FreeBSD kernel kern code
vfs_mount.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1999-2004 Poul-Henning Kamp
5 * Copyright (c) 1999 Michael Smith
6 * Copyright (c) 1989, 1993
7 * The Regents of the University of California. All rights reserved.
8 * (c) UNIX System Laboratories, Inc.
9 * All or some portions of this file are derived from material licensed
10 * to the University of California by American Telephone and Telegraph
11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12 * the permission of UNIX System Laboratories, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include <sys/param.h>
43#include <sys/conf.h>
44#include <sys/smp.h>
45#include <sys/devctl.h>
46#include <sys/eventhandler.h>
47#include <sys/fcntl.h>
48#include <sys/jail.h>
49#include <sys/kernel.h>
50#include <sys/ktr.h>
51#include <sys/libkern.h>
52#include <sys/limits.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/mutex.h>
56#include <sys/namei.h>
57#include <sys/priv.h>
58#include <sys/proc.h>
59#include <sys/filedesc.h>
60#include <sys/reboot.h>
61#include <sys/sbuf.h>
62#include <sys/syscallsubr.h>
63#include <sys/sysproto.h>
64#include <sys/sx.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/systm.h>
68#include <sys/taskqueue.h>
69#include <sys/vnode.h>
70#include <vm/uma.h>
71
72#include <geom/geom.h>
73
74#include <machine/stdarg.h>
75
76#include <security/audit/audit.h>
77#include <security/mac/mac_framework.h>
78
79#define VFS_MOUNTARG_SIZE_MAX (1024 * 64)
80
81static int vfs_domount(struct thread *td, const char *fstype, char *fspath,
82 uint64_t fsflags, struct vfsoptlist **optlist);
83static void free_mntarg(struct mntarg *ma);
84
85static int usermount = 0;
86SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
87 "Unprivileged users may mount and unmount file systems");
88
89static bool default_autoro = false;
90SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
91 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
92
93static bool recursive_forced_unmount = false;
94SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
95 &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
96 " when a file system is forcibly unmounted");
97
98static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
99 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
100
101static unsigned int deferred_unmount_retry_limit = 10;
102SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
104 "Maximum number of retries for deferred unmount failure");
105
107SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
109 "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
110
112SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
114 "Total number of retried deferred unmounts");
115
116MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
117MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
118static uma_zone_t mount_zone;
119
120/* List of mounted filesystems. */
121struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
122
123/* For any iteration/modification of mountlist */
124struct mtx_padalign __exclusive_cache_line mountlist_mtx;
125
128
129static void vfs_deferred_unmount(void *arg, int pending);
130static struct timeout_task deferred_unmount_task;
132MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
133 MTX_DEF);
134static STAILQ_HEAD(, mount) deferred_unmount_list =
135 STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
136TASKQUEUE_DEFINE_THREAD(deferred_unmount);
137
138static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
139
140/*
141 * Global opts, taken by all filesystems
142 */
143static const char *global_opts[] = {
144 "errmsg",
145 "fstype",
146 "fspath",
147 "ro",
148 "rw",
149 "nosuid",
150 "noexec",
151 NULL
152};
153
154static int
155mount_init(void *mem, int size, int flags)
156{
157 struct mount *mp;
158
159 mp = (struct mount *)mem;
160 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
161 mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
162 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
163 mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
164 mp->mnt_ref = 0;
165 mp->mnt_vfs_ops = 1;
166 mp->mnt_rootvnode = NULL;
167 return (0);
168}
169
170static void
171mount_fini(void *mem, int size)
172{
173 struct mount *mp;
174
175 mp = (struct mount *)mem;
176 uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
177 lockdestroy(&mp->mnt_explock);
178 mtx_destroy(&mp->mnt_listmtx);
179 mtx_destroy(&mp->mnt_mtx);
180}
181
182static void
183vfs_mount_init(void *dummy __unused)
184{
185 TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
186 0, vfs_deferred_unmount, NULL);
188 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
189 NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
190 mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
191}
192SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
193
194/*
195 * ---------------------------------------------------------------------
196 * Functions for building and sanitizing the mount options
197 */
198
199/* Remove one mount option. */
200static void
201vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
202{
203
204 TAILQ_REMOVE(opts, opt, link);
205 free(opt->name, M_MOUNT);
206 if (opt->value != NULL)
207 free(opt->value, M_MOUNT);
208 free(opt, M_MOUNT);
209}
210
211/* Release all resources related to the mount options. */
212void
213vfs_freeopts(struct vfsoptlist *opts)
214{
215 struct vfsopt *opt;
216
217 while (!TAILQ_EMPTY(opts)) {
218 opt = TAILQ_FIRST(opts);
219 vfs_freeopt(opts, opt);
220 }
221 free(opts, M_MOUNT);
222}
223
224void
225vfs_deleteopt(struct vfsoptlist *opts, const char *name)
226{
227 struct vfsopt *opt, *temp;
228
229 if (opts == NULL)
230 return;
231 TAILQ_FOREACH_SAFE(opt, opts, link, temp) {
232 if (strcmp(opt->name, name) == 0)
233 vfs_freeopt(opts, opt);
234 }
235}
236
237static int
238vfs_isopt_ro(const char *opt)
239{
240
241 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
242 strcmp(opt, "norw") == 0)
243 return (1);
244 return (0);
245}
246
247static int
248vfs_isopt_rw(const char *opt)
249{
250
251 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
252 return (1);
253 return (0);
254}
255
256/*
257 * Check if options are equal (with or without the "no" prefix).
258 */
259static int
260vfs_equalopts(const char *opt1, const char *opt2)
261{
262 char *p;
263
264 /* "opt" vs. "opt" or "noopt" vs. "noopt" */
265 if (strcmp(opt1, opt2) == 0)
266 return (1);
267 /* "noopt" vs. "opt" */
268 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
269 return (1);
270 /* "opt" vs. "noopt" */
271 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
272 return (1);
273 while ((p = strchr(opt1, '.')) != NULL &&
274 !strncmp(opt1, opt2, ++p - opt1)) {
275 opt2 += p - opt1;
276 opt1 = p;
277 /* "foo.noopt" vs. "foo.opt" */
278 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
279 return (1);
280 /* "foo.opt" vs. "foo.noopt" */
281 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
282 return (1);
283 }
284 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */
285 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
286 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
287 return (1);
288 return (0);
289}
290
291/*
292 * If a mount option is specified several times,
293 * (with or without the "no" prefix) only keep
294 * the last occurrence of it.
295 */
296static void
297vfs_sanitizeopts(struct vfsoptlist *opts)
298{
299 struct vfsopt *opt, *opt2, *tmp;
300
301 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
302 opt2 = TAILQ_PREV(opt, vfsoptlist, link);
303 while (opt2 != NULL) {
304 if (vfs_equalopts(opt->name, opt2->name)) {
305 tmp = TAILQ_PREV(opt2, vfsoptlist, link);
306 vfs_freeopt(opts, opt2);
307 opt2 = tmp;
308 } else {
309 opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
310 }
311 }
312 }
313}
314
315/*
316 * Build a linked list of mount options from a struct uio.
317 */
318int
319vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
320{
321 struct vfsoptlist *opts;
322 struct vfsopt *opt;
323 size_t memused, namelen, optlen;
324 unsigned int i, iovcnt;
325 int error;
326
327 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
328 TAILQ_INIT(opts);
329 memused = 0;
330 iovcnt = auio->uio_iovcnt;
331 for (i = 0; i < iovcnt; i += 2) {
332 namelen = auio->uio_iov[i].iov_len;
333 optlen = auio->uio_iov[i + 1].iov_len;
334 memused += sizeof(struct vfsopt) + optlen + namelen;
335 /*
336 * Avoid consuming too much memory, and attempts to overflow
337 * memused.
338 */
339 if (memused > VFS_MOUNTARG_SIZE_MAX ||
340 optlen > VFS_MOUNTARG_SIZE_MAX ||
341 namelen > VFS_MOUNTARG_SIZE_MAX) {
342 error = EINVAL;
343 goto bad;
344 }
345
346 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
347 opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
348 opt->value = NULL;
349 opt->len = 0;
350 opt->pos = i / 2;
351 opt->seen = 0;
352
353 /*
354 * Do this early, so jumps to "bad" will free the current
355 * option.
356 */
357 TAILQ_INSERT_TAIL(opts, opt, link);
358
359 if (auio->uio_segflg == UIO_SYSSPACE) {
360 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
361 } else {
362 error = copyin(auio->uio_iov[i].iov_base, opt->name,
363 namelen);
364 if (error)
365 goto bad;
366 }
367 /* Ensure names are null-terminated strings. */
368 if (namelen == 0 || opt->name[namelen - 1] != '\0') {
369 error = EINVAL;
370 goto bad;
371 }
372 if (optlen != 0) {
373 opt->len = optlen;
374 opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
375 if (auio->uio_segflg == UIO_SYSSPACE) {
376 bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
377 optlen);
378 } else {
379 error = copyin(auio->uio_iov[i + 1].iov_base,
380 opt->value, optlen);
381 if (error)
382 goto bad;
383 }
384 }
385 }
386 vfs_sanitizeopts(opts);
387 *options = opts;
388 return (0);
389bad:
390 vfs_freeopts(opts);
391 return (error);
392}
393
394/*
395 * Merge the old mount options with the new ones passed
396 * in the MNT_UPDATE case.
397 *
398 * XXX: This function will keep a "nofoo" option in the new
399 * options. E.g, if the option's canonical name is "foo",
400 * "nofoo" ends up in the mount point's active options.
401 */
402static void
403vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
404{
405 struct vfsopt *opt, *new;
406
407 TAILQ_FOREACH(opt, oldopts, link) {
408 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
409 new->name = strdup(opt->name, M_MOUNT);
410 if (opt->len != 0) {
411 new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
412 bcopy(opt->value, new->value, opt->len);
413 } else
414 new->value = NULL;
415 new->len = opt->len;
416 new->seen = opt->seen;
417 TAILQ_INSERT_HEAD(toopts, new, link);
418 }
419 vfs_sanitizeopts(toopts);
420}
421
422/*
423 * Mount a filesystem.
424 */
425#ifndef _SYS_SYSPROTO_H_
427 struct iovec *iovp;
428 unsigned int iovcnt;
429 int flags;
430};
431#endif
432int
433sys_nmount(struct thread *td, struct nmount_args *uap)
434{
435 struct uio *auio;
436 int error;
437 u_int iovcnt;
438 uint64_t flags;
439
440 /*
441 * Mount flags are now 64-bits. On 32-bit archtectures only
442 * 32-bits are passed in, but from here on everything handles
443 * 64-bit flags correctly.
444 */
445 flags = uap->flags;
446
447 AUDIT_ARG_FFLAGS(flags);
448 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
449 uap->iovp, uap->iovcnt, flags);
450
451 /*
452 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
453 * userspace to set this flag, but we must filter it out if we want
454 * MNT_UPDATE on the root file system to work.
455 * MNT_ROOTFS should only be set by the kernel when mounting its
456 * root file system.
457 */
458 flags &= ~MNT_ROOTFS;
459
460 iovcnt = uap->iovcnt;
461 /*
462 * Check that we have an even number of iovec's
463 * and that we have at least two options.
464 */
465 if ((iovcnt & 1) || (iovcnt < 4)) {
466 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
467 uap->iovcnt);
468 return (EINVAL);
469 }
470
471 error = copyinuio(uap->iovp, iovcnt, &auio);
472 if (error) {
473 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
474 __func__, error);
475 return (error);
476 }
477 error = vfs_donmount(td, flags, auio);
478
479 free(auio, M_IOV);
480 return (error);
481}
482
483/*
484 * ---------------------------------------------------------------------
485 * Various utility functions
486 */
487
488/*
489 * Get a reference on a mount point from a vnode.
490 *
491 * The vnode is allowed to be passed unlocked and race against dooming. Note in
492 * such case there are no guarantees the referenced mount point will still be
493 * associated with it after the function returns.
494 */
495struct mount *
496vfs_ref_from_vp(struct vnode *vp)
497{
498 struct mount *mp;
499 struct mount_pcpu *mpcpu;
500
501 mp = atomic_load_ptr(&vp->v_mount);
502 if (__predict_false(mp == NULL)) {
503 return (mp);
504 }
505 if (vfs_op_thread_enter(mp, mpcpu)) {
506 if (__predict_true(mp == vp->v_mount)) {
507 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
508 vfs_op_thread_exit(mp, mpcpu);
509 } else {
510 vfs_op_thread_exit(mp, mpcpu);
511 mp = NULL;
512 }
513 } else {
514 MNT_ILOCK(mp);
515 if (mp == vp->v_mount) {
516 MNT_REF(mp);
517 MNT_IUNLOCK(mp);
518 } else {
519 MNT_IUNLOCK(mp);
520 mp = NULL;
521 }
522 }
523 return (mp);
524}
525
526void
527vfs_ref(struct mount *mp)
528{
529 struct mount_pcpu *mpcpu;
530
531 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
532 if (vfs_op_thread_enter(mp, mpcpu)) {
533 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
534 vfs_op_thread_exit(mp, mpcpu);
535 return;
536 }
537
538 MNT_ILOCK(mp);
539 MNT_REF(mp);
540 MNT_IUNLOCK(mp);
541}
542
543/*
544 * Register ump as an upper mount of the mount associated with
545 * vnode vp. This registration will be tracked through
546 * mount_upper_node upper, which should be allocated by the
547 * caller and stored in per-mount data associated with mp.
548 *
549 * If successful, this function will return the mount associated
550 * with vp, and will ensure that it cannot be unmounted until
551 * ump has been unregistered as one of its upper mounts.
552 *
553 * Upon failure this function will return NULL.
554 */
555struct mount *
556vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
557 struct mount_upper_node *upper)
558{
559 struct mount *mp;
560
561 mp = atomic_load_ptr(&vp->v_mount);
562 if (mp == NULL)
563 return (NULL);
564 MNT_ILOCK(mp);
565 if (mp != vp->v_mount ||
566 ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
567 MNT_IUNLOCK(mp);
568 return (NULL);
569 }
570 KASSERT(ump != mp, ("upper and lower mounts are identical"));
571 upper->mp = ump;
572 MNT_REF(mp);
573 TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
574 MNT_IUNLOCK(mp);
575 return (mp);
576}
577
578/*
579 * Register upper mount ump to receive vnode unlink/reclaim
580 * notifications from lower mount mp. This registration will
581 * be tracked through mount_upper_node upper, which should be
582 * allocated by the caller and stored in per-mount data
583 * associated with mp.
584 *
585 * ump must already be registered as an upper mount of mp
586 * through a call to vfs_register_upper_from_vp().
587 */
588void
589vfs_register_for_notification(struct mount *mp, struct mount *ump,
590 struct mount_upper_node *upper)
591{
592 upper->mp = ump;
593 MNT_ILOCK(mp);
594 TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
595 MNT_IUNLOCK(mp);
596}
597
598static void
599vfs_drain_upper_locked(struct mount *mp)
600{
601 mtx_assert(MNT_MTX(mp), MA_OWNED);
602 while (mp->mnt_upper_pending != 0) {
603 mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
604 msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
605 }
606}
607
608/*
609 * Undo a previous call to vfs_register_for_notification().
610 * The mount represented by upper must be currently registered
611 * as an upper mount for mp.
612 */
613void
615 struct mount_upper_node *upper)
616{
617 MNT_ILOCK(mp);
619 TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
620 MNT_IUNLOCK(mp);
621}
622
623/*
624 * Undo a previous call to vfs_register_upper_from_vp().
625 * This must be done before mp can be unmounted.
626 */
627void
628vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
629{
630 MNT_ILOCK(mp);
631 KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
632 ("registered upper with pending unmount"));
634 TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
635 if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
636 TAILQ_EMPTY(&mp->mnt_uppers)) {
637 mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
638 wakeup(&mp->mnt_taskqueue_link);
639 }
640 MNT_REL(mp);
641 MNT_IUNLOCK(mp);
642}
643
644void
645vfs_rel(struct mount *mp)
646{
647 struct mount_pcpu *mpcpu;
648
649 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
650 if (vfs_op_thread_enter(mp, mpcpu)) {
651 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
652 vfs_op_thread_exit(mp, mpcpu);
653 return;
654 }
655
656 MNT_ILOCK(mp);
657 MNT_REL(mp);
658 MNT_IUNLOCK(mp);
659}
660
661/*
662 * Allocate and initialize the mount point struct.
663 */
664struct mount *
665vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
666 struct ucred *cred)
667{
668 struct mount *mp;
669
670 mp = uma_zalloc(mount_zone, M_WAITOK);
671 bzero(&mp->mnt_startzero,
672 __rangeof(struct mount, mnt_startzero, mnt_endzero));
673 mp->mnt_kern_flag = 0;
674 mp->mnt_flag = 0;
675 mp->mnt_rootvnode = NULL;
676 mp->mnt_vnodecovered = NULL;
677 mp->mnt_op = NULL;
678 mp->mnt_vfc = NULL;
679 TAILQ_INIT(&mp->mnt_nvnodelist);
680 mp->mnt_nvnodelistsize = 0;
681 TAILQ_INIT(&mp->mnt_lazyvnodelist);
682 mp->mnt_lazyvnodelistsize = 0;
683 if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
684 mp->mnt_writeopcount != 0)
685 panic("%s: non-zero counters on new mp %p\n", __func__, mp);
686 if (mp->mnt_vfs_ops != 1)
687 panic("%s: vfs_ops should be 1 but %d found\n", __func__,
688 mp->mnt_vfs_ops);
689 (void) vfs_busy(mp, MBF_NOWAIT);
690 atomic_add_acq_int(&vfsp->vfc_refcount, 1);
691 mp->mnt_op = vfsp->vfc_vfsops;
692 mp->mnt_vfc = vfsp;
693 mp->mnt_stat.f_type = vfsp->vfc_typenum;
694 mp->mnt_gen++;
695 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
696 mp->mnt_vnodecovered = vp;
697 mp->mnt_cred = crdup(cred);
698 mp->mnt_stat.f_owner = cred->cr_uid;
699 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
700 mp->mnt_iosize_max = DFLTPHYS;
701#ifdef MAC
702 mac_mount_init(mp);
703 mac_mount_create(cred, mp);
704#endif
705 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
706 mp->mnt_upper_pending = 0;
707 TAILQ_INIT(&mp->mnt_uppers);
708 TAILQ_INIT(&mp->mnt_notify);
709 mp->mnt_taskqueue_flags = 0;
710 mp->mnt_unmount_retries = 0;
711 return (mp);
712}
713
714/*
715 * Destroy the mount struct previously allocated by vfs_mount_alloc().
716 */
717void
718vfs_mount_destroy(struct mount *mp)
719{
720
721 if (mp->mnt_vfs_ops == 0)
722 panic("%s: entered with zero vfs_ops\n", __func__);
723
724 vfs_assert_mount_counters(mp);
725
726 MNT_ILOCK(mp);
727 mp->mnt_kern_flag |= MNTK_REFEXPIRE;
728 if (mp->mnt_kern_flag & MNTK_MWAIT) {
729 mp->mnt_kern_flag &= ~MNTK_MWAIT;
730 wakeup(mp);
731 }
732 while (mp->mnt_ref)
733 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
734 KASSERT(mp->mnt_ref == 0,
735 ("%s: invalid refcount in the drain path @ %s:%d", __func__,
736 __FILE__, __LINE__));
737 if (mp->mnt_writeopcount != 0)
738 panic("vfs_mount_destroy: nonzero writeopcount");
739 if (mp->mnt_secondary_writes != 0)
740 panic("vfs_mount_destroy: nonzero secondary_writes");
741 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
742 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
743 struct vnode *vp;
744
745 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
746 vn_printf(vp, "dangling vnode ");
747 panic("unmount: dangling vnode");
748 }
749 KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
750 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
751 KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
752 if (mp->mnt_nvnodelistsize != 0)
753 panic("vfs_mount_destroy: nonzero nvnodelistsize");
754 if (mp->mnt_lazyvnodelistsize != 0)
755 panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
756 if (mp->mnt_lockref != 0)
757 panic("vfs_mount_destroy: nonzero lock refcount");
758 MNT_IUNLOCK(mp);
759
760 if (mp->mnt_vfs_ops != 1)
761 panic("%s: vfs_ops should be 1 but %d found\n", __func__,
762 mp->mnt_vfs_ops);
763
764 if (mp->mnt_rootvnode != NULL)
765 panic("%s: mount point still has a root vnode %p\n", __func__,
766 mp->mnt_rootvnode);
767
768 if (mp->mnt_vnodecovered != NULL)
769 vrele(mp->mnt_vnodecovered);
770#ifdef MAC
771 mac_mount_destroy(mp);
772#endif
773 if (mp->mnt_opt != NULL)
774 vfs_freeopts(mp->mnt_opt);
775 crfree(mp->mnt_cred);
776 uma_zfree(mount_zone, mp);
777}
778
779static bool
780vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
781{
782 /* This is an upgrade of an exisiting mount. */
783 if ((fsflags & MNT_UPDATE) != 0)
784 return (false);
785 /* This is already an R/O mount. */
786 if ((fsflags & MNT_RDONLY) != 0)
787 return (false);
788
789 switch (error) {
790 case ENODEV: /* generic, geom, ... */
791 case EACCES: /* cam/scsi, ... */
792 case EROFS: /* md, mmcsd, ... */
793 /*
794 * These errors can be returned by the storage layer to signal
795 * that the media is read-only. No harm in the R/O mount
796 * attempt if the error was returned for some other reason.
797 */
798 return (true);
799 default:
800 return (false);
801 }
802}
803
804int
805vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
806{
807 struct vfsoptlist *optlist;
808 struct vfsopt *opt, *tmp_opt;
809 char *fstype, *fspath, *errmsg;
810 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
811 bool autoro;
812
813 errmsg = fspath = NULL;
814 errmsg_len = fspathlen = 0;
815 errmsg_pos = -1;
816 autoro = default_autoro;
817
818 error = vfs_buildopts(fsoptions, &optlist);
819 if (error)
820 return (error);
821
822 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
823 errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
824
825 /*
826 * We need these two options before the others,
827 * and they are mandatory for any filesystem.
828 * Ensure they are NUL terminated as well.
829 */
830 fstypelen = 0;
831 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
832 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
833 error = EINVAL;
834 if (errmsg != NULL)
835 strncpy(errmsg, "Invalid fstype", errmsg_len);
836 goto bail;
837 }
838 fspathlen = 0;
839 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
840 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
841 error = EINVAL;
842 if (errmsg != NULL)
843 strncpy(errmsg, "Invalid fspath", errmsg_len);
844 goto bail;
845 }
846
847 /*
848 * We need to see if we have the "update" option
849 * before we call vfs_domount(), since vfs_domount() has special
850 * logic based on MNT_UPDATE. This is very important
851 * when we want to update the root filesystem.
852 */
853 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
854 int do_freeopt = 0;
855
856 if (strcmp(opt->name, "update") == 0) {
857 fsflags |= MNT_UPDATE;
858 do_freeopt = 1;
859 }
860 else if (strcmp(opt->name, "async") == 0)
861 fsflags |= MNT_ASYNC;
862 else if (strcmp(opt->name, "force") == 0) {
863 fsflags |= MNT_FORCE;
864 do_freeopt = 1;
865 }
866 else if (strcmp(opt->name, "reload") == 0) {
867 fsflags |= MNT_RELOAD;
868 do_freeopt = 1;
869 }
870 else if (strcmp(opt->name, "multilabel") == 0)
871 fsflags |= MNT_MULTILABEL;
872 else if (strcmp(opt->name, "noasync") == 0)
873 fsflags &= ~MNT_ASYNC;
874 else if (strcmp(opt->name, "noatime") == 0)
875 fsflags |= MNT_NOATIME;
876 else if (strcmp(opt->name, "atime") == 0) {
877 free(opt->name, M_MOUNT);
878 opt->name = strdup("nonoatime", M_MOUNT);
879 }
880 else if (strcmp(opt->name, "noclusterr") == 0)
881 fsflags |= MNT_NOCLUSTERR;
882 else if (strcmp(opt->name, "clusterr") == 0) {
883 free(opt->name, M_MOUNT);
884 opt->name = strdup("nonoclusterr", M_MOUNT);
885 }
886 else if (strcmp(opt->name, "noclusterw") == 0)
887 fsflags |= MNT_NOCLUSTERW;
888 else if (strcmp(opt->name, "clusterw") == 0) {
889 free(opt->name, M_MOUNT);
890 opt->name = strdup("nonoclusterw", M_MOUNT);
891 }
892 else if (strcmp(opt->name, "noexec") == 0)
893 fsflags |= MNT_NOEXEC;
894 else if (strcmp(opt->name, "exec") == 0) {
895 free(opt->name, M_MOUNT);
896 opt->name = strdup("nonoexec", M_MOUNT);
897 }
898 else if (strcmp(opt->name, "nosuid") == 0)
899 fsflags |= MNT_NOSUID;
900 else if (strcmp(opt->name, "suid") == 0) {
901 free(opt->name, M_MOUNT);
902 opt->name = strdup("nonosuid", M_MOUNT);
903 }
904 else if (strcmp(opt->name, "nosymfollow") == 0)
905 fsflags |= MNT_NOSYMFOLLOW;
906 else if (strcmp(opt->name, "symfollow") == 0) {
907 free(opt->name, M_MOUNT);
908 opt->name = strdup("nonosymfollow", M_MOUNT);
909 }
910 else if (strcmp(opt->name, "noro") == 0) {
911 fsflags &= ~MNT_RDONLY;
912 autoro = false;
913 }
914 else if (strcmp(opt->name, "rw") == 0) {
915 fsflags &= ~MNT_RDONLY;
916 autoro = false;
917 }
918 else if (strcmp(opt->name, "ro") == 0) {
919 fsflags |= MNT_RDONLY;
920 autoro = false;
921 }
922 else if (strcmp(opt->name, "rdonly") == 0) {
923 free(opt->name, M_MOUNT);
924 opt->name = strdup("ro", M_MOUNT);
925 fsflags |= MNT_RDONLY;
926 autoro = false;
927 }
928 else if (strcmp(opt->name, "autoro") == 0) {
929 do_freeopt = 1;
930 autoro = true;
931 }
932 else if (strcmp(opt->name, "suiddir") == 0)
933 fsflags |= MNT_SUIDDIR;
934 else if (strcmp(opt->name, "sync") == 0)
935 fsflags |= MNT_SYNCHRONOUS;
936 else if (strcmp(opt->name, "union") == 0)
937 fsflags |= MNT_UNION;
938 else if (strcmp(opt->name, "automounted") == 0) {
939 fsflags |= MNT_AUTOMOUNTED;
940 do_freeopt = 1;
941 } else if (strcmp(opt->name, "nocover") == 0) {
942 fsflags |= MNT_NOCOVER;
943 do_freeopt = 1;
944 } else if (strcmp(opt->name, "cover") == 0) {
945 fsflags &= ~MNT_NOCOVER;
946 do_freeopt = 1;
947 } else if (strcmp(opt->name, "emptydir") == 0) {
948 fsflags |= MNT_EMPTYDIR;
949 do_freeopt = 1;
950 } else if (strcmp(opt->name, "noemptydir") == 0) {
951 fsflags &= ~MNT_EMPTYDIR;
952 do_freeopt = 1;
953 }
954 if (do_freeopt)
955 vfs_freeopt(optlist, opt);
956 }
957
958 /*
959 * Be ultra-paranoid about making sure the type and fspath
960 * variables will fit in our mp buffers, including the
961 * terminating NUL.
962 */
963 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
964 error = ENAMETOOLONG;
965 goto bail;
966 }
967
968 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
969 if (error == ENOENT) {
970 error = EINVAL;
971 if (errmsg != NULL)
972 strncpy(errmsg, "Invalid fstype", errmsg_len);
973 goto bail;
974 }
975
976 /*
977 * See if we can mount in the read-only mode if the error code suggests
978 * that it could be possible and the mount options allow for that.
979 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
980 * overridden by "autoro".
981 */
982 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
983 printf("%s: R/W mount failed, possibly R/O media,"
984 " trying R/O mount\n", __func__);
985 fsflags |= MNT_RDONLY;
986 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
987 }
988bail:
989 /* copyout the errmsg */
990 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
991 && errmsg_len > 0 && errmsg != NULL) {
992 if (fsoptions->uio_segflg == UIO_SYSSPACE) {
993 bcopy(errmsg,
994 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
995 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
996 } else {
997 copyout(errmsg,
998 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
999 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1000 }
1001 }
1002
1003 if (optlist != NULL)
1004 vfs_freeopts(optlist);
1005 return (error);
1006}
1007
1008/*
1009 * Old mount API.
1010 */
1011#ifndef _SYS_SYSPROTO_H_
1013 char *type;
1014 char *path;
1016 caddr_t data;
1017};
1018#endif
1019/* ARGSUSED */
1020int
1021sys_mount(struct thread *td, struct mount_args *uap)
1022{
1023 char *fstype;
1024 struct vfsconf *vfsp = NULL;
1025 struct mntarg *ma = NULL;
1026 uint64_t flags;
1027 int error;
1028
1029 /*
1030 * Mount flags are now 64-bits. On 32-bit architectures only
1031 * 32-bits are passed in, but from here on everything handles
1032 * 64-bit flags correctly.
1033 */
1034 flags = uap->flags;
1035
1036 AUDIT_ARG_FFLAGS(flags);
1037
1038 /*
1039 * Filter out MNT_ROOTFS. We do not want clients of mount() in
1040 * userspace to set this flag, but we must filter it out if we want
1041 * MNT_UPDATE on the root file system to work.
1042 * MNT_ROOTFS should only be set by the kernel when mounting its
1043 * root file system.
1044 */
1045 flags &= ~MNT_ROOTFS;
1046
1047 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1048 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1049 if (error) {
1050 free(fstype, M_TEMP);
1051 return (error);
1052 }
1053
1054 AUDIT_ARG_TEXT(fstype);
1055 vfsp = vfs_byname_kld(fstype, td, &error);
1056 free(fstype, M_TEMP);
1057 if (vfsp == NULL)
1058 return (ENOENT);
1059 if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1060 vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1061 ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1062 vfsp->vfc_vfsops->vfs_cmount == NULL))
1063 return (EOPNOTSUPP);
1064
1065 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1066 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1067 ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1068 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1069 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1070
1071 if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1072 return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1073 return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1074}
1075
1076/*
1077 * vfs_domount_first(): first file system mount (not update)
1078 */
1079static int
1081 struct thread *td, /* Calling thread. */
1082 struct vfsconf *vfsp, /* File system type. */
1083 char *fspath, /* Mount path. */
1084 struct vnode *vp, /* Vnode to be covered. */
1085 uint64_t fsflags, /* Flags common to all filesystems. */
1086 struct vfsoptlist **optlist /* Options local to the filesystem. */
1087 )
1088{
1089 struct vattr va;
1090 struct mount *mp;
1091 struct vnode *newdp, *rootvp;
1092 int error, error1;
1093 bool unmounted;
1094
1095 ASSERT_VOP_ELOCKED(vp, __func__);
1096 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1097
1098 /*
1099 * If the jail of the calling thread lacks permission for this type of
1100 * file system, or is trying to cover its own root, deny immediately.
1101 */
1102 if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1103 vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1104 vput(vp);
1105 return (EPERM);
1106 }
1107
1108 /*
1109 * If the user is not root, ensure that they own the directory
1110 * onto which we are attempting to mount.
1111 */
1112 error = VOP_GETATTR(vp, &va, td->td_ucred);
1113 if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1114 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1115 if (error == 0)
1116 error = vinvalbuf(vp, V_SAVE, 0, 0);
1117 if (error == 0 && vp->v_type != VDIR)
1118 error = ENOTDIR;
1119 if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1120 error = vfs_emptydir(vp);
1121 if (error == 0) {
1122 VI_LOCK(vp);
1123 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1124 vp->v_iflag |= VI_MOUNT;
1125 else
1126 error = EBUSY;
1127 VI_UNLOCK(vp);
1128 }
1129 if (error != 0) {
1130 vput(vp);
1131 return (error);
1132 }
1134 VOP_UNLOCK(vp);
1135
1136 /* Allocate and initialize the filesystem. */
1137 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1138 /* XXXMAC: pass to vfs_mount_alloc? */
1139 mp->mnt_optnew = *optlist;
1140 /* Set the mount level flags. */
1141 mp->mnt_flag = (fsflags &
1142 (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1143
1144 /*
1145 * Mount the filesystem.
1146 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1147 * get. No freeing of cn_pnbuf.
1148 */
1149 error1 = 0;
1150 unmounted = true;
1151 if ((error = VFS_MOUNT(mp)) != 0 ||
1152 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1153 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1154 rootvp = NULL;
1155 if (error1 != 0) {
1156 MPASS(error == 0);
1157 rootvp = vfs_cache_root_clear(mp);
1158 if (rootvp != NULL) {
1159 vhold(rootvp);
1160 vrele(rootvp);
1161 }
1162 (void)vn_start_write(NULL, &mp, V_WAIT);
1163 MNT_ILOCK(mp);
1164 mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1165 MNT_IUNLOCK(mp);
1166 VFS_PURGE(mp);
1167 error = VFS_UNMOUNT(mp, 0);
1169 if (error != 0) {
1170 printf(
1171 "failed post-mount (%d): rollback unmount returned %d\n",
1172 error1, error);
1173 unmounted = false;
1174 }
1175 error = error1;
1176 }
1177 vfs_unbusy(mp);
1178 mp->mnt_vnodecovered = NULL;
1179 if (unmounted) {
1180 /* XXXKIB wait for mnt_lockref drain? */
1182 }
1183 VI_LOCK(vp);
1184 vp->v_iflag &= ~VI_MOUNT;
1185 VI_UNLOCK(vp);
1186 if (rootvp != NULL) {
1187 vn_seqc_write_end(rootvp);
1188 vdrop(rootvp);
1189 }
1191 vrele(vp);
1192 return (error);
1193 }
1194 vn_seqc_write_begin(newdp);
1195 VOP_UNLOCK(newdp);
1196
1197 if (mp->mnt_opt != NULL)
1198 vfs_freeopts(mp->mnt_opt);
1199 mp->mnt_opt = mp->mnt_optnew;
1200 *optlist = NULL;
1201
1202 /*
1203 * Prevent external consumers of mount options from reading mnt_optnew.
1204 */
1205 mp->mnt_optnew = NULL;
1206
1207 MNT_ILOCK(mp);
1208 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1209 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1210 mp->mnt_kern_flag |= MNTK_ASYNC;
1211 else
1212 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1213 MNT_IUNLOCK(mp);
1214
1215 VI_LOCK(vp);
1216 vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1217 vp->v_mountedhere = mp;
1218 VI_UNLOCK(vp);
1219 cache_purge(vp);
1220
1221 /*
1222 * We need to lock both vnodes.
1223 *
1224 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1225 * from different filesystems.
1226 */
1227 vn_lock_pair(vp, false, newdp, false);
1228
1229 VI_LOCK(vp);
1230 vp->v_iflag &= ~VI_MOUNT;
1231 VI_UNLOCK(vp);
1232 /* Place the new filesystem at the end of the mount list. */
1233 mtx_lock(&mountlist_mtx);
1234 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1235 mtx_unlock(&mountlist_mtx);
1236 vfs_event_signal(NULL, VQ_MOUNT, 0);
1237 VOP_UNLOCK(vp);
1238 EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1239 VOP_UNLOCK(newdp);
1240 mount_devctl_event("MOUNT", mp, false);
1241 mountcheckdirs(vp, newdp);
1243 vn_seqc_write_end(newdp);
1244 vrele(newdp);
1245 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1247 vfs_op_exit(mp);
1248 vfs_unbusy(mp);
1249 return (0);
1250}
1251
1252/*
1253 * vfs_domount_update(): update of mounted file system
1254 */
1255static int
1257 struct thread *td, /* Calling thread. */
1258 struct vnode *vp, /* Mount point vnode. */
1259 uint64_t fsflags, /* Flags common to all filesystems. */
1260 struct vfsoptlist **optlist /* Options local to the filesystem. */
1261 )
1262{
1263 struct export_args export;
1264 struct o2export_args o2export;
1265 struct vnode *rootvp;
1266 void *bufp;
1267 struct mount *mp;
1268 int error, export_error, i, len;
1269 uint64_t flag;
1270 gid_t *grps;
1271
1272 ASSERT_VOP_ELOCKED(vp, __func__);
1273 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1274 mp = vp->v_mount;
1275
1276 if ((vp->v_vflag & VV_ROOT) == 0) {
1277 if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1278 == 0)
1279 error = EXDEV;
1280 else
1281 error = EINVAL;
1282 vput(vp);
1283 return (error);
1284 }
1285
1286 /*
1287 * We only allow the filesystem to be reloaded if it
1288 * is currently mounted read-only.
1289 */
1290 flag = mp->mnt_flag;
1291 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1292 vput(vp);
1293 return (EOPNOTSUPP); /* Needs translation */
1294 }
1295 /*
1296 * Only privileged root, or (if MNT_USER is set) the user that
1297 * did the original mount is permitted to update it.
1298 */
1299 error = vfs_suser(mp, td);
1300 if (error != 0) {
1301 vput(vp);
1302 return (error);
1303 }
1304 if (vfs_busy(mp, MBF_NOWAIT)) {
1305 vput(vp);
1306 return (EBUSY);
1307 }
1308 VI_LOCK(vp);
1309 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1310 VI_UNLOCK(vp);
1311 vfs_unbusy(mp);
1312 vput(vp);
1313 return (EBUSY);
1314 }
1315 vp->v_iflag |= VI_MOUNT;
1316 VI_UNLOCK(vp);
1317 VOP_UNLOCK(vp);
1318
1319 vfs_op_enter(mp);
1321
1322 rootvp = NULL;
1323 MNT_ILOCK(mp);
1324 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1325 MNT_IUNLOCK(mp);
1326 error = EBUSY;
1327 goto end;
1328 }
1329 mp->mnt_flag &= ~MNT_UPDATEMASK;
1330 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1331 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1332 if ((mp->mnt_flag & MNT_ASYNC) == 0)
1333 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1334 rootvp = vfs_cache_root_clear(mp);
1335 MNT_IUNLOCK(mp);
1336 mp->mnt_optnew = *optlist;
1337 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1338
1339 /*
1340 * Mount the filesystem.
1341 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1342 * get. No freeing of cn_pnbuf.
1343 */
1344 error = VFS_MOUNT(mp);
1345
1346 export_error = 0;
1347 /* Process the export option. */
1348 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1349 &len) == 0) {
1350 /* Assume that there is only 1 ABI for each length. */
1351 switch (len) {
1352 case (sizeof(struct oexport_args)):
1353 bzero(&o2export, sizeof(o2export));
1354 /* FALLTHROUGH */
1355 case (sizeof(o2export)):
1356 bcopy(bufp, &o2export, len);
1357 export.ex_flags = (uint64_t)o2export.ex_flags;
1358 export.ex_root = o2export.ex_root;
1359 export.ex_uid = o2export.ex_anon.cr_uid;
1360 export.ex_groups = NULL;
1361 export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1362 if (export.ex_ngroups > 0) {
1363 if (export.ex_ngroups <= XU_NGROUPS) {
1364 export.ex_groups = malloc(
1365 export.ex_ngroups * sizeof(gid_t),
1366 M_TEMP, M_WAITOK);
1367 for (i = 0; i < export.ex_ngroups; i++)
1368 export.ex_groups[i] =
1369 o2export.ex_anon.cr_groups[i];
1370 } else
1371 export_error = EINVAL;
1372 } else if (export.ex_ngroups < 0)
1373 export_error = EINVAL;
1374 export.ex_addr = o2export.ex_addr;
1375 export.ex_addrlen = o2export.ex_addrlen;
1376 export.ex_mask = o2export.ex_mask;
1377 export.ex_masklen = o2export.ex_masklen;
1378 export.ex_indexfile = o2export.ex_indexfile;
1379 export.ex_numsecflavors = o2export.ex_numsecflavors;
1380 if (export.ex_numsecflavors < MAXSECFLAVORS) {
1381 for (i = 0; i < export.ex_numsecflavors; i++)
1382 export.ex_secflavors[i] =
1383 o2export.ex_secflavors[i];
1384 } else
1385 export_error = EINVAL;
1386 if (export_error == 0)
1387 export_error = vfs_export(mp, &export);
1388 free(export.ex_groups, M_TEMP);
1389 break;
1390 case (sizeof(export)):
1391 bcopy(bufp, &export, len);
1392 grps = NULL;
1393 if (export.ex_ngroups > 0) {
1394 if (export.ex_ngroups <= NGROUPS_MAX) {
1395 grps = malloc(export.ex_ngroups *
1396 sizeof(gid_t), M_TEMP, M_WAITOK);
1397 export_error = copyin(export.ex_groups,
1398 grps, export.ex_ngroups *
1399 sizeof(gid_t));
1400 if (export_error == 0)
1401 export.ex_groups = grps;
1402 } else
1403 export_error = EINVAL;
1404 } else if (export.ex_ngroups == 0)
1405 export.ex_groups = NULL;
1406 else
1407 export_error = EINVAL;
1408 if (export_error == 0)
1409 export_error = vfs_export(mp, &export);
1410 free(grps, M_TEMP);
1411 break;
1412 default:
1413 export_error = EINVAL;
1414 break;
1415 }
1416 }
1417
1418 MNT_ILOCK(mp);
1419 if (error == 0) {
1420 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1421 MNT_SNAPSHOT);
1422 } else {
1423 /*
1424 * If we fail, restore old mount flags. MNT_QUOTA is special,
1425 * because it is not part of MNT_UPDATEMASK, but it could have
1426 * changed in the meantime if quotactl(2) was called.
1427 * All in all we want current value of MNT_QUOTA, not the old
1428 * one.
1429 */
1430 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1431 }
1432 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1433 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1434 mp->mnt_kern_flag |= MNTK_ASYNC;
1435 else
1436 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1437 MNT_IUNLOCK(mp);
1438
1439 if (error != 0)
1440 goto end;
1441
1442 mount_devctl_event("REMOUNT", mp, true);
1443 if (mp->mnt_opt != NULL)
1444 vfs_freeopts(mp->mnt_opt);
1445 mp->mnt_opt = mp->mnt_optnew;
1446 *optlist = NULL;
1447 (void)VFS_STATFS(mp, &mp->mnt_stat);
1448 /*
1449 * Prevent external consumers of mount options from reading
1450 * mnt_optnew.
1451 */
1452 mp->mnt_optnew = NULL;
1453
1454 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1456 else
1458end:
1459 vfs_op_exit(mp);
1460 if (rootvp != NULL) {
1461 vn_seqc_write_end(rootvp);
1462 vrele(rootvp);
1463 }
1465 vfs_unbusy(mp);
1466 VI_LOCK(vp);
1467 vp->v_iflag &= ~VI_MOUNT;
1468 VI_UNLOCK(vp);
1469 vrele(vp);
1470 return (error != 0 ? error : export_error);
1471}
1472
1473/*
1474 * vfs_domount(): actually attempt a filesystem mount.
1475 */
1476static int
1478 struct thread *td, /* Calling thread. */
1479 const char *fstype, /* Filesystem type. */
1480 char *fspath, /* Mount path. */
1481 uint64_t fsflags, /* Flags common to all filesystems. */
1482 struct vfsoptlist **optlist /* Options local to the filesystem. */
1483 )
1484{
1485 struct vfsconf *vfsp;
1486 struct nameidata nd;
1487 struct vnode *vp;
1488 char *pathbuf;
1489 int error;
1490
1491 /*
1492 * Be ultra-paranoid about making sure the type and fspath
1493 * variables will fit in our mp buffers, including the
1494 * terminating NUL.
1495 */
1496 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1497 return (ENAMETOOLONG);
1498
1499 if (jailed(td->td_ucred) || usermount == 0) {
1500 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1501 return (error);
1502 }
1503
1504 /*
1505 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1506 */
1507 if (fsflags & MNT_EXPORTED) {
1508 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1509 if (error)
1510 return (error);
1511 }
1512 if (fsflags & MNT_SUIDDIR) {
1513 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1514 if (error)
1515 return (error);
1516 }
1517 /*
1518 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1519 */
1520 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1521 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1522 fsflags |= MNT_NOSUID | MNT_USER;
1523 }
1524
1525 /* Load KLDs before we lock the covered vnode to avoid reversals. */
1526 vfsp = NULL;
1527 if ((fsflags & MNT_UPDATE) == 0) {
1528 /* Don't try to load KLDs if we're mounting the root. */
1529 if (fsflags & MNT_ROOTFS) {
1530 if ((vfsp = vfs_byname(fstype)) == NULL)
1531 return (ENODEV);
1532 } else {
1533 if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1534 return (error);
1535 }
1536 }
1537
1538 /*
1539 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1540 */
1541 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE,
1542 fspath);
1543 error = namei(&nd);
1544 if (error != 0)
1545 return (error);
1546 NDFREE(&nd, NDF_ONLY_PNBUF);
1547 vp = nd.ni_vp;
1548 if ((fsflags & MNT_UPDATE) == 0) {
1549 if ((vp->v_vflag & VV_ROOT) != 0 &&
1550 (fsflags & MNT_NOCOVER) != 0) {
1551 vput(vp);
1552 return (EBUSY);
1553 }
1554 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1555 strcpy(pathbuf, fspath);
1556 error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1557 if (error == 0) {
1558 error = vfs_domount_first(td, vfsp, pathbuf, vp,
1559 fsflags, optlist);
1560 }
1561 free(pathbuf, M_TEMP);
1562 } else
1563 error = vfs_domount_update(td, vp, fsflags, optlist);
1564
1565 return (error);
1566}
1567
1568/*
1569 * Unmount a filesystem.
1570 *
1571 * Note: unmount takes a path to the vnode mounted on as argument, not
1572 * special file (as before).
1573 */
1574#ifndef _SYS_SYSPROTO_H_
1576 char *path;
1578};
1579#endif
1580/* ARGSUSED */
1581int
1582sys_unmount(struct thread *td, struct unmount_args *uap)
1583{
1584
1585 return (kern_unmount(td, uap->path, uap->flags));
1586}
1587
1588int
1589kern_unmount(struct thread *td, const char *path, int flags)
1590{
1591 struct nameidata nd;
1592 struct mount *mp;
1593 char *fsidbuf, *pathbuf;
1594 fsid_t fsid;
1595 int error;
1596
1597 AUDIT_ARG_VALUE(flags);
1598 if (jailed(td->td_ucred) || usermount == 0) {
1599 error = priv_check(td, PRIV_VFS_UNMOUNT);
1600 if (error)
1601 return (error);
1602 }
1603
1604 if (flags & MNT_BYFSID) {
1605 fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1606 error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1607 if (error) {
1608 free(fsidbuf, M_TEMP);
1609 return (error);
1610 }
1611
1612 AUDIT_ARG_TEXT(fsidbuf);
1613 /* Decode the filesystem ID. */
1614 if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1615 free(fsidbuf, M_TEMP);
1616 return (EINVAL);
1617 }
1618
1619 mp = vfs_getvfs(&fsid);
1620 free(fsidbuf, M_TEMP);
1621 if (mp == NULL) {
1622 return (ENOENT);
1623 }
1624 } else {
1625 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1626 error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1627 if (error) {
1628 free(pathbuf, M_TEMP);
1629 return (error);
1630 }
1631
1632 /*
1633 * Try to find global path for path argument.
1634 */
1635 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1636 UIO_SYSSPACE, pathbuf);
1637 if (namei(&nd) == 0) {
1638 NDFREE(&nd, NDF_ONLY_PNBUF);
1639 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1640 MNAMELEN);
1641 if (error == 0)
1642 vput(nd.ni_vp);
1643 }
1644 mtx_lock(&mountlist_mtx);
1645 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1646 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1647 vfs_ref(mp);
1648 break;
1649 }
1650 }
1651 mtx_unlock(&mountlist_mtx);
1652 free(pathbuf, M_TEMP);
1653 if (mp == NULL) {
1654 /*
1655 * Previously we returned ENOENT for a nonexistent path and
1656 * EINVAL for a non-mountpoint. We cannot tell these apart
1657 * now, so in the !MNT_BYFSID case return the more likely
1658 * EINVAL for compatibility.
1659 */
1660 return (EINVAL);
1661 }
1662 }
1663
1664 /*
1665 * Don't allow unmounting the root filesystem.
1666 */
1667 if (mp->mnt_flag & MNT_ROOTFS) {
1668 vfs_rel(mp);
1669 return (EINVAL);
1670 }
1671 error = dounmount(mp, flags, td);
1672 return (error);
1673}
1674
1675/*
1676 * Return error if any of the vnodes, ignoring the root vnode
1677 * and the syncer vnode, have non-zero usecount.
1678 *
1679 * This function is purely advisory - it can return false positives
1680 * and negatives.
1681 */
1682static int
1683vfs_check_usecounts(struct mount *mp)
1684{
1685 struct vnode *vp, *mvp;
1686
1687 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1688 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1689 vp->v_usecount != 0) {
1690 VI_UNLOCK(vp);
1691 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1692 return (EBUSY);
1693 }
1694 VI_UNLOCK(vp);
1695 }
1696
1697 return (0);
1698}
1699
1700static void
1701dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1702{
1703
1704 mtx_assert(MNT_MTX(mp), MA_OWNED);
1705 mp->mnt_kern_flag &= ~mntkflags;
1706 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1707 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1708 wakeup(mp);
1709 }
1711 MNT_IUNLOCK(mp);
1712 if (coveredvp != NULL) {
1713 VOP_UNLOCK(coveredvp);
1714 vdrop(coveredvp);
1715 }
1717}
1718
1719/*
1720 * There are various reference counters associated with the mount point.
1721 * Normally it is permitted to modify them without taking the mnt ilock,
1722 * but this behavior can be temporarily disabled if stable value is needed
1723 * or callers are expected to block (e.g. to not allow new users during
1724 * forced unmount).
1725 */
1726void
1727vfs_op_enter(struct mount *mp)
1728{
1729 struct mount_pcpu *mpcpu;
1730 int cpu;
1731
1732 MNT_ILOCK(mp);
1733 mp->mnt_vfs_ops++;
1734 if (mp->mnt_vfs_ops > 1) {
1735 MNT_IUNLOCK(mp);
1736 return;
1737 }
1739 CPU_FOREACH(cpu) {
1740 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1741
1742 mp->mnt_ref += mpcpu->mntp_ref;
1743 mpcpu->mntp_ref = 0;
1744
1745 mp->mnt_lockref += mpcpu->mntp_lockref;
1746 mpcpu->mntp_lockref = 0;
1747
1748 mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1749 mpcpu->mntp_writeopcount = 0;
1750 }
1751 if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1752 panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1753 __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1754 MNT_IUNLOCK(mp);
1755 vfs_assert_mount_counters(mp);
1756}
1757
1758void
1759vfs_op_exit_locked(struct mount *mp)
1760{
1761
1762 mtx_assert(MNT_MTX(mp), MA_OWNED);
1763
1764 if (mp->mnt_vfs_ops <= 0)
1765 panic("%s: invalid vfs_ops count %d for mp %p\n",
1766 __func__, mp->mnt_vfs_ops, mp);
1767 mp->mnt_vfs_ops--;
1768}
1769
1770void
1771vfs_op_exit(struct mount *mp)
1772{
1773
1774 MNT_ILOCK(mp);
1776 MNT_IUNLOCK(mp);
1777}
1778
1780 struct mount *mp;
1781 struct smp_rendezvous_cpus_retry_arg srcra;
1782};
1783
1784static void
1786{
1787 struct vfs_op_barrier_ipi *vfsopipi;
1788 struct mount *mp;
1789
1790 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1791 mp = vfsopipi->mp;
1792
1793 if (!vfs_op_thread_entered(mp))
1795}
1796
1797static void
1798vfs_op_wait_func(void *arg, int cpu)
1799{
1800 struct vfs_op_barrier_ipi *vfsopipi;
1801 struct mount *mp;
1802 struct mount_pcpu *mpcpu;
1803
1804 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1805 mp = vfsopipi->mp;
1806
1807 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1808 while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1809 cpu_spinwait();
1810}
1811
1812void
1813vfs_op_barrier_wait(struct mount *mp)
1814{
1815 struct vfs_op_barrier_ipi vfsopipi;
1816
1817 vfsopipi.mp = mp;
1818
1824 &vfsopipi.srcra);
1825}
1826
1827#ifdef DIAGNOSTIC
1828void
1829vfs_assert_mount_counters(struct mount *mp)
1830{
1831 struct mount_pcpu *mpcpu;
1832 int cpu;
1833
1834 if (mp->mnt_vfs_ops == 0)
1835 return;
1836
1837 CPU_FOREACH(cpu) {
1838 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1839 if (mpcpu->mntp_ref != 0 ||
1840 mpcpu->mntp_lockref != 0 ||
1841 mpcpu->mntp_writeopcount != 0)
1842 vfs_dump_mount_counters(mp);
1843 }
1844}
1845
1846void
1847vfs_dump_mount_counters(struct mount *mp)
1848{
1849 struct mount_pcpu *mpcpu;
1850 int ref, lockref, writeopcount;
1851 int cpu;
1852
1853 printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1854
1855 printf(" ref : ");
1856 ref = mp->mnt_ref;
1857 CPU_FOREACH(cpu) {
1858 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1859 printf("%d ", mpcpu->mntp_ref);
1860 ref += mpcpu->mntp_ref;
1861 }
1862 printf("\n");
1863 printf(" lockref : ");
1864 lockref = mp->mnt_lockref;
1865 CPU_FOREACH(cpu) {
1866 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1867 printf("%d ", mpcpu->mntp_lockref);
1868 lockref += mpcpu->mntp_lockref;
1869 }
1870 printf("\n");
1871 printf("writeopcount: ");
1872 writeopcount = mp->mnt_writeopcount;
1873 CPU_FOREACH(cpu) {
1874 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1875 printf("%d ", mpcpu->mntp_writeopcount);
1876 writeopcount += mpcpu->mntp_writeopcount;
1877 }
1878 printf("\n");
1879
1880 printf("counter struct total\n");
1881 printf("ref %-5d %-5d\n", mp->mnt_ref, ref);
1882 printf("lockref %-5d %-5d\n", mp->mnt_lockref, lockref);
1883 printf("writeopcount %-5d %-5d\n", mp->mnt_writeopcount, writeopcount);
1884
1885 panic("invalid counts on struct mount");
1886}
1887#endif
1888
1889int
1890vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1891{
1892 struct