ath_softc *, u_int mode);
217static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
218
219static void ath_announce(struct ath_softc *);
220
221static void ath_dfs_tasklet(void *, int);
222static void ath_node_powersave(struct ieee80211_node *, int);
223static int ath_node_set_tim(struct ieee80211_node *, int);
224static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
225
226#ifdef IEEE80211_SUPPORT_TDMA
227#include <dev/ath/if_ath_tdma.h>
228#endif
229
230SYSCTL_DECL(_hw_ath);
231
232/* XXX validate sysctl values */
233static int ath_longcalinterval = 30; /* long cals every 30 secs */
234SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
235 0, "long chip calibration interval (secs)");
236static int ath_shortcalinterval = 100; /* short cals every 100 ms */
237SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
238 0, "short chip calibration interval (msecs)");
239static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
240SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
241 0, "reset chip calibration results (secs)");
242static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
243SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
244 0, "ANI calibration (msecs)");
245
246int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
247SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
248 0, "rx buffers allocated");
249int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
250SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
251 0, "tx buffers allocated");
252int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
253SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
254 0, "tx (mgmt) buffers allocated");
255
256int ath_bstuck_threshold = 4; /* max missed beacons */
257SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
258 0, "max missed beacon xmits before chip reset");
259
260MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
261
262void
264{
265
266 /*
267 * Special case certain configurations. Note the
268 * CAB queue is handled by these specially so don't
269 * include them when checking the txq setup mask.
270 */
271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
272 case 0x01:
273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
274 break;
275 case 0x0f:
276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
277 break;
278 default:
279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
280 break;
281 }
282}
283
284/*
285 * Set the target power mode.
286 *
287 * If this is called during a point in time where
288 * the hardware is being programmed elsewhere, it will
289 * simply store it away and update it when all current
290 * uses of the hardware are completed.
291 *
292 * If the chip is going into network sleep or power off, then
293 * we will wait until all uses of the chip are done before
294 * going into network sleep or power off.
295 *
296 * If the chip is being programmed full-awake, then immediately
297 * program it full-awake so we can actually stay awake rather than
298 * the chip potentially going to sleep underneath us.
299 */
300void
301_ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
302 const char *file, int line)
303{
304 ATH_LOCK_ASSERT(sc);
305
306 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
307 __func__,
308 file,
309 line,
310 power_state,
314
315 sc->sc_target_powerstate = power_state;
316
317 /*
318 * Don't program the chip into network sleep if the chip
319 * is being programmed elsewhere.
320 *
321 * However, if the chip is being programmed /awake/, force
322 * the chip awake so we stay awake.
323 */
324 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
325 power_state != sc->sc_cur_powerstate) {
326 sc->sc_cur_powerstate = power_state;
327 ath_hal_setpower(sc->sc_ah, power_state);
328
329 /*
330 * If the NIC is force-awake, then set the
331 * self-gen frame state appropriately.
332 *
333 * If the nic is in network sleep or full-sleep,
334 * we let the above call leave the self-gen
335 * state as "sleep".
336 */
337 if (selfgen &&
342 }
343 }
344}
345
346/*
347 * Set the current self-generated frames state.
348 *
349 * This is separate from the target power mode. The chip may be
350 * awake but the desired state is "sleep", so frames sent to the
351 * destination has PWRMGT=1 in the 802.11 header. The NIC also
352 * needs to know to set PWRMGT=1 in self-generated frames.
353 */
354void
355_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
356{
357
358 ATH_LOCK_ASSERT(sc);
359
360 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
361 __func__,
362 file,
363 line,
364 power_state,
366
367 sc->sc_target_selfgen_state = power_state;
368
369 /*
370 * If the NIC is force-awake, then set the power state.
371 * Network-state and full-sleep will already transition it to
372 * mark self-gen frames as sleeping - and we can't
373 * guarantee the NIC is awake to program the self-gen frame
374 * setting anyway.
375 */
376 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
377 ath_hal_setselfgenpower(sc->sc_ah, power_state);
378 }
379}
380
381/*
382 * Set the hardware power mode and take a reference.
383 *
384 * This doesn't update the target power mode in the driver;
385 * it just updates the hardware power state.
386 *
387 * XXX it should only ever force the hardware awake; it should
388 * never be called to set it asleep.
389 */
390void
391_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
392{
393 ATH_LOCK_ASSERT(sc);
394
395 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
396 __func__,
397 file,
398 line,
399 power_state,
401
403
404 /*
405 * Only do the power state change if we're not programming
406 * it elsewhere.
407 */
408 if (power_state != sc->sc_cur_powerstate) {
409 ath_hal_setpower(sc->sc_ah, power_state);
410 sc->sc_cur_powerstate = power_state;
411 /*
412 * Adjust the self-gen powerstate if appropriate.
413 */
414 if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
418 }
419 }
420}
421
422/*
423 * Restore the power save mode to what it once was.
424 *
425 * This will decrement the reference counter and once it hits
426 * zero, it'll restore the powersave state.
427 */
428void
429_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
430{
431
432 ATH_LOCK_ASSERT(sc);
433
434 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
435 __func__,
436 file,
437 line,
440
441 if (sc->sc_powersave_refcnt == 0)
442 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
443 else
445
446 if (sc->sc_powersave_refcnt == 0 &&
450 }
451
452 /*
453 * Adjust the self-gen powerstate if appropriate.
454 */
455 if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
459 }
460
461}
462
463/*
464 * Configure the initial HAL configuration values based on bus
465 * specific parameters.
466 *
467 * Some PCI IDs and other information may need tweaking.
468 *
469 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
470 * if BT antenna diversity isn't enabled.
471 *
472 * So, let's also figure out how to enable BT diversity for AR9485.
473 */
474static void
476{
477 /* XXX TODO: only for PCI devices? */
478
480 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
482 ah_config->ath_hal_min_gainidx = AH_TRUE;
483 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
484 /* XXX low_rssi_thresh */
485 /* XXX fast_div_bias */
486 device_printf(sc->sc_dev, "configuring for %s\n",
488 "CUS198" : "CUS230");
489 }
490
492 device_printf(sc->sc_dev, "CUS217 card detected\n");
493
495 device_printf(sc->sc_dev, "CUS252 card detected\n");
496
498 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
499
501 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
502
504 device_printf(sc->sc_dev,
505 "Bluetooth Antenna Diversity card detected\n");
506
508 device_printf(sc->sc_dev, "Killer Wireless card detected\n");
509
510#if 0
511 /*
512 * Some WB335 cards do not support antenna diversity. Since
513 * we use a hardcoded value for AR9565 instead of using the
514 * EEPROM/OTP data, remove the combining feature from
515 * the HW capabilities bitmap.
516 */
517 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
518 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
519 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
520 }
521
522 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
523 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
524 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
525 }
526#endif
527
529 ah_config->ath_hal_pcie_waen = 0x0040473b;
530 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
531 }
532
533#if 0
534 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
535 ah->config.no_pll_pwrsave = true;
536 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
537 }
538#endif
539
540}
541
542/*
543 * Attempt to fetch the MAC address from the kernel environment.
544 *
545 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
546 */
547static int
548ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
549{
550 char devid_str[32];
551 int local_mac = 0;
552 char *local_macstr;
553
554 /*
555 * Fetch from the kenv rather than using hints.
556 *
557 * Hints would be nice but the transition to dynamic
558 * hints/kenv doesn't happen early enough for this
559 * to work reliably (eg on anything embedded.)
560 */
561 snprintf(devid_str, 32, "hint.%s.%d.macaddr",
562 device_get_name(sc->sc_dev),
563 device_get_unit(sc->sc_dev));
564
565 if ((local_macstr = kern_getenv(devid_str)) != NULL) {
566 uint32_t tmpmac[ETHER_ADDR_LEN];
567 int count;
568 int i;
569
570 /* Have a MAC address; should use it */
571 device_printf(sc->sc_dev,
572 "Overriding MAC address from environment: '%s'\n",
573 local_macstr);
574
575 /* Extract out the MAC address */
576 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
577 &tmpmac[0], &tmpmac[1],
578 &tmpmac[2], &tmpmac[3],
579 &tmpmac[4], &tmpmac[5]);
580 if (count == 6) {
581 /* Valid! */
582 local_mac = 1;
583 for (i = 0; i < ETHER_ADDR_LEN; i++)
584 macaddr[i] = tmpmac[i];
585 }
586 /* Done! */
587 freeenv(local_macstr);
588 local_macstr = NULL;
589 }
590
591 if (local_mac)
592 return (0);
593 return (-1);
594}
595
596#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
597#define HAL_MODE_HT40 \
598 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
599 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
600int
601ath_attach(u_int16_t devid, struct ath_softc *sc)
602{
603 struct ieee80211com *ic = &sc->sc_ic;
604 struct ath_hal *ah = NULL;
605 HAL_STATUS status;
606 int error = 0, i;
607 u_int wmodes;
608 int rx_chainmask, tx_chainmask;
610
611 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
612
613 ic->ic_softc = sc;
614 ic->ic_name = device_get_nameunit(sc->sc_dev);
615
616 /*
617 * Configure the initial configuration data.
618 *
619 * This is stuff that may be needed early during attach
620 * rather than done via configuration calls later.
621 */
622 bzero(&ah_config, sizeof(ah_config));
624
625 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
626 sc->sc_eepromdata, &ah_config, &status);
627 if (ah == NULL) {
628 device_printf(sc->sc_dev,
629 "unable to attach hardware; HAL status %u\n", status);
630 error = ENXIO;
631 goto bad;
632 }
633 sc->sc_ah = ah;
634 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
635#ifdef ATH_DEBUG
636 sc->sc_debug = ath_debug;
637#endif
638
639 /*
640 * Force the chip awake during setup, just to keep
641 * the HAL/driver power tracking happy.
642 *
643 * There are some methods (eg ath_hal_setmac())
644 * that poke the hardware.
645 */
646 ATH_LOCK(sc);
648 ATH_UNLOCK(sc);
649
650 /*
651 * Setup the DMA/EDMA functions based on the current
652 * hardware support.
653 *
654 * This is required before the descriptors are allocated.
655 */
656 if (ath_hal_hasedma(sc->sc_ah)) {
657 sc->sc_isedma = 1;
660 } else {
663 }
664
665 if (ath_hal_hasmybeacon(sc->sc_ah)) {
666 sc->sc_do_mybeacon = 1;
667 }
668
669 /*
670 * Check if the MAC has multi-rate retry support.
671 * We do this by trying to setup a fake extended
672 * descriptor. MAC's that don't have support will
673 * return false w/o doing anything. MAC's that do
674 * support it will return true w/o doing anything.
675 */
676 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
677
678 /*
679 * Check if the device has hardware counters for PHY
680 * errors. If so we need to enable the MIB interrupt
681 * so we can act on stat triggers.
682 */
683 if (ath_hal_hwphycounters(ah))
684 sc->sc_needmib = 1;
685
686 /*
687 * Get the hardware key cache size.
688 */
690 if (sc->sc_keymax > ATH_KEYMAX) {
691 device_printf(sc->sc_dev,
692 "Warning, using only %u of %u key cache slots\n",
693 ATH_KEYMAX, sc->sc_keymax);
694 sc->sc_keymax = ATH_KEYMAX;
695 }
696 /*
697 * Reset the key cache since some parts do not
698 * reset the contents on initial power up.
699 */
700 for (i = 0; i < sc->sc_keymax; i++)
701 ath_hal_keyreset(ah, i);
702
703 /*
704 * Collect the default channel list.
705 */
706 error = ath_getchannels(sc);
707 if (error != 0)
708 goto bad;
709
710 /*
711 * Setup rate tables for all potential media types.
712 */
713 ath_rate_setup(sc, IEEE80211_MODE_11A);
714 ath_rate_setup(sc, IEEE80211_MODE_11B);
715 ath_rate_setup(sc, IEEE80211_MODE_11G);
716 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
717 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
718 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
719 ath_rate_setup(sc, IEEE80211_MODE_11NA);
720 ath_rate_setup(sc, IEEE80211_MODE_11NG);
721 ath_rate_setup(sc, IEEE80211_MODE_HALF);
722 ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
723
724 /* NB: setup here so ath_rate_update is happy */
725 ath_setcurmode(sc, IEEE80211_MODE_11A);
726
727 /*
728 * Allocate TX descriptors and populate the lists.
729 */
730 error = ath_desc_alloc(sc);
731 if (error != 0) {
732 device_printf(sc->sc_dev,
733 "failed to allocate TX descriptors: %d\n", error);
734 goto bad;
735 }
736 error = ath_txdma_setup(sc);
737 if (error != 0) {
738 device_printf(sc->sc_dev,
739 "failed to allocate TX descriptors: %d\n", error);
740 goto bad;
741 }
742
743 /*
744 * Allocate RX descriptors and populate the lists.
745 */
746 error = ath_rxdma_setup(sc);
747 if (error != 0) {
748 device_printf(sc->sc_dev,
749 "failed to allocate RX descriptors: %d\n", error);
750 goto bad;
751 }
752
753 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
754 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
755
757
758 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
759 taskqueue_thread_enqueue, &sc->sc_tq);
760 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
761 device_get_nameunit(sc->sc_dev));
762
763 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
764 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
765 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc);
766 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
767 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
768 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
769 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
770
771 /*
772 * Allocate hardware transmit queues: one queue for
773 * beacon frames and one data queue for each QoS
774 * priority. Note that the hal handles resetting
775 * these queues at the needed time.
776 *
777 * XXX PS-Poll
778 */
779 sc->sc_bhalq = ath_beaconq_setup(sc);
780 if (sc->sc_bhalq == (u_int) -1) {
781 device_printf(sc->sc_dev,
782 "unable to setup a beacon xmit queue!\n");
783 error = EIO;
784 goto bad2;
785 }
787 if (sc->sc_cabq == NULL) {
788 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
789 error = EIO;
790 goto bad2;
791 }
792 /* NB: insure BK queue is the lowest priority h/w queue */
793 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
794 device_printf(sc->sc_dev,
795 "unable to setup xmit queue for %s traffic!\n",
796 ieee80211_wme_acnames[WME_AC_BK]);
797 error = EIO;
798 goto bad2;
799 }
800 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
801 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
802 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
803 /*
804 * Not enough hardware tx queues to properly do WME;
805 * just punt and assign them all to the same h/w queue.
806 * We could do a better job of this if, for example,
807 * we allocate queues when we switch from station to
808 * AP mode.
809 */
810 if (sc->sc_ac2q[WME_AC_VI] != NULL)
811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
812 if (sc->sc_ac2q[WME_AC_BE] != NULL)
813 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
814 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
815 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
816 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
817 }
818
819 /*
820 * Attach the TX completion function.
821 *
822 * The non-EDMA chips may have some special case optimisations;
823 * this method gives everyone a chance to attach cleanly.
824 */
826
827 /*
828 * Setup rate control. Some rate control modules
829 * call back to change the anntena state so expose
830 * the necessary entry points.
831 * XXX maybe belongs in struct ath_ratectrl?
832 */
834 sc->sc_rc = ath_rate_attach(sc);
835 if (sc->sc_rc == NULL) {
836 error = EIO;
837 goto bad2;
838 }
839
840 /* Attach DFS module */
841 if (! ath_dfs_attach(sc)) {
842 device_printf(sc->sc_dev,
843 "%s: unable to attach DFS\n", __func__);
844 error = EIO;
845 goto bad2;
846 }
847
848 /* Attach spectral module */
849 if (ath_spectral_attach(sc) < 0) {
850 device_printf(sc->sc_dev,
851 "%s: unable to attach spectral\n", __func__);
852 error = EIO;
853 goto bad2;
854 }
855
856 /* Attach bluetooth coexistence module */
857 if (ath_btcoex_attach(sc) < 0) {
858 device_printf(sc->sc_dev,
859 "%s: unable to attach bluetooth coexistence\n", __func__);
860 error = EIO;
861 goto bad2;
862 }
863
864 /* Attach LNA diversity module */
865 if (ath_lna_div_attach(sc) < 0) {
866 device_printf(sc->sc_dev,
867 "%s: unable to attach LNA diversity\n", __func__);
868 error = EIO;
869 goto bad2;
870 }
871
872 /* Start DFS processing tasklet */
873 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
874
875 /* Configure LED state */
876 sc->sc_blinking = 0;
877 sc->sc_ledstate = 1;
878 sc->sc_ledon = 0; /* low true */
879 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
880 callout_init(&sc->sc_ledtimer, 1);
881
882 /*
883 * Don't setup hardware-based blinking.
884 *
885 * Although some NICs may have this configured in the
886 * default reset register values, the user may wish
887 * to alter which pins have which function.
888 *
889 * The reference driver attaches the MAC network LED to GPIO1 and
890 * the MAC power LED to GPIO2. However, the DWA-552 cardbus
891 * NIC has these reversed.
892 */
893 sc->sc_hardled = (1 == 0);
894 sc->sc_led_net_pin = -1;
895 sc->sc_led_pwr_pin = -1;
896 /*
897 * Auto-enable soft led processing for IBM cards and for
898 * 5211 minipci cards. Users can also manually enable/disable
899 * support with a sysctl.
900 */
901 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
902 ath_led_config(sc);
904
905 /* XXX not right but it's not used anywhere important */
906 ic->ic_phytype = IEEE80211_T_OFDM;
907 ic->ic_opmode = IEEE80211_M_STA;
908 ic->ic_caps =
909 IEEE80211_C_STA /* station mode */
910 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
911 | IEEE80211_C_HOSTAP /* hostap mode */
912 | IEEE80211_C_MONITOR /* monitor mode */
913 | IEEE80211_C_AHDEMO /* adhoc demo mode */
914 | IEEE80211_C_WDS /* 4-address traffic works */
915 | IEEE80211_C_MBSS /* mesh point link mode */
916 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
917 | IEEE80211_C_SHSLOT /* short slot time supported */
918 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
919#ifndef ATH_ENABLE_11N
920 | IEEE80211_C_BGSCAN /* capable of bg scanning */
921#endif
922 | IEEE80211_C_TXFRAG /* handle tx frags */
923#ifdef ATH_ENABLE_DFS
924 | IEEE80211_C_DFS /* Enable radar detection */
925#endif
926 | IEEE80211_C_PMGT /* Station side power mgmt */
927 | IEEE80211_C_SWSLEEP
928 ;
929 /*
930 * Query the hal to figure out h/w crypto support.
931 */
933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
939 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
941 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
942 /*
943 * Check if h/w does the MIC and/or whether the
944 * separate key cache entries are required to
945 * handle both tx+rx MIC keys.
946 */
948 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
949 /*
950 * If the h/w supports storing tx+rx MIC keys
951 * in one cache slot automatically enable use.
952 */
953 if (ath_hal_hastkipsplit(ah) ||
955 sc->sc_splitmic = 1;
956 /*
957 * If the h/w can do TKIP MIC together with WME then
958 * we use it; otherwise we force the MIC to be done
959 * in software by the net80211 layer.
960 */
961 if (ath_hal_haswmetkipmic(ah))
962 sc->sc_wmetkipmic = 1;
963 }
965 /*
966 * Check for multicast key search support.
967 */
971 }
973 /*
974 * Mark key cache slots associated with global keys
975 * as in use. If we knew TKIP was not to be used we
976 * could leave the +32, +64, and +32+64 slots free.
977 */
978 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
979 setbit(sc->sc_keymap, i);
980 setbit(sc->sc_keymap, i+64);
981 if (sc->sc_splitmic) {
982 setbit(sc->sc_keymap, i+32);
983 setbit(sc->sc_keymap, i+32+64);
984 }
985 }
986 /*
987 * TPC support can be done either with a global cap or
988 * per-packet support. The latter is not available on
989 * all parts. We're a bit pedantic here as all parts
990 * support a global cap.
991 */
993 ic->ic_caps |= IEEE80211_C_TXPMGT;
994
995 /*
996 * Mark WME capability only if we have sufficient
997 * hardware queues to do proper priority scheduling.
998 */
999 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
1000 ic->ic_caps |= IEEE80211_C_WME;
1001 /*
1002 * Check for misc other capabilities.
1003 */
1004 if (ath_hal_hasbursting(ah))
1005 ic->ic_caps |= IEEE80211_C_BURST;
1010
1011 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */
1012 if (ath_hal_get_rx_tsf_prec(ah, &i)) {
1013 if (i == 32) {
1014 sc->sc_rxtsf32 = 1;
1015 }
1016 if (bootverbose)
1017 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
1018 }
1019 if (ath_hal_get_tx_tsf_prec(ah, &i)) {
1020 if (bootverbose)
1021 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
1022 }
1023
1027
1028 /*
1029 * Some WB335 cards do not support antenna diversity. Since
1030 * we use a hardcoded value for AR9565 instead of using the
1031 * EEPROM/OTP data, remove the combining feature from
1032 * the HW capabilities bitmap.
1033 */
1034 /*
1035 * XXX TODO: check reference driver and ath9k for what to do
1036 * here for WB335. I think we have to actually disable the
1037 * LNA div processing in the HAL and instead use the hard
1038 * coded values; and then use BT diversity.
1039 *
1040 * .. but also need to setup MCI too for WB335..
1041 */
1042#if 0
1043 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
1044 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
1045 __func__);
1046 sc->sc_dolnadiv = 0;
1047 }
1048#endif
1049
1050 if (ath_hal_hasfastframes(ah))
1051 ic->ic_caps |= IEEE80211_C_FF;
1052 wmodes = ath_hal_getwirelessmodes(ah);
1053 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1054 ic->ic_caps |= IEEE80211_C_TURBOP;
1055#ifdef IEEE80211_SUPPORT_TDMA
1056 if (ath_hal_macversion(ah) > 0x78) {
1057 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1058 ic->ic_tdma_update = ath_tdma_update;
1059 }
1060#endif
1061
1062 /*
1063 * TODO: enforce that at least this many frames are available
1064 * in the txbuf list before allowing data frames (raw or
1065 * otherwise) to be transmitted.
1066 */
1067 sc->sc_txq_data_minfree = 10;
1068
1069 /*
1070 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
1071 * is smaller.
1072 *
1073 * Anything bigger can potentially see the cabq consume
1074 * almost all buffers, starving everything else, only to
1075 * see most fail to transmit in the given beacon interval.
1076 */
1077 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
1078
1079 /*
1080 * How deep can the node software TX queue get whilst it's asleep.
1081 */
1082 sc->sc_txq_node_psq_maxdepth = 16;
1083
1084 /*
1085 * Default the maximum queue to 1/4'th the TX buffers, or
1086 * 128, whichever is smaller.
1087 *
1088 * Set it to 128 instead of the previous default (64) because
1089 * at 64, two full A-MPDU subframes of 32 frames each is
1090 * enough to treat this node queue as full and all subsequent
1091 * traffic is dropped. Setting it to 128 means there'll
1092 * hopefully be another 64 frames in the software queue
1093 * to begin making A-MPDU frames out of.
1094 */
1095 sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4);
1096
1097 /* Enable CABQ by default */
1098 sc->sc_cabq_enable = 1;
1099
1100 /*
1101 * Allow the TX and RX chainmasks to be overridden by
1102 * environment variables and/or device.hints.
1103 *
1104 * This must be done early - before the hardware is
1105 * calibrated or before the 802.11n stream calculation
1106 * is done.
1107 */
1108 if (resource_int_value(device_get_name(sc->sc_dev),
1109 device_get_unit(sc->sc_dev), "rx_chainmask",
1110 &rx_chainmask) == 0) {
1111 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1112 rx_chainmask);
1113 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1114 }
1115 if (resource_int_value(device_get_name(sc->sc_dev),
1116 device_get_unit(sc->sc_dev), "tx_chainmask",
1117 &tx_chainmask) == 0) {
1118 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1119 tx_chainmask);
1120 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1121 }
1122
1123 /*
1124 * Query the TX/RX chainmask configuration.
1125 *
1126 * This is only relevant for 11n devices.
1127 */
1130
1131 /*
1132 * Disable MRR with protected frames by default.
1133 * Only 802.11n series NICs can handle this.
1134 */
1135 sc->sc_mrrprot = 0; /* XXX should be a capability */
1136
1137 /*
1138 * Query the enterprise mode information the HAL.
1139 */
1141 &sc->sc_ent_cfg) == HAL_OK)
1142 sc->sc_use_ent = 1;
1143
1144#ifdef ATH_ENABLE_11N
1145 /*
1146 * Query HT capabilities
1147 */
1148 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1149 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1150 uint32_t rxs, txs;
1151 uint32_t ldpc;
1152
1153 device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1154
1155 sc->sc_mrrprot = 1; /* XXX should be a capability */
1156
1157 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
1158 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
1159 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
1160 | IEEE80211_HTCAP_MAXAMSDU_3839
1161 /* max A-MSDU length */
1162 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
1163
1164 /*
1165 * Enable short-GI for HT20 only if the hardware
1166 * advertises support.
1167 * Notably, anything earlier than the AR9287 doesn't.
1168 */
1169 if ((ath_hal_getcapability(ah,
1170 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1171 (wmodes & HAL_MODE_HT20)) {
1172 device_printf(sc->sc_dev,
1173 "[HT] enabling short-GI in 20MHz mode\n");
1174 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1175 }
1176
1177 if (wmodes & HAL_MODE_HT40)
1178 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1179 | IEEE80211_HTCAP_SHORTGI40;
1180
1181 /*
1182 * TX/RX streams need to be taken into account when
1183 * negotiating which MCS rates it'll receive and
1184 * what MCS rates are available for TX.
1185 */
1186 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1187 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1188 ic->ic_txstream = txs;
1189 ic->ic_rxstream = rxs;
1190
1191 /*
1192 * Setup TX and RX STBC based on what the HAL allows and
1193 * the currently configured chainmask set.
1194 * Ie - don't enable STBC TX if only one chain is enabled.
1195 * STBC RX is fine on a single RX chain; it just won't
1196 * provide any real benefit.
1197 */
1199 NULL) == HAL_OK) {
1200 sc->sc_rx_stbc = 1;
1201 device_printf(sc->sc_dev,
1202 "[HT] 1 stream STBC receive enabled\n");
1203 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1204 }
1205 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1206 NULL) == HAL_OK) {
1207 sc->sc_tx_stbc = 1;
1208 device_printf(sc->sc_dev,
1209 "[HT] 1 stream STBC transmit enabled\n");
1210 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1211 }
1212
1214 &sc->sc_rts_aggr_limit);
1215 if (sc->sc_rts_aggr_limit != (64 * 1024))
1216 device_printf(sc->sc_dev,
1217 "[HT] RTS aggregates limited to %d KiB\n",
1218 sc->sc_rts_aggr_limit / 1024);
1219
1220 /*
1221 * LDPC
1222 */
1223 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1224 == HAL_OK && (ldpc == 1)) {
1225 sc->sc_has_ldpc = 1;
1226 device_printf(sc->sc_dev,
1227 "[HT] LDPC transmit/receive enabled\n");
1228 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
1229 IEEE80211_HTC_TXLDPC;
1230 }
1231
1232 device_printf(sc->sc_dev,
1233 "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1234 }
1235#endif
1236
1237 /*
1238 * Initial aggregation settings.
1239 */
1245 sc->sc_delim_min_pad = 0;
1246
1247 /*
1248 * Check if the hardware requires PCI register serialisation.
1249 * Some of the Owl based MACs require this.
1250 */
1251 if (mp_ncpus > 1 &&
1253 0, NULL) == HAL_OK) {
1255 device_printf(sc->sc_dev,
1256 "Enabling register serialisation\n");
1257 }
1258
1259 /*
1260 * Initialise the deferred completed RX buffer list.
1261 */
1262 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1263 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1264
1265 /*
1266 * Indicate we need the 802.11 header padded to a
1267 * 32-bit boundary for 4-address and QoS frames.
1268 */
1269 ic->ic_flags |= IEEE80211_F_DATAPAD;
1270
1271 /*
1272 * Query the hal about antenna support.
1273 */
1275
1276 /*
1277 * Not all chips have the VEOL support we want to
1278 * use with IBSS beacons; check here for it.
1279 */
1280 sc->sc_hasveol = ath_hal_hasveol(ah);
1281
1282 /* get mac address from kenv first, then hardware */
1283 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1284 /* Tell the HAL now about the new MAC */
1285 ath_hal_setmac(ah, ic->ic_macaddr);
1286 } else {
1287 ath_hal_getmac(ah, ic->ic_macaddr);
1288 }
1289
1290 if (sc->sc_hasbmask)
1292
1293 /* NB: used to size node table key mapping array */
1294 ic->ic_max_keyix = sc->sc_keymax;
1295 /* call MI attach routine. */
1296 ieee80211_ifattach(ic);
1297 ic->ic_setregdomain = ath_setregdomain;
1298 ic->ic_getradiocaps = ath_getradiocaps;
1299 sc->sc_opmode = HAL_M_STA;
1300
1301 /* override default methods */
1302 ic->ic_ioctl = ath_ioctl;
1303 ic->ic_parent = ath_parent;
1304 ic->ic_transmit = ath_transmit;
1305 ic->ic_newassoc = ath_newassoc;
1306 ic->ic_updateslot = ath_updateslot;
1307 ic->ic_wme.wme_update = ath_wme_update;
1308 ic->ic_vap_create = ath_vap_create;
1309 ic->ic_vap_delete = ath_vap_delete;
1310 ic->ic_raw_xmit = ath_raw_xmit;
1311 ic->ic_update_mcast = ath_update_mcast;
1312 ic->ic_update_promisc = ath_update_promisc;
1313 ic->ic_node_alloc = ath_node_alloc;
1314 sc->sc_node_free = ic->ic_node_free;
1315 ic->ic_node_free = ath_node_free;
1316 sc->sc_node_cleanup = ic->ic_node_cleanup;
1317 ic->ic_node_cleanup = ath_node_cleanup;
1318 ic->ic_node_getsignal = ath_node_getsignal;
1319 ic->ic_scan_start = ath_scan_start;
1320 ic->ic_scan_end = ath_scan_end;
1321 ic->ic_set_channel = ath_set_channel;
1322#ifdef ATH_ENABLE_11N
1323 /* 802.11n specific - but just override anyway */
1324 sc->sc_addba_request = ic->ic_addba_request;
1325 sc->sc_addba_response = ic->ic_addba_response;
1326 sc->sc_addba_stop = ic->ic_addba_stop;
1327 sc->sc_bar_response = ic->ic_bar_response;
1328 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1329
1330 ic->ic_addba_request = ath_addba_request;
1331 ic->ic_addba_response = ath_addba_response;
1332 ic->ic_addba_response_timeout = ath_addba_response_timeout;
1333 ic->ic_addba_stop = ath_addba_stop;
1334 ic->ic_bar_response = ath_bar_response;
1335
1336 ic->ic_update_chw = ath_update_chw;
1337#endif /* ATH_ENABLE_11N */
1338 ic->ic_set_quiet = ath_set_quiet_ie;
1339
1340#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
1341 /*
1342 * There's one vendor bitmap entry in the RX radiotap
1343 * header; make sure that's taken into account.
1344 */
1345 ieee80211_radiotap_attachv(ic,
1346 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1348 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1350#else
1351 /*
1352 * No vendor bitmap/extensions are present.
1353 */
1354 ieee80211_radiotap_attach(ic,
1355 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1357 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1359#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1360
1361 /*
1362 * Setup the ALQ logging if required
1363 */
1364#ifdef ATH_DEBUG_ALQ
1365 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1366 if_ath_alq_setcfg(&sc->sc_alq,
1367 sc->sc_ah->ah_macVersion,
1368 sc->sc_ah->ah_macRev,
1369 sc->sc_ah->ah_phyRev,
1370 sc->sc_ah->ah_magic);
1371#endif
1372
1373 /*
1374 * Setup dynamic sysctl's now that country code and
1375 * regdomain are available from the hal.
1376 */
1377 ath_sysctlattach(sc);
1380
1381 if (bootverbose)
1382 ieee80211_announce(ic);
1383 ath_announce(sc);
1384
1385 /*
1386 * Put it to sleep for now.
1387 */
1388 ATH_LOCK(sc);
1390 ATH_UNLOCK(sc);
1391
1392 return 0;
1393bad2:
1394 ath_tx_cleanup(sc);
1395 ath_desc_free(sc);
1398
1399bad:
1400 if (ah)
1401 ath_hal_detach(ah);
1402 sc->sc_invalid = 1;
1403 return error;
1404}
1405
1406int
1408{
1409
1410 /*
1411 * NB: the order of these is important:
1412 * o stop the chip so no more interrupts will fire
1413 * o call the 802.11 layer before detaching the hal to
1414 * insure callbacks into the driver to delete global
1415 * key cache entries can be handled
1416 * o free the taskqueue which drains any pending tasks
1417 * o reclaim the tx queue data structures after calling
1418 * the 802.11 layer as we'll get called back to reclaim
1419 * node state and potentially want to use them
1420 * o to cleanup the tx queues the hal is called, so detach
1421 * it last
1422 * Other than that, it's straightforward...
1423 */
1424
1425 /*
1426 * XXX Wake the hardware up first. ath_stop() will still
1427 * wake it up first, but I'd rather do it here just to
1428 * ensure it's awake.
1429 */
1430 ATH_LOCK(sc);
1433
1434 /*
1435 * Stop things cleanly.
1436 */
1437 ath_stop(sc);
1438 ATH_UNLOCK(sc);
1439
1440 ieee80211_ifdetach(&sc->sc_ic);
1441 taskqueue_free(sc->sc_tq);
1442#ifdef ATH_TX99_DIAG
1443 if (sc->sc_tx99 != NULL)
1444 sc->sc_tx99->detach(sc->sc_tx99);
1445#endif
1447#ifdef ATH_DEBUG_ALQ
1448 if_ath_alq_tidyup(&sc->sc_alq);
1449#endif
1453 ath_dfs_detach(sc);
1454 ath_desc_free(sc);
1457 ath_tx_cleanup(sc);
1458 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
1459
1460 return 0;
1461}
1462
1463/*
1464 * MAC address handling for multiple BSS on the same radio.
1465 * The first vap uses the MAC address from the EEPROM. For
1466 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1467 * address and use the next six bits as an index.
1468 */
1469static void
1470assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1471{
1472 int i;
1473
1474 if (clone && sc->sc_hasbmask) {
1475 /* NB: we only do this if h/w supports multiple bssid */
1476 for (i = 0; i < 8; i++)
1477 if ((sc->sc_bssidmask & (1<<i)) == 0)
1478 break;
1479 if (i != 0)
1480 mac[0] |= (i << 2)|0x2;
1481 } else
1482 i = 0;
1483 sc->sc_bssidmask |= 1<<i;
1484 sc->sc_hwbssidmask[0] &= ~mac[0];
1485 if (i == 0)
1486 sc->sc_nbssid0++;
1487}
1488
1489static void
1490reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1491{
1492 int i = mac[0] >> 2;
1493 uint8_t mask;
1494
1495 if (i != 0 || --sc->sc_nbssid0 == 0) {
1496 sc->sc_bssidmask &= ~(1<<i);
1497 /* recalculate bssid mask from remaining addresses */
1498 mask = 0xff;
1499 for (i = 1; i < 8; i++)
1500 if (sc->sc_bssidmask & (1<<i))
1501 mask &= ~((i<<2)|0x2);
1502 sc->sc_hwbssidmask[0] |= mask;
1503 }
1504}
1505
1506/*
1507 * Assign a beacon xmit slot. We try to space out
1508 * assignments so when beacons are staggered the
1509 * traffic coming out of the cab q has maximal time
1510 * to go out before the next beacon is scheduled.
1511 */
1512static int
1514{
1515 u_int slot, free;
1516
1517 free = 0;
1518 for (slot = 0; slot < ATH_BCBUF; slot++)
1519 if (sc->sc_bslot[slot] == NULL) {
1520 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1521 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1522 return slot;
1523 free = slot;
1524 /* NB: keep looking for a double slot */
1525 }
1526 return free;
1527}
1528
1529static struct ieee80211vap *
1530ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1531 enum ieee80211_opmode opmode, int flags,
1532 const uint8_t bssid[IEEE80211_ADDR_LEN],
1533 const uint8_t mac0[IEEE80211_ADDR_LEN])
1534{
1535 struct ath_softc *sc = ic->ic_softc;
1536 struct ath_vap *avp;
1537 struct ieee80211vap *vap;
1538 uint8_t mac[IEEE80211_ADDR_LEN];
1539 int needbeacon, error;
1540 enum ieee80211_opmode ic_opmode;
1541
1542 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1543 needbeacon = 0;
1544 IEEE80211_ADDR_COPY(mac, mac0);
1545
1546 ATH_LOCK(sc);
1547 ic_opmode = opmode; /* default to opmode of new vap */
1548 switch (opmode) {
1549 case IEEE80211_M_STA:
1550 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
1551 device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1552 goto bad;
1553 }
1554 if (sc->sc_nvaps) {
1555 /*
1556 * With multiple vaps we must fall back
1557 * to s/w beacon miss handling.
1558 */
1559 flags |= IEEE80211_CLONE_NOBEACONS;
1560 }
1561 if (flags & IEEE80211_CLONE_NOBEACONS) {
1562 /*
1563 * Station mode w/o beacons are implemented w/ AP mode.
1564 */
1565 ic_opmode = IEEE80211_M_HOSTAP;
1566 }
1567 break;
1568 case IEEE80211_M_IBSS:
1569 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
1570 device_printf(sc->sc_dev,
1571 "only 1 ibss vap supported\n");
1572 goto bad;
1573 }
1574 needbeacon = 1;
1575 break;
1576 case IEEE80211_M_AHDEMO:
1577#ifdef IEEE80211_SUPPORT_TDMA
1578 if (flags & IEEE80211_CLONE_TDMA) {
1579 if (sc->sc_nvaps != 0) {
1580 device_printf(sc->sc_dev,
1581 "only 1 tdma vap supported\n");
1582 goto bad;
1583 }
1584 needbeacon = 1;
1585 flags |= IEEE80211_CLONE_NOBEACONS;
1586 }
1587 /* fall thru... */
1588#endif
1589 case IEEE80211_M_MONITOR:
1590 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1591 /*
1592 * Adopt existing mode. Adding a monitor or ahdemo
1593 * vap to an existing configuration is of dubious
1594 * value but should be ok.
1595 */
1596 /* XXX not right for monitor mode */
1597 ic_opmode = ic->ic_opmode;
1598 }
1599 break;
1600 case IEEE80211_M_HOSTAP:
1601 case IEEE80211_M_MBSS:
1602 needbeacon = 1;
1603 break;
1604 case IEEE80211_M_WDS:
1605 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1606 device_printf(sc->sc_dev,
1607 "wds not supported in sta mode\n");
1608 goto bad;
1609 }
1610 /*
1611 * Silently remove any request for a unique
1612 * bssid; WDS vap's always share the local
1613 * mac address.
1614 */
1615 flags &= ~IEEE80211_CLONE_BSSID;
1616 if (sc->sc_nvaps == 0)
1617 ic_opmode = IEEE80211_M_HOSTAP;
1618 else
1619 ic_opmode = ic->ic_opmode;
1620 break;
1621 default:
1622 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1623 goto bad;
1624 }
1625 /*
1626 * Check that a beacon buffer is available; the code below assumes it.
1627 */
1628 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1629 device_printf(sc->sc_dev, "no beacon buffer available\n");
1630 goto bad;
1631 }
1632
1633 /* STA, AHDEMO? */
1634 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
1635 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1637 }
1638
1639 vap = &avp->av_vap;
1640 /* XXX can't hold mutex across if_alloc */
1641 ATH_UNLOCK(sc);
1642 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1643 ATH_LOCK(sc);
1644 if (error != 0) {
1645 device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1646 __func__, error);
1647 goto bad2;
1648 }
1649
1650 /* h/w crypto support */
1651 vap->iv_key_alloc = ath_key_alloc;
1652 vap->iv_key_delete = ath_key_delete;
1653 vap->iv_key_set = ath_key_set;
1654 vap->iv_key_update_begin = ath_key_update_begin;
1655 vap->iv_key_update_end = ath_key_update_end;
1656
1657 /* override various methods */
1658 avp->av_recv_mgmt = vap->iv_recv_mgmt;
1659 vap->iv_recv_mgmt = ath_recv_mgmt;
1660 vap->iv_reset = ath_reset_vap;
1661 vap->iv_update_beacon = ath_beacon_update;
1662 avp->av_newstate = vap->iv_newstate;
1663 vap->iv_newstate = ath_newstate;
1664 avp->av_bmiss = vap->iv_bmiss;
1665 vap->iv_bmiss = ath_bmiss_vap;
1666
1667 avp->av_node_ps = vap->iv_node_ps;
1668 vap->iv_node_ps = ath_node_powersave;
1669
1670 avp->av_set_tim = vap->iv_set_tim;
1671 vap->iv_set_tim = ath_node_set_tim;
1672
1673 avp->av_recv_pspoll = vap->iv_recv_pspoll;
1674 vap->iv_recv_pspoll = ath_node_recv_pspoll;
1675
1676 /* Set default parameters */
1677
1678 /*
1679 * Anything earlier than some AR9300 series MACs don't
1680 * support a smaller MPDU density.
1681 */
1682 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1683 /*
1684 * All NICs can handle the maximum size, however
1685 * AR5416 based MACs can only TX aggregates w/ RTS
1686 * protection when the total aggregate size is <= 8k.
1687 * However, for now that's enforced by the TX path.
1688 */
1689 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1690 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1691
1692 avp->av_bslot = -1;
1693 if (needbeacon) {
1694 /*
1695 * Allocate beacon state and setup the q for buffered
1696 * multicast frames. We know a beacon buffer is
1697 * available because we checked above.
1698 */
1699 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1700 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1701 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1702 /*
1703 * Assign the vap to a beacon xmit slot. As above
1704 * this cannot fail to find a free one.
1705 */
1706 avp->av_bslot = assign_bslot(sc);
1707 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1708 ("beacon slot %u not empty", avp->av_bslot));
1709 sc->sc_bslot[avp->av_bslot] = vap;
1710 sc->sc_nbcnvaps++;
1711 }
1712 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1713 /*
1714 * Multple vaps are to transmit beacons and we
1715 * have h/w support for TSF adjusting; enable
1716 * use of staggered beacons.
1717 */
1718 sc->sc_stagbeacons = 1;
1719 }
1721 }
1722
1723 ic->ic_opmode = ic_opmode;
1724 if (opmode != IEEE80211_M_WDS) {
1725 sc->sc_nvaps++;
1726 if (opmode == IEEE80211_M_STA)
1727 sc->sc_nstavaps++;
1728 if (opmode == IEEE80211_M_MBSS)
1729 sc->sc_nmeshvaps++;
1730 }
1731 switch (ic_opmode) {
1732 case IEEE80211_M_IBSS:
1733 sc->sc_opmode = HAL_M_IBSS;
1734 break;
1735 case IEEE80211_M_STA:
1736 sc->sc_opmode = HAL_M_STA;
1737 break;
1738 case IEEE80211_M_AHDEMO:
1739#ifdef IEEE80211_SUPPORT_TDMA
1740 if (vap->iv_caps & IEEE80211_C_TDMA) {
1741 sc->sc_tdma = 1;
1742 /* NB: disable tsf adjust */
1743 sc->sc_stagbeacons = 0;
1744 }
1745 /*
1746 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1747 * just ap mode.
1748 */
1749 /* fall thru... */
1750#endif
1751 case IEEE80211_M_HOSTAP:
1752 case IEEE80211_M_MBSS:
1753 sc->sc_opmode = HAL_M_HOSTAP;
1754 break;
1755 case IEEE80211_M_MONITOR:
1757 break;
1758 default:
1759 /* XXX should not happen */
1760 break;
1761 }
1762 if (sc->sc_hastsfadd) {
1763 /*
1764 * Configure whether or not TSF adjust should be done.
1765 */
1767 }
1768 if (flags & IEEE80211_CLONE_NOBEACONS) {
1769 /*
1770 * Enable s/w beacon miss handling.
1771 */
1772 sc->sc_swbmiss = 1;
1773 }
1774 ATH_UNLOCK(sc);
1775
1776 /* complete setup */
1777 ieee80211_vap_attach(vap, ieee80211_media_change,
1778 ieee80211_media_status, mac);
1779 return vap;
1780bad2:
1781 reclaim_address(sc, mac);
1783bad:
1784 free(avp, M_80211_VAP);
1785 ATH_UNLOCK(sc);
1786 return NULL;
1787}
1788
1789static void
1790ath_vap_delete(struct ieee80211vap *vap)
1791{
1792 struct ieee80211com *ic = vap->iv_ic;
1793 struct ath_softc *sc = ic->ic_softc;
1794 struct ath_hal *ah = sc->sc_ah;
1795 struct ath_vap *avp = ATH_VAP(vap);
1796
1797 ATH_LOCK(sc);
1799 ATH_UNLOCK(sc);
1800
1801 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1802 if (sc->sc_running) {
1803 /*
1804 * Quiesce the hardware while we remove the vap. In
1805 * particular we need to reclaim all references to
1806 * the vap state by any frames pending on the tx queues.
1807 */
1808 ath_hal_intrset(ah, 0); /* disable interrupts */
1809 /* XXX Do all frames from all vaps/nodes need draining here? */
1810 ath_stoprecv(sc, 1); /* stop recv side */
1811 ath_rx_flush(sc);
1812 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
1813 }
1814
1815 /* .. leave the hardware awake for now. */
1816
1817 ieee80211_vap_detach(vap);
1818
1819 /*
1820 * XXX Danger Will Robinson! Danger!
1821 *
1822 * Because ieee80211_vap_detach() can queue a frame (the station
1823 * diassociate message?) after we've drained the TXQ and
1824 * flushed the software TXQ, we will end up with a frame queued
1825 * to a node whose vap is about to be freed.
1826 *
1827 * To work around this, flush the hardware/software again.
1828 * This may be racy - the ath task may be running and the packet
1829 * may be being scheduled between sw->hw txq. Tsk.
1830 *
1831 * TODO: figure out why a new node gets allocated somewhere around
1832 * here (after the ath_tx_swq() call; and after an ath_stop()
1833 * call!)
1834 */
1835
1837
1838 ATH_LOCK(sc);
1839 /*
1840 * Reclaim beacon state. Note this must be done before
1841 * the vap instance is reclaimed as we may have a reference
1842 * to it in the buffer for the beacon frame.
1843 */
1844 if (avp->av_bcbuf != NULL) {
1845 if (avp->av_bslot != -1) {
1846 sc->sc_bslot[avp->av_bslot] = NULL;
1847 sc->sc_nbcnvaps--;
1848 }
1849 ath_beacon_return(sc, avp->av_bcbuf);
1850 avp->av_bcbuf = NULL;
1851 if (sc->sc_nbcnvaps == 0) {
1852 sc->sc_stagbeacons = 0;
1853 if (sc->sc_hastsfadd)
1855 }
1856 /*
1857 * Reclaim any pending mcast frames for the vap.
1858 */
1859 ath_tx_draintxq(sc, &avp->av_mcastq);
1860 }
1861 /*
1862 * Update bookkeeping.
1863 */
1864 if (vap->iv_opmode == IEEE80211_M_STA) {
1865 sc->sc_nstavaps--;
1866 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1867 sc->sc_swbmiss = 0;
1868 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1869 vap->iv_opmode == IEEE80211_M_STA ||
1870 vap->iv_opmode == IEEE80211_M_MBSS) {
1871 reclaim_address(sc, vap->iv_myaddr);
1873 if (vap->iv_opmode == IEEE80211_M_MBSS)
1874 sc->sc_nmeshvaps--;
1875 }
1876 if (vap->iv_opmode != IEEE80211_M_WDS)
1877 sc->sc_nvaps--;
1878#ifdef IEEE80211_SUPPORT_TDMA
1879 /* TDMA operation ceases when the last vap is destroyed */
1880 if (sc->sc_tdma && sc->sc_nvaps == 0) {
1881 sc->sc_tdma = 0;
1882 sc->sc_swbmiss = 0;
1883 }
1884#endif
1885 free(avp, M_80211_VAP);
1886
1887 if (sc->sc_running) {
1888 /*
1889 * Restart rx+tx machines if still running (RUNNING will
1890 * be reset if we just destroyed the last vap).
1891 */
1892 if (ath_startrecv(sc) != 0)
1893 device_printf(sc->sc_dev,
1894 "%s: unable to restart recv logic\n", __func__);
1895 if (sc->sc_beacons) { /* restart beacons */
1896#ifdef IEEE80211_SUPPORT_TDMA
1897 if (sc->sc_tdma)
1898 ath_tdma_config(sc, NULL);
1899 else
1900#endif
1901 ath_beacon_config(sc, NULL);
1902 }
1903 ath_hal_intrset(ah, sc->sc_imask);
1904 }
1905
1906 /* Ok, let the hardware asleep. */
1908 ATH_UNLOCK(sc);
1909}
1910
1911void
1913{
1914 struct ieee80211com *ic = &sc->sc_ic;
1915
1916 sc->sc_resume_up = ic->ic_nrunning != 0;
1917
1918 ieee80211_suspend_all(ic);
1919 /*
1920 * NB: don't worry about putting the chip in low power
1921 * mode; pci will power off our socket on suspend and
1922 * CardBus detaches the device.
1923 *
1924 * XXX TODO: well, that's great, except for non-cardbus
1925 * devices!
1926 */
1927
1928 /*
1929 * XXX This doesn't wait until all pending taskqueue
1930 * items and parallel transmit/receive/other threads
1931 * are running!
1932 */
1933 ath_hal_intrset(sc->sc_ah, 0);
1934 taskqueue_block(sc->sc_tq);
1935
1936 ATH_LOCK(sc);
1937 callout_stop(&sc->sc_cal_ch);
1938 ATH_UNLOCK(sc);
1939
1940 /*
1941 * XXX ensure sc_invalid is 1
1942 */
1943
1944 /* Disable the PCIe PHY, complete with workarounds */
1945 ath_hal_enablepcie(sc->sc_ah, 1, 1);
1946}
1947
1948/*
1949 * Reset the key cache since some parts do not reset the
1950 * contents on resume. First we clear all entries, then
1951 * re-load keys that the 802.11 layer assumes are setup
1952 * in h/w.
1953 */
1954static void
1956{
1957 struct ieee80211com *ic = &sc->sc_ic;
1958 struct ath_hal *ah = sc->sc_ah;
1959 int i;
1960
1961 ATH_LOCK(sc);
1963 for (i = 0; i < sc->sc_keymax; i++)
1964 ath_hal_keyreset(ah, i);
1966 ATH_UNLOCK(sc);
1967 ieee80211_crypto_reload_keys(ic);
1968}
1969
1970/*
1971 * Fetch the current chainmask configuration based on the current
1972 * operating channel and options.
1973 */
1974static void
1975ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1976{
1977
1978 /*
1979 * Set TX chainmask to the currently configured chainmask;
1980 * the TX chainmask depends upon the current operating mode.
1981 */
1983 if (IEEE80211_IS_CHAN_HT(chan)) {
1985 } else {
1986 sc->sc_cur_txchainmask = 1;
1987 }
1988
1989 DPRINTF(sc, ATH_DEBUG_RESET,
1990 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1991 __func__,
1993 sc->sc_cur_rxchainmask);
1994}
1995
1996void
1998{
1999 struct ieee80211com *ic = &sc->sc_ic;
2000 struct ath_hal *ah = sc->sc_ah;
2001 HAL_STATUS status;
2002
2003 ath_hal_enablepcie(ah, 0, 0);
2004
2005 /*
2006 * Must reset the chip before we reload the
2007 * keycache as we were powered down on suspend.
2008 */
2010 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
2012 sc->sc_cur_rxchainmask);
2013
2014 /* Ensure we set the current power state to on */
2015 ATH_LOCK(sc);
2019 ATH_UNLOCK(sc);
2020
2021 ath_hal_reset(ah, sc->sc_opmode,
2022 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
2023 AH_FALSE, HAL_RESET_NORMAL, &status);
2025
2026 ATH_RX_LOCK(sc);
2027 sc->sc_rx_stopped = 1;
2028 sc->sc_rx_resetted = 1;
2029 ATH_RX_UNLOCK(sc);
2030
2031 /* Let DFS at it in case it's a DFS channel */
2032 ath_dfs_radar_enable(sc, ic->ic_curchan);
2033
2034 /* Let spectral at in case spectral is enabled */
2035 ath_spectral_enable(sc, ic->ic_curchan);
2036
2037 /*
2038 * Let bluetooth coexistence at in case it's needed for this channel
2039 */
2040 ath_btcoex_enable(sc, ic->ic_curchan);
2041
2042 /*
2043 * If we're doing TDMA, enforce the TXOP limitation for chips that
2044 * support it.
2045 */
2046 if (sc->sc_hasenforcetxop && sc->sc_tdma)
2048 else
2050
2051 /* Restore the LED configuration */
2052 ath_led_config(sc);
2054
2055 if (sc->sc_resume_up)
2056 ieee80211_resume_all(ic);
2057
2058 ATH_LOCK(sc);
2060 ATH_UNLOCK(sc);
2061
2062 /* XXX beacons ? */
2063}
2064
2065void
2067{
2068
2069 ATH_LOCK(sc);
2070 ath_stop(sc);
2071 ATH_UNLOCK(sc);
2072 /* NB: no point powering down chip as we're about to reboot */
2073}
2074
2075/*
2076 * Interrupt handler. Most of the actual processing is deferred.
2077 */
2078void
2079ath_intr(void *arg)
2080{
2081 struct ath_softc *sc = arg;
2082 struct ath_hal *ah = sc->sc_ah;
2083 HAL_INT status = 0;
2084 uint32_t txqs;
2085
2086 /*
2087 * If we're inside a reset path, just print a warning and
2088 * clear the ISR. The reset routine will finish it for us.
2089 */
2090 ATH_PCU_LOCK(sc);
2091 if (sc->sc_inreset_cnt) {
2092 HAL_INT status;
2093 ath_hal_getisr(ah, &status); /* clear ISR */
2094 ath_hal_intrset(ah, 0); /* disable further intr's */
2095 DPRINTF(sc, ATH_DEBUG_ANY,
2096 "%s: in reset, ignoring: status=0x%x\n",
2097 __func__, status);
2098 ATH_PCU_UNLOCK(sc);
2099 return;
2100 }
2101
2102 if (sc->sc_invalid) {
2103 /*
2104 * The hardware is not ready/present, don't touch anything.
2105 * Note this can happen early on if the IRQ is shared.
2106 */
2107 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2108 ATH_PCU_UNLOCK(sc);
2109 return;
2110 }
2111 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
2112 ATH_PCU_UNLOCK(sc);
2113 return;
2114 }
2115
2116 ATH_LOCK(sc);
2118 ATH_UNLOCK(sc);
2119
2120 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2121 HAL_INT status;
2122
2123 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2124 __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2125 ath_hal_getisr(ah, &status); /* clear ISR */
2126 ath_hal_intrset(ah, 0); /* disable further intr's */
2127 ATH_PCU_UNLOCK(sc);
2128
2129 ATH_LOCK(sc);
2131 ATH_UNLOCK(sc);
2132 return;
2133 }
2134
2135 /*
2136 * Figure out the reason(s) for the interrupt. Note
2137 * that the hal returns a pseudo-ISR that may include
2138 * bits we haven't explicitly enabled so we mask the
2139 * value to insure we only process bits we requested.
2140 */
2141 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
2142 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2143 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2144#ifdef ATH_DEBUG_ALQ
2145 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2146 ah->ah_syncstate);
2147#endif /* ATH_DEBUG_ALQ */
2148#ifdef ATH_KTR_INTR_DEBUG
2149 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2150 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2151 ah->ah_intrstate[0],
2152 ah->ah_intrstate[1],
2153 ah->ah_intrstate[2],
2154 ah->ah_intrstate[3],
2155 ah->ah_intrstate[6]);
2156#endif
2157
2158 /* Squirrel away SYNC interrupt debugging */
2159 if (ah->ah_syncstate != 0) {
2160 int i;
2161 for (i = 0; i < 32; i++)
2162 if (ah->ah_syncstate & (1 << i))
2163 sc->sc_intr_stats.sync_intr[i]++;
2164 }
2165
2166 status &= sc->sc_imask; /* discard unasked for bits */
2167
2168 /* Short-circuit un-handled interrupts */
2169 if (status == 0x0) {
2170 ATH_PCU_UNLOCK(sc);
2171
2172 ATH_LOCK(sc);
2174 ATH_UNLOCK(sc);
2175
2176 return;
2177 }
2178
2179 /*
2180 * Take a note that we're inside the interrupt handler, so
2181 * the reset routines know to wait.
2182 */
2183 sc->sc_intr_cnt++;
2184 ATH_PCU_UNLOCK(sc);
2185
2186 /*
2187 * Handle the interrupt. We won't run concurrent with the reset
2188 * or channel change routines as they'll wait for sc_intr_cnt
2189 * to be 0 before continuing.
2190 */
2191 if (status & HAL_INT_FATAL) {
2192 sc->sc_stats.ast_hardware++;
2193 ath_hal_intrset(ah, 0); /* disable intr's until reset */
2194 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2195 } else {
2196 if (status & HAL_INT_SWBA) {
2197 /*
2198 * Software beacon alert--time to send a beacon.
2199 * Handle beacon transmission directly; deferring
2200 * this is too slow to meet timing constraints
2201 * under load.
2202 */
2203#ifdef IEEE80211_SUPPORT_TDMA
2204 if (sc->sc_tdma) {
2205 if (sc->sc_tdmaswba == 0) {
2206 struct ieee80211com *ic = &sc->sc_ic;
2207 struct ieee80211vap *vap =
2208 TAILQ_FIRST(&ic->ic_vaps);
2209 ath_tdma_beacon_send(sc, vap);
2210 sc->sc_tdmaswba =
2211 vap->iv_tdma->tdma_bintval;
2212 } else
2213 sc->sc_tdmaswba--;
2214 } else
2215#endif
2216 {
2217 ath_beacon_proc(sc, 0);
2218#ifdef IEEE80211_SUPPORT_SUPERG
2219 /*
2220 * Schedule the rx taskq in case there's no
2221 * traffic so any frames held on the staging
2222 * queue are aged and potentially flushed.
2223 */
2224 sc->sc_rx.recv_sched(sc, 1);
2225#endif
2226 }
2227 }
2228 if (status & HAL_INT_RXEOL) {
2229 int imask;
2230 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2231 if (! sc->sc_isedma) {
2232 ATH_PCU_LOCK(sc);
2233 /*
2234 * NB: the hardware should re-read the link when
2235 * RXE bit is written, but it doesn't work at
2236 * least on older hardware revs.
2237 */
2238 sc->sc_stats.ast_rxeol++;
2239 /*
2240 * Disable RXEOL/RXORN - prevent an interrupt
2241 * storm until the PCU logic can be reset.
2242 * In case the interface is reset some other
2243 * way before "sc_kickpcu" is called, don't
2244 * modify sc_imask - that way if it is reset
2245 * by a call to ath_reset() somehow, the
2246 * interrupt mask will be correctly reprogrammed.
2247 */
2248 imask = sc->sc_imask;
2249 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2250 ath_hal_intrset(ah, imask);
2251 /*
2252 * Only blank sc_rxlink if we've not yet kicked
2253 * the PCU.
2254 *
2255 * This isn't entirely correct - the correct solution
2256 * would be to have a PCU lock and engage that for
2257 * the duration of the PCU fiddling; which would include
2258 * running the RX process. Otherwise we could end up
2259 * messing up the RX descriptor chain and making the
2260 * RX desc list much shorter.
2261 */
2262 if (! sc->sc_kickpcu)
2263 sc->sc_rxlink = NULL;
2264 sc->sc_kickpcu = 1;
2265 ATH_PCU_UNLOCK(sc);
2266 }
2267 /*
2268 * Enqueue an RX proc to handle whatever
2269 * is in the RX queue.
2270 * This will then kick the PCU if required.
2271 */
2272 sc->sc_rx.recv_sched(sc, 1);
2273 }
2274 if (status & HAL_INT_TXURN) {
2275 sc->sc_stats.ast_txurn++;
2276 /* bump tx trigger level */
2278 }
2279 /*
2280 * Handle both the legacy and RX EDMA interrupt bits.
2281 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2282 */
2283 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2284 sc->sc_stats.ast_rx_intr++;
2285 sc->sc_rx.recv_sched(sc, 1);
2286 }
2287 if (status & HAL_INT_TX) {
2288 sc->sc_stats.ast_tx_intr++;
2289 /*
2290 * Grab all the currently set bits in the HAL txq bitmap
2291 * and blank them. This is the only place we should be
2292 * doing this.
2293 */
2294 if (! sc->sc_isedma) {
2295 ATH_PCU_LOCK(sc);
2296 txqs = 0xffffffff;
2297 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2298 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2299 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2300 txqs,
2301 sc->sc_txq_active,
2302 sc->sc_txq_active | txqs);
2303 sc->sc_txq_active |= txqs;
2304 ATH_PCU_UNLOCK(sc);
2305 }
2306 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2307 }
2308 if (status & HAL_INT_BMISS) {
2309 sc->sc_stats.ast_bmiss++;
2310 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2311 }
2312 if (status & HAL_INT_GTT)
2314 if (status & HAL_INT_CST)
2315 sc->sc_stats.ast_tx_cst++;
2316 if (status & HAL_INT_MIB) {
2317 sc->sc_stats.ast_mib++;
2318 ATH_PCU_LOCK(sc);
2319 /*
2320 * Disable interrupts until we service the MIB
2321 * interrupt; otherwise it will continue to fire.
2322 */
2323 ath_hal_intrset(ah, 0);
2324 /*
2325 * Let the hal handle the event. We assume it will
2326 * clear whatever condition caused the interrupt.
2327 */
2328 ath_hal_mibevent(ah, &sc->sc_halstats);
2329 /*
2330 * Don't reset the interrupt if we've just
2331 * kicked the PCU, or we may get a nested
2332 * RXEOL before the rxproc has had a chance
2333 * to run.
2334 */
2335 if (sc->sc_kickpcu == 0)
2336 ath_hal_intrset(ah, sc->sc_imask);
2337 ATH_PCU_UNLOCK(sc);
2338 }
2339 if (status & HAL_INT_RXORN) {
2340 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2341 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2342 sc->sc_stats.ast_rxorn++;
2343 }
2344 if (status & HAL_INT_TSFOOR) {
2345 /*
2346 * out of range beacon - wake the chip up,
2347 * but don't modify self-gen frame config.
2348 * Do a full reset to clear any potential stuck
2349 * PHY/MAC that generated this condition.
2350 */
2351 sc->sc_stats.ast_tsfoor++;
2352 ATH_LOCK(sc);
2354 ATH_UNLOCK(sc);
2355 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask);
2356 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2357 }
2358 if (status & HAL_INT_MCI) {
2360 }
2361 }
2362 ATH_PCU_LOCK(sc);
2363 sc->sc_intr_cnt--;
2364 ATH_PCU_UNLOCK(sc);
2365
2366 ATH_LOCK(sc);
2368 ATH_UNLOCK(sc);
2369}
2370
2371static void
2372ath_fatal_proc(void *arg, int pending)
2373{
2374 struct ath_softc *sc = arg;
2375 u_int32_t *state;
2376 u_int32_t len;
2377 void *sp;
2378
2379 if (sc->sc_invalid)
2380 return;
2381
2382 device_printf(sc->sc_dev, "hardware error; resetting\n");
2383 /*
2384 * Fatal errors are unrecoverable. Typically these
2385 * are caused by DMA errors. Collect h/w state from
2386 * the hal so we can diagnose what's going on.
2387 */
2388 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2389 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2390 state = sp;
2391 device_printf(sc->sc_dev,
2392 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2393 state[1] , state[2], state[3], state[4], state[5]);
2394 }
2396}
2397
2398static void
2399ath_bmiss_vap(struct ieee80211vap *vap)
2400{
2401 struct ath_softc *sc = vap->iv_ic->ic_softc;
2402
2403 /*
2404 * Workaround phantom bmiss interrupts by sanity-checking
2405 * the time of our last rx'd frame. If it is within the
2406 * beacon miss interval then ignore the interrupt. If it's
2407 * truly a bmiss we'll get another interrupt soon and that'll
2408 * be dispatched up for processing. Note this applies only
2409 * for h/w beacon miss events.
2410 */
2411
2412 /*
2413 * XXX TODO: Just read the TSF during the interrupt path;
2414 * that way we don't have to wake up again just to read it
2415 * again.
2416 */
2417 ATH_LOCK(sc);
2419 ATH_UNLOCK(sc);
2420
2421 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2422 u_int64_t lastrx = sc->sc_lastrx;
2423 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2424 /* XXX should take a locked ref to iv_bss */
2425 u_int bmisstimeout =
2426 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2427
2428 DPRINTF(sc, ATH_DEBUG_BEACON,
2429 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2430 __func__, (unsigned long long) tsf,
2431 (unsigned long long)(tsf - lastrx),
2432 (unsigned long long) lastrx, bmisstimeout);
2433
2434 if (tsf - lastrx <= bmisstimeout) {
2436
2437 ATH_LOCK(sc);
2439 ATH_UNLOCK(sc);
2440
2441 return;
2442 }
2443 }
2444
2445 /*
2446 * Keep the hardware awake if it's asleep (and leave self-gen
2447 * frame config alone) until the next beacon, so we can resync
2448 * against the next beacon.
2449 *
2450 * This handles three common beacon miss cases in STA powersave mode -
2451 * (a) the beacon TBTT isnt a multiple of bintval;
2452 * (b) the beacon was missed; and
2453 * (c) the beacons are being delayed because the AP is busy and
2454 * isn't reliably able to meet its TBTT.
2455 */
2456 ATH_LOCK(sc);
2459 ATH_UNLOCK(sc);
2460
2461 DPRINTF(sc, ATH_DEBUG_BEACON,
2462 "%s: forced awake; force syncbeacon=1\n", __func__);
2463 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2464 /*
2465 * Attempt to force a beacon resync.
2466 */
2467 sc->sc_syncbeacon = 1;
2468 }
2469
2470 ATH_VAP(vap)->av_bmiss(vap);
2471}
2472
2473/* XXX this needs a force wakeup! */
2474int
2475ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2476{
2477 uint32_t rsize;
2478 void *sp;
2479
2480 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2481 return 0;
2482 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2483 *hangs = *(uint32_t *)sp;
2484 return 1;
2485}
2486
2487static void
2488ath_bmiss_proc(void *arg, int pending)
2489{
2490 struct ath_softc *sc = arg;
2491 uint32_t hangs;
2492
2493 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2494
2495 ATH_LOCK(sc);
2497 ATH_UNLOCK(sc);
2498
2499 ath_beacon_miss(sc);
2500
2501 /*
2502 * Do a reset upon any beacon miss event.
2503 *
2504 * It may be a non-recognised RX clear hang which needs a reset
2505 * to clear.
2506 */
2507 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2509 device_printf(sc->sc_dev,
2510 "bb hang detected (0x%x), resetting\n", hangs);
2511 } else {
2513 ieee80211_beacon_miss(&sc->sc_ic);
2514 }
2515
2516 /* Force a beacon resync, in case they've drifted */
2517 sc->sc_syncbeacon = 1;
2518
2519 ATH_LOCK(sc);
2521 ATH_UNLOCK(sc);
2522}
2523
2524/*
2525 * Handle a TSF out of range interrupt in STA mode.
2526 *
2527 * This may be due to a partially deaf looking radio, so
2528 * do a full reset just in case it is indeed deaf and
2529 * resync the beacon.
2530 */
2531static void
2532ath_tsfoor_proc(void *arg, int pending)
2533{
2534 struct ath_softc *sc = arg;
2535
2536 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2537
2538 ATH_LOCK(sc);
2540 ATH_UNLOCK(sc);
2541
2542 /*
2543 * Do a full reset after any TSFOOR. It's possible that
2544 * we've gone deaf or partially deaf (eg due to calibration
2545 * failures) and this should clean things up a bit.
2546 */
2548
2549 /* Force a beacon resync, in case they've drifted */
2550 sc->sc_syncbeacon = 1;
2551
2552 ATH_LOCK(sc);
2554 ATH_UNLOCK(sc);
2555}
2556
2557/*
2558 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2559 * calcs together with WME. If necessary disable the crypto
2560 * hardware and mark the 802.11 state so keys will be setup
2561 * with the MIC work done in software.
2562 */
2563static void
2565{
2566 struct ieee80211com *ic = &sc->sc_ic;
2567
2568 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2569 if (ic->ic_flags & IEEE80211_F_WME) {
2571 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2572 } else {
2574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2575 }
2576 }
2577}
2578
2579static void
2581{
2582 struct ieee80211com *ic = &sc->sc_ic;
2583 struct ieee80211vap *vap;
2584 struct ath_vap *avp;
2585
2586 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2587 avp = ATH_VAP(vap);
2588 /* Quiet time handling - ensure we resync */
2589 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
2590 }
2591}
2592
2593static int
2595{
2596 struct ieee80211com *ic = &sc->sc_ic;
2597 struct ath_hal *ah = sc->sc_ah;
2598 HAL_STATUS status;
2599
2600 ATH_LOCK_ASSERT(sc);
2601
2602 /*
2603 * Force the sleep state awake.
2604 */
2608
2609 /*
2610 * Stop anything previously setup. This is safe
2611 * whether this is the first time through or not.
2612 */
2613 ath_stop(sc);
2614
2615 /*
2616 * The basic interface to setting the hardware in a good
2617 * state is ``reset''. On return the hardware is known to
2618 * be powered up and with interrupts disabled. This must
2619 * be followed by initialization of the appropriate bits
2620 * and then setup of the interrupt mask.
2621 */
2622 ath_settkipmic(sc);
2623 ath_update_chainmasks(sc, ic->ic_curchan);
2625 sc->sc_cur_rxchainmask);
2626
2627 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2628 HAL_RESET_NORMAL, &status)) {
2629 device_printf(sc->sc_dev,
2630 "unable to reset hardware; hal status %u\n", status);
2631 return (ENODEV);
2632 }
2633
2634 ATH_RX_LOCK(sc);
2635 sc->sc_rx_stopped = 1;
2636 sc->sc_rx_resetted = 1;
2637 ATH_RX_UNLOCK(sc);
2638
2639 /* Clear quiet IE state for each VAP */
2641
2642 ath_chan_change(sc, ic->ic_curchan);
2643
2644 /* Let DFS at it in case it's a DFS channel */
2645 ath_dfs_radar_enable(sc, ic->ic_curchan);
2646
2647 /* Let spectral at in case spectral is enabled */
2648 ath_spectral_enable(sc, ic->ic_curchan);
2649
2650 /*
2651 * Let bluetooth coexistence at in case it's needed for this channel
2652 */
2653 ath_btcoex_enable(sc, ic->ic_curchan);
2654
2655 /*
2656 * If we're doing TDMA, enforce the TXOP limitation for chips that
2657 * support it.
2658 */
2659 if (sc->sc_hasenforcetxop && sc->sc_tdma)
2661 else
2663
2664 /*
2665 * Likewise this is set during reset so update
2666 * state cached in the driver.
2667 */
2669 sc->sc_lastlongcal = ticks;
2670 sc->sc_resetcal = 1;
2671 sc->sc_lastcalreset = 0;
2672 sc->sc_lastani = ticks;
2673 sc->sc_lastshortcal = ticks;
2674 sc->sc_doresetcal = AH_FALSE;
2675 /*
2676 * Beacon timers were cleared here; give ath_newstate()
2677 * a hint that the beacon timers should be poked when
2678 * things transition to the RUN state.
2679 */
2680 sc->sc_beacons = 0;
2681
2682 /*
2683 * Setup the hardware after reset: the key cache
2684 * is filled as needed and the receive engine is
2685 * set going. Frame transmit is handled entirely
2686 * in the frame output path; there's nothing to do
2687 * here except setup the interrupt mask.
2688 */
2689 if (ath_startrecv(sc) != 0) {
2690 device_printf(sc->sc_dev, "unable to start recv logic\n");
2692 return (ENODEV);
2693 }
2694
2695 /*
2696 * Enable interrupts.
2697 */
2701
2702 /*
2703 * Enable RX EDMA bits. Note these overlap with
2704 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2705 */
2706 if (sc->sc_isedma)
2708
2709 /*
2710 * If we're an EDMA NIC, we don't care about RXEOL.
2711 * Writing a new descriptor in will simply restart
2712 * RX DMA.
2713 */
2714 if (! sc->sc_isedma)
2715 sc->sc_imask |= HAL_INT_RXEOL;
2716
2717 /*
2718 * Enable MCI interrupt for MCI devices.
2719 */
2720 if (sc->sc_btcoex_mci)
2721 sc->sc_imask |= HAL_INT_MCI;
2722
2723 /*
2724 * Enable MIB interrupts when there are hardware phy counters.
2725 * Note we only do this (at the moment) for station mode.
2726 */
2727 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2728 sc->sc_imask |= HAL_INT_MIB;
2729
2730 /*
2731 * XXX add capability for this.
2732 *
2733 * If we're in STA mode (and maybe IBSS?) then register for
2734 * TSFOOR interrupts.
2735 */
2736 if (ic->ic_opmode == IEEE80211_M_STA)
2737 sc->sc_imask |= HAL_INT_TSFOOR;
2738
2739 /* Enable global TX timeout and carrier sense timeout if available */
2741 sc->sc_imask |= HAL_INT_GTT;
2742
2743 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2744 __func__, sc->sc_imask);
2745
2746 sc->sc_running = 1;
2747 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2748 ath_hal_intrset(ah, sc->sc_imask);
2749
2751
2752 return (0);
2753}
2754
2755static void
2757{
2758 struct ath_hal *ah = sc->sc_ah;
2759
2760 ATH_LOCK_ASSERT(sc);
2761
2762 /*
2763 * Wake the hardware up before fiddling with it.
2764 */
2766
2767 if (sc->sc_running) {
2768 /*
2769 * Shutdown the hardware and driver:
2770 * reset 802.11 state machine
2771 * turn off timers
2772 * disable interrupts
2773 * turn off the radio
2774 * clear transmit machinery
2775 * clear receive machinery
2776 * drain and release tx queues
2777 * reclaim beacon resources
2778 * power down hardware
2779 *
2780 * Note that some of this work is not possible if the
2781 * hardware is gone (invalid).
2782 */
2783#ifdef ATH_TX99_DIAG
2784 if (sc->sc_tx99 != NULL)
2785 sc->sc_tx99->stop(sc->sc_tx99);
2786#endif
2787 callout_stop(&sc->sc_wd_ch);
2788 sc->sc_wd_timer = 0;
2789 sc->sc_running = 0;
2790 if (!sc->sc_invalid) {
2791 if (sc->sc_softled) {
2792 callout_stop(&sc->sc_ledtimer);
2793 ath_hal_gpioset(ah, sc->sc_ledpin,
2794 !sc->sc_ledon);
2795 sc->sc_blinking = 0;
2796 }
2797 ath_hal_intrset(ah, 0);
2798 }
2799 /* XXX we should stop RX regardless of whether it's valid */
2800 if (!sc->sc_invalid) {
2801 ath_stoprecv(sc, 1);
2803 } else
2804 sc->sc_rxlink = NULL;
2806 ath_beacon_free(sc); /* XXX not needed */
2807 }
2808
2809 /* And now, restore the current power state */
2811}
2812
2813/*
2814 * Wait until all pending TX/RX has completed.
2815 *
2816 * This waits until all existing transmit, receive and interrupts
2817 * have completed. It's assumed that the caller has first
2818 * grabbed the reset lock so it doesn't try to do overlapping
2819 * chip resets.
2820 */
2821#define MAX_TXRX_ITERATIONS 100
2822static void
2824{
2825 int i = MAX_TXRX_ITERATIONS;
2826
2829
2830 /*
2831 * Sleep until all the pending operations have completed.
2832 *
2833 * The caller must ensure that reset has been incremented
2834 * or the pending operations may continue being queued.
2835 */
2836 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2837 sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2838 if (i <= 0)
2839 break;
2840 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2841 msecs_to_ticks(10));
2842 i--;
2843 }
2844
2845 if (i <= 0)
2846 device_printf(sc->sc_dev,
2847 "%s: didn't finish after %d iterations\n",
2848 __func__, MAX_TXRX_ITERATIONS);
2849}
2850#undef MAX_TXRX_ITERATIONS
2851
2852#if 0
2853static void
2854ath_txrx_stop(struct ath_softc *sc)
2855{
2858
2859 ATH_PCU_LOCK(sc);
2861 ATH_PCU_UNLOCK(sc);
2862}
2863#endif
2864
2865static void
2867{
2868
2869 taskqueue_unblock(sc->sc_tq);
2870}
2871
2872/*
2873 * Grab the reset lock, and wait around until no one else
2874 * is trying to do anything with it.
2875 *
2876 * This is totally horrible but we can't hold this lock for
2877 * long enough to do TX/RX or we end up with net80211/ip stack
2878 * LORs and eventual deadlock.
2879 *
2880 * "dowait" signals whether to spin, waiting for the reset
2881 * lock count to reach 0. This should (for now) only be used
2882 * during the reset path, as the rest of the code may not
2883 * be locking-reentrant enough to behave correctly.
2884 *
2885 * Another, cleaner way should be found to serialise all of
2886 * these operations.
2887 */
2888#define MAX_RESET_ITERATIONS 25
2889static int
2890ath_reset_grablock(struct ath_softc *sc, int dowait)
2891{
2892 int w = 0;
2893 int i = MAX_RESET_ITERATIONS;
2894
2896 do {
2897 if (sc->sc_inreset_cnt == 0) {
2898 w = 1;
2899 break;
2900 }
2901 if (dowait == 0) {
2902 w = 0;
2903 break;
2904 }
2905 ATH_PCU_UNLOCK(sc);
2906 /*
2907 * 1 tick is likely not enough time for long calibrations
2908 * to complete. So we should wait quite a while.
2909 */
2910 pause("ath_reset_grablock", msecs_to_ticks(100));
2911 i--;
2912 ATH_PCU_LOCK(sc);
2913 } while (i > 0);
2914
2915 /*
2916 * We always increment the refcounter, regardless
2917 * of whether we succeeded to get it in an exclusive
2918 * way.
2919 */
2920 sc->sc_inreset_cnt++;
2921
2922 if (i <= 0)
2923 device_printf(sc->sc_dev,
2924 "%s: didn't finish after %d iterations\n",
2925 __func__, MAX_RESET_ITERATIONS);
2926
2927 if (w == 0)
2928 device_printf(sc->sc_dev,
2929 "%s: warning, recursive reset path!\n",
2930 __func__);
2931
2932 return w;
2933}
2934#undef MAX_RESET_ITERATIONS
2935
2936/*
2937 * Reset the hardware w/o losing operational state. This is
2938 * basically a more efficient way of doing ath_stop, ath_init,
2939 * followed by state transitions to the current 802.11
2940 * operational state. Used to recover from various errors and
2941 * to reset or reload hardware state.
2942 */
2943int
2944ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type,
2945 HAL_RESET_TYPE ah_reset_type)
2946{
2947 struct ieee80211com *ic = &sc->sc_ic;
2948 struct ath_hal *ah = sc->sc_ah;
2949 HAL_STATUS status;
2950 int i;
2951
2952 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2953
2954 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2957
2958 /* Try to (stop any further TX/RX from occurring */
2959 taskqueue_block(sc->sc_tq);
2960
2961 /*
2962 * Wake the hardware up.
2963 */
2964 ATH_LOCK(sc);
2966 ATH_UNLOCK(sc);
2967
2968 ATH_PCU_LOCK(sc);
2969
2970 /*
2971 * Grab the reset lock before TX/RX is stopped.
2972 *
2973 * This is needed to ensure that when the TX/RX actually does finish,
2974 * no further TX/RX/reset runs in parallel with this.
2975 */
2976 if (ath_reset_grablock(sc, 1) == 0) {
2977 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2978 __func__);
2979 }
2980
2981 /* disable interrupts */
2982 ath_hal_intrset(ah, 0);
2983
2984 /*
2985 * Now, ensure that any in progress TX/RX completes before we
2986 * continue.
2987 */
2989
2990 ATH_PCU_UNLOCK(sc);
2991
2992 /*
2993 * Regardless of whether we're doing a no-loss flush or
2994 * not, stop the PCU and handle what's in the RX queue.
2995 * That way frames aren't dropped which shouldn't be.
2996 */
2997 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2998 ath_rx_flush(sc);
2999
3000 /*
3001 * Should now wait for pending TX/RX to complete
3002 * and block future ones from occurring. This needs to be
3003 * done before the TX queue is drained.
3004 */
3005 ath_draintxq(sc, reset_type); /* stop xmit side */
3006
3007 ath_settkipmic(sc); /* configure TKIP MIC handling */
3008 /* NB: indicate channel change so we do a full reset */
3009 ath_update_chainmasks(sc, ic->ic_curchan);
3011 sc->sc_cur_rxchainmask);
3012 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
3013 ah_reset_type, &status))
3014 device_printf(sc->sc_dev,
3015 "%s: unable to reset hardware; hal status %u\n",
3016 __func__, status);
3018
3019 ATH_RX_LOCK(sc);
3020 sc->sc_rx_stopped = 1;
3021 sc->sc_rx_resetted = 1;
3022 ATH_RX_UNLOCK(sc);
3023
3024 /* Quiet time handling - ensure we resync */
3026
3027 /* Let DFS at it in case it's a DFS channel */
3028 ath_dfs_radar_enable(sc, ic->ic_curchan);
3029
3030 /* Let spectral at in case spectral is enabled */
3031 ath_spectral_enable(sc, ic->ic_curchan);
3032
3033 /*
3034 * Let bluetooth coexistence at in case it's needed for this channel
3035 */
3036 ath_btcoex_enable(sc, ic->ic_curchan);
3037
3038 /*
3039 * If we're doing TDMA, enforce the TXOP limitation for chips that
3040 * support it.
3041 */
3042 if (sc->sc_hasenforcetxop && sc->sc_tdma)
3044 else
3046
3047 if (ath_startrecv(sc) != 0) /* restart recv */
3048 device_printf(sc->sc_dev,
3049 "%s: unable to start recv logic\n", __func__);
3050 /*
3051 * We may be doing a reset in response to an ioctl
3052 * that changes the channel so update any state that
3053 * might change as a result.
3054 */
3055 ath_chan_change(sc, ic->ic_curchan);
3056 if (sc->sc_beacons) { /* restart beacons */
3057#ifdef IEEE80211_SUPPORT_TDMA
3058 if (sc->sc_tdma)
3059 ath_tdma_config(sc, NULL);
3060 else
3061#endif
3062 ath_beacon_config(sc, NULL);
3063 }
3064
3065 /*
3066 * Release the reset lock and re-enable interrupts here.
3067 * If an interrupt was being processed in ath_intr(),
3068 * it would disable interrupts at this point. So we have
3069 * to atomically enable interrupts and decrement the
3070 * reset counter - this way ath_intr() doesn't end up
3071 * disabling interrupts without a corresponding enable
3072 * in the rest or channel change path.
3073 *
3074 * Grab the TX reference in case we need to transmit.
3075 * That way a parallel transmit doesn't.
3076 */
3077 ATH_PCU_LOCK(sc);
3078 sc->sc_inreset_cnt--;
3079 sc->sc_txstart_cnt++;
3080 /* XXX only do this if sc_inreset_cnt == 0? */
3081 ath_hal_intrset(ah, sc->sc_imask);
3082 ATH_PCU_UNLOCK(sc);
3083
3084 /*
3085 * TX and RX can be started here. If it were started with
3086 * sc_inreset_cnt > 0, the TX and RX path would abort.
3087 * Thus if this is a nested call through the reset or
3088 * channel change code, TX completion will occur but
3089 * RX completion and ath_start / ath_tx_start will not
3090 * run.
3091 */
3092
3093 /* Restart TX/RX as needed */
3094 ath_txrx_start(sc);
3095
3096 /* XXX TODO: we need to hold the tx refcount here! */
3097
3098 /* Restart TX completion and pending TX */
3099 if (reset_type == ATH_RESET_NOLOSS) {
3100 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3101 if (ATH_TXQ_SETUP(sc, i)) {
3102 ATH_TXQ_LOCK(&sc->sc_txq[i]);
3103 ath_txq_restart_dma(sc, &sc->sc_txq[i]);
3104 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3105
3106 ATH_TX_LOCK(sc);
3107 ath_txq_sched(sc, &sc->sc_txq[i]);
3108 ATH_TX_UNLOCK(sc);
3109 }
3110 }
3111 }
3112
3113 ATH_LOCK(sc);
3115 ATH_UNLOCK(sc);
3116
3117 ATH_PCU_LOCK(sc);
3118 sc->sc_txstart_cnt--;
3119 ATH_PCU_UNLOCK(sc);
3120
3121 /* Handle any frames in the TX queue */
3122 /*
3123 * XXX should this be done by the caller, rather than
3124 * ath_reset() ?
3125 */
3126 ath_tx_kick(sc); /* restart xmit */
3127 return 0;
3128}
3129
3130static int
3131ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3132{
3133 struct ieee80211com *ic = vap->iv_ic;
3134 struct ath_softc *sc = ic->ic_softc;
3135 struct ath_hal *ah = sc->sc_ah;
3136
3137 switch (cmd) {
3138 case IEEE80211_IOC_TXPOWER:
3139 /*
3140 * If per-packet TPC is enabled, then we have nothing
3141 * to do; otherwise we need to force the global limit.
3142 * All this can happen directly; no need to reset.
3143 */
3144 if (!ath_hal_gettpc(ah))
3145 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3146 return 0;
3147 }
3148 /* XXX? Full or NOLOSS? */
3150}
3151
3152struct ath_buf *
3154{
3155 struct ath_buf *bf;
3156
3158
3159 if (btype == ATH_BUFTYPE_MGMT)
3160 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3161 else
3162 bf = TAILQ_FIRST(&sc->sc_txbuf);
3163
3164 if (bf == NULL) {
3166 } else {
3167 if (bf->bf_flags & ATH_BUF_BUSY) {
3169 bf = NULL;
3170 }
3171 }
3172
3173 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3174 if (btype == ATH_BUFTYPE_MGMT)
3175 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3176 else {
3177 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3178 sc->sc_txbuf_cnt--;
3179
3180 /*
3181 * This shuldn't happen; however just to be
3182 * safe print a warning and fudge the txbuf
3183 * count.
3184 */
3185 if (sc->sc_txbuf_cnt < 0) {
3186 device_printf(sc->sc_dev,
3187 "%s: sc_txbuf_cnt < 0?\n",
3188 __func__);
3189 sc->sc_txbuf_cnt = 0;
3190 }
3191 }
3192 } else
3193 bf = NULL;
3194
3195 if (bf == NULL) {
3196 /* XXX should check which list, mgmt or otherwise */
3197 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3198 TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3199 "out of xmit buffers" : "xmit buffer busy");
3200 return NULL;
3201 }
3202
3203 /* XXX TODO: should do this at buffer list initialisation */
3204 /* XXX (then, ensure the buffer has the right flag set) */
3205 bf->bf_flags = 0;
3206 if (btype == ATH_BUFTYPE_MGMT)
3207 bf->bf_flags |= ATH_BUF_MGMT;
3208 else
3209 bf->bf_flags &= (~ATH_BUF_MGMT);
3210
3211 /* Valid bf here; clear some basic fields */
3212 bf->bf_next = NULL; /* XXX just to be sure */
3213 bf->bf_last = NULL; /* XXX again, just to be sure */
3214 bf->bf_comp = NULL; /* XXX again, just to be sure */
3215 bzero(&bf->bf_state, sizeof(bf->bf_state));
3216
3217 /*
3218 * Track the descriptor ID only if doing EDMA
3219 */
3220 if (sc->sc_isedma) {
3221 bf->bf_descid = sc->sc_txbuf_descid;
3222 sc->sc_txbuf_descid++;
3223 }
3224
3225 return bf;
3226}
3227
3228/*
3229 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3230 * can't be thrown back on the queue as they could still be
3231 * in use by the hardware.
3232 *
3233 * This duplicates the buffer, or returns NULL.
3234 *
3235 * The descriptor is also copied but the link pointers and
3236 * the DMA segments aren't copied; this frame should thus
3237 * be again passed through the descriptor setup/chain routines
3238 * so the link is correct.
3239 *
3240 * The caller must free the buffer using ath_freebuf().
3241 */
3242struct ath_buf *
3243ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3244{
3245 struct ath_buf *tbf;
3246
3247 tbf = ath_getbuf(sc,
3248 (bf->bf_flags & ATH_BUF_MGMT) ?
3250 if (tbf == NULL)
3251 return NULL; /* XXX failure? Why? */
3252
3253 /* Copy basics */
3254 tbf->bf_next = NULL;
3255 tbf->bf_nseg = bf->bf_nseg;
3257 tbf->bf_status = bf->bf_status;
3258 tbf->bf_m = bf->bf_m;
3259 tbf->bf_node = bf->bf_node;
3260 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3261 /* will be setup by the chain/setup function */
3262 tbf->bf_lastds = NULL;
3263 /* for now, last == self */
3264 tbf->bf_last = tbf;
3265 tbf->bf_comp = bf->bf_comp;
3266
3267 /* NOTE: DMA segments will be setup by the setup/chain functions */
3268
3269 /* The caller has to re-init the descriptor + links */
3270
3271 /*
3272 * Free the DMA mapping here, before we NULL the mbuf.
3273 * We must only call bus_dmamap_unload() once per mbuf chain
3274 * or behaviour is undefined.
3275 */
3276 if (bf->bf_m != NULL) {
3277 /*
3278 * XXX is this POSTWRITE call required?
3279 */
3280 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3281 BUS_DMASYNC_POSTWRITE);
3282 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3283 }
3284
3285 bf->bf_m = NULL;
3286 bf->bf_node = NULL;
3287
3288 /* Copy state */
3289 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3290
3291 return tbf;
3292}
3293
3294struct ath_buf *
3296{
3297 struct ath_buf *bf;
3298
3299 ATH_TXBUF_LOCK(sc);
3300 bf = _ath_getbuf_locked(sc, btype);
3301 /*
3302 * If a mgmt buffer was requested but we're out of those,
3303 * try requesting a normal one.
3304 */
3305 if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3307 ATH_TXBUF_UNLOCK(sc);
3308 if (bf == NULL) {
3309 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3310 sc->sc_stats.ast_tx_qstop++;
3311 }
3312 return bf;
3313}
3314
3315/*
3316 * Transmit a single frame.
3317 *
3318 * net80211 will free the node reference if the transmit
3319 * fails, so don't free the node reference here.
3320 */
3321static int
3322ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3323{
3324 struct ath_softc *sc = ic->ic_softc;
3325 struct ieee80211_node *ni;
3326 struct mbuf *next;
3327 struct ath_buf *bf;
3328 ath_bufhead frags;
3329 int retval = 0;
3330
3331 /*
3332 * Tell the reset path that we're currently transmitting.
3333 */
3334 ATH_PCU_LOCK(sc);
3335 if (sc->sc_inreset_cnt > 0) {
3336 DPRINTF(sc, ATH_DEBUG_XMIT,
3337 "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3338 ATH_PCU_UNLOCK(sc);
3339 sc->sc_stats.ast_tx_qstop++;
3340 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3341 return (ENOBUFS); /* XXX should be EINVAL or? */
3342 }
3343 sc->sc_txstart_cnt++;
3344 ATH_PCU_UNLOCK(sc);
3345
3346 /* Wake the hardware up already */
3347 ATH_LOCK(sc);
3349 ATH_UNLOCK(sc);
3350
3351 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3352 /*
3353 * Grab the TX lock - it's ok to do this here; we haven't
3354 * yet started transmitting.
3355 */
3356 ATH_TX_LOCK(sc);
3357
3358 /*
3359 * Node reference, if there's one.
3360 */
3361 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3362
3363 /*
3364 * Enforce how deep a node queue can get.
3365 *
3366 * XXX it would be nicer if we kept an mbuf queue per
3367 * node and only whacked them into ath_bufs when we
3368 * are ready to schedule some traffic from them.
3369 * .. that may come later.
3370 *
3371 * XXX we should also track the per-node hardware queue
3372 * depth so it is easy to limit the _SUM_ of the swq and
3373 * hwq frames. Since we only schedule two HWQ frames
3374 * at a time, this should be OK for now.
3375 */
3376 if ((!(m->m_flags & M_EAPOL)) &&
3377 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3379 retval = ENOBUFS;
3380 goto finish;
3381 }
3382
3383 /*
3384 * Check how many TX buffers are available.
3385 *
3386 * If this is for non-EAPOL traffic, just leave some
3387 * space free in order for buffer cloning and raw
3388 * frame transmission to occur.
3389 *
3390 * If it's for EAPOL traffic, ignore this for now.
3391 * Management traffic will be sent via the raw transmit
3392 * method which bypasses this check.
3393 *
3394 * This is needed to ensure that EAPOL frames during
3395 * (re) keying have a chance to go out.
3396 *
3397 * See kern/138379 for more information.
3398 */
3399 if ((!(m->m_flags & M_EAPOL)) &&
3400 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3401 sc->sc_stats.ast_tx_nobuf++;
3402 retval = ENOBUFS;
3403 goto finish;
3404 }
3405
3406 /*
3407 * Grab a TX buffer and associated resources.
3408 *
3409 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3410 * That way even with temporary buffer exhaustion due to
3411 * the data path doesn't leave us without the ability
3412 * to transmit management frames.
3413 *
3414 * Otherwise allocate a normal buffer.
3415 */
3416 if (m->m_flags & M_EAPOL)
3417 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3418 else
3420
3421 if (bf == NULL) {
3422 /*
3423 * If we failed to allocate a buffer, fail.
3424 *
3425 * We shouldn't fail normally, due to the check
3426 * above.
3427 */
3428 sc->sc_stats.ast_tx_nobuf++;
3429 retval = ENOBUFS;
3430 goto finish;
3431 }
3432
3433 /*
3434 * At this point we have a buffer; so we need to free it
3435 * if we hit any error conditions.
3436 */
3437
3438 /*
3439 * Check for fragmentation. If this frame
3440 * has been broken up verify we have enough
3441 * buffers to send all the fragments so all
3442 * go out or none...
3443 */
3444 TAILQ_INIT(&frags);
3445 if ((m->m_flags & M_FRAG) &&
3446 !ath_txfrag_setup(sc, &frags, m, ni)) {
3447 DPRINTF(sc, ATH_DEBUG_XMIT,
3448 "%s: out of txfrag buffers\n", __func__);
3449 sc->sc_stats.ast_tx_nofrag++;
3450 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3451 /*
3452 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3453 * we shouldn't free it but return back.
3454 */
3455 ieee80211_free_mbuf(m);
3456 m = NULL;
3457 goto bad;
3458 }
3459
3460 /*
3461 * At this point if we have any TX fragments, then we will
3462 * have bumped the node reference once for each of those.
3463 */
3464
3465 /*
3466 * XXX Is there anything actually _enforcing_ that the
3467 * fragments are being transmitted in one hit, rather than
3468 * being interleaved with other transmissions on that
3469 * hardware queue?
3470 *
3471 * The ATH TX output lock is the only thing serialising this
3472 * right now.
3473 */
3474
3475 /*
3476 * Calculate the "next fragment" length field in ath_buf
3477 * in order to let the transmit path know enough about
3478 * what to next write to the hardware.
3479 */
3480 if (m->m_flags & M_FRAG) {
3481 struct ath_buf *fbf = bf;
3482 struct ath_buf *n_fbf = NULL;
3483 struct mbuf *fm = m->m_nextpkt;
3484
3485 /*
3486 * We need to walk the list of fragments and set
3487 * the next size to the following buffer.
3488 * However, the first buffer isn't in the frag
3489 * list, so we have to do some gymnastics here.
3490 */
3491 TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3492 fbf->bf_nextfraglen = fm->m_pkthdr.len;
3493 fbf = n_fbf;
3494 fm = fm->m_nextpkt;
3495 }
3496 }
3497
3498nextfrag:
3499 /*
3500 * Pass the frame to the h/w for transmission.
3501 * Fragmented frames have each frag chained together
3502 * with m_nextpkt. We know there are sufficient ath_buf's
3503 * to send all the frags because of work done by
3504 * ath_txfrag_setup. We leave m_nextpkt set while
3505 * calling ath_tx_start so it can use it to extend the
3506 * the tx duration to cover the subsequent frag and
3507 * so it can reclaim all the mbufs in case of an error;
3508 * ath_tx_start clears m_nextpkt once it commits to
3509 * handing the frame to the hardware.
3510 *
3511 * Note: if this fails, then the mbufs are freed but
3512 * not the node reference.
3513 *
3514 * So, we now have to free the node reference ourselves here
3515 * and return OK up to the stack.
3516 */
3517 next = m->m_nextpkt;
3518 if (ath_tx_start(sc, ni, bf, m)) {
3519bad:
3520 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3521reclaim:
3522 bf->bf_m = NULL;
3523 bf->bf_node = NULL;
3524 ATH_TXBUF_LOCK(sc);
3525 ath_returnbuf_head(sc, bf);
3526 /*
3527 * Free the rest of the node references and
3528 * buffers for the fragment list.
3529 */
3530 ath_txfrag_cleanup(sc, &frags, ni);
3531 ATH_TXBUF_UNLOCK(sc);
3532
3533 /*
3534 * XXX: And free the node/return OK; ath_tx_start() may have
3535 * modified the buffer. We currently have no way to
3536 * signify that the mbuf was freed but there was an error.
3537 */
3538 ieee80211_free_node(ni);
3539 retval = 0;
3540 goto finish;
3541 }
3542
3543 /*
3544 * Check here if the node is in power save state.
3545 */
3546 ath_tx_update_tim(sc, ni, 1);
3547
3548 if (next != NULL) {
3549 /*
3550 * Beware of state changing between frags.
3551 * XXX check sta power-save state?
3552 */
3553 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3554 DPRINTF(sc, ATH_DEBUG_XMIT,
3555 "%s: flush fragmented packet, state %s\n",
3556 __func__,
3557 ieee80211_state_name[ni->ni_vap->iv_state]);
3558 /* XXX dmamap */
3559 ieee80211_free_mbuf(next);
3560 goto reclaim;
3561 }
3562 m = next;
3563 bf = TAILQ_FIRST(&frags);
3564 KASSERT(bf != NULL, ("no buf for txfrag"));
3565 TAILQ_REMOVE(&frags, bf, bf_list);
3566 goto nextfrag;
3567 }
3568
3569 /*
3570 * Bump watchdog timer.
3571 */
3572 sc->sc_wd_timer = 5;
3573
3574finish:
3575 ATH_TX_UNLOCK(sc);
3576
3577 /*
3578 * Finished transmitting!
3579 */
3580 ATH_PCU_LOCK(sc);
3581 sc->sc_txstart_cnt--;
3582 ATH_PCU_UNLOCK(sc);
3583
3584 /* Sleep the hardware if required */
3585 ATH_LOCK(sc);
3587 ATH_UNLOCK(sc);
3588
3589 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3590
3591 return (retval);
3592}
3593
3594/*
3595 * Block/unblock tx+rx processing while a key change is done.
3596 * We assume the caller serializes key management operations
3597 * so we only need to worry about synchronization with other
3598 * uses that originate in the driver.
3599 */
3600static void
3601ath_key_update_begin(struct ieee80211vap *vap)
3602{
3603 struct ath_softc *sc = vap->iv_ic->ic_softc;
3604
3605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3606 taskqueue_block(sc->sc_tq);
3607}
3608
3609static void
3610ath_key_update_end(struct ieee80211vap *vap)
3611{
3612 struct ath_softc *sc = vap->iv_ic->ic_softc;
3613
3614 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3615 taskqueue_unblock(sc->sc_tq);
3616}
3617
3618static void
3619ath_update_promisc(struct ieee80211com *ic)
3620{
3621 struct ath_softc *sc = ic->ic_softc;
3622 u_int32_t rfilt;
3623
3624 /* configure rx filter */
3625 ATH_LOCK(sc);
3627 rfilt = ath_calcrxfilter(sc);
3628 ath_hal_setrxfilter(sc->sc_ah, rfilt);
3630 ATH_UNLOCK(sc);
3631
3632 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3633}
3634
3635static u_int
3636ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3637{
3638 uint32_t val, *mfilt = arg;
3639 char *dl;
3640 uint8_t pos;
3641
3642 /* calculate XOR of eight 6bit values */
3643 dl = LLADDR(sdl);
3644 val = le32dec(dl + 0);
3645 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3646 val = le32dec(dl + 3);
3647 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3648 pos &= 0x3f;
3649 mfilt[pos / 32] |= (1 << (pos % 32));
3650
3651 return (1);
3652}
3653
3654/*
3655 * Driver-internal mcast update call.
3656 *
3657 * Assumes the hardware is already awake.
3658 */
3659static void
3661{
3662 struct ieee80211com *ic = &sc->sc_ic;
3663 u_int32_t mfilt[2];
3664
3665 /* calculate and install multicast filter */
3666 if (ic->ic_allmulti == 0) {
3667 struct ieee80211vap *vap;
3668
3669 /*
3670 * Merge multicast addresses to form the hardware filter.
3671 */
3672 mfilt[0] = mfilt[1] = 0;
3673 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
3674 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt);
3675 } else
3676 mfilt[0] = mfilt[1] = ~0;
3677
3678 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3679
3680 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3681 __func__, mfilt[0], mfilt[1]);
3682}
3683
3684/*
3685 * Called from the net80211 layer - force the hardware
3686 * awake before operating.
3687 */
3688static void
3689ath_update_mcast(struct ieee80211com *ic)
3690{
3691 struct ath_softc *sc = ic->ic_softc;
3692
3693 ATH_LOCK(sc);
3695 ATH_UNLOCK(sc);
3696
3698
3699 ATH_LOCK(sc);
3701 ATH_UNLOCK(sc);
3702}
3703
3704void
3706{
3707 struct ieee80211com *ic = &sc->sc_ic;
3708 struct ath_hal *ah = sc->sc_ah;
3709 u_int32_t rfilt;
3710
3711 /* XXX power state? */
3712
3713 /* configure rx filter */
3714 rfilt = ath_calcrxfilter(sc);
3715 ath_hal_setrxfilter(ah, rfilt);
3716
3717 /* configure operational mode */
3719
3720 /* handle any link-level address change */
3721 ath_hal_setmac(ah, ic->ic_macaddr);
3722
3723 /* calculate and install multicast filter */
3725}
3726
3727/*
3728 * Set the slot time based on the current setting.
3729 */
3730void
3732{
3733 struct ieee80211com *ic = &sc->sc_ic;
3734 struct ath_hal *ah = sc->sc_ah;
3735 u_int usec;
3736
3737 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3738 usec = 13;
3739 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3740 usec = 21;
3741 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3742 /* honor short/long slot time only in 11g */
3743 /* XXX shouldn't honor on pure g or turbo g channel */
3744 if (ic->ic_flags & IEEE80211_F_SHSLOT)
3745 usec = HAL_SLOT_TIME_9;
3746 else
3747 usec = HAL_SLOT_TIME_20;
3748 } else
3749 usec = HAL_SLOT_TIME_9;
3750
3751 DPRINTF(sc, ATH_DEBUG_RESET,
3752 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3753 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3754 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3755
3756 /* Wake up the hardware first before updating the slot time */
3757 ATH_LOCK(sc);
3759 ath_hal_setslottime(ah, usec);
3761 sc->sc_updateslot = OK;
3762 ATH_UNLOCK(sc);
3763}
3764
3765/*
3766 * Callback from the 802.11 layer to update the
3767 * slot time based on the current setting.
3768 */
3769static void
3770ath_updateslot(struct ieee80211com *ic)
3771{
3772 struct ath_softc *sc = ic->ic_softc;
3773
3774 /*
3775 * When not coordinating the BSS, change the hardware
3776 * immediately. For other operation we defer the change
3777 * until beacon updates have propagated to the stations.
3778 *
3779 * XXX sc_updateslot isn't changed behind a lock?
3780 */
3781 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3782 ic->ic_opmode == IEEE80211_M_MBSS)
3783 sc->sc_updateslot = UPDATE;
3784 else
3785 ath_setslottime(sc);
3786}
3787
3788/*
3789 * Append the contents of src to dst; both queues
3790 * are assumed to be locked.
3791 */
3792void
3793ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3794{
3795
3798
3799 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3800 dst->axq_link = src->axq_link;
3801 src->axq_link = NULL;
3802 dst->axq_depth += src->axq_depth;
3803 dst->axq_aggr_depth += src->axq_aggr_depth;
3804 src->axq_depth = 0;
3805 src->axq_aggr_depth = 0;
3806}
3807
3808/*
3809 * Reset the hardware, with no loss.
3810 *
3811 * This can't be used for a general case reset.
3812 */
3813static void
3814ath_reset_proc(void *arg, int pending)
3815{
3816 struct ath_softc *sc = arg;
3817
3818#if 0
3819 device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3820#endif
3822}
3823
3824/*
3825 * Reset the hardware after detecting beacons have stopped.
3826 */
3827static void
3828ath_bstuck_proc(void *arg, int pending)
3829{
3830 struct ath_softc *sc = arg;
3831 uint32_t hangs = 0;
3832
3833 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3834 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3835
3836#ifdef ATH_DEBUG_ALQ
3838 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3839#endif
3840
3841 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3842 sc->sc_bmisscount);
3843 sc->sc_stats.ast_bstuck++;
3844 /*
3845 * This assumes that there's no simultaneous channel mode change
3846 * occurring.
3847 */
3849}
3850
3851static int
3853{
3854 int error;
3855
3856 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3858 if (error != 0) {
3859 return error;
3860 }
3861 sc->sc_txbuf_cnt = ath_txbuf;
3862
3863 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3864 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3865 ATH_TXDESC);
3866 if (error != 0) {
3867 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3868 return error;
3869 }
3870
3871 /*
3872 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3873 * flag doesn't have to be set in ath_getbuf_locked().
3874 */
3875
3876 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3877 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3878 if (error != 0) {
3879 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3881 &sc->sc_txbuf_mgmt);
3882 return error;
3883 }
3884 return 0;
3885}
3886
3887static void
3889{
3890
3891 if (sc->sc_bdma.dd_desc_len != 0)
3892 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3893 if (sc->sc_txdma.dd_desc_len != 0)
3894 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3895 if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3897 &sc->sc_txbuf_mgmt);
3898}
3899
3900static struct ieee80211_node *
3901ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3902{
3903 struct ieee80211com *ic = vap->iv_ic;
3904 struct ath_softc *sc = ic->ic_softc;
3905 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3906 struct ath_node *an;
3907
3908 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3909 if (an == NULL) {
3910 /* XXX stat+msg */
3911 return NULL;
3912 }
3913 ath_rate_node_init(sc, an);
3914
3915 /* Setup the mutex - there's no associd yet so set the name to NULL */
3916 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3917 device_get_nameunit(sc->sc_dev), an);
3918 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3919
3920 /* XXX setup ath_tid */
3921 ath_tx_tid_init(sc, an);
3922
3926
3927 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3928 return &an->an_node;
3929}
3930
3931static void
3932ath_node_cleanup(struct ieee80211_node *ni)
3933{
3934 struct ieee80211com *ic = ni->ni_ic;
3935 struct ath_softc *sc = ic->ic_softc;
3936
3937 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3938 ni->ni_macaddr, ":", ATH_NODE(ni));
3939
3940 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3941 ath_tx_node_flush(sc, ATH_NODE(ni));
3943 sc->sc_node_cleanup(ni);
3944}
3945
3946static void
3947ath_node_free(struct ieee80211_node *ni)
3948{
3949 struct ieee80211com *ic = ni->ni_ic;
3950 struct ath_softc *sc = ic->ic_softc;
3951
3952 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3953 ni->ni_macaddr, ":", ATH_NODE(ni));
3954 mtx_destroy(&ATH_NODE(ni)->an_mtx);
3955 sc->sc_node_free(ni);
3956}
3957
3958static void
3959ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3960{
3961 struct ieee80211com *ic = ni->ni_ic;
3962 struct ath_softc *sc = ic->ic_softc;
3963 struct ath_hal *ah = sc->sc_ah;
3964
3965 *rssi = ic->ic_node_getrssi(ni);
3966 if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3967 *noise = ath_hal_getchannoise(ah, ni->ni_chan);
3968 else
3969 *noise = -95; /* nominally correct */
3970}
3971
3972/*
3973 * Set the default antenna.
3974 */
3975void
3976ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3977{
3978 struct ath_hal *ah = sc->sc_ah;
3979
3980 /* XXX block beacon interrupts */
3981 ath_hal_setdefantenna(ah, antenna);
3982 if (sc->sc_defant != antenna)
3984 sc->sc_defant = antenna;
3985 sc->sc_rxotherant = 0;
3986}
3987
3988static void
3989ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3990{
3991 txq->axq_qnum = qnum;
3992 txq->axq_ac = 0;
3993 txq->axq_depth = 0;
3994 txq->axq_aggr_depth = 0;
3995 txq->axq_intrcnt = 0;
3996 txq->axq_link = NULL;
3997 txq->axq_softc = sc;
3998 TAILQ_INIT(&txq->axq_q);
3999 TAILQ_INIT(&txq->axq_tidq);
4000 TAILQ_INIT(&txq->fifo.axq_q);
4001 ATH_TXQ_LOCK_INIT(sc, txq);
4002}
4003
4004/*
4005 * Setup a h/w transmit queue.
4006 */
4007static struct ath_txq *
4008ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4009{
4010 struct ath_hal *ah = sc->sc_ah;
4011 HAL_TXQ_INFO qi;
4012 int qnum;
4013
4014 memset(&qi, 0, sizeof(qi));
4015 qi.tqi_subtype = subtype;
4019 /*
4020 * Enable interrupts only for EOL and DESC conditions.
4021 * We mark tx descriptors to receive a DESC interrupt
4022 * when a tx queue gets deep; otherwise waiting for the
4023 * EOL to reap descriptors. Note that this is done to
4024 * reduce interrupt load and this only defers reaping
4025 * descriptors, never transmitting frames. Aside from
4026 * reducing interrupts this also permits more concurrency.
4027 * The only potential downside is if the tx queue backs
4028 * up in which case the top half of the kernel may backup
4029 * due to a lack of tx descriptors.
4030 */
4031 if (sc->sc_isedma)
4034 else
4037
4038 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4039 if (qnum == -1) {
4040 /*
4041 * NB: don't print a message, this happens
4042 * normally on parts with too few tx queues
4043 */
4044 return NULL;
4045 }
4046 if (qnum >= nitems(sc->sc_txq)) {
4047 device_printf(sc->sc_dev,
4048 "hal qnum %u out of range, max %zu!\n",
4049 qnum, nitems(sc->sc_txq));
4050 ath_hal_releasetxqueue(ah, qnum);
4051 return NULL;
4052 }
4053 if (!ATH_TXQ_SETUP(sc, qnum)) {
4054 ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4055 sc->sc_txqsetup |= 1<<qnum;
4056 }
4057 return &sc->sc_txq[qnum];
4058}
4059
4060/*
4061 * Setup a hardware data transmit queue for the specified
4062 * access control. The hal may not support all requested
4063 * queues in which case it will return a reference to a
4064 * previously setup queue. We record the mapping from ac's
4065 * to h/w queues for use by ath_tx_start and also track
4066 * the set of h/w queues being used to optimize work in the
4067 * transmit interrupt handler and related routines.
4068 */
4069static int
4070ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4071{
4072 struct ath_txq *txq;
4073
4074 if (ac >= nitems(sc->sc_ac2q)) {
4075 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4076 ac, nitems(sc->sc_ac2q));
4077 return 0;
4078 }
4079 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4080 if (txq != NULL) {
4081 txq->axq_ac = ac;
4082 sc->sc_ac2q[ac] = txq;
4083 return 1;
4084 } else
4085 return 0;
4086}
4087
4088/*
4089 * Update WME parameters for a transmit queue.
4090 */
4091static int
4092ath_txq_update(struct ath_softc *sc, int ac)
4093{
4094#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
4095 struct ieee80211com *ic = &sc->sc_ic;
4096 struct ath_txq *txq = sc->sc_ac2q[ac];
4097 struct chanAccParams chp;
4098 struct wmeParams *wmep;
4099 struct ath_hal *ah = sc->sc_ah;
4100 HAL_TXQ_INFO qi;
4101
4102 ieee80211_wme_ic_getparams(ic, &chp);
4103 wmep = &chp.cap_wmeParams[ac];
4104
4105 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4106#ifdef IEEE80211_SUPPORT_TDMA
4107 if (sc->sc_tdma) {
4108 /*
4109 * AIFS is zero so there's no pre-transmit wait. The
4110 * burst time defines the slot duration and is configured
4111 * through net80211. The QCU is setup to not do post-xmit
4112 * back off, lockout all lower-priority QCU's, and fire
4113 * off the DMA beacon alert timer which is setup based
4114 * on the slot configuration.
4115 */
4123 ;
4124 qi.tqi_aifs = 0;
4125 /* XXX +dbaprep? */
4128 } else {
4129#endif
4130 /*
4131 * XXX shouldn't this just use the default flags
4132 * used in the previous queue setup?
4133 */
4139 ;
4140 qi.tqi_aifs = wmep->wmep_aifsn;
4141 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4142 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4143 qi.tqi_readyTime = 0;
4144 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4145#ifdef IEEE80211_SUPPORT_TDMA
4146 }
4147#endif
4148
4149 DPRINTF(sc, ATH_DEBUG_RESET,
4150 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4151 __func__, txq->axq_qnum, qi.tqi_qflags,
4152 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4153
4154 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4155 device_printf(sc->sc_dev, "unable to update hardware queue "
4156 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4157 return 0;
4158 } else {
4159 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4160 return 1;
4161 }
4162#undef ATH_EXPONENT_TO_VALUE
4163}
4164
4165/*
4166 * Callback from the 802.11 layer to update WME parameters.
4167 */
4168int
4169ath_wme_update(struct ieee80211com *ic)
4170{
4171 struct ath_softc *sc = ic->ic_softc;
4172
4173 return !ath_txq_update(sc, WME_AC_BE) ||
4174 !ath_txq_update(sc, WME_AC_BK) ||
4175 !ath_txq_update(sc, WME_AC_VI) ||
4176 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4177}
4178
4179/*
4180 * Reclaim resources for a setup queue.
4181 */
4182static void
4183ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4184{
4185
4187 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4189}
4190
4191/*
4192 * Reclaim all tx queue resources.
4193 */
4194static void
4196{
4197 int i;
4198
4200 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4201 if (ATH_TXQ_SETUP(sc, i))
4202 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4203}
4204
4205/*
4206 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4207 * using the current rates in sc_rixmap.
4208 */
4209int
4210ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4211{
4212 int rix = sc->sc_rixmap[rate];
4213 /* NB: return lowest rix for invalid rate */
4214 return (rix == 0xff ? 0 : rix);
4215}
4216
4217static void
4219 struct ath_buf *bf)
4220{
4221 struct ieee80211_node *ni = bf->bf_node;
4222 struct ieee80211com *ic = &sc->sc_ic;
4223 int sr, lr, pri;
4224
4225 if (ts->ts_status == 0) {
4226 u_int8_t txant = ts->ts_antenna;
4227 /*
4228 * Handle weird/corrupted tx antenna field
4229 */
4230 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA)
4231 txant = 0;
4232 sc->sc_stats.ast_ant_tx[txant]++;
4233 sc->sc_ant_tx[txant]++;
4234 if (ts->ts_finaltsi != 0)
4236
4237 /* XXX TODO: should do per-pri conuters */
4238 pri = M_WME_GETAC(bf->bf_m);
4239 if (pri >= WME_AC_VO)
4240 ic->ic_wme.wme_hipri_traffic++;
4241
4242 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4243 ni->ni_inact = ni->ni_inact_reload;
4244 } else {
4245 if (ts->ts_status & HAL_TXERR_XRETRY)
4247 if (ts->ts_status & HAL_TXERR_FIFO)
4249 if (ts->ts_status & HAL_TXERR_FILT)
4251 if (ts->ts_status & HAL_TXERR_XTXOP)
4252 sc->sc_stats.ast_tx_xtxop++;
4255
4256 if (bf->bf_m->m_flags & M_FF)
4257 sc->sc_stats.ast_ff_txerr++;
4258 }
4259 /* XXX when is this valid? */
4260 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4262 /*
4263 * This can be valid for successful frame transmission!
4264 * If there's a TX FIFO underrun during aggregate transmission,
4265 * the MAC will pad the rest of the aggregate with delimiters.
4266 * If a BA is returned, the frame is marked as "OK" and it's up
4267 * to the TX completion code to notice which frames weren't
4268 * successfully transmitted.
4269 */
4274
4275 sr = ts->ts_shortretry;
4276 lr = ts->ts_longretry;
4277 sc->sc_stats.ast_tx_shortretry += sr;
4278 sc->sc_stats.ast_tx_longretry += lr;
4279
4280}
4281
4282/*
4283 * The default completion. If fail is 1, this means
4284 * "please don't retry the frame, and just return -1 status
4285 * to the net80211 stack.
4286 */
4287void
4288ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4289{
4290 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4291 int st;
4292
4293 if (fail == 1)
4294 st = -1;
4295 else
4296 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4298
4299#if 0
4300 if (bf->bf_state.bfs_dobaw)
4301 device_printf(sc->sc_dev,
4302 "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4303 __func__,
4304 bf,
4305 SEQNO(bf->bf_state.bfs_seqno));
4306#endif
4307 if (bf->bf_next != NULL)
4308 device_printf(sc->sc_dev,
4309 "%s: bf %p: seqno %d: bf_next not NULL!\n",
4310 __func__,
4311 bf,
4312 SEQNO(bf->bf_state.bfs_seqno));
4313
4314 /*
4315 * Check if the node software queue is empty; if so
4316 * then clear the TIM.
4317 *
4318 * This needs to be done before the buffer is freed as
4319 * otherwise the node reference will have been released
4320 * and the node may not actually exist any longer.
4321 *
4322 * XXX I don't like this belonging here, but it's cleaner
4323 * to do it here right now then all the other places
4324 * where ath_tx_default_comp() is called.
4325 *
4326 * XXX TODO: during drain, ensure that the callback is
4327 * being called so we get a chance to update the TIM.
4328 */
4329 if (bf->bf_node) {
4330 ATH_TX_LOCK(sc);
4331 ath_tx_update_tim(sc, bf->bf_node, 0);
4332 ATH_TX_UNLOCK(sc);
4333 }
4334
4335 /*
4336 * Do any tx complete callback. Note this must
4337 * be done before releasing the node reference.
4338 * This will free the mbuf, release the net80211
4339 * node and recycle the ath_buf.
4340 */
4341 ath_tx_freebuf(sc, bf, st);
4342}
4343
4344/*
4345 * Update rate control with the given completion status.
4346 */
4347void
4348ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4349 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4350 int rc_framelen, int nframes, int nbad)
4351{
4352 struct ath_node *an;
4353
4354 /* Only for unicast frames */
4355 if (ni == NULL)
4356 return;
4357
4358 an = ATH_NODE(ni);
4360
4361 /*
4362 * XXX TODO: teach the rate control about TXERR_FILT and
4363 * see about handling it (eg see how many attempts were
4364 * made before it got filtered and account for that.)
4365 */
4366
4367 if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4368 ATH_NODE_LOCK(an);
4369 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen,
4370 nframes, nbad);
4371 ATH_NODE_UNLOCK(an);
4372 }
4373}
4374
4375/*
4376 * Process the completion of the given buffer.
4377 *
4378 * This calls the rate control update and then the buffer completion.
4379 * This will either free the buffer or requeue it. In any case, the
4380 * bf pointer should be treated as invalid after this function is called.
4381 */
4382void
4384 struct ath_tx_status *ts, struct ath_buf *bf)
4385{
4386 struct ieee80211_node *ni = bf->bf_node;
4387
4390
4391 /* If unicast frame, update general statistics */
4392 if (ni != NULL) {
4393 /* update statistics */
4394 ath_tx_update_stats(sc, ts, bf);
4395 }
4396
4397 /*
4398 * Call the completion handler.
4399 * The completion handler is responsible for
4400 * calling the rate control code.
4401 *
4402 * Frames with no completion handler get the
4403 * rate control code called here.
4404 */
4405 if (bf->bf_comp == NULL) {
4406 if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4407 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4408 /*
4409 * XXX assume this isn't an aggregate
4410 * frame.
4411 *
4412 * XXX TODO: also do this for filtered frames?
4413 * Once rate control knows about them?
4414 */
4416 bf->bf_state.bfs_rc, ts,
4417 bf->bf_state.bfs_pktlen,
4418 bf->bf_state.bfs_pktlen,
4419 1,
4420 (ts->ts_status == 0 ? 0 : 1));
4421 }
4422 ath_tx_default_comp(sc, bf, 0);
4423 } else
4424 bf->bf_comp(sc, bf, 0);
4425}
4426
4427/*
4428 * Process completed xmit descriptors from the specified queue.
4429 * Kick the packet scheduler if needed. This can occur from this
4430 * particular task.
4431 */
4432static int
4433ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4434{
4435 struct ath_hal *ah = sc->sc_ah;
4436 struct ath_buf *bf;
4437 struct ath_desc *ds;
4438 struct ath_tx_status *ts;
4439 struct ieee80211_node *ni;
4440#ifdef IEEE80211_SUPPORT_SUPERG
4441 struct ieee80211com *ic = &sc->sc_ic;
4442#endif /* IEEE80211_SUPPORT_SUPERG */
4443 int nacked;
4444 HAL_STATUS status;
4445
4446 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4447 __func__, txq->axq_qnum,
4448 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4449 txq->axq_link);
4450
4451 ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4452 "ath_tx_processq: txq=%u head %p link %p depth %p",
4453 txq->axq_qnum,
4454 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4455 txq->axq_link,
4456 txq->axq_depth);
4457
4458 nacked = 0;
4459 for (;;) {
4460 ATH_TXQ_LOCK(txq);
4461 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4462 bf = TAILQ_FIRST(&txq->axq_q);
4463 if (bf == NULL) {
4464 ATH_TXQ_UNLOCK(txq);
4465 break;
4466 }
4467 ds = bf->bf_lastds; /* XXX must be setup correctly! */
4468 ts = &bf->bf_status.ds_txstat;
4469
4470 status = ath_hal_txprocdesc(ah, ds, ts);
4471#ifdef ATH_DEBUG
4472 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4473 ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4474 status == HAL_OK);
4475 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4476 ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4477 status == HAL_OK);
4478#endif
4479#ifdef ATH_DEBUG_ALQ
4480 if (if_ath_alq_checkdebug(&sc->sc_alq,
4483 sc->sc_tx_statuslen,
4484 (char *) ds);
4485 }
4486#endif
4487
4488 if (status == HAL_EINPROGRESS) {
4489 ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4490 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4491 txq->axq_qnum, bf, ds);
4492 ATH_TXQ_UNLOCK(txq);
4493 break;
4494 }
4495 ATH_TXQ_REMOVE(txq, bf, bf_list);
4496
4497 /*
4498 * Sanity check.
4499 */
4500 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4501 device_printf(sc->sc_dev,
4502 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4503 __func__,
4504 txq->axq_qnum,
4505 bf,
4507 }
4508 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4509 device_printf(sc->sc_dev,
4510 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4511 __func__,
4512 txq->axq_qnum,
4513 bf->bf_last,
4515 }
4516
4517#if 0
4518 if (txq->axq_depth > 0) {
4519 /*
4520 * More frames follow. Mark the buffer busy
4521 * so it's not re-used while the hardware may
4522 * still re-read the link field in the descriptor.
4523 *
4524 * Use the last buffer in an aggregate as that
4525 * is where the hardware may be - intermediate
4526 * descriptors won't be "busy".
4527 */
4529 } else
4530 txq->axq_link = NULL;
4531#else
4533#endif
4534 if (bf->bf_state.bfs_aggr)
4535 txq->axq_aggr_depth--;
4536
4537 ni = bf->bf_node;
4538
4539 ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4540 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4541 txq->axq_qnum, bf, ds, ni, ts->ts_status);
4542 /*
4543 * If unicast frame was ack'd update RSSI,
4544 * including the last rx time used to
4545 * workaround phantom bmiss interrupts.
4546 */
4547 if (ni != NULL && ts->ts_status == 0 &&
4548 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4549 nacked++;
4550 sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4552 ts->ts_rssi);
4553 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
4554 ts->ts_rssi);
4555 }
4556 ATH_TXQ_UNLOCK(txq);
4557
4558 /*
4559 * Update statistics and call completion
4560 */
4561 ath_tx_process_buf_completion(sc, txq, ts, bf);
4562
4563 /* XXX at this point, bf and ni may be totally invalid */
4564 }
4565#ifdef IEEE80211_SUPPORT_SUPERG
4566 /*
4567 * Flush fast-frame staging queue when traffic slows.
4568 */
4569 if (txq->axq_depth <= 1)
4570 ieee80211_ff_flush(ic, txq->axq_ac);
4571#endif
4572
4573 /* Kick the software TXQ scheduler */
4574 if (dosched) {
4575 ATH_TX_LOCK(sc);
4576 ath_txq_sched(sc, txq);
4577 ATH_TX_UNLOCK(sc);
4578 }
4579
4580 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4581 "ath_tx_processq: txq=%u: done",
4582 txq->axq_qnum);
4583
4584 return nacked;
4585}
4586
4587#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
4588
4589/*
4590 * Deferred processing of transmit interrupt; special-cased
4591 * for a single hardware transmit queue (e.g. 5210 and 5211).
4592 */
4593static void
4594ath_tx_proc_q0(void *arg, int npending)
4595{
4596 struct ath_softc *sc = arg;
4597 uint32_t txqs;
4598
4599 ATH_PCU_LOCK(sc);
4600 sc->sc_txproc_cnt++;
4601 txqs = sc->sc_txq_active;
4602 sc->sc_txq_active &= ~txqs;
4603 ATH_PCU_UNLOCK(sc);
4604
4605 ATH_LOCK(sc);
4607 ATH_UNLOCK(sc);
4608
4609 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4610 "ath_tx_proc_q0: txqs=0x%08x", txqs);
4611
4612 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4613 /* XXX why is lastrx updated in tx code? */
4614 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4615 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4616 ath_tx_processq(sc, sc->sc_cabq, 1);
4617 sc->sc_wd_timer = 0;
4618
4619 if (sc->sc_softled)
4620 ath_led_event(sc, sc->sc_txrix);
4621
4622 ATH_PCU_LOCK(sc);
4623 sc->sc_txproc_cnt--;
4624 ATH_PCU_UNLOCK(sc);
4625
4626 ATH_LOCK(sc);
4628 ATH_UNLOCK(sc);
4629
4630 ath_tx_kick(sc);
4631}
4632
4633/*
4634 * Deferred processing of transmit interrupt; special-cased
4635 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4636 */
4637static void
4638ath_tx_proc_q0123(void *arg, int npending)
4639{
4640 struct ath_softc *sc = arg;
4641 int nacked;
4642 uint32_t txqs;
4643
4644 ATH_PCU_LOCK(sc);
4645 sc->sc_txproc_cnt++;
4646 txqs = sc->sc_txq_active;
4647 sc->sc_txq_active &= ~txqs;
4648 ATH_PCU_UNLOCK(sc);
4649
4650 ATH_LOCK(sc);
4652 ATH_UNLOCK(sc);
4653
4654 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4655 "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4656
4657 /*
4658 * Process each active queue.
4659 */
4660 nacked = 0;
4661 if (TXQACTIVE(txqs, 0))
4662 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4663 if (TXQACTIVE(txqs, 1))
4664 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4665 if (TXQACTIVE(txqs, 2))
4666 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4667 if (TXQACTIVE(txqs, 3))
4668 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4669 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4670 ath_tx_processq(sc, sc->sc_cabq, 1);
4671 if (nacked)
4672 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4673
4674 sc->sc_wd_timer = 0;
4675
4676 if (sc->sc_softled)
4677 ath_led_event(sc, sc->sc_txrix);
4678
4679 ATH_PCU_LOCK(sc);
4680 sc->sc_txproc_cnt--;
4681 ATH_PCU_UNLOCK(sc);
4682
4683 ATH_LOCK(sc);
4685 ATH_UNLOCK(sc);
4686
4687 ath_tx_kick(sc);
4688}
4689
4690/*
4691 * Deferred processing of transmit interrupt.
4692 */
4693static void
4694ath_tx_proc(void *arg, int npending)
4695{
4696 struct ath_softc *sc = arg;
4697 int i, nacked;
4698 uint32_t txqs;
4699
4700 ATH_PCU_LOCK(sc);
4701 sc->sc_txproc_cnt++;
4702 txqs = sc->sc_txq_active;
4703 sc->sc_txq_active &= ~txqs;
4704 ATH_PCU_UNLOCK(sc);
4705
4706 ATH_LOCK(sc);
4708 ATH_UNLOCK(sc);
4709
4710 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4711
4712 /*
4713 * Process each active queue.
4714 */
4715 nacked = 0;
4716 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4717 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4718 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4719 if (nacked)
4720 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4721
4722 sc->sc_wd_timer = 0;
4723
4724 if (sc->sc_softled)
4725 ath_led_event(sc, sc->sc_txrix);
4726
4727 ATH_PCU_LOCK(sc);
4728 sc->sc_txproc_cnt--;
4729 ATH_PCU_UNLOCK(sc);
4730
4731 ATH_LOCK(sc);
4733 ATH_UNLOCK(sc);
4734
4735 ath_tx_kick(sc);
4736}
4737#undef TXQACTIVE
4738
4739/*
4740 * Deferred processing of TXQ rescheduling.
4741 */
4742static void
4743ath_txq_sched_tasklet(void *arg, int npending)
4744{
4745 struct ath_softc *sc = arg;
4746 int i;
4747
4748 /* XXX is skipping ok? */
4749 ATH_PCU_LOCK(sc);
4750#if 0
4751 if (sc->sc_inreset_cnt > 0) {
4752 device_printf(sc->sc_dev,
4753 "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4754 ATH_PCU_UNLOCK(sc);
4755 return;
4756 }
4757#endif
4758 sc->sc_txproc_cnt++;
4759 ATH_PCU_UNLOCK(sc);
4760
4761 ATH_LOCK(sc);
4763 ATH_UNLOCK(sc);
4764
4765 ATH_TX_LOCK(sc);
4766 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4767 if (ATH_TXQ_SETUP(sc, i)) {
4768 ath_txq_sched(sc, &sc->sc_txq[i]);
4769 }
4770 }
4771 ATH_TX_UNLOCK(sc);
4772
4773 ATH_LOCK(sc);
4775 ATH_UNLOCK(sc);
4776
4777 ATH_PCU_LOCK(sc);
4778 sc->sc_txproc_cnt--;
4779 ATH_PCU_UNLOCK(sc);
4780}
4781
4782void
4783ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4784{
4785
4787
4788 if (bf->bf_flags & ATH_BUF_MGMT)
4789 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4790 else {
4791 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4792 sc->sc_txbuf_cnt++;
4793 if (sc->sc_txbuf_cnt > ath_txbuf) {
4794 device_printf(sc->sc_dev,
4795 "%s: sc_txbuf_cnt > %d?\n",
4796 __func__,
4797 ath_txbuf);
4798 sc->sc_txbuf_cnt = ath_txbuf;
4799 }
4800 }
4801}
4802
4803void
4804ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4805{
4806
4808
4809 if (bf->bf_flags & ATH_BUF_MGMT)
4810 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4811 else {
4812 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4813 sc->sc_txbuf_cnt++;
4814 if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4815 device_printf(sc->sc_dev,
4816 "%s: sc_txbuf_cnt > %d?\n",
4817 __func__,
4818 ATH_TXBUF);
4819 sc->sc_txbuf_cnt = ATH_TXBUF;
4820 }
4821 }
4822}
4823
4824/*
4825 * Free the holding buffer if it exists
4826 */
4827void
4829{
4832
4833 if (txq->axq_holdingbf == NULL)
4834 return;
4835
4836 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4837
4838 ATH_TXBUF_LOCK(sc);
4840 ATH_TXBUF_UNLOCK(sc);
4841
4842 txq->axq_holdingbf = NULL;
4843}
4844
4845/*
4846 * Add this buffer to the holding queue, freeing the previous
4847 * one if it exists.
4848 */
4849static void
4851{
4852 struct ath_txq *txq;
4853
4854 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4855
4858
4859 /* XXX assert ATH_BUF_BUSY is set */
4860
4861 /* XXX assert the tx queue is under the max number */
4863 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4864 __func__,
4865 bf,
4867 bf->bf_flags &= ~ATH_BUF_BUSY;
4868 ath_returnbuf_tail(sc, bf);
4869 return;
4870 }
4871 ath_txq_freeholdingbuf(sc, txq);
4872 txq->axq_holdingbf = bf;
4873}
4874
4875/*
4876 * Return a buffer to the pool and update the 'busy' flag on the
4877 * previous 'tail' entry.
4878 *
4879 * This _must_ only be called when the buffer is involved in a completed
4880 * TX. The logic is that if it was part of an active TX, the previous
4881 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4882 * for restart (eg for TDMA.)
4883 *
4884 * The caller must free the mbuf and recycle the node reference.
4885 *
4886 * XXX This method of handling busy / holding buffers is insanely stupid.
4887 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would
4888 * be much nicer if buffers in the processq() methods would instead be
4889 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4890 * exactly what hardware queue they came from in the first place.
4891 */
4892void
4893ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4894{
4895 struct ath_txq *txq;
4896
4897 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4898
4899 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4900 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4901
4902 /*
4903 * If this buffer is busy, push it onto the holding queue.
4904 */
4905 if (bf->bf_flags & ATH_BUF_BUSY) {
4906 ATH_TXQ_LOCK(txq);
4907 ath_txq_addholdingbuf(sc, bf);
4908 ATH_TXQ_UNLOCK(txq);
4909 return;
4910 }
4911
4912 /*
4913 * Not a busy buffer, so free normally
4914 */
4915 ATH_TXBUF_LOCK(sc);
4916 ath_returnbuf_tail(sc, bf);
4917 ATH_TXBUF_UNLOCK(sc);
4918}
4919
4920/*
4921 * This is currently used by ath_tx_draintxq() and
4922 * ath_tx_tid_free_pkts().
4923 *
4924 * It recycles a single ath_buf.
4925 */
4926void
4927ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4928{
4929 struct ieee80211_node *ni = bf->bf_node;
4930 struct mbuf *m0 = bf->bf_m;
4931
4932 /*
4933 * Make sure that we only sync/unload if there's an mbuf.
4934 * If not (eg we cloned a buffer), the unload will have already
4935 * occurred.
4936 */
4937 if (bf->bf_m != NULL) {
4938 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4939 BUS_DMASYNC_POSTWRITE);
4940 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4941 }
4942
4943 bf->bf_node = NULL;
4944 bf->bf_m = NULL;
4945
4946 /* Free the buffer, it's not needed any longer */
4947 ath_freebuf(sc, bf);
4948
4949 /* Pass the buffer back to net80211 - completing it */
4950 ieee80211_tx_complete(ni, m0, status);
4951}
4952
4953static struct ath_buf *
4955{
4956 struct ath_buf *bf;
4957
4959
4960 /*
4961 * Drain the FIFO queue first, then if it's
4962 * empty, move to the normal frame queue.
4963 */
4964 bf = TAILQ_FIRST(&txq->fifo.axq_q);
4965 if (bf != NULL) {
4966 /*
4967 * Is it the last buffer in this set?
4968 * Decrement the FIFO counter.
4969 */
4970 if (bf->bf_flags & ATH_BUF_FIFOEND) {
4971 if (txq->axq_fifo_depth == 0) {
4972 device_printf(sc->sc_dev,
4973 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4974 __func__,
4975 txq->axq_qnum,
4976 txq->fifo.axq_depth);
4977 } else
4978 txq->axq_fifo_depth--;
4979 }
4980 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4981 return (bf);
4982 }
4983
4984 /*
4985 * Debugging!
4986 */
4987 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4988 device_printf(sc->sc_dev,
4989 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4990 __func__,
4991 txq->axq_qnum,
4992 txq->axq_fifo_depth,
4993 txq->fifo.axq_depth);
4994 }
4995
4996 /*
4997 * Now drain the pending queue.
4998 */
4999 bf = TAILQ_FIRST(&txq->axq_q);
5000 if (bf == NULL) {
5001 txq->axq_link = NULL;
5002 return (NULL);
5003 }
5004 ATH_TXQ_REMOVE(txq, bf, bf_list);
5005 return (bf);
5006}
5007
5008void
5009ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5010{
5011#ifdef ATH_DEBUG
5012 struct ath_hal *ah = sc->sc_ah;
5013#endif
5014 struct ath_buf *bf;
5015 u_int ix;
5016
5017 /*
5018 * NB: this assumes output has been stopped and
5019 * we do not need to block ath_tx_proc
5020 */
5021 for (ix = 0;; ix++) {
5022 ATH_TXQ_LOCK(txq);
5023 bf = ath_tx_draintxq_get_one(sc, txq);
5024 if (bf == NULL) {
5025 ATH_TXQ_UNLOCK(txq);
5026 break;
5027 }
5028 if (bf->bf_state.bfs_aggr)
5029 txq->axq_aggr_depth--;
5030#ifdef ATH_DEBUG
5031 if (sc->sc_debug & ATH_DEBUG_RESET) {
5032 struct ieee80211com *ic = &sc->sc_ic;
5033 int status = 0;
5034
5035 /*
5036 * EDMA operation has a TX completion FIFO
5037 * separate from the TX descriptor, so this
5038 * method of checking the "completion" status
5039 * is wrong.
5040 */
5041 if (! sc->sc_isedma) {
5042 status = (ath_hal_txprocdesc(ah,
5043 bf->bf_lastds,
5044 &bf->bf_status.ds_txstat) == HAL_OK);
5045 }
5046 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5047 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5048 bf->bf_m->m_len, 0, -1);
5049 }
5050#endif /* ATH_DEBUG */
5051 /*
5052 * Since we're now doing magic in the completion
5053 * functions, we -must- call it for aggregation
5054 * destinations or BAW tracking will get upset.
5055 */
5056 /*
5057 * Clear ATH_BUF_BUSY; the completion handler
5058 * will free the buffer.
5059 */
5060 ATH_TXQ_UNLOCK(txq);
5061 bf->bf_flags &= ~ATH_BUF_BUSY;
5062 if (bf->bf_comp)
5063 bf->bf_comp(sc, bf, 1);
5064 else
5065 ath_tx_default_comp(sc, bf, 1);
5066 }
5067
5068 /*
5069 * Free the holding buffer if it exists
5070 */
5071 ATH_TXQ_LOCK(txq);
5072 ath_txq_freeholdingbuf(sc, txq);
5073 ATH_TXQ_UNLOCK(txq);
5074
5075 /*
5076 * Drain software queued frames which are on
5077 * active TIDs.
5078 */
5079 ath_tx_txq_drain(sc, txq);
5080}
5081
5082static void
5083ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5084{
5085 struct ath_hal *ah = sc->sc_ah;
5086
5088
5089 DPRINTF(sc, ATH_DEBUG_RESET,
5090 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5091 "link %p, holdingbf=%p\n",
5092 __func__,
5093 txq->axq_qnum,
5094 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5095 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5096 (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5097 txq->axq_flags,
5098 txq->axq_link,
5099 txq->axq_holdingbf);
5100
5101 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5102 /* We've stopped TX DMA, so mark this as stopped. */
5103 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5104
5105#ifdef ATH_DEBUG
5106 if ((sc->sc_debug & ATH_DEBUG_RESET)
5107 && (txq->axq_holdingbf != NULL)) {
5108 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5109 }
5110#endif
5111}
5112
5113int
5115{
5116 struct ath_hal *ah = sc->sc_ah;
5117 int i;
5118
5119 /* XXX return value */
5120 if (sc->sc_invalid)
5121 return 0;
5122
5123 if (!sc->sc_invalid) {
5124 /* don't touch the hardware if marked invalid */
5125 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5126 __func__, sc->sc_bhalq,
5127 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5128 NULL);
5129
5130 /* stop the beacon queue */
5131 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5132
5133 /* Stop the data queues */
5134 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5135 if (ATH_TXQ_SETUP(sc, i)) {
5136 ATH_TXQ_LOCK(&sc->sc_txq[i]);
5137 ath_tx_stopdma(sc, &sc->sc_txq[i]);
5138 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5139 }
5140 }
5141 }
5142
5143 return 1;
5144}
5145
5146#ifdef ATH_DEBUG
5147void
5148ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5149{
5150 struct ath_hal *ah = sc->sc_ah;
5151 struct ath_buf *bf;
5152 int i = 0;
5153
5154 if (! (sc->sc_debug & ATH_DEBUG_RESET))
5155 return;
5156
5157 device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5158 __func__, txq->axq_qnum);
5159 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5160 ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5162 &bf->bf_status.ds_txstat) == HAL_OK);
5163 i++;
5164 }
5165 device_printf(sc->sc_dev, "%s: Q%d: end\n",
5166 __func__, txq->axq_qnum);
5167}
5168#endif /* ATH_DEBUG */
5169
5170/*
5171 * Drain the transmit queues and reclaim resources.
5172 */
5173void
5175{
5176 struct ath_hal *ah = sc->sc_ah;
5177 struct ath_buf *bf_last;
5178 int i;
5179
5180 (void) ath_stoptxdma(sc);
5181
5182 /*
5183 * Dump the queue contents
5184 */
5185 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5186 /*
5187 * XXX TODO: should we just handle the completed TX frames
5188 * here, whether or not the reset is a full one or not?
5189 */
5190 if (ATH_TXQ_SETUP(sc, i)) {
5191#ifdef ATH_DEBUG
5192 if (sc->sc_debug & ATH_DEBUG_RESET)
5193 ath_tx_dump(sc, &sc->sc_txq[i]);
5194#endif /* ATH_DEBUG */
5195 if (reset_type == ATH_RESET_NOLOSS) {
5196 ath_tx_processq(sc, &sc->sc_txq[i], 0);
5197 ATH_TXQ_LOCK(&sc->sc_txq[i]);
5198 /*
5199 * Free the holding buffer; DMA is now
5200 * stopped.
5201 */
5202 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5203 /*
5204 * Setup the link pointer to be the
5205 * _last_ buffer/descriptor in the list.
5206 * If there's nothing in the list, set it
5207 * to NULL.
5208 */
5209 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5210 axq_q_s);
5211 if (bf_last != NULL) {
5214 &sc->sc_txq[i].axq_link);
5215 } else {
5216 sc->sc_txq[i].axq_link = NULL;
5217 }
5218 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5219 } else
5220 ath_tx_draintxq(sc, &sc->sc_txq[i]);
5221 }
5222 }
5223#ifdef ATH_DEBUG
5224 if (sc->sc_debug & ATH_DEBUG_RESET) {
5225 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5226 if (bf != NULL && bf->bf_m != NULL) {
5227 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5229 &bf->bf_status.ds_txstat) == HAL_OK);
5230 ieee80211_dump_pkt(&sc->sc_ic,
5231 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5232 0, -1);
5233 }
5234 }
5235#endif /* ATH_DEBUG */
5236 sc->sc_wd_timer = 0;
5237}
5238
5239/*
5240 * Update internal state after a channel change.
5241 */
5242static void
5243ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5244{
5245 enum ieee80211_phymode mode;
5246
5247 /*
5248 * Change channels and update the h/w rate map
5249 * if we're switching; e.g. 11a to 11b/g.
5250 */
5251 mode = ieee80211_chan2mode(chan);
5252 if (mode != sc->sc_curmode)
5253 ath_setcurmode(sc, mode);
5254 sc->sc_curchan = chan;
5255}
5256
5257/*
5258 * Set/change channels. If the channel is really being changed,
5259 * it's done by resetting the chip. To accomplish this we must
5260 * first cleanup any pending DMA, then restart stuff after a la
5261 * ath_init.
5262 */
5263static int
5264ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5265{
5266 struct ieee80211com *ic = &sc->sc_ic;
5267 struct ath_hal *ah = sc->sc_ah;
5268 int ret = 0;
5269
5270 /* Treat this as an interface reset */
5273
5274 /* (Try to) stop TX/RX from occurring */
5275 taskqueue_block(sc->sc_tq);
5276
5277 ATH_PCU_LOCK(sc);
5278
5279 /* Disable interrupts */
5280 ath_hal_intrset(ah, 0);
5281
5282 /* Stop new RX/TX/interrupt completion */
5283 if (ath_reset_grablock(sc, 1) == 0) {
5284 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5285 __func__);
5286 }
5287
5288 /* Stop pending RX/TX completion */
5290
5291 ATH_PCU_UNLOCK(sc);
5292
5293 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5294 __func__, ieee80211_chan2ieee(ic, chan),
5295 chan->ic_freq, chan->ic_flags);
5296 if (chan != sc->sc_curchan) {
5297 HAL_STATUS status;
5298 /*
5299 * To switch channels clear any pending DMA operations;
5300 * wait long enough for the RX fifo to drain, reset the
5301 * hardware at the new frequency, and then re-enable
5302 * the relevant bits of the h/w.
5303 */
5304#if 0
5305 ath_hal_intrset(ah, 0); /* disable interrupts */
5306#endif
5307 ath_stoprecv(sc, 1); /* turn off frame recv */
5308 /*
5309 * First, handle completed TX/RX frames.
5310 */
5311 ath_rx_flush(sc);
5313 /*
5314 * Next, flush the non-scheduled frames.
5315 */
5316 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
5317
5318 ath_update_chainmasks(sc, chan);
5320 sc->sc_cur_rxchainmask);
5321 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5322 HAL_RESET_NORMAL, &status)) {
5323 device_printf(sc->sc_dev, "%s: unable to reset "
5324 "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5325 __func__, ieee80211_chan2ieee(ic, chan),
5326 chan->ic_freq, chan->ic_flags, status);
5327 ret = EIO;
5328 goto finish;
5329 }
5331
5332 ATH_RX_LOCK(sc);
5333 sc->sc_rx_stopped = 1;
5334 sc->sc_rx_resetted = 1;
5335 ATH_RX_UNLOCK(sc);
5336
5337 /* Quiet time handling - ensure we resync */
5339
5340 /* Let DFS at it in case it's a DFS channel */
5341 ath_dfs_radar_enable(sc, chan);
5342
5343 /* Let spectral at in case spectral is enabled */
5344 ath_spectral_enable(sc, chan);
5345
5346 /*
5347 * Let bluetooth coexistence at in case it's needed for this
5348 * channel
5349 */
5350 ath_btcoex_enable(sc, ic->ic_curchan);
5351
5352 /*
5353 * If we're doing TDMA, enforce the TXOP limitation for chips
5354 * that support it.
5355 */
5356 if (sc->sc_hasenforcetxop && sc->sc_tdma)
5358 else
5360
5361 /*
5362 * Re-enable rx framework.
5363 */
5364 if (ath_startrecv(sc) != 0) {
5365 device_printf(sc->sc_dev,
5366 "%s: unable to restart recv logic\n", __func__);
5367 ret = EIO;
5368 goto finish;
5369 }
5370
5371 /*
5372 * Change channels and update the h/w rate map
5373 * if we're switching; e.g. 11a to 11b/g.
5374 */
5375 ath_chan_change(sc, chan);
5376
5377 /*
5378 * Reset clears the beacon timers; reset them
5379 * here if needed.
5380 */
5381 if (sc->sc_beacons) { /* restart beacons */
5382#ifdef IEEE80211_SUPPORT_TDMA
5383 if (sc->sc_tdma)
5384 ath_tdma_config(sc, NULL);
5385 else
5386#endif
5387 ath_beacon_config(sc, NULL);
5388 }
5389
5390 /*
5391 * Re-enable interrupts.
5392 */
5393#if 0
5394 ath_hal_intrset(ah, sc->sc_imask);
5395#endif
5396 }
5397
5398finish:
5399 ATH_PCU_LOCK(sc);
5400 sc->sc_inreset_cnt--;
5401 /* XXX only do this if sc_inreset_cnt == 0? */
5402 ath_hal_intrset(ah, sc->sc_imask);
5403 ATH_PCU_UNLOCK(sc);
5404
5405 ath_txrx_start(sc);
5406 /* XXX ath_start? */
5407
5408 return ret;
5409}
5410
5411/*
5412 * Periodically recalibrate the PHY to account
5413 * for temperature/environment changes.
5414 */
5415static void
5417{
5418 struct ath_softc *sc = arg;
5419 struct ath_hal *ah = sc->sc_ah;
5420 struct ieee80211com *ic = &sc->sc_ic;
5421 HAL_BOOL longCal, isCalDone = AH_TRUE;
5422 HAL_BOOL aniCal, shortCal = AH_FALSE;
5423 int nextcal;
5424
5425 ATH_LOCK_ASSERT(sc);
5426
5427 /*
5428 * Force the hardware awake for ANI work.
5429 */
5431
5432 /* Skip trying to do this if we're in reset */
5433 if (sc->sc_inreset_cnt)
5434 goto restart;
5435
5436 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
5437 goto restart;
5438 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5439 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5440 if (sc->sc_doresetcal)
5441 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5442
5443 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5444 if (aniCal) {
5445 sc->sc_stats.ast_ani_cal++;
5446 sc->sc_lastani = ticks;
5448 }
5449
5450 if (longCal) {
5451 sc->sc_stats.ast_per_cal++;
5452 sc->sc_lastlongcal = ticks;
5454 /*
5455 * Rfgain is out of bounds, reset the chip
5456 * to load new gain values.
5457 */
5458 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5459 "%s: rfgain change\n", __func__);
5461 sc->sc_resetcal = 0;
5462 sc->sc_doresetcal = AH_TRUE;
5463 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5464 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5466 return;
5467 }
5468 /*
5469 * If this long cal is after an idle period, then
5470 * reset the data collection state so we start fresh.
5471 */
5472 if (sc->sc_resetcal) {
5473 (void) ath_hal_calreset(ah, sc->sc_curchan);
5474 sc->sc_lastcalreset = ticks;
5475 sc->sc_lastshortcal = ticks;
5476 sc->sc_resetcal = 0;
5477 sc->sc_doresetcal = AH_TRUE;
5478 }
5479 }
5480
5481 /* Only call if we're doing a short/long cal, not for ANI calibration */
5482 if (shortCal || longCal) {
5483 isCalDone = AH_FALSE;
5484 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5485 if (longCal) {
5486 /*
5487 * Calibrate noise floor data again in case of change.
5488 */
5490 }
5491 } else {
5492 DPRINTF(sc, ATH_DEBUG_ANY,
5493 "%s: calibration of channel %u failed\n",
5494 __func__, sc->sc_curchan->ic_freq);
5496 }
5497 /*
5498 * XXX TODO: get the NF calibration results from the HAL.
5499 * If we failed NF cal then schedule a hard reset to potentially
5500 * un-freeze the PHY.
5501 *
5502 * Note we have to be careful here to not get stuck in an
5503 * infinite NIC restart. Ideally we'd not restart if we
5504 * failed the first NF cal - that /can/ fail sometimes in
5505 * a noisy environment.
5506 *
5507 * Instead, we should likely temporarily shorten the longCal
5508 * period to happen pretty quickly and if a subsequent one
5509 * fails, do a full reset.
5510 */
5511 if (shortCal)
5512 sc->sc_lastshortcal = ticks;
5513 }
5514 if (!isCalDone) {
5515restart:
5516 /*
5517 * Use a shorter interval to potentially collect multiple
5518 * data samples required to complete calibration. Once
5519 * we're told the work is done we drop back to a longer
5520 * interval between requests. We're more aggressive doing
5521 * work when operating as an AP to improve operation right
5522 * after startup.
5523 */
5524 sc->sc_lastshortcal = ticks;
5525 nextcal = ath_shortcalinterval*hz/1000;
5526 if (sc->sc_opmode != HAL_M_HOSTAP)
5527 nextcal *= 10;
5528 sc->sc_doresetcal = AH_TRUE;
5529 } else {
5530 /* nextcal should be the shortest time for next event */
5531 nextcal = ath_longcalinterval*hz;
5532 if (sc->sc_lastcalreset == 0)
5534 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5535 sc->sc_resetcal = 1; /* setup reset next trip */
5536 sc->sc_doresetcal = AH_FALSE;
5537 }
5538 /* ANI calibration may occur more often than short/long/resetcal */
5539 if (ath_anicalinterval > 0)
5540 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5541
5542 if (nextcal != 0) {
5543 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5544 __func__, nextcal, isCalDone ? "" : "!");
5545 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5546 } else {
5547 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5548 __func__);
5549 /* NB: don't rearm timer */
5550 }
5551 /*
5552 * Restore power state now that we're done.
5553 */
5555}
5556
5557static void
5558ath_scan_start(struct ieee80211com *ic)
5559{
5560 struct ath_softc *sc = ic->ic_softc;
5561 struct ath_hal *ah = sc->sc_ah;
5562 u_int32_t rfilt;
5563
5564 /* XXX calibration timer? */
5565 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5566
5567 ATH_LOCK(sc);
5568 sc->sc_scanning = 1;
5569 sc->sc_syncbeacon = 0;
5570 rfilt = ath_calcrxfilter(sc);
5571 ATH_UNLOCK(sc);
5572
5573 ATH_PCU_LOCK(sc);
5574 ath_hal_setrxfilter(ah, rfilt);
5575 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5576 ATH_PCU_UNLOCK(sc);
5577
5578 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5579 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5580}
5581
5582static void
5583ath_scan_end(struct ieee80211com *ic)
5584{
5585 struct ath_softc *sc = ic->ic_softc;
5586 struct ath_hal *ah = sc->sc_ah;
5587 u_int32_t rfilt;
5588
5589 ATH_LOCK(sc);
5590 sc->sc_scanning = 0;
5591 rfilt = ath_calcrxfilter(sc);
5592 ATH_UNLOCK(sc);
5593
5594 ATH_PCU_LOCK(sc);
5595 ath_hal_setrxfilter(ah, rfilt);
5597
5599 ATH_PCU_UNLOCK(sc);
5600
5601 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5602 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5603 sc->sc_curaid);
5604}
5605
5606#ifdef ATH_ENABLE_11N
5607/*
5608 * For now, just do a channel change.
5609 *
5610 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5611 * control state and resetting the hardware without dropping frames out
5612 * of the queue.
5613 *
5614 * The unfortunate trouble here is making absolutely sure that the
5615 * channel width change has propagated enough so the hardware
5616 * absolutely isn't handed bogus frames for it's current operating
5617 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5618 * does occur in parallel, we need to make certain we've blocked
5619 * any further ongoing TX (and RX, that can cause raw TX)
5620 * before we do this.
5621 */
5622static void
5623ath_update_chw(struct ieee80211com *ic)
5624{
5625 struct ath_softc *sc = ic->ic_softc;
5626
5627 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5628 device_printf(sc->sc_dev, "%s: called\n", __func__);
5629
5630 /*
5631 * XXX TODO: schedule a tasklet that stops things without freeing,
5632 * walks the now stopped TX queue(s) looking for frames to retry
5633 * as if we TX filtered them (whch may mean dropping non-ampdu frames!)
5634 * but okay) then place them back on the software queue so they
5635 * can have the rate control lookup done again.
5636 */
5637 ath_set_channel(ic);
5638}
5639#endif /* ATH_ENABLE_11N */
5640
5641/*
5642 * This is called by the beacon parsing routine in the receive
5643 * path to update the current quiet time information provided by
5644 * an AP.
5645 *
5646 * This is STA specific, it doesn't take the AP TBTT/beacon slot
5647 * offset into account.
5648 *
5649 * The quiet IE doesn't control the /now/ beacon interval - it
5650 * controls the upcoming beacon interval. So, when tbtt=1,
5651 * the quiet element programming shall be for the next beacon
5652 * interval. There's no tbtt=0 behaviour defined, so don't.
5653 *
5654 * Since we're programming the next quiet interval, we have
5655 * to keep in mind what we will see when the next beacon
5656 * is received with potentially a quiet IE. For example, if
5657 * quiet_period is 1, then we are always getting a quiet interval
5658 * each TBTT - so if we just program it in upon each beacon received,
5659 * it will constantly reflect the "next" TBTT and we will never
5660 * let the counter stay programmed correctly.
5661 *
5662 * So:
5663 * + the first time we see the quiet IE, program it and store
5664 * the details somewhere;
5665 * + if the quiet parameters don't change (ie, period/duration/offset)
5666 * then just leave the programming enabled;
5667 * + (we can "skip" beacons, so don't try to enforce tbttcount unless
5668 * you're willing to also do the skipped beacon math);
5669 * + if the quiet IE is removed, then halt quiet time.
5670 */
5671static int
5672ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
5673{
5674 struct ieee80211_quiet_ie *q;
5675 struct ieee80211vap *vap = ni->ni_vap;
5676 struct ath_vap *avp = ATH_VAP(vap);
5677 struct ieee80211com *ic = vap->iv_ic;
5678 struct ath_softc *sc = ic->ic_softc;
5679
5680 if (vap->iv_opmode != IEEE80211_M_STA)
5681 return (0);
5682
5683 /* Verify we have a quiet time IE */
5684 if (ie == NULL) {
5685 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5686 "%s: called; NULL IE, disabling\n", __func__);
5687
5689 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
5690 return (0);
5691 }
5692
5693 /* If we do, verify it's actually legit */
5694 if (ie[0] != IEEE80211_ELEMID_QUIET)
5695 return 0;
5696 if (ie[1] != 6)
5697 return 0;
5698
5699 /* Note: this belongs in net80211, parsed out and everything */
5700 q = (void *) ie;
5701
5702 /*
5703 * Compare what we have stored to what we last saw.
5704 * If they're the same then don't program in anything.
5705 */
5706 if ((q->period == avp->quiet_ie.period) &&
5707 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
5708 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
5709 return (0);
5710
5711 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5712 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
5713 __func__,
5714 (int) q->tbttcount,
5715 (int) q->period,
5716 (int) le16dec(&q->duration),
5717 (int) le16dec(&q->offset));
5718
5719 /*
5720 * Don't program in garbage values.
5721 */
5722 if ((le16dec(&q->duration) == 0) ||
5723 (le16dec(&q->duration) >= ni->ni_intval)) {
5724 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5725 "%s: invalid duration (%d)\n", __func__,
5726 le16dec(&q->duration));
5727 return (0);
5728 }
5729 /*
5730 * Can have a 0 offset, but not a duration - so just check
5731 * they don't exceed the intval.
5732 */
5733 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
5734 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5735 "%s: invalid duration + offset (%d+%d)\n", __func__,
5736 le16dec(&q->duration),
5737 le16dec(&q->offset));
5738 return (0);
5739 }
5740 if (q->tbttcount == 0) {
5741 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5742 "%s: invalid tbttcount (0)\n", __func__);
5743 return (0);
5744 }
5745 if (q->period == 0) {
5746 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5747 "%s: invalid period (0)\n", __func__);
5748 return (0);
5749 }
5750
5751 /*
5752 * This is a new quiet time IE config, so wait until tbttcount
5753 * is equal to 1, and program it in.
5754 */
5755 if (q->tbttcount == 1) {
5756 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5757 "%s: programming\n", __func__);
5759 q->period * ni->ni_intval, /* convert to TU */
5760 le16dec(&q->duration), /* already in TU */
5761 le16dec(&q->offset) + ni->ni_intval,
5763 /*
5764 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
5765 * STA mode
5766 */
5767
5768 /* Update local state */
5769 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
5770 }
5771
5772 return (0);
5773}
5774
5775static void
5776ath_set_channel(struct ieee80211com *ic)
5777{
5778 struct ath_softc *sc = ic->ic_softc;
5779
5780 ATH_LOCK(sc);
5782 ATH_UNLOCK(sc);
5783
5784 (void) ath_chan_set(sc, ic->ic_curchan);
5785 /*
5786 * If we are returning to our bss channel then mark state
5787 * so the next recv'd beacon's tsf will be used to sync the
5788 * beacon timers. Note that since we only hear beacons in
5789 * sta/ibss mode this has no effect in other operating modes.
5790 */
5791 ATH_LOCK(sc);
5792 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5793 sc->sc_syncbeacon = 1;
5795 ATH_UNLOCK(sc);
5796}
5797
5798/*
5799 * Walk the vap list and check if there any vap's in RUN state.
5800 */
5801static int
5802ath_isanyrunningvaps(struct ieee80211vap *this)
5803{
5804 struct ieee80211com *ic = this->iv_ic;
5805 struct ieee80211vap *vap;
5806
5807 IEEE80211_LOCK_ASSERT(ic);
5808
5809 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5810 if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5811 return 1;
5812 }
5813 return 0;
5814}
5815
5816static int
5817ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5818{
5819 struct ieee80211com *ic = vap->iv_ic;
5820 struct ath_softc *sc = ic->ic_softc;
5821 struct ath_vap *avp = ATH_VAP(vap);
5822 struct ath_hal *ah = sc->sc_ah;
5823 struct ieee80211_node *ni = NULL;
5824 int i, error, stamode;
5825 u_int32_t rfilt;
5826 int csa_run_transition = 0;
5827 enum ieee80211_state ostate = vap->iv_state;
5828
5829 static const HAL_LED_STATE leds[] = {
5830 HAL_LED_INIT, /* IEEE80211_S_INIT */
5831 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
5832 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
5833 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
5834 HAL_LED_RUN, /* IEEE80211_S_CAC */
5835 HAL_LED_RUN, /* IEEE80211_S_RUN */
5836 HAL_LED_RUN, /* IEEE80211_S_CSA */
5837 HAL_LED_RUN, /* IEEE80211_S_SLEEP */
5838 };
5839
5840 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5841 ieee80211_state_name[ostate],
5842 ieee80211_state_name[nstate]);
5843
5844 /*
5845 * net80211 _should_ have the comlock asserted at this point.
5846 * There are some comments around the calls to vap->iv_newstate
5847 * which indicate that it (newstate) may end up dropping the
5848 * lock. This and the subsequent lock assert check after newstate
5849 * are an attempt to catch these and figure out how/why.
5850 */
5851 IEEE80211_LOCK_ASSERT(ic);
5852
5853 /* Before we touch the hardware - wake it up */
5854 ATH_LOCK(sc);
5855 /*
5856 * If the NIC is in anything other than SLEEP state,
5857 * we need to ensure that self-generated frames are
5858 * set for PWRMGT=0. Otherwise we may end up with
5859 * strange situations.
5860 *
5861 * XXX TODO: is this actually the case? :-)
5862 */
5863 if (nstate != IEEE80211_S_SLEEP)
5865
5866 /*
5867 * Now, wake the thing up.
5868 */
5870
5871 /*
5872 * And stop the calibration callout whilst we have
5873 * ATH_LOCK held.
5874 */
5875 callout_stop(&sc->sc_cal_ch);
5876 ATH_UNLOCK(sc);
5877
5878 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5879 csa_run_transition = 1;
5880
5881 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
5882
5883 if (nstate == IEEE80211_S_SCAN) {
5884 /*
5885 * Scanning: turn off beacon miss and don't beacon.
5886 * Mark beacon state so when we reach RUN state we'll
5887 * [re]setup beacons. Unblock the task q thread so
5888 * deferred interrupt processing is done.
5889 */
5890
5891 /* Ensure we stay awake during scan */
5892 ATH_LOCK(sc);
5895 ATH_UNLOCK(sc);
5896
5897 ath_hal_intrset(ah,
5900 sc->sc_beacons = 0;
5901 taskqueue_unblock(sc->sc_tq);
5902 }
5903
5904 ni = ieee80211_ref_node(vap->iv_bss);
5905 rfilt = ath_calcrxfilter(sc);
5906 stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5907 vap->iv_opmode == IEEE80211_M_AHDEMO ||
5908 vap->iv_opmode == IEEE80211_M_IBSS);
5909
5910 /*
5911 * XXX Dont need to do this (and others) if we've transitioned
5912 * from SLEEP->RUN.
5913 */
5914 if (stamode && nstate == IEEE80211_S_RUN) {
5915 sc->sc_curaid = ni->ni_associd;
5916 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5918 }
5919 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5920 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5921 ath_hal_setrxfilter(ah, rfilt);
5922
5923 /* XXX is this to restore keycache on resume? */
5924 if (vap->iv_opmode != IEEE80211_M_STA &&
5925 (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5926 for (i = 0; i < IEEE80211_WEP_NKID; i++)
5927 if (ath_hal_keyisvalid(ah, i))
5928 ath_hal_keysetmac(ah, i, ni->ni_bssid);
5929 }
5930
5931 /*
5932 * Invoke the parent method to do net80211 work.
5933 */
5934 error = avp->av_newstate(vap, nstate, arg);
5935 if (error != 0)
5936 goto bad;
5937
5938 /*
5939 * See above: ensure av_newstate() doesn't drop the lock
5940 * on us.
5941 */
5942 IEEE80211_LOCK_ASSERT(ic);
5943
5944 /*
5945 * XXX TODO: if nstate is _S_CAC, then we should disable
5946 * ACK processing until CAC is completed.
5947 */
5948
5949 /*
5950 * XXX TODO: if we're on a passive channel, then we should
5951 * not allow any ACKs or self-generated frames until we hear
5952 * a beacon. Unfortunately there isn't a notification from
5953 * net80211 so perhaps we could slot that particular check
5954 * into the mgmt receive path and just ensure that we clear
5955 * it on RX of beacons in passive mode (and only clear it
5956 * once, obviously.)
5957 */
5958
5959 /*
5960 * XXX TODO: net80211 should be tracking whether channels
5961 * have heard beacons and are thus considered "OK" for
5962 * transmitting - and then inform the driver about this
5963 * state change. That way if we hear an AP go quiet
5964 * (and nothing else is beaconing on a channel) the
5965 * channel can go back to being passive until another
5966 * beacon is heard.
5967 */
5968
5969 /*
5970 * XXX TODO: if nstate is _S_CAC, then we should disable
5971 * ACK processing until CAC is completed.
5972 */
5973
5974 /*
5975 * XXX TODO: if we're on a passive channel, then we should
5976 * not allow any ACKs or self-generated frames until we hear
5977 * a beacon. Unfortunately there isn't a notification from
5978 * net80211 so perhaps we could slot that particular check
5979 * into the mgmt receive path and just ensure that we clear
5980 * it on RX of beacons in passive mode (and only clear it
5981 * once, obviously.)
5982 */
5983
5984 /*
5985 * XXX TODO: net80211 should be tracking whether channels
5986 * have heard beacons and are thus considered "OK" for
5987 * transmitting - and then inform the driver about this
5988 * state change. That way if we hear an AP go quiet
5989 * (and nothing else is beaconing on a channel) the
5990 * channel can go back to being passive until another
5991 * beacon is heard.
5992 */
5993
5994 if (nstate == IEEE80211_S_RUN) {
5995 /* NB: collect bss node again, it may have changed */
5996 ieee80211_free_node(ni);
5997 ni = ieee80211_ref_node(vap->iv_bss);
5998
5999 DPRINTF(sc, ATH_DEBUG_STATE,
6000 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6001 "capinfo 0x%04x chan %d\n", __func__,
6002 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6003 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6004
6005 switch (vap->iv_opmode) {
6006#ifdef IEEE80211_SUPPORT_TDMA
6007 case IEEE80211_M_AHDEMO:
6008 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6009 break;
6010 /* fall thru... */
6011#endif
6012 case IEEE80211_M_HOSTAP:
6013 case IEEE80211_M_IBSS:
6014 case IEEE80211_M_MBSS:
6015
6016 /*
6017 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
6018 * For channels that are in CAC, we may have disabled
6019 * this during CAC to ensure we don't ACK frames
6020 * sent to us.
6021 */
6022
6023 /*
6024 * Allocate and setup the beacon frame.
6025 *
6026 * Stop any previous beacon DMA. This may be
6027 * necessary, for example, when an ibss merge
6028 * causes reconfiguration; there will be a state
6029 * transition from RUN->RUN that means we may
6030 * be called with beacon transmission active.
6031 */
6032 ath_hal_stoptxdma(ah, sc->sc_bhalq);
6033
6034 error = ath_beacon_alloc(sc, ni);
6035 if (error != 0)
6036 goto bad;
6037 /*
6038 * If joining an adhoc network defer beacon timer
6039 * configuration to the next beacon frame so we
6040 * have a current TSF to use. Otherwise we're
6041 * starting an ibss/bss so there's no need to delay;
6042 * if this is the first vap moving to RUN state, then
6043 * beacon state needs to be [re]configured.
6044 */
6045 if (vap->iv_opmode == IEEE80211_M_IBSS &&
6046 ni->ni_tstamp.tsf != 0) {
6047 sc->sc_syncbeacon = 1;
6048 } else if (!sc->sc_beacons) {
6049#ifdef IEEE80211_SUPPORT_TDMA
6050 if (vap->iv_caps & IEEE80211_C_TDMA)
6051 ath_tdma_config(sc, vap);
6052 else
6053#endif
6054 ath_beacon_config(sc, vap);
6055 sc->sc_beacons = 1;
6056 }
6057 break;
6058 case IEEE80211_M_STA:
6059 /*
6060 * Defer beacon timer configuration to the next
6061 * beacon frame so we have a current TSF to use
6062 * (any TSF collected when scanning is likely old).
6063 * However if it's due to a CSA -> RUN transition,
6064 * force a beacon update so we pick up a lack of
6065 * beacons from an AP in CAC and thus force a
6066 * scan.
6067 *
6068 * And, there's also corner cases here where
6069 * after a scan, the AP may have disappeared.
6070 * In that case, we may not receive an actual
6071 * beacon to update the beacon timer and thus we
6072 * won't get notified of the missing beacons.
6073 *
6074 * Also, don't do any of this if we're not running
6075 * with hardware beacon support, as that'll interfere
6076 * with an AP VAP.
6077 */
6078 if (ostate != IEEE80211_S_RUN &&
6079 ostate != IEEE80211_S_SLEEP) {
6080
6081 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6082 DPRINTF(sc, ATH_DEBUG_BEACON,
6083 "%s: STA; syncbeacon=1\n", __func__);
6084 sc->sc_syncbeacon = 1;
6085 if (csa_run_transition)
6086 ath_beacon_config(sc, vap);
6087 }
6088
6089 /* Quiet time handling - ensure we resync */
6090 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6091
6092 /*
6093 * PR: kern/175227
6094 *
6095 * Reconfigure beacons during reset; as otherwise
6096 * we won't get the beacon timers reprogrammed
6097 * after a reset and thus we won't pick up a
6098 * beacon miss interrupt.
6099 *
6100 * Hopefully we'll see a beacon before the BMISS
6101 * timer fires (too often), leading to a STA
6102 * disassociation.
6103 */
6104 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6105 sc->sc_beacons = 1;
6106 }
6107 }
6108 break;
6109 case IEEE80211_M_MONITOR:
6110 /*
6111 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6112 * transitions so we must re-enable interrupts here to
6113 * handle the case of a single monitor mode vap.
6114 */
6115 ath_hal_intrset(ah, sc->sc_imask);
6116 break;
6117 case IEEE80211_M_WDS:
6118 break;
6119 default:
6120 break;
6121 }
6122 /*
6123 * Let the hal process statistics collected during a
6124 * scan so it can provide calibrated noise floor data.
6125 */
6127 /*
6128 * Reset rssi stats; maybe not the best place...
6129 */
6133
6134 /*
6135 * Force awake for RUN mode.
6136 */
6137 ATH_LOCK(sc);
6140
6141 /*
6142 * Finally, start any timers and the task q thread
6143 * (in case we didn't go through SCAN state).
6144 */
6145 if (ath_longcalinterval != 0) {
6146 /* start periodic recalibration timer */
6147 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6148 } else {
6149 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6150 "%s: calibration disabled\n", __func__);
6151 }
6152 ATH_UNLOCK(sc);
6153
6154 taskqueue_unblock(sc->sc_tq);
6155 } else if (nstate == IEEE80211_S_INIT) {
6156 /* Quiet time handling - ensure we resync */
6157 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6158
6159 /*
6160 * If there are no vaps left in RUN state then
6161 * shutdown host/driver operation:
6162 * o disable interrupts
6163 * o disable the task queue thread
6164 * o mark beacon processing as stopped
6165 */
6166 if (!ath_isanyrunningvaps(vap)) {
6168 /* disable interrupts */
6170 taskqueue_block(sc->sc_tq);
6171 sc->sc_beacons = 0;
6172 }
6173
6174 /*
6175 * For at least STA mode we likely should clear the ANI
6176 * and NF calibration state and allow the NIC/HAL to figure
6177 * out optimal parameters at runtime. Otherwise if we
6178 * disassociate due to interference / deafness it may persist
6179 * when we reconnect.
6180 *
6181 * Note: may need to do this for other states too, not just
6182 * _S_INIT.
6183 */
6184#ifdef IEEE80211_SUPPORT_TDMA
6186#endif
6187 } else if (nstate == IEEE80211_S_SLEEP) {
6188 /* We're going to sleep, so transition appropriately */
6189 /* For now, only do this if we're a single STA vap */
6190 if (sc->sc_nvaps == 1 &&
6191 vap->iv_opmode == IEEE80211_M_STA) {
6192 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6193 ATH_LOCK(sc);
6194 /*
6195 * Always at least set the self-generated
6196 * frame config to set PWRMGT=1.
6197 */
6199
6200 /*
6201 * If we're not syncing beacons, transition
6202 * to NETWORK_SLEEP.
6203 *
6204 * We stay awake if syncbeacon > 0 in case
6205 * we need to listen for some beacons otherwise
6206 * our beacon timer config may be wrong.
6207 */
6208 if (sc->sc_syncbeacon == 0) {
6210 }
6211 ATH_UNLOCK(sc);
6212 }
6213
6214 /*
6215 * Note - the ANI/calibration timer isn't re-enabled during
6216 * network sleep for now. One unfortunate side-effect is that
6217 * the PHY/airtime statistics aren't gathered on the channel
6218 * but I haven't yet tested to see if reading those registers
6219 * CAN occur during network sleep.
6220 *
6221 * This should be revisited in a future commit, even if it's
6222 * just to split out the airtime polling from ANI/calibration.
6223 */
6224 } else if (nstate == IEEE80211_S_SCAN) {
6225 /* Quiet time handling - ensure we resync */
6226 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6227
6228 /*
6229 * If we're in scan mode then startpcureceive() is
6230 * hopefully being called with "reset ANI" for this channel;
6231 * but once we attempt to reassociate we program in the previous
6232 * ANI values and.. not do any calibration until we're running.
6233 * This may mean we stay deaf unless we can associate successfully.
6234 *
6235 * So do kick off the cal timer to get NF/ANI going.
6236 */
6237 ATH_LOCK(sc);
6238 if (ath_longcalinterval != 0) {
6239 /* start periodic recalibration timer */
6240 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6241 } else {
6242 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6243 "%s: calibration disabled\n", __func__);
6244 }
6245 ATH_UNLOCK(sc);
6246 }
6247bad:
6248 ieee80211_free_node(ni);
6249
6250 /*
6251 * Restore the power state - either to what it was, or
6252 * to network_sleep if it's alright.
6253 */
6254 ATH_LOCK(sc);
6256 ATH_UNLOCK(sc);
6257 return error;
6258}
6259
6260/*
6261 * Allocate a key cache slot to the station so we can
6262 * setup a mapping from key index to node. The key cache
6263 * slot is needed for managing antenna state and for
6264 * compression when stations do not use crypto. We do
6265 * it uniliaterally here; if crypto is employed this slot
6266 * will be reassigned.
6267 */
6268static void
6269ath_setup_stationkey(struct ieee80211_node *ni)
6270{
6271 struct ieee80211vap *vap = ni->ni_vap;
6272 struct ath_softc *sc = vap->iv_ic->ic_softc;
6273 ieee80211_keyix keyix, rxkeyix;
6274
6275 /* XXX should take a locked ref to vap->iv_bss */
6276 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6277 /*
6278 * Key cache is full; we'll fall back to doing
6279 * the more expensive lookup in software. Note
6280 * this also means no h/w compression.
6281 */
6282 /* XXX msg+statistic */
6283 } else {
6284 /* XXX locking? */
6285 ni->ni_ucastkey.wk_keyix = keyix;
6286 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6287 /* NB: must mark device key to get called back on delete */
6288 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6289 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6290 /* NB: this will create a pass-thru key entry */
6291 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6292 }
6293}
6294
6295/*
6296 * Setup driver-specific state for a newly associated node.
6297 * Note that we're called also on a re-associate, the isnew
6298 * param tells us if this is the first time or not.
6299 */
6300static void
6301ath_newassoc(struct ieee80211_node *ni, int isnew)
6302{
6303 struct ath_node *an = ATH_NODE(ni);
6304 struct ieee80211vap *vap = ni->ni_vap;
6305 struct ath_softc *sc = vap->iv_ic->ic_softc;
6306 const struct ieee80211_txparam *tp = ni->ni_txparms;
6307
6308 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6309 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6310
6311 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6312 __func__,
6313 ni->ni_macaddr,
6314 ":",
6315 isnew,
6316 an->an_is_powersave);
6317
6318 ATH_NODE_LOCK(an);
6319 ath_rate_newassoc(sc, an, isnew);
6320 ATH_NODE_UNLOCK(an);
6321
6322 if (isnew &&
6323 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6324 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6326
6327 /*
6328 * If we're reassociating, make sure that any paused queues
6329 * get unpaused.
6330 *
6331 * Now, we may have frames in the hardware queue for this node.
6332 * So if we are reassociating and there are frames in the queue,
6333 * we need to go through the cleanup path to ensure that they're
6334 * marked as non-aggregate.
6335 */
6336 if (! isnew) {
6337 DPRINTF(sc, ATH_DEBUG_NODE,
6338 "%s: %6D: reassoc; is_powersave=%d\n",
6339 __func__,
6340 ni->ni_macaddr,
6341 ":",
6342 an->an_is_powersave);
6343
6344 /* XXX for now, we can't hold the lock across assoc */
6345 ath_tx_node_reassoc(sc, an);
6346
6347 /* XXX for now, we can't hold the lock across wakeup */
6348 if (an->an_is_powersave)
6349 ath_tx_node_wakeup(sc, an);
6350 }
6351}
6352
6353static int
6354ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6355 int nchans, struct ieee80211_channel chans[])
6356{
6357 struct ath_softc *sc = ic->ic_softc;
6358 struct ath_hal *ah = sc->sc_ah;
6359 HAL_STATUS status;
6360
6361 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6362 "%s: rd %u cc %u location %c%s\n",
6363 __func__, reg->regdomain, reg->country, reg->location,
6364 reg->ecm ? " ecm" : "");
6365
6366 status = ath_hal_set_channels(ah, chans, nchans,
6367 reg->country, reg->regdomain);
6368 if (status != HAL_OK) {
6369 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6370 __func__, status);
6371 return EINVAL; /* XXX */
6372 }
6373
6374 return 0;
6375}
6376
6377static void
6378ath_getradiocaps(struct ieee80211com *ic,
6379 int maxchans, int *nchans, struct ieee80211_channel chans[])
6380{
6381 struct ath_softc *sc = ic->ic_softc;
6382 struct ath_hal *ah = sc->sc_ah;
6383
6384 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6385 __func__, SKU_DEBUG, CTRY_DEFAULT);
6386
6387 /* XXX check return */
6388 (void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6389 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6390
6391}
6392
6393static int
6395{
6396 struct ieee80211com *ic = &sc->sc_ic;
6397 struct ath_hal *ah = sc->sc_ah;
6398 HAL_STATUS status;
6399
6400 /*
6401 * Collect channel set based on EEPROM contents.
6402 */
6403 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6404 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6405 if (status != HAL_OK) {
6406 device_printf(sc->sc_dev,
6407 "%s: unable to collect channel list from hal, status %d\n",
6408 __func__, status);
6409 return EINVAL;
6410 }
6411 (void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6412 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
6413 /* XXX map Atheros sku's to net80211 SKU's */
6414 /* XXX net80211 types too small */
6415 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6416 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6417 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
6418 ic->ic_regdomain.isocc[1] = ' ';
6419
6420 ic->ic_regdomain.ecm = 1;
6421 ic->ic_regdomain.location = 'I';
6422
6423 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6424 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6425 __func__, sc->sc_eerd, sc->sc_eecc,
6426 ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6427 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6428 return 0;
6429}
6430
6431static int
6432ath_rate_setup(struct ath_softc *sc, u_int mode)
6433{
6434 struct ath_hal *ah = sc->sc_ah;
6435 const HAL_RATE_TABLE *rt;
6436
6437 switch (mode) {
6438 case IEEE80211_MODE_11A:
6440 break;
6441 case IEEE80211_MODE_HALF:
6443 break;
6444 case IEEE80211_MODE_QUARTER:
6446 break;
6447 case IEEE80211_MODE_11B:
6449 break;
6450 case IEEE80211_MODE_11G:
6452 break;
6453 case IEEE80211_MODE_TURBO_A:
6455 break;
6456 case IEEE80211_MODE_TURBO_G:
6458 break;
6459 case IEEE80211_MODE_STURBO_A:
6461 break;
6462 case IEEE80211_MODE_11NA:
6464 break;
6465 case IEEE80211_MODE_11NG:
6467 break;
6468 default:
6469 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6470 __func__, mode);
6471 return 0;
6472 }
6473 sc->sc_rates[mode] = rt;
6474 return (rt != NULL);
6475}
6476
6477static void
6478ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6479{
6480 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
6481 static const struct {
6482 u_int rate; /* tx/rx 802.11 rate */
6483 u_int16_t timeOn; /* LED on time (ms) */
6484 u_int16_t timeOff; /* LED off time (ms) */
6485 } blinkrates[] = {
6486 { 108, 40, 10 },
6487 { 96, 44, 11 },
6488 { 72, 50, 13 },
6489 { 48, 57, 14 },
6490 { 36, 67, 16 },
6491 { 24, 80, 20 },
6492 { 22, 100, 25 },
6493 { 18, 133, 34 },
6494 { 12, 160, 40 },
6495 { 10, 200, 50 },
6496 { 6, 240, 58 },
6497 { 4, 267, 66 },
6498 { 2, 400, 100 },
6499 { 0, 500, 130 },
6500 /* XXX half/quarter rates */
6501 };
6502 const HAL_RATE_TABLE *rt;
6503 int i, j;
6504
6505 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6506 rt = sc->sc_rates[mode];
6507 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6508 for (i = 0; i < rt->rateCount; i++) {
6509 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6510 if (rt->info[i].phy != IEEE80211_T_HT)
6511 sc->sc_rixmap[ieeerate] = i;
6512 else
6513 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6514 }
6515 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6516 for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6517 if (i >= rt->rateCount) {
6518 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6519 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6520 continue;
6521 }
6522 sc->sc_hwmap[i].ieeerate =
6523 rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6524 if (rt->info[i].phy == IEEE80211_T_HT)
6525 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6526 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6527 if (rt->info[i].shortPreamble ||
6528 rt->info[i].phy == IEEE80211_T_OFDM)
6529 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6530 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6531 for (j = 0; j < nitems(blinkrates)-1; j++)
6532 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6533 break;
6534 /* NB: this uses the last entry if the rate isn't found */
6535 /* XXX beware of overlow */
6536 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6537 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6538 }
6539 sc->sc_currates = rt;
6540 sc->sc_curmode = mode;
6541 /*
6542 * All protection frames are transmitted at 2Mb/s for
6543 * 11g, otherwise at 1Mb/s.
6544 */
6545 if (mode == IEEE80211_MODE_11G)
6546 sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6547 else
6548 sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6549 /* NB: caller is responsible for resetting rate control state */
6550}
6551
6552static void
6554{
6555 struct ath_softc *sc = arg;
6556 struct ieee80211com *ic = &sc->sc_ic;
6557 int do_reset = 0;
6558
6559 ATH_LOCK_ASSERT(sc);
6560
6561 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6562 uint32_t hangs;
6563
6565
6566 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6567 hangs != 0) {
6568 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6569 hangs & 0xff ? "bb" : "mac", hangs);
6570 } else
6571 device_printf(sc->sc_dev, "device timeout\n");
6572 do_reset = 1;
6573 counter_u64_add(ic->ic_oerrors, 1);
6574 sc->sc_stats.ast_watchdog++;
6575
6577 }
6578
6579 /*
6580 * We can't hold the lock across the ath_reset() call.
6581 *
6582 * And since this routine can't hold a lock and sleep,
6583 * do the reset deferred.
6584 */
6585 if (do_reset) {
6586 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6587 }
6588
6589 callout_schedule(&sc->sc_wd_ch, hz);
6590}
6591
6592static void
6593ath_parent(struct ieee80211com *ic)
6594{
6595 struct ath_softc *sc = ic->ic_softc;
6596 int error = EDOOFUS;
6597
6598 ATH_LOCK(sc);
6599 if (ic->ic_nrunning > 0) {
6600 /*
6601 * To avoid rescanning another access point,
6602 * do not call ath_init() here. Instead,
6603 * only reflect promisc mode settings.
6604 */
6605 if (sc->sc_running) {
6607 ath_mode_init(sc);
6609 } else if (!sc->sc_invalid) {
6610 /*
6611 * Beware of being called during attach/detach
6612 * to reset promiscuous mode. In that case we
6613 * will still be marked UP but not RUNNING.
6614 * However trying to re-init the interface
6615 * is the wrong thing to do as we've already
6616 * torn down much of our state. There's
6617 * probably a better way to deal with this.
6618 */
6619 error = ath_init(sc);
6620 }
6621 } else {
6622 ath_stop(sc);
6623 if (!sc->sc_invalid)
6625 }
6626 ATH_UNLOCK(sc);
6627
6628 if (error == 0) {
6629#ifdef ATH_TX99_DIAG
6630 if (sc->sc_tx99 != NULL)
6631 sc->sc_tx99->start(sc->sc_tx99);
6632 else
6633#endif
6634 ieee80211_start_all(ic);
6635 }
6636}
6637
6638/*
6639 * Announce various information on device/driver attach.
6640 */
6641static void
6643{
6644 struct ath_hal *ah = sc->sc_ah;
6645
6646 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6648 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6649 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6651 if (bootverbose) {
6652 int i;
6653 for (i = 0; i <= WME_AC_VO; i++) {
6654 struct ath_txq *txq = sc->sc_ac2q[i];
6655 device_printf(sc->sc_dev,
6656 "Use hw queue %u for %s traffic\n",
6657 txq->axq_qnum, ieee80211_wme_acnames[i]);
6658 }
6659 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6660 sc->sc_cabq->axq_qnum);
6661 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6662 sc->sc_bhalq);
6663 }
6664 if (ath_rxbuf != ATH_RXBUF)
6665 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6666 if (ath_txbuf != ATH_TXBUF)
6667 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6668 if (sc->sc_mcastkey && bootverbose)
6669 device_printf(sc->sc_dev, "using multicast key search\n");
6670}
6671
6672static void
6673ath_dfs_tasklet(void *p, int npending)
6674{
6675 struct ath_softc *sc = (struct ath_softc *) p;
6676 struct ieee80211com *ic = &sc->sc_ic;
6677
6678 /*
6679 * If previous processing has found a radar event,
6680 * signal this to the net80211 layer to begin DFS
6681 * processing.
6682 */
6684 /* DFS event found, initiate channel change */
6685
6686 /*
6687 * XXX TODO: immediately disable ACK processing
6688 * on the current channel. This would be done
6689 * by setting AR_DIAG_ACK_DIS (AR5212; may be
6690 * different for others) until we are out of
6691 * CAC.
6692 */
6693
6694 /*
6695 * XXX doesn't currently tell us whether the event
6696 * XXX was found in the primary or extension
6697 * XXX channel!
6698 */
6699 IEEE80211_LOCK(ic);
6700 ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6701 IEEE80211_UNLOCK(ic);
6702 }
6703}
6704
6705/*
6706 * Enable/disable power save. This must be called with
6707 * no TX driver locks currently held, so it should only
6708 * be called from the RX path (which doesn't hold any
6709 * TX driver locks.)
6710 */
6711static void
6712ath_node_powersave(struct ieee80211_node *ni, int enable)
6713{
6714#ifdef ATH_SW_PSQ
6715 struct ath_node *an = ATH_NODE(ni);
6716 struct ieee80211com *ic = ni->ni_ic;
6717 struct ath_softc *sc = ic->ic_softc;
6718 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6719
6720 /* XXX and no TXQ locks should be held here */
6721
6722 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6723 __func__,
6724 ni->ni_macaddr,
6725 ":",
6726 !! enable);
6727
6728 /* Suspend or resume software queue handling */
6729 if (enable)
6730 ath_tx_node_sleep(sc, an);
6731 else
6732 ath_tx_node_wakeup(sc, an);
6733
6734 /* Update net80211 state */
6735 avp->av_node_ps(ni, enable);
6736#else
6737 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6738
6739 /* Update net80211 state */
6740 avp->av_node_ps(ni, enable);
6741#endif/* ATH_SW_PSQ */
6742}
6743
6744/*
6745 * Notification from net80211 that the powersave queue state has
6746 * changed.
6747 *
6748 * Since the software queue also may have some frames:
6749 *
6750 * + if the node software queue has frames and the TID state
6751 * is 0, we set the TIM;
6752 * + if the node and the stack are both empty, we clear the TIM bit.
6753 * + If the stack tries to set the bit, always set it.
6754 * + If the stack tries to clear the bit, only clear it if the
6755 * software queue in question is also cleared.
6756 *
6757 * TODO: this is called during node teardown; so let's ensure this
6758 * is all correctly handled and that the TIM bit is cleared.
6759 * It may be that the node flush is called _AFTER_ the net80211
6760 * stack clears the TIM.
6761 *
6762 * Here is the racy part. Since it's possible >1 concurrent,
6763 * overlapping TXes will appear complete with a TX completion in
6764 * another thread, it's possible that the concurrent TIM calls will
6765 * clash. We can't hold the node lock here because setting the
6766 * TIM grabs the net80211 comlock and this may cause a LOR.
6767 * The solution is either to totally serialise _everything_ at
6768 * this point (ie, all TX, completion and any reset/flush go into
6769 * one taskqueue) or a new "ath TIM lock" needs to be created that
6770 * just wraps the driver state change and this call to avp->av_set_tim().
6771 *
6772 * The same race exists in the net80211 power save queue handling
6773 * as well. Since multiple transmitting threads may queue frames
6774 * into the driver, as well as ps-poll and the driver transmitting
6775 * frames (and thus clearing the psq), it's quite possible that
6776 * a packet entering the PSQ and a ps-poll being handled will
6777 * race, causing the TIM to be cleared and not re-set.
6778 */
6779static int
6780ath_node_set_tim(struct ieee80211_node *ni, int enable)
6781{
6782#ifdef ATH_SW_PSQ
6783 struct ieee80211com *ic = ni->ni_ic;
6784 struct ath_softc *sc = ic->ic_softc;
6785 struct ath_node *an = ATH_NODE(ni);
6786 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6787 int changed = 0;
6788
6789 ATH_TX_LOCK(sc);
6790 an->an_stack_psq = enable;
6791
6792 /*
6793 * This will get called for all operating modes,
6794 * even if avp->av_set_tim is unset.
6795 * It's currently set for hostap/ibss modes; but
6796 * the same infrastructure is used for both STA
6797 * and AP/IBSS node power save.
6798 */
6799 if (avp->av_set_tim == NULL) {
6800 ATH_TX_UNLOCK(sc);
6801 return (0);
6802 }
6803
6804 /*
6805 * If setting the bit, always set it here.
6806 * If clearing the bit, only clear it if the
6807 * software queue is also empty.
6808 *
6809 * If the node has left power save, just clear the TIM
6810 * bit regardless of the state of the power save queue.
6811 *
6812 * XXX TODO: although atomics are used, it's quite possible
6813 * that a race will occur between this and setting/clearing
6814 * in another thread. TX completion will occur always in
6815 * one thread, however setting/clearing the TIM bit can come
6816 * from a variety of different process contexts!
6817 */
6818 if (enable && an->an_tim_set == 1) {
6819 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6820 "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6821 __func__,
6822 ni->ni_macaddr,
6823 ":",
6824 enable);
6825 ATH_TX_UNLOCK(sc);
6826 } else if (enable) {
6827 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6828 "%s: %6D: enable=%d, enabling TIM\n",
6829 __func__,
6830 ni->ni_macaddr,
6831 ":",
6832 enable);
6833 an->an_tim_set = 1;
6834 ATH_TX_UNLOCK(sc);
6835 changed = avp->av_set_tim(ni, enable);
6836 } else if (an->an_swq_depth == 0) {
6837 /* disable */
6838 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6839 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6840 __func__,
6841 ni->ni_macaddr,
6842 ":",
6843 enable);
6844 an->an_tim_set = 0;
6845 ATH_TX_UNLOCK(sc);
6846 changed = avp->av_set_tim(ni, enable);
6847 } else if (! an->an_is_powersave) {
6848 /*
6849 * disable regardless; the node isn't in powersave now
6850 */
6851 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6852 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6853 __func__,
6854 ni->ni_macaddr,
6855 ":",
6856 enable);
6857 an->an_tim_set = 0;
6858 ATH_TX_UNLOCK(sc);
6859 changed = avp->av_set_tim(ni, enable);
6860 } else {
6861 /*
6862 * psq disable, node is currently in powersave, node
6863 * software queue isn't empty, so don't clear the TIM bit
6864 * for now.
6865 */
6866 ATH_TX_UNLOCK(sc);
6867 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6868 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6869 __func__,
6870 ni->ni_macaddr,
6871 ":",
6872 enable);
6873 changed = 0;
6874 }
6875
6876 return (changed);
6877#else
6878 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6879
6880 /*
6881 * Some operating modes don't set av_set_tim(), so don't
6882 * update it here.
6883 */
6884 if (avp->av_set_tim == NULL)
6885 return (0);
6886
6887 return (avp->av_set_tim(ni, enable));
6888#endif /* ATH_SW_PSQ */
6889}
6890
6891/*
6892 * Set or update the TIM from the software queue.
6893 *
6894 * Check the software queue depth before attempting to do lock
6895 * anything; that avoids trying to obtain the lock. Then,
6896 * re-check afterwards to ensure nothing has changed in the
6897 * meantime.
6898 *
6899 * set: This is designed to be called from the TX path, after
6900 * a frame has been queued; to see if the swq > 0.
6901 *
6902 * clear: This is designed to be called from the buffer completion point
6903 * (right now it's ath_tx_default_comp()) where the state of
6904 * a software queue has changed.
6905 *
6906 * It makes sense to place it at buffer free / completion rather
6907 * than after each software queue operation, as there's no real
6908 * point in churning the TIM bit as the last frames in the software
6909 * queue are transmitted. If they fail and we retry them, we'd
6910 * just be setting the TIM bit again anyway.
6911 */
6912void
6913ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6914 int enable)
6915{
6916#ifdef ATH_SW_PSQ
6917 struct ath_node *an;
6918 struct ath_vap *avp;
6919
6920 /* Don't do this for broadcast/etc frames */
6921 if (ni == NULL)
6922 return;
6923
6924 an = ATH_NODE(ni);
6925 avp = ATH_VAP(ni->ni_vap);
6926
6927 /*
6928 * And for operating modes without the TIM handler set, let's
6929 * just skip those.
6930 */
6931 if (avp->av_set_tim == NULL)
6932 return;
6933
6935
6936 if (enable) {
6937 if (an->an_is_powersave &&
6938 an->an_tim_set == 0 &&
6939 an->an_swq_depth != 0) {
6940 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6941 "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6942 __func__,
6943 ni->ni_macaddr,
6944 ":");
6945 an->an_tim_set = 1;
6946 (void) avp->av_set_tim(ni, 1);
6947 }
6948 } else {
6949 /*
6950 * Don't bother grabbing the lock unless the queue is empty.
6951 */
6952 if (an->an_swq_depth != 0)
6953 return;
6954
6955 if (an->an_is_powersave &&
6956 an->an_stack_psq == 0 &&
6957 an->an_tim_set == 1 &&
6958 an->an_swq_depth == 0) {
6959 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6960 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6961 " clear!\n",
6962 __func__,
6963 ni->ni_macaddr,
6964 ":");
6965 an->an_tim_set = 0;
6966 (void) avp->av_set_tim(ni, 0);
6967 }
6968 }
6969#else
6970 return;
6971#endif /* ATH_SW_PSQ */
6972}
6973
6974/*
6975 * Received a ps-poll frame from net80211.
6976 *
6977 * Here we get a chance to serve out a software-queued frame ourselves
6978 * before we punt it to net80211 to transmit us one itself - either
6979 * because there's traffic in the net80211 psq, or a NULL frame to
6980 * indicate there's nothing else.
6981 */
6982static void
6983ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6984{
6985#ifdef ATH_SW_PSQ
6986 struct ath_node *an;
6987 struct ath_vap *avp;
6988 struct ieee80211com *ic = ni->ni_ic;
6989 struct ath_softc *sc = ic->ic_softc;
6990 int tid;
6991
6992 /* Just paranoia */
6993 if (ni == NULL)
6994 return;
6995
6996 /*
6997 * Unassociated (temporary node) station.
6998 */
6999 if (ni->ni_associd == 0)
7000 return;
7001
7002 /*
7003 * We do have an active node, so let's begin looking into it.
7004 */
7005 an = ATH_NODE(ni);
7006 avp = ATH_VAP(ni->ni_vap);
7007
7008 /*
7009 * For now, we just call the original ps-poll method.
7010 * Once we're ready to flip this on:
7011 *
7012 * + Set leak to 1, as no matter what we're going to have
7013 * to send a frame;
7014 * + Check the software queue and if there's something in it,
7015 * schedule the highest TID thas has traffic from this node.
7016 * Then make sure we schedule the software scheduler to
7017 * run so it picks up said frame.
7018 *
7019 * That way whatever happens, we'll at least send _a_ frame
7020 * to the given node.
7021 *
7022 * Again, yes, it's crappy QoS if the node has multiple
7023 * TIDs worth of traffic - but let's get it working first
7024 * before we optimise it.
7025 *
7026 * Also yes, there's definitely latency here - we're not
7027 * direct dispatching to the hardware in this path (and
7028 * we're likely being called from the packet receive path,
7029 * so going back into TX may be a little hairy!) but again
7030 * I'd like to get this working first before optimising
7031 * turn-around time.
7032 */
7033
7034 ATH_TX_LOCK(sc);
7035
7036 /*
7037 * Legacy - we're called and the node isn't asleep.
7038 * Immediately punt.
7039 */
7040 if (! an->an_is_powersave) {
7041 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7042 "%s: %6D: not in powersave?\n",
7043 __func__,
7044 ni->ni_macaddr,
7045 ":");
7046 ATH_TX_UNLOCK(sc);
7047 avp->av_recv_pspoll(ni, m);
7048 return;
7049 }
7050
7051 /*
7052 * We're in powersave.
7053 *
7054 * Leak a frame.
7055 */
7056 an->an_leak_count = 1;
7057
7058 /*
7059 * Now, if there's no frames in the node, just punt to
7060 * recv_pspoll.
7061 *
7062 * Don't bother checking if the TIM bit is set, we really
7063 * only care if there are any frames here!
7064 */
7065 if (an->an_swq_depth == 0) {
7066 ATH_TX_UNLOCK(sc);
7067 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7068 "%s: %6D: SWQ empty; punting to net80211\n",
7069 __func__,
7070 ni->ni_macaddr,
7071 ":");
7072 avp->av_recv_pspoll(ni, m);
7073 return;
7074 }
7075
7076 /*
7077 * Ok, let's schedule the highest TID that has traffic
7078 * and then schedule something.
7079 */
7080 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7081 struct ath_tid *atid = &an->an_tid[tid];
7082 /*
7083 * No frames? Skip.
7084 */
7085 if (atid->axq_depth == 0)
7086 continue;
7087 ath_tx_tid_sched(sc, atid);
7088 /*
7089 * XXX we could do a direct call to the TXQ
7090 * scheduler code here to optimise latency
7091 * at the expense of a REALLY deep callstack.
7092 */
7093 ATH_TX_UNLOCK(sc);
7094 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7095 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7096 "%s: %6D: leaking frame to TID %d\n",
7097 __func__,
7098 ni->ni_macaddr,
7099 ":",
7100 tid);
7101 return;
7102 }
7103
7104 ATH_TX_UNLOCK(sc);
7105
7106 /*
7107 * XXX nothing in the TIDs at this point? Eek.
7108 */
7109 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7110 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7111 __func__,
7112 ni->ni_macaddr,
7113 ":");
7114 avp->av_recv_pspoll(ni, m);
7115#else
7116 avp->av_recv_pspoll(ni, m);
7117#endif /* ATH_SW_PSQ */
7118}
7119
7120MODULE_VERSION(ath_main, 1);
7121MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */
7122MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
7123MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
7124MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
7125#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7126MODULE_DEPEND(ath_main, alq, 1, 1, 1);
7127#endif
void ath_hal_process_noisefloor(struct ath_hal *ah)
Definition: ah.c:1255
void ath_hal_setcca(struct ath_hal *ah, int ena)
Definition: ah.c:1480
struct ath_hal * ath_hal_attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_OPS_CONFIG *ah_config, HAL_STATUS *error)
Definition: ah.c:86
const char * ath_hal_mac_name(struct ath_hal *ah)
Definition: ah.c:143
u_int ath_hal_getwirelessmodes(struct ath_hal *ah)
Definition: ah.c:210
const char * ath_hal_rf_name(struct ath_hal *ah)
Definition: ah.c:260
HAL_STATUS
Definition: ah.h:71
@ HAL_OK
Definition: ah.h:72
@ HAL_EINPROGRESS
Definition: ah.h:87
@ HAL_MODE_11A_HALF_RATE
Definition: ah.h:668
@ HAL_MODE_ALL
Definition: ah.h:678
@ HAL_MODE_108G
Definition: ah.h:666
@ HAL_MODE_11A_QUARTER_RATE
Definition: ah.h:669
@ HAL_MODE_TURBO
Definition: ah.h:658
@ HAL_MODE_11NA_HT20
Definition: ah.h:673
@ HAL_MODE_11G
Definition: ah.h:664
@ HAL_MODE_108A
Definition: ah.h:667
@ HAL_MODE_11NG_HT20
Definition: ah.h:672
@ HAL_MODE_11A
Definition: ah.h:657
@ HAL_MODE_11B
Definition: ah.h:659
HAL_STATUS __ahdecl ath_hal_set_channels(struct ath_hal *, struct ieee80211_channel *chans, int nchans, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn)
#define HAL_INT_GLOBAL
Definition: ah.h:506
#define HAL_NUM_TX_QUEUES
Definition: ah.h:251
@ HAL_RX_QUEUE_HP
Definition: ah.h:259
@ HAL_RX_QUEUE_LP
Definition: ah.h:260
@ HAL_M_IBSS
Definition: ah.h:766
@ HAL_M_MONITOR
Definition: ah.h:768
@ HAL_M_STA
Definition: ah.h:765
@ HAL_M_HOSTAP
Definition: ah.h:767
@ HAL_PM_NETWORK_SLEEP
Definition: ah.h:442
@ HAL_PM_AWAKE
Definition: ah.h:440
@ HAL_PM_FULL_SLEEP
Definition: ah.h:441
@ HAL_CAP_HT
Definition: ah.h:128
@ HAL_CAP_RX_STBC
Definition: ah.h:154
@ HAL_CAP_TX_STBC
Definition: ah.h:155
@ HAL_CAP_HT20_SGI
Definition: ah.h:180
@ HAL_CAP_STREAMS
Definition: ah.h:209
@ HAL_CAP_LDPC
Definition: ah.h:182
@ HAL_CAP_ENTERPRISE_MODE
Definition: ah.h:188
@ HAL_CAP_SERIALISE_WAR
Definition: ah.h:212
@ HAL_CAP_RTS_AGGR_LIMIT
Definition: ah.h:139
HAL_RESET_TYPE
Definition: ah.h:771
@ HAL_RESET_BBPANIC
Definition: ah.h:773
@ HAL_RESET_FORCE_COLD
Definition: ah.h:774
@ HAL_RESET_NORMAL
Definition: ah.h:772
@ HAL_CIPHER_CLR
Definition: ah.h:810
@ HAL_CIPHER_AES_CCM
Definition: ah.h:807
@ HAL_CIPHER_MIC
Definition: ah.h:812
@ HAL_CIPHER_TKIP
Definition: ah.h:809
@ HAL_CIPHER_WEP
Definition: ah.h:805
@ HAL_CIPHER_CKIP
Definition: ah.h:808
@ HAL_CIPHER_AES_OCB
Definition: ah.h:806
@ HAL_TXQ_TXDESCINT_ENABLE
Definition: ah.h:293
@ HAL_TXQ_ARB_LOCKOUT_GLOBAL
Definition: ah.h:358
@ HAL_TXQ_DBA_GATED
Definition: ah.h:314
@ HAL_TXQ_TXERRINT_ENABLE
Definition: ah.h:292
@ HAL_TXQ_TXURNINT_ENABLE
Definition: ah.h:295
@ HAL_TXQ_TXEOLINT_ENABLE
Definition: ah.h:294
@ HAL_TXQ_BACKOFF_DISABLE
Definition: ah.h:344
@ HAL_TXQ_TXOKINT_ENABLE
Definition: ah.h:291
@ HAL_SLOT_TIME_9
Definition: ah.h:817
@ HAL_SLOT_TIME_20
Definition: ah.h:818
HAL_STATUS __ahdecl ath_hal_getchannels(struct ath_hal *, struct ieee80211_channel *chans, u_int maxchans, int *nchans, u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn, HAL_BOOL enableExtendedChannels)
@ HAL_TX_QUEUE_DATA
Definition: ah.h:242
@ HAL_TX_QUEUE_CAB
Definition: ah.h:244
@ HAL_WME_AC_VO
Definition: ah.h:276
@ HAL_WME_AC_BE
Definition: ah.h:274
@ HAL_WME_AC_VI
Definition: ah.h:275
@ HAL_WME_AC_BK
Definition: ah.h:273
#define HAL_TXQ_USEDEFAULT
Definition: ah.h:384
HAL_STATUS __ahdecl ath_hal_init_channels(struct ath_hal *, struct ieee80211_channel *chans, u_int maxchans, int *nchans, u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd, HAL_BOOL enableExtendedChannels)
@ HAL_QUIET_ENABLE
Definition: ah.h:1092
@ HAL_QUIET_ADD_CURRENT_TSF
Definition: ah.h:1093
@ HAL_QUIET_DISABLE
Definition: ah.h:1091
HAL_INT
Definition: ah.h:472
@ HAL_INT_RXLP
Definition: ah.h:477
@ HAL_INT_RXORN
Definition: ah.h:480
@ HAL_INT_GTT
Definition: ah.h:504
@ HAL_INT_MCI
Definition: ah.h:484
@ HAL_INT_FATAL
Definition: ah.h:505
@ HAL_INT_TX
Definition: ah.h:481
@ HAL_INT_BMISS
Definition: ah.h:492
@ HAL_INT_SWBA
Definition: ah.h:490
@ HAL_INT_RXEOL
Definition: ah.h:479
@ HAL_INT_MIB
Definition: ah.h:487
@ HAL_INT_CST
Definition: ah.h:503
@ HAL_INT_RX
Definition: ah.h:473
@ HAL_INT_TXURN
Definition: ah.h:486
@ HAL_INT_RXHP
Definition: ah.h:476
@ HAL_INT_TSFOOR
Definition: ah.h:499
@ HAL_RFGAIN_NEED_CHANGE
Definition: ah.h:625
HAL_BOOL
Definition: ah.h:93
@ AH_FALSE
Definition: ah.h:94
@ AH_TRUE
Definition: ah.h:95
HAL_LED_STATE
Definition: ah.h:227
@ HAL_LED_SCAN
Definition: ah.h:229
@ HAL_LED_RUN
Definition: ah.h:232
@ HAL_LED_INIT
Definition: ah.h:228
@ HAL_LED_AUTH
Definition: ah.h:230
@ HAL_LED_ASSOC
Definition: ah.h:231
#define HAL_TXERR_FILT
Definition: ah_desc.h:64
#define HAL_TXERR_TIMER_EXPIRED
Definition: ah_desc.h:67
#define HAL_TX_DESC_CFG_ERR
Definition: ah_desc.h:72
#define HAL_TXDESC_NOACK
Definition: ah_desc.h:261
#define HAL_TX_DELIM_UNDERRUN
Definition: ah_desc.h:74
#define HAL_TXERR_XTXOP
Definition: ah_desc.h:66
#define HAL_TX_DATA_UNDERRUN
Definition: ah_desc.h:73
#define HAL_TXERR_XRETRY
Definition: ah_desc.h:63
#define HAL_TXERR_FIFO
Definition: ah_desc.h:65
#define AR5212_DEVID_IBM
Definition: ah_devid.h:50
#define AR5211_DEVID
Definition: ah_devid.h:42
@ HAL_DIAG_CHECK_HANGS
Definition: ah_diagcodes.h:65
#define IEEE80211_ADDR_LEN
Definition: ah_internal.h:501
void ath_rate_node_init(struct ath_softc *sc, struct ath_node *an)
Definition: amrr.c:95
void ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew)
Definition: amrr.c:195
void ath_rate_detach(struct ath_ratectrl *arc)
Definition: amrr.c:472
struct ath_ratectrl * ath_rate_attach(struct ath_softc *sc)
Definition: amrr.c:458
void ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an, const struct ath_rc_series *rc, const struct ath_tx_status *ts, int frame_size, int rc_framesize, int nframes, int nbad)
Definition: amrr.c:162
void ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an)
Definition: amrr.c:101
int ath_dfs_attach(struct ath_softc *sc)
Definition: dfs_null.c:86
int ath_dfs_radar_enable(struct ath_softc *sc, struct ieee80211_channel *chan)
Definition: dfs_null.c:105
int ath_dfs_detach(struct ath_softc *sc)
Definition: dfs_null.c:95
int ath_dfs_process_radar_event(struct ath_softc *sc, struct ieee80211_channel *chan)
Definition: dfs_null.c:193
int ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
Definition: if_ath.c:4210
void _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
Definition: if_ath.c:391
void ath_intr(void *arg)
Definition: if_ath.c:2079
int ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
Definition: if_ath.c:2475
static struct ath_buf * ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath.c:4954
static void ath_tx_proc(void *, int)
Definition: if_ath.c:4694
void ath_setslottime(struct ath_softc *sc)
Definition: if_ath.c:3731
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int)
Definition: if_ath.c:3989
SYSCTL_DECL(_hw_ath)
int ath_txbuf_mgmt
Definition: if_ath.c:252
static int ath_longcalinterval
Definition: if_ath.c:233
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers")
int ath_detach(struct ath_softc *sc)
Definition: if_ath.c:1407
static void ath_tx_cleanup(struct ath_softc *)
Definition: if_ath.c:4195
void ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, int rc_framelen, int nframes, int nbad)
Definition: if_ath.c:4348
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *)
Definition: if_ath.c:5243
static void reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
Definition: if_ath.c:1490
#define HAL_MODE_HT20
Definition: if_ath.c:596
static void ath_set_channel(struct ieee80211com *)
Definition: if_ath.c:5776
MODULE_VERSION(ath_main, 1)
static void ath_setup_stationkey(struct ieee80211_node *)
Definition: if_ath.c:6269
void ath_shutdown(struct ath_softc *sc)
Definition: if_ath.c:2066
void _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
Definition: if_ath.c:355
void ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath.c:5009
static void ath_bstuck_proc(void *, int)
Definition: if_ath.c:3828
int ath_bstuck_threshold
Definition: if_ath.c:256
static void ath_txrx_stop_locked(struct ath_softc *sc)
Definition: if_ath.c:2823
void ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
Definition: if_ath.c:4927
static int ath_transmit(struct ieee80211com *, struct mbuf *)
Definition: if_ath.c:3322
void ath_legacy_attach_comp_func(struct ath_softc *sc)
Definition: if_ath.c:263
static void ath_key_update_begin(struct ieee80211vap *)
Definition: if_ath.c:3601
static void ath_tx_proc_q0(void *, int)
Definition: if_ath.c:4594
struct ath_buf * ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
Definition: if_ath.c:3243
static void ath_node_powersave(struct ieee80211_node *, int)
Definition: if_ath.c:6712
void ath_mode_init(struct ath_softc *sc)
Definition: if_ath.c:3705
static void ath_fatal_proc(void *, int)
Definition: if_ath.c:2372
MODULE_DEPEND(ath_main, wlan, 1, 1, 1)
static void ath_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel[])
Definition: if_ath.c:6378
static int ath_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel[])
Definition: if_ath.c:6354
static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *)
Definition: if_ath.c:6983
static void ath_vap_delete(struct ieee80211vap *)
Definition: if_ath.c:1790
static void ath_scan_start(struct ieee80211com *)
Definition: if_ath.c:5558
static void ath_watchdog(void *)
Definition: if_ath.c:6553
static void ath_update_mcast_hw(struct ath_softc *)
Definition: if_ath.c:3660
static void ath_tx_proc_q0123(void *, int)
Definition: if_ath.c:4638
static void ath_key_update_end(struct ieee80211vap *)
Definition: if_ath.c:3610
static int ath_txq_update(struct ath_softc *sc, int ac)
Definition: if_ath.c:4092
static void ath_node_free(struct ieee80211_node *)
Definition: if_ath.c:3947
#define TXQACTIVE(t, q)
Definition: if_ath.c:4587
static void ath_parent(struct ieee80211com *)
Definition: if_ath.c:6593
static void ath_node_cleanup(struct ieee80211_node *)
Definition: if_ath.c:3932
void ath_resume(struct ath_softc *sc)
Definition: if_ath.c:1997
static void ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
Definition: if_ath.c:475
#define HAL_MODE_HT40
Definition: if_ath.c:597
static void ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
Definition: if_ath.c:1975
struct ath_buf * ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
Definition: if_ath.c:3295
static int ath_shortcalinterval
Definition: if_ath.c:236
static void assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
Definition: if_ath.c:1470
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode)
Definition: if_ath.c:6478
static void ath_stop(struct ath_softc *)
Definition: if_ath.c:2756
static int ath_anicalinterval
Definition: if_ath.c:242
__FBSDID("$FreeBSD$")
static struct ieee80211_node * ath_node_alloc(struct ieee80211vap *, const uint8_t[IEEE80211_ADDR_LEN])
Definition: if_ath.c:3901
void _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
Definition: if_ath.c:429
static void ath_scan_end(struct ieee80211com *)
Definition: if_ath.c:5583
static void ath_tsfoor_proc(void *, int)
Definition: if_ath.c:2532
static void ath_newassoc(struct ieee80211_node *, int)
Definition: if_ath.c:6301
int ath_txbuf
Definition: if_ath.c:249
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int)
Definition: if_ath.c:5817
void ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath.c:4828
void ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
Definition: if_ath.c:4288
static void ath_node_getsignal(const struct ieee80211_node *, int8_t *, int8_t *)
Definition: if_ath.c:3959
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 0, "long chip calibration interval (secs)")
int ath_wme_update(struct ieee80211com *ic)
Definition: if_ath.c:4169
int ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, HAL_RESET_TYPE ah_reset_type)
Definition: if_ath.c:2944
static void ath_reset_keycache(struct ath_softc *sc)
Definition: if_ath.c:1955
static int ath_isanyrunningvaps(struct ieee80211vap *this)
Definition: if_ath.c:5802
static struct ieee80211vap * ath_vap_create(struct ieee80211com *, const char[IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t[IEEE80211_ADDR_LEN], const uint8_t[IEEE80211_ADDR_LEN])
Definition: if_ath.c:1530
static int ath_tx_setup(struct ath_softc *, int, int)
Definition: if_ath.c:4070
static void ath_txrx_start(struct ath_softc *sc)
Definition: if_ath.c:2866
void _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, const char *file, int line)
Definition: if_ath.c:301
#define MAX_TXRX_ITERATIONS
Definition: if_ath.c:2821
static void ath_bmiss_proc(void *, int)
Definition: if_ath.c:2488
static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *)
Definition: if_ath.c:5672
static int ath_getchannels(struct ath_softc *)
Definition: if_ath.c:6394
static int ath_reset_grablock(struct ath_softc *sc, int dowait)
Definition: if_ath.c:2890
static void ath_announce(struct ath_softc *)
Definition: if_ath.c:6642
static void ath_updateslot(struct ieee80211com *)
Definition: if_ath.c:3770
void ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, int enable)
Definition: if_ath.c:6913
static void ath_settkipmic(struct ath_softc *sc)
Definition: if_ath.c:2564
void ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
Definition: if_ath.c:4783
static int ath_desc_alloc(struct ath_softc *)
Definition: if_ath.c:3852
static int assign_bslot(struct ath_softc *sc)
Definition: if_ath.c:1513
static u_int ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
Definition: if_ath.c:3636
static void ath_vap_clear_quiet_ie(struct ath_softc *sc)
Definition: if_ath.c:2580
static int ath_resetcalinterval
Definition: if_ath.c:239
static int ath_init(struct ath_softc *)
Definition: if_ath.c:2594
static void ath_update_promisc(struct ieee80211com *)
Definition: if_ath.c:3619
static void ath_update_mcast(struct ieee80211com *)
Definition: if_ath.c:3689
int ath_rxbuf
Definition: if_ath.c:246
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *)
Definition: if_ath.c:5264
int ath_stoptxdma(struct ath_softc *sc)
Definition: if_ath.c:5114
CTASSERT(ATH_BCBUF<=8)
static void ath_txq_sched_tasklet(void *, int)
Definition: if_ath.c:4743
void ath_suspend(struct ath_softc *sc)
Definition: if_ath.c:1912
#define ATH_EXPONENT_TO_VALUE(v)
struct ath_buf * _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
Definition: if_ath.c:3153
int ath_attach(u_int16_t devid, struct ath_softc *sc)
Definition: if_ath.c:601
static void ath_dfs_tasklet(void *, int)
Definition: if_ath.c:6673
#define MAX_RESET_ITERATIONS
Definition: if_ath.c:2888
static void ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
Definition: if_ath.c:4850
static int ath_reset_vap(struct ieee80211vap *, u_long)
Definition: if_ath.c:3131
static int ath_rate_setup(struct ath_softc *, u_int mode)
Definition: if_ath.c:6432
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
Definition: if_ath.c:4433
static struct ath_txq * ath_txq_setup(struct ath_softc *, int qtype, int subtype)
Definition: if_ath.c:4008
static int ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
Definition: if_ath.c:548
void ath_setdefantenna(struct ath_softc *sc, u_int antenna)
Definition: if_ath.c:3976
void ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
Definition: if_ath.c:3793
static void ath_desc_free(struct ath_softc *)
Definition: if_ath.c:3888
static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath.c:5083
void ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
Definition: if_ath.c:4893
void ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, struct ath_tx_status *ts, struct ath_buf *bf)
Definition: if_ath.c:4383
static void ath_reset_proc(void *, int)
Definition: if_ath.c:3814
void ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
Definition: if_ath.c:5174
static int ath_node_set_tim(struct ieee80211_node *, int)
Definition: if_ath.c:6780
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *)
Definition: if_ath.c:4183
void ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
Definition: if_ath.c:4804
static void ath_bmiss_vap(struct ieee80211vap *)
Definition: if_ath.c:2399
static void ath_calibrate(void *)
Definition: if_ath.c:5416
static void ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, struct ath_buf *bf)
Definition: if_ath.c:4218
#define ATH_ALQ_EDMA_TXSTATUS
Definition: if_ath_alq.h:44
void if_ath_alq_tidyup(struct if_ath_alq *alq)
void if_ath_alq_init(struct if_ath_alq *alq, const char *devname)
#define ATH_ALQ_STUCK_BEACON
Definition: if_ath_alq.h:115
void if_ath_alq_setcfg(struct if_ath_alq *alq, uint32_t macVer, uint32_t macRev, uint32_t phyRev, uint32_t halMagic)
static int if_ath_alq_checkdebug(struct if_ath_alq *alq, uint16_t op)
Definition: if_ath_alq.h:163
static void if_ath_alq_post_intr(struct if_ath_alq *alq, uint32_t status, uint32_t *state, uint32_t sync_state)
Definition: if_ath_alq.h:181
void if_ath_alq_post(struct if_ath_alq *alq, uint16_t op, uint16_t len, const char *buf)
void ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
void ath_beacon_update(struct ieee80211vap *vap, int item)
void ath_beacon_miss(struct ath_softc *sc)
void ath_beacon_free(struct ath_softc *sc)
int ath_beaconq_setup(struct ath_softc *sc)
int ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
void ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
void ath_beacon_proc(void *arg, int pending)
int ath_btcoex_detach(struct ath_softc *sc)
int ath_btcoex_enable(struct ath_softc *sc, const struct ieee80211_channel *chan)
int ath_btcoex_attach(struct ath_softc *sc)
void ath_btcoex_mci_intr(struct ath_softc *sc)
#define ATH_KTR(_sc, _km, _kf,...)
Definition: if_ath_debug.h:115
#define DPRINTF(sc, m, fmt,...)
Definition: if_ath_debug.h:118
void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd, ath_bufhead *head)
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, ath_bufhead *head, const char *name, int ds_size, int nbuf, int ndesc)
int ath_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
Definition: if_ath_ioctl.c:237
int ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap, const struct ieee80211_key *k, struct ieee80211_node *bss)
int ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
int ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
int ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
void ath_led_config(struct ath_softc *sc)
Definition: if_ath_led.c:124
void ath_led_event(struct ath_softc *sc, int rix)
Definition: if_ath_led.c:194
int ath_lna_div_detach(struct ath_softc *sc)
int ath_lna_div_attach(struct ath_softc *sc)
#define ath_power_restore_power_state(sc)
Definition: if_ath_misc.h:131
#define ath_power_setpower(sc, ps, sg)
Definition: if_ath_misc.h:125
void ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
#define ath_power_set_power_state(sc, ps)
Definition: if_ath_misc.h:129
static void ath_tx_kick(struct ath_softc *sc)
Definition: if_ath_misc.h:138
#define ath_power_setselfgen(sc, ps)
Definition: if_ath_misc.h:127
u_int32_t ath_calcrxfilter(struct ath_softc *sc)
Definition: if_ath_rx.c:158
void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
Definition: if_ath_rx.c:336
void ath_recv_setup_legacy(struct ath_softc *sc)
Definition: if_ath_rx.c:1536
#define ath_rxdma_setup(_sc)
Definition: if_ath_rx.h:49
#define ath_rx_flush(_sc)
Definition: if_ath_rx.h:45
#define ath_startrecv(_sc)
Definition: if_ath_rx.h:43
#define ath_rxdma_teardown(_sc)
Definition: if_ath_rx.h:51
#define ath_stoprecv(_sc, _dodelay)
Definition: if_ath_rx.h:41
void ath_recv_setup_edma(struct ath_softc *sc)
int ath_spectral_enable(struct ath_softc *sc, struct ieee80211_channel *ch)
int ath_spectral_detach(struct ath_softc *sc)
int ath_spectral_attach(struct ath_softc *sc)
void ath_sysctl_hal_attach(struct ath_softc *sc)
void ath_sysctl_stats_attach(struct ath_softc *sc)
void ath_sysctlattach(struct ath_softc *sc)
void ath_tdma_update(struct ieee80211_node *ni, const struct ieee80211_tdma_param *tdma, int changed)
void ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
void ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath_tx.c:4144
int ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params)
Definition: if_ath_tx.c:2420
int ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout)
Definition: if_ath_tx.c:5918
void ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
Definition: if_ath_tx.c:5750
void ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
Definition: if_ath_tx.c:6309
void ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status)
Definition: if_ath_tx.c:6177
void ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
Definition: if_ath_tx.c:6043
void ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
Definition: if_ath_tx.c:6121
void ath_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
Definition: if_ath_tx.c:6250
int ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0)
Definition: if_ath_tx.c:1904
void ath_xmit_setup_legacy(struct ath_softc *sc)
Definition: if_ath_tx.c:6398
void ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
Definition: if_ath_tx.c:6346
void ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
Definition: if_ath_tx.c:3318
void ath_txfrag_cleanup(struct ath_softc *sc, ath_bufhead *frags, struct ieee80211_node *ni)
Definition: if_ath_tx.c:256
void ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
Definition: if_ath_tx.c:4089
void ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
Definition: if_ath_tx.c:2908
int ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, struct mbuf *m0, struct ieee80211_node *ni)
Definition: if_ath_tx.c:277
int ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status, int code, int batimeout)
Definition: if_ath_tx.c:5996
#define ATH_AGGR_MAXSIZE
Definition: if_ath_tx.h:87
#define ath_txq_restart_dma(_sc, _txq)
Definition: if_ath_tx.h:160
#define ATH_AGGR_SCHED_LOW
Definition: if_ath_tx.h:65
#define SEQNO(_a)
Definition: if_ath_tx.h:75
#define ath_txdma_teardown(_sc)
Definition: if_ath_tx.h:158
#define ATH_AGGR_MIN_QDEPTH
Definition: if_ath_tx.h:51
#define ath_draintxq(_sc, _rtype)
Definition: if_ath_tx.h:164
#define ath_txdma_setup(_sc)
Definition: if_ath_tx.h:156
#define ATH_AGGR_SCHED_HIGH
Definition: if_ath_tx.h:64
#define ATH_NONAGGR_MIN_QDEPTH
Definition: if_ath_tx.h:52
void ath_xmit_setup_edma(struct ath_softc *sc)
#define ATH_TX_RADIOTAP_PRESENT
Definition: if_athioctl.h:385
#define ATH_IOCTL_STATS_NUM_TX_ANTENNA
Definition: if_athioctl.h:57
#define ATH_RX_RADIOTAP_PRESENT
Definition: if_athioctl.h:270
#define ath_hal_getmcastkeysearch(_ah)
Definition: if_athvar.h:1276
#define ath_hal_getfatalstate(_ah, _outdata, _outsize)
Definition: if_athvar.h:1168
#define ath_hal_gpioset(_ah, _gpio, _b)
Definition: if_athvar.h:1453
#define ath_hal_detach(_ah)
Definition: if_athvar.h:1058
#define ath_hal_setbssidmask(_ah, _mask)
Definition: if_athvar.h:1073
#define ath_hal_hwphycounters(_ah)
Definition: if_athvar.h:1232
#define ath_hal_haswmetkipmic(_ah)
Definition: if_athvar.h:1230
#define ath_hal_calreset(_ah, _chan)
Definition: if_athvar.h:1137
#define ATH_TXBUF
Definition: if_athvar.h:73
#define ath_hal_gettpc(_ah)
Definition: if_athvar.h:1266
#define ath_hal_get_tx_tsf_prec(_ah, _pr)
Definition: if_athvar.h:1383
#define ATH_PCI_AR9565_1ANT
Definition: if_athvar.h:100
#define ath_hal_setassocid(_ah, _bss, _associd)
Definition: if_athvar.h:1151
#define ath_hal_getratetable(_ah, _mode)
Definition: if_athvar.h:1065
#define ath_hal_phydisable(_ah)
Definition: if_athvar.h:1153
#define ath_hal_keyisvalid(_ah, _ix)
Definition: if_athvar.h:1095
#define ath_hal_getcountrycode(_ah, _pcc)
Definition: if_athvar.h:1218
#define ATH_BUF_FLAGS_CLONE
Definition: if_athvar.h:323
#define ATH_PCI_BT_ANT_DIV
Definition: if_athvar.h:98
#define ATH_BUF_FIFOEND
Definition: if_athvar.h:319
#define ATH_TXQ_LOCK_DESTROY(_tq)
Definition: if_athvar.h:407
#define ath_hal_hasenforcetxop(_ah)
Definition: if_athvar.h:1320
#define ath_hal_setmcastfilter(_ah, _mfilt0, _mfilt1)
Definition: if_athvar.h:1103
#define ath_hal_settkipmic(_ah, _v)
Definition: if_athvar.h:1222
#define ath_hal_setenforcetxop(_ah, _v)
Definition: if_athvar.h:1324
#define ATH_MGMT_TXBUF
Definition: if_athvar.h:59
#define ath_hal_txqenabled(_ah, _qnum)
Definition: if_athvar.h:1182
#define ath_hal_numtxpending(_ah, _q)
Definition: if_athvar.h:1125
#define ATH_PCI_AR9565_2ANT
Definition: if_athvar.h:101
#define ATH_BUF_MGMT
Definition: if_athvar.h:317
#define ATH_PCU_UNLOCK_ASSERT(_sc)
Definition: if_athvar.h:995
#define ath_hal_mibevent(_ah, _stats)
Definition: if_athvar.h:1194
#define ATH_TX_LOCK(_sc)
Definition: if_athvar.h:956
#define ATH_TXQ_REMOVE(_tq, _elm, _field)
Definition: if_athvar.h:431
#define ATH_BCBUF
Definition: if_athvar.h:75
#define ath_hal_getregdomain(_ah, _prd)
Definition: if_athvar.h:1214
#define ath_hal_keyreset(_ah, _ix)
Definition: if_athvar.h:1091
#define ath_hal_setledstate(_ah, _state)
Definition: if_athvar.h:1139
#define ath_hal_getchannoise(_ah, _c)
Definition: if_athvar.h:1360
#define ATH_TXBUF_LOCK(_sc)
Definition: if_athvar.h:1028
#define ath_hal_settxpowlimit(_ah, _pow)
Definition: if_athvar.h:1254
#define ath_hal_gettxchainmask(_ah, _ptxchainmask)
Definition: if_athvar.h:1366
#define ATH_PCI_D3_L1_WAR
Definition: if_athvar.h:99
#define ath_hal_ani_poll(_ah, _chan)
Definition: if_athvar.h:1192
#define ath_hal_gettxqueueprops(_ah, _q, _qi)
Definition: if_athvar.h:1176
#define ath_hal_setrxchainmask(_ah, _rx)
Definition: if_athvar.h:1368
#define ath_hal_hasbssidmask(_ah)
Definition: if_athvar.h:1280
#define ath_hal_calibrateN(_ah, _chan, _lcal, _isdone)
Definition: if_athvar.h:1135
#define ath_hal_settxqueueprops(_ah, _q, _qi)
Definition: if_athvar.h:1178
#define ath_hal_hasedma(_ah)
Definition: if_athvar.h:1338
#define ath_hal_setchainmasks(_ah, _txchainmask, _rxchainmask)
Definition: if_athvar.h:1491
#define ATH_TXQ_LAST(_tq, _field)
Definition: if_athvar.h:436
#define ATH_PCI_CUS252
Definition: if_athvar.h:96
#define ath_hal_reset(_ah, _opmode, _chan, _fullreset, _resettype, _pstatus)
Definition: if_athvar.h:1060
#define ath_hal_enablepcie(_ah, _restore, _poweroff)
Definition: if_athvar.h:1463
#define ath_hal_gettxintrtxqs(_ah, _txqs)
Definition: if_athvar.h:1405
#define ath_hal_setmcastkeysearch(_ah, _v)
Definition: if_athvar.h:1272
#define ATH_NODE_LOCK(_an)
Definition: if_athvar.h:414
#define ATH_TXQ_LOCK_ASSERT(_tq)
Definition: if_athvar.h:410
#define ATH_PCI_CUS198
Definition: if_athvar.h:93
#define ath_hal_hastsfadjust(_ah)
Definition: if_athvar.h:1284
#define ath_hal_getdiversity(_ah)
Definition: if_athvar.h:1236
#define ATH_NODE_UNLOCK(_an)
Definition: if_athvar.h:415
#define ATH_TXQ_SETUP(sc, i)
Definition: if_athvar.h:1020
ath_buf_type_t
Definition: if_athvar.h:227
@ ATH_BUFTYPE_MGMT
Definition: if_athvar.h:229
@ ATH_BUFTYPE_NORMAL
Definition: if_athvar.h:228
#define ATH_UNLOCK_ASSERT(_sc)
Definition: if_athvar.h:941
#define ath_hal_settsfadjust(_ah, _onoff)
Definition: if_athvar.h:1288
#define ATH_PCU_UNLOCK(_sc)
Definition: if_athvar.h:992
#define ath_hal_hasveol(_ah)
Definition: if_athvar.h:1250
#define ath_hal_hasfastframes(_ah)
Definition: if_athvar.h:1278
#define ath_hal_gettxbuf(_ah, _q)
Definition: if_athvar.h:1123
#define ATH_RX_LOCK(_sc)
Definition: if_athvar.h:1013
#define ATH_TX_LOCK_ASSERT(_sc)
Definition: if_athvar.h:958
#define ATH_PCI_CUS217
Definition: if_athvar.h:95
#define ath_hal_releasetxqueue(_ah, _q)
Definition: if_athvar.h:1174
#define ATH_MAX_SCATTER
Definition: if_athvar.h:248
#define ATH_KEYMAX
Definition: if_athvar.h:113
#define ath_hal_setselfgenpower(_ah, _mode)
Definition: if_athvar.h:1087
#define ath_hal_hastpc(_ah)
Definition: if_athvar.h:1264
#define ath_hal_getrxchainmask(_ah, _prxchainmask)
Definition: if_athvar.h:1364
#define ath_hal_hasdivantcomb(_ah)
Definition: if_athvar.h:1330
#define ATH_TXDESC
Definition: if_athvar.h:77
#define ath_hal_intrset(_ah, _mask)
Definition: if_athvar.h:1075
#define ath_hal_setupxtxdesc(_ah, _ds, _txr1, _txtr1, _txr2, _txtr2, _txr3, _txtr3)
Definition: if_athvar.h:1396
#define ATH_TXBUF_LOCK_ASSERT(_sc)
Definition: if_athvar.h:1030
#define ath_hal_self_linked_final_rxdesc(_ah)
Definition: if_athvar.h:1375
#define ATH_TXQ_LOCK(_tq)
Definition: if_athvar.h:408
#define ATH_LOCK(_sc)
Definition: if_athvar.h:938
#define ath_hal_keycachesize(_ah)
Definition: if_athvar.h:1089
#define ATH_RSSI_LPF(x, y)
Definition: if_athvar.h:219
#define ath_hal_setslottime(_ah, _us)
Definition: if_athvar.h:1196
#define ath_hal_set_quiet(_ah, _p, _d, _o, _f)
Definition: if_athvar.h:1493
#define ATH_TXQ_LOCK_INIT(_sc, _tq)
Definition: if_athvar.h:402
#define ATH_TXQ_UNLOCK(_tq)
Definition: if_athvar.h:409
#define ath_hal_gettsf64(_ah)
Definition: if_athvar.h:1113
#define ath_hal_hasbursting(_ah)
Definition: if_athvar.h:1270
#define ATH_TX_UNLOCK(_sc)
Definition: if_athvar.h:957
#define ATH_TX_UNLOCK_ASSERT(_sc)
Definition: if_athvar.h:960
#define ath_hal_stoptxdma(_ah, _qnum)
Definition: if_athvar.h:1157
#define ath_hal_getcapability(_ah, _cap, _param, _result)
Definition: if_athvar.h:1208
#define ath_hal_setrxfilter(_ah, _filter)
Definition: if_athvar.h:1101
#define ath_hal_updatetxtriglevel(_ah, _inc)
Definition: if_athvar.h:1083
#define ATH_NODE(ni)
Definition: if_athvar.h:210
#define ath_hal_hastkipsplit(_ah)
Definition: if_athvar.h:1224
#define ATH_TXQ_SWQ
Definition: if_athvar.h:352
#define ath_hal_gtxto_supported(_ah)
Definition: if_athvar.h:1378
#define ATH_TXBUF_LOCK_DESTROY(_sc)
Definition: if_athvar.h:1027
#define ATH_LOCK_ASSERT(_sc)
Definition: if_athvar.h:940
#define ATH_RSSI_DUMMY_MARKER
Definition: if_athvar.h:214
#define ATH_TXQ_UNLOCK_ASSERT(_tq)
Definition: if_athvar.h:411
#define ath_hal_getrfgain(_ah)
Definition: if_athvar.h:1184
#define ath_hal_intrpend(_ah)
Definition: if_athvar.h:1079
#define ath_hal_ciphersupported(_ah, _cipher)
Definition: if_athvar.h:1212
#define ath_hal_get_rx_tsf_prec(_ah, _pr)
Definition: if_athvar.h:1380
#define ATH_PCU_LOCK_ASSERT(_sc)
Definition: if_athvar.h:993
#define ath_hal_hasmcastkeysearch(_ah)
Definition: if_athvar.h:1274
#define ath_hal_hasrxlnamixer(_ah)
Definition: if_athvar.h:1327
#define ath_hal_setopmode(_ah)
Definition: if_athvar.h:1155
#define ath_hal_resettxqueue(_ah, _q)
Definition: if_athvar.h:1172
#define ATH_UNLOCK(_sc)
Definition: if_athvar.h:939
#define ath_hal_getmac(_ah, _mac)
Definition: if_athvar.h:1067
#define ath_hal_hastxpowlimit(_ah)
Definition: if_athvar.h:1252
#define ath_hal_txprocdesc(_ah, _ds, _ts)
Definition: if_athvar.h:1403
#define ATH_PCU_LOCK(_sc)
Definition: if_athvar.h:991
#define ATH_RXBUF
Definition: if_athvar.h:70
#define ath_hal_getdefantenna(_ah)
Definition: if_athvar.h:1186
#define ath_hal_getdiagstate(_ah, _id, _indata, _insize, _outdata, _outsize)
Definition: if_athvar.h:1165
#define ath_hal_macversion(_ah)
Definition: if_athvar.h:1063
#define ath_hal_getbssidmask(_ah, _mask)
Definition: if_athvar.h:1071
#define ath_hal_settxchainmask(_ah, _tx)
Definition: if_athvar.h:1370
#define ATH_BUF_BUSY
Definition: if_athvar.h:318
#define ATH_TXBUF_LOCK_INIT(_sc)
Definition: if_athvar.h:1022
#define ath_hal_gettxdesclinkptr(_ah, _ds, _linkptr)
Definition: if_athvar.h:1413
#define ATH_TXBUF_UNLOCK_ASSERT(_sc)
Definition: if_athvar.h:1032
#define ath_hal_setmac(_ah, _mac)
Definition: if_athvar.h:1069
#define ATH_VAP(vap)
Definition: if_athvar.h:498
#define ath_hal_hasmybeacon(_ah)
Definition: if_athvar.h:1317
#define ath_hal_setuptxqueue(_ah, _type, _irq)
Definition: if_athvar.h:1170
#define ATH_NODE_UNLOCK_ASSERT(_an)
Definition: if_athvar.h:417
#define ath_hal_setpower(_ah, _mode)
Definition: if_athvar.h:1085
ATH_RESET_TYPE
Definition: if_athvar.h:507
@ ATH_RESET_NOLOSS
Definition: if_athvar.h:509
@ ATH_RESET_DEFAULT
Definition: if_athvar.h:508
@ ATH_RESET_FULL
Definition: if_athvar.h:510
#define ath_hal_hasbssidmatch(_ah)
Definition: if_athvar.h:1282
#define ATH_PCI_CUS230
Definition: if_athvar.h:94
#define ATH_TXBUF_UNLOCK(_sc)
Definition: if_athvar.h:1029
#define ATH_RX_UNLOCK(_sc)
Definition: if_athvar.h:1014
#define ath_hal_setdefantenna(_ah, _ant)
Definition: if_athvar.h:1188
#define ath_hal_settkipsplit(_ah, _v)
Definition: if_athvar.h:1228
#define ath_hal_getisr(_ah, _pmask)
Definition: if_athvar.h:1081
#define ath_hal_keysetmac(_ah, _ix, _mac)
Definition: if_athvar.h:1097
#define ATH_PCI_KILLER
Definition: if_athvar.h:103
#define MIN(a, b)
Definition: sample.h:120
uint32_t ns_avgtxrssi
Definition: ah.h:875
uint32_t ns_avgbrssi
Definition: ah.h:873
uint32_t ns_avgrssi
Definition: ah.h:874
int ath_hal_ext_atten_margin_cfg
Definition: ah.h:1203
int ath_hal_min_gainidx
Definition: ah.h:1204
int ath_hal_pcie_waen
Definition: ah.h:1183
int ah_serialise_reg_war
Definition: ah.h:1163
int ath_hal_ant_ctrl_comm2g_switch_enable
Definition: ah.h:1202
int ath_hal_ext_lna_ctl_gpio
Definition: ah.h:1190
int rateCount
Definition: ah.h:682
uint8_t shortPreamble
Definition: ah.h:689
struct HAL_RATE_TABLE::@3 info[64]
uint8_t dot11Rate
Definition: ah.h:691
uint8_t phy
Definition: ah.h:686
uint32_t tqi_cwmax
Definition: ah.h:371
uint32_t tqi_cwmin
Definition: ah.h:370
uint32_t tqi_aifs
Definition: ah.h:369
HAL_TX_QUEUE_SUBTYPE tqi_subtype
Definition: ah.h:366
uint32_t tqi_readyTime
Definition: ah.h:377
HAL_TX_QUEUE_FLAGS tqi_qflags
Definition: ah.h:367
uint32_t tqi_burstTime
Definition: ah.h:376
struct ath_desc_status bf_status
Definition: if_athvar.h:240
uint8_t bfs_tx_queue
Definition: if_athvar.h:268
uint32_t bfs_pktlen
Definition: if_athvar.h:289
uint16_t bf_descid
Definition: if_athvar.h:238
u_int32_t bfs_dobaw
Definition: if_athvar.h:273
uint16_t bfs_txflags
Definition: if_athvar.h:294
void(* bf_comp)(struct ath_softc *sc, struct ath_buf *bf, int fail)
Definition: if_athvar.h:257
uint16_t bfs_seqno
Definition: if_athvar.h:261
struct mbuf * bf_m
Definition: if_athvar.h:243
uint16_t bf_flags
Definition: if_athvar.h:237
struct ath_buf * bf_last
Definition: if_athvar.h:246
struct ath_desc * bf_lastds
Definition: if_athvar.h:245
u_int32_t bfs_aggr
Definition: if_athvar.h:270
struct ath_rc_series bfs_rc[ATH_RC_NUM]
Definition: if_athvar.h:312
int bf_nseg
Definition: if_athvar.h:235
struct ath_buf::@32 bf_state
uint32_t bf_nextfraglen
Definition: if_athvar.h:250
struct ieee80211_node * bf_node
Definition: if_athvar.h:244
struct ath_buf * bf_next
Definition: if_athvar.h:234
bus_dmamap_t bf_dmamap
Definition: if_athvar.h:242
bus_size_t dd_desc_len
Definition: if_athvar.h:333
Definition: ah.h:1219
uint32_t ah_macVersion
Definition: ah.h:1228
uint16_t ah_phyRev
Definition: ah.h:1230
uint16_t ah_macRev
Definition: ah.h:1229
uint32_t ah_magic
Definition: ah.h:1220
HAL_OPS_CONFIG ah_config
Definition: ah.h:1243
uint16_t ah_analog2GhzRev
Definition: ah.h:1233
uint32_t ah_syncstate
Definition: ah.h:1238
uint16_t ah_analog5GhzRev
Definition: ah.h:1232
uint32_t ah_intrstate[8]
Definition: ah.h:1237
u_int32_t sync_intr[ATH_IOCTL_INTR_NUM_SYNC_INTR]
Definition: if_athioctl.h:53
uint32_t an_is_powersave
Definition: if_athvar.h:196
struct ath_tid an_tid[IEEE80211_TID_SIZE]
Definition: if_athvar.h:200
struct mtx an_mtx
Definition: if_athvar.h:202
uint32_t an_stack_psq
Definition: if_athvar.h:197
uint32_t an_tim_set
Definition: if_athvar.h:198
u_int8_t an_mgmtrix
Definition: if_athvar.h:194
struct ieee80211_node an_node
Definition: if_athvar.h:193
uint32_t an_swq_depth
Definition: if_athvar.h:203
HAL_NODE_STATS an_node_stats
Definition: if_athvar.h:207
char an_name[32]
Definition: if_athvar.h:201
u_int8_t an_mcastrix
Definition: if_athvar.h:195
uint32_t an_leak_count
Definition: if_athvar.h:206
void(* recv_tasklet)(void *arg, int npending)
Definition: if_athvar.h:520
void(* recv_sched)(struct ath_softc *sc, int dosched)
Definition: if_athvar.h:516
struct ieee80211_radiotap_header wr_ihdr
Definition: if_athioctl.h:335
void(* sc_addba_stop)(struct ieee80211_node *, struct ieee80211_tx_ampdu *)
Definition: if_athvar.h:892
u_int8_t sc_txrix
Definition: if_athvar.h:729
struct ath_txq * sc_ac2q[5]
Definition: if_athvar.h:766
struct task sc_fataltask
Definition: if_athvar.h:790
u_int8_t sc_keymap[ATH_KEYBYTES]
Definition: if_athvar.h:720
u_int8_t rxflags
Definition: if_athvar.h:688
u_int32_t sc_running
Definition: if_athvar.h:657
HAL_BOOL sc_doresetcal
Definition: if_athvar.h:805
uint32_t sc_pci_devinfo
Definition: if_athvar.h:918
void(* sc_setdefantenna)(struct ath_softc *, u_int)
Definition: if_athvar.h:615
uint32_t sc_swbmiss
Definition: if_athvar.h:642
struct task sc_rxtask
Definition: if_athvar.h:745
const HAL_RATE_TABLE * sc_currates
Definition: if_athvar.h:678
struct ath_intr_stats sc_intr_stats
Definition: if_athvar.h:565
struct mtx sc_pcu_mtx
Definition: if_athvar.h:603
HAL_POWER_MODE sc_target_powerstate
Definition: if_athvar.h:910
u_int32_t sc_use_ent
Definition: if_athvar.h:658
uint32_t sc_kickpcu
Definition: if_athvar.h:711
enum ieee80211_phymode sc_curmode
Definition: if_athvar.h:679
uint32_t sc_do_mybeacon
Definition: if_athvar.h:652
int sc_tx_desclen
Definition: if_athvar.h:589
u_int sc_keymax
Definition: if_athvar.h:719
u_int sc_tdmaswba
Definition: if_athvar.h:809
HAL_NODE_STATS sc_halstats
Definition: if_athvar.h:806
uint32_t sc_hasclrkey
Definition: if_athvar.h:634
struct callout sc_ledtimer
Definition: if_athvar.h:731
u_int sc_bmisscount
Definition: if_athvar.h:782
u_int16_t sc_curaid
Definition: if_athvar.h:682
u_int8_t sc_rixmap[256]
Definition: if_athvar.h:685
const HAL_RATE_TABLE * sc_rates[IEEE80211_MODE_MAX]
Definition: if_athvar.h:677
uint32_t sc_intr_cnt
Definition: if_athvar.h:717
bus_dma_tag_t sc_dmat
Definition: if_athvar.h:601
int(* sc_addba_request)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int)
Definition: if_athvar.h:888
u_int32_t sc_hasdivcomb
Definition: if_athvar.h:663
ath_bufhead sc_bbuf
Definition: if_athvar.h:780
int sc_lastcalreset
Definition: if_athvar.h:802
HAL_POWER_MODE sc_cur_powerstate
Definition: if_athvar.h:913
HAL_BUS_TAG sc_st
Definition: if_athvar.h:599
u_int sc_ledidle
Definition: if_athvar.h:727
int sc_lastlongcal
Definition: if_athvar.h:801
ath_bufhead sc_txbuf_mgmt
Definition: if_athvar.h:759
uint32_t sc_rxtsf32
Definition: if_athvar.h:650
uint32_t sc_diversity
Definition: if_athvar.h:627
int sc_txq_node_psq_maxdepth
Definition: if_athvar.h:848
uint32_t sc_cur_rxchainmask
Definition: if_athvar.h:819
uint32_t sc_hasbmask
Definition: if_athvar.h:638
uint32_t sc_splitmic
Definition: if_athvar.h:625
u_int sc_bhalq
Definition: if_athvar.h:781
uint32_t sc_eerd
Definition: if_athvar.h:674
int sc_txq_mcastq_maxdepth
Definition: if_athvar.h:847
uint32_t sc_hasveol
Definition: if_athvar.h:628
u_int8_t sc_nbssid0
Definition: if_athvar.h:572
uint32_t sc_bssidmask
Definition: if_athvar.h:573
u_int32_t sc_tx_stbc
Definition: if_athvar.h:660
uint32_t sc_stagbeacons
Definition: if_athvar.h:643
struct ath_stats sc_stats
Definition: if_athvar.h:563
int sc_nbcnvaps
Definition: if_athvar.h:798
u_int8_t sc_rxotherant
Definition: if_athvar.h:747
uint32_t sc_rts_aggr_limit
Definition: if_athvar.h:820
u_int64_t sc_lastrx
Definition: if_athvar.h:748
uint32_t sc_hastsfadd
Definition: if_athvar.h:640
struct ieee80211vap * sc_bslot[ATH_BCBUF]
Definition: if_athvar.h:797
uint32_t sc_resetcal
Definition: if_athvar.h:648
int sc_cabq_enable
Definition: if_athvar.h:667
u_int8_t sc_hwbssidmask[IEEE80211_ADDR_LEN]
Definition: if_athvar.h:571
uint32_t sc_resume_up
Definition: if_athvar.h:645
int sc_wd_timer
Definition: if_athvar.h:774
int sc_hwq_limit_nonaggr
Definition: if_athvar.h:864
uint32_t sc_ent_cfg
Definition: if_athvar.h:672
struct ath_tx_radiotap_header sc_tx_th
Definition: if_athvar.h:776
struct task sc_dfstask
Definition: if_athvar.h:872
u_int32_t sc_rx_stbc
Definition: if_athvar.h:659
device_t sc_dev
Definition: if_athvar.h:598
int sc_lastani
Definition: if_athvar.h:803
u_int32_t sc_hasenforcetxop
Definition: if_athvar.h:662
int sc_nstavaps
Definition: if_athvar.h:569
struct mtx sc_mtx
Definition: if_athvar.h:602
int sc_rx_stopped
Definition: if_athvar.h:593
u_int32_t sc_btcoex_mci
Definition: if_athvar.h:665
u_int8_t sc_protrix
Definition: if_athvar.h:693
uint32_t sc_cur_txchainmask
Definition: if_athvar.h:818
int sc_tid_hwq_hi
Definition: if_athvar.h:867
u_int sc_ledon
Definition: if_athvar.h:726
ath_bufhead sc_txbuf
Definition: if_athvar.h:756
enum ath_softc::@35 sc_updateslot
int sc_lastshortcal
Definition: if_athvar.h:804
uint32_t sc_rxchainmask
Definition: if_athvar.h:817
u_int32_t * sc_rxlink
Definition: if_athvar.h:744
void(* sc_node_cleanup)(struct ieee80211_node *)
Definition: if_athvar.h:596
struct task sc_txqtask
Definition: if_athvar.h:768
int sc_hwq_limit_aggr
Definition: if_athvar.h:865
struct task sc_bmisstask
Definition: if_athvar.h:786
uint32_t sc_beacons
Definition: if_athvar.h:641
struct callout sc_wd_ch
Definition: if_athvar.h:775
struct callout sc_cal_ch
Definition: if_athvar.h:800
struct task sc_resettask
Definition: if_athvar.h:789
uint32_t sc_hardled
Definition: if_athvar.h:624
ath_bufhead sc_rx_rxlist[HAL_NUM_RX_QUEUES]
Definition: if_athvar.h:577
uint16_t * sc_eepromdata
Definition: if_athvar.h:815
u_int8_t sc_defant
Definition: if_athvar.h:746
struct task sc_bstucktask
Definition: if_athvar.h:788
uint32_t sc_ledstate
Definition: if_athvar.h:629
int(* sc_addba_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int)
Definition: if_athvar.h:890
int sc_nmeshvaps
Definition: if_athvar.h:570
void(* sc_bar_response)(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status)
Definition: if_athvar.h:897
struct ath_txq * sc_cabq
Definition: if_athvar.h:785
uint32_t sc_syncbeacon
Definition: if_athvar.h:633
uint32_t sc_rxproc_cnt
Definition: if_athvar.h:712
struct ath_descdma sc_txdma_mgmt
Definition: if_athvar.h:758
int sc_led_net_pin
Definition: if_athvar.h:737
int sc_led_pwr_pin
Definition: if_athvar.h:736
int sc_delim_min_pad
Definition: if_athvar.h:822
int sc_txq_node_maxdepth
Definition: if_athvar.h:845
u_int16_t ledoff
Definition: if_athvar.h:691
u_int8_t ieeerate
Definition: if_athvar.h:687
int sc_aggr_limit
Definition: if_athvar.h:821
uint32_t sc_needmib
Definition: if_athvar.h:626
struct ath_tx99 * sc_tx99
Definition: if_athvar.h:614
struct task sc_tsfoortask
Definition: if_athvar.h:787
uint32_t sc_tdma
Definition: if_athvar.h:646
HAL_INT sc_imask
Definition: if_athvar.h:700
int sc_powersave_refcnt
Definition: if_athvar.h:915
struct ath_softc::@34 sc_hwmap[32]
uint32_t sc_mcastkey
Definition: if_athvar.h:631
struct ath_rx_methods sc_rx
Definition: if_athvar.h:575
struct ath_txq sc_txq[HAL_NUM_TX_QUEUES]
Definition: if_athvar.h:765
int sc_nvaps
Definition: if_athvar.h:568
struct ath_descdma sc_bdma
Definition: if_athvar.h:779
u_int8_t sc_curbssid[IEEE80211_ADDR_LEN]
Definition: if_athvar.h:684
uint32_t sc_invalid
Definition: if_athvar.h:620
struct ath_descdma sc_txdma
Definition: if_athvar.h:754
u_int32_t sc_ant_tx[ATH_IOCTL_STATS_NUM_TX_ANTENNA]
Definition: if_athvar.h:783
struct ath_hal * sc_ah
Definition: if_athvar.h:612
uint32_t sc_blinking
Definition: if_athvar.h:630
u_int sc_txqsetup
Definition: if_athvar.h:763
int sc_rx_resetted
Definition: if_athvar.h:594
int sc_dolnadiv
Definition: if_athvar.h:880
uint32_t sc_wmetkipmic
Definition: if_athvar.h:644
struct ath_tx_methods sc_tx
Definition: if_athvar.h:578
struct ieee80211_channel * sc_curchan
Definition: if_athvar.h:683
u_int32_t sc_rx_lnamixer
Definition: if_athvar.h:664
u_int16_t ledon
Definition: if_athvar.h:690
uint32_t sc_hasbmatch
Definition: if_athvar.h:639
struct ath_ratectrl * sc_rc
Definition: if_athvar.h:613
uint32_t sc_isedma
Definition: if_athvar.h:651
uint16_t sc_txbuf_descid
Definition: if_athvar.h:755
void(* sc_addba_response_timeout)(struct ieee80211_node *, struct ieee80211_tx_ampdu *)
Definition: if_athvar.h:895
struct task sc_txtask
Definition: if_athvar.h:767
uint32_t sc_txq_active
Definition: if_athvar.h:710
uint32_t sc_mrretry
Definition: if_athvar.h:621
uint32_t sc_txchainmask
Definition: if_athvar.h:816
uint32_t sc_eecc
Definition: if_athvar.h:675
u_int8_t txflags
Definition: if_athvar.h:689
struct ieee80211com sc_ic
Definition: if_athvar.h:562
u_int sc_ledpin
Definition: if_athvar.h:725
uint32_t sc_rxslink
Definition: if_athvar.h:649
uint32_t sc_txproc_cnt
Definition: if_athvar.h:713
int sc_txbuf_cnt
Definition: if_athvar.h:757
uint32_t sc_txstart_cnt
Definition: if_athvar.h:714
uint32_t sc_softled
Definition: if_athvar.h:623
int sc_txq_data_minfree
Definition: if_athvar.h:846
uint64_t sc_debug
Definition: if_athvar.h:566
int sc_tx_statuslen
Definition: if_athvar.h:590
int sc_tid_hwq_lo
Definition: if_athvar.h:866
struct ath_rx_radiotap_header sc_rx_th
Definition: if_athvar.h:750
HAL_POWER_MODE sc_target_selfgen_state
Definition: if_athvar.h:911
uint32_t sc_scanning
Definition: if_athvar.h:632
uint32_t sc_inreset_cnt
Definition: if_athvar.h:715
u_int sc_tdmaslotlen
Definition: if_athvar.h:812
uint32_t sc_mrrprot
Definition: if_athvar.h:622
HAL_OPMODE sc_opmode
Definition: if_athvar.h:680
u_int32_t sc_has_ldpc
Definition: if_athvar.h:661
void(* sc_node_free)(struct ieee80211_node *)
Definition: if_athvar.h:597
struct taskqueue * sc_tq
Definition: if_athvar.h:611
HAL_BUS_HANDLE sc_sh
Definition: if_athvar.h:600
u_int32_t ast_per_calfail
Definition: if_athioctl.h:116
int8_t ast_tx_rssi
Definition: if_athioctl.h:110
u_int32_t ast_tx_desccfgerr
Definition: if_athioctl.h:160
u_int32_t ast_tx_data_underrun
Definition: if_athioctl.h:163
u_int32_t ast_bmiss
Definition: if_athioctl.h:62
u_int32_t ast_bmiss_phantom
Definition: if_athioctl.h:63
u_int32_t ast_tx_filtered
Definition: if_athioctl.h:83
u_int32_t ast_per_rfgain
Definition: if_athioctl.h:117
u_int32_t ast_tx_fifoerr
Definition: if_athioctl.h:82
u_int32_t ast_watchdog
Definition: if_athioctl.h:60
u_int32_t ast_ff_txerr
Definition: if_athioctl.h:131
u_int32_t ast_ani_cal
Definition: if_athioctl.h:146
u_int32_t ast_per_cal
Definition: if_athioctl.h:115
u_int32_t ast_txurn
Definition: if_athioctl.h:67
u_int32_t ast_tx_xretries
Definition: if_athioctl.h:81
u_int32_t ast_tx_getnobuf
Definition: if_athioctl.h:166
u_int32_t ast_tx_longretry
Definition: if_athioctl.h:85
u_int32_t ast_tx_timeout
Definition: if_athioctl.h:156
u_int32_t ast_tx_nodeq_overflow
Definition: if_athioctl.h:177
u_int32_t ast_ant_defswitch
Definition: if_athioctl.h:121
u_int32_t ast_tsfoor
Definition: if_athioctl.h:180
u_int32_t ast_bstuck
Definition: if_athioctl.h:64
u_int32_t ast_tx_qstop
Definition: if_athioctl.h:73
u_int32_t ast_tx_cst
Definition: if_athioctl.h:157
u_int32_t ast_tx_intr
Definition: if_athioctl.h:168
u_int32_t ast_rxorn
Definition: if_athioctl.h:65
u_int32_t ast_tx_xtxop
Definition: if_athioctl.h:158
u_int32_t ast_tx_nofrag
Definition: if_athioctl.h:144
u_int32_t ast_tx_delim_underrun
Definition: if_athioctl.h:164
u_int32_t ast_rx_intr
Definition: if_athioctl.h:169
u_int32_t ast_tx_timerexpired
Definition: if_athioctl.h:159
u_int32_t ast_hardware
Definition: if_athioctl.h:61
u_int32_t ast_ant_tx[ATH_IOCTL_STATS_NUM_TX_ANTENNA]
Definition: if_athioctl.h:125
u_int32_t ast_tx_shortretry
Definition: if_athioctl.h:84
u_int32_t ast_mib
Definition: if_athioctl.h:68
u_int32_t ast_tx_getbusybuf
Definition: if_athioctl.h:167
u_int32_t ast_rxeol
Definition: if_athioctl.h:66
u_int32_t ast_tx_nobuf
Definition: if_athioctl.h:136
u_int32_t ast_tx_altrate
Definition: if_athioctl.h:91
int tid
Definition: if_athvar.h:130
struct ath_node * an
Definition: if_athvar.h:129
u_int axq_depth
Definition: if_athvar.h:133
void(* xmit_attach_comp_func)(struct ath_softc *sc)
Definition: if_athvar.h:551
struct ieee80211_radiotap_header wt_ihdr
Definition: if_athioctl.h:394
uint8_t ts_flags
Definition: ah_desc.h:47
uint8_t ts_status
Definition: ah_desc.h:38
int8_t ts_rssi
Definition: ah_desc.h:40
uint8_t ts_finaltsi
Definition: ah_desc.h:45
uint8_t ts_longretry
Definition: ah_desc.h:42
uint8_t ts_antenna
Definition: ah_desc.h:44
uint8_t ts_shortretry
Definition: ah_desc.h:41
struct ath_txq::@33 fifo
u_int32_t * axq_link
Definition: if_athvar.h:360
u_int axq_flags
Definition: if_athvar.h:354
u_int axq_ac
Definition: if_athvar.h:353
u_int axq_fifo_depth
Definition: if_athvar.h:380
struct ath_softc * axq_softc
Definition: if_athvar.h:350
u_int axq_qnum
Definition: if_athvar.h:351
u_int axq_depth
Definition: if_athvar.h:357
u_int axq_aggr_depth
Definition: if_athvar.h:358
struct ath_buf * axq_holdingbf
Definition: if_athvar.h:391
u_int axq_intrcnt
Definition: if_athvar.h:359
void(* av_recv_pspoll)(struct ieee80211_node *, struct mbuf *)
Definition: if_athvar.h:494
struct ath_txq av_mcastq
Definition: if_athvar.h:484
void(* av_recv_mgmt)(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int)
Definition: if_athvar.h:486
void(* av_node_ps)(struct ieee80211_node *, int)
Definition: if_athvar.h:492
int av_bslot
Definition: if_athvar.h:482
int(* av_set_tim)(struct ieee80211_node *, int)
Definition: if_athvar.h:493
struct ieee80211_quiet_ie quiet_ie
Definition: if_athvar.h:496
int(* av_newstate)(struct ieee80211vap *, enum ieee80211_state, int)
Definition: if_athvar.h:489
struct ieee80211vap av_vap
Definition: if_athvar.h:481
struct ath_buf * av_bcbuf
Definition: if_athvar.h:483
void(* av_bmiss)(struct ieee80211vap *)
Definition: if_athvar.h:491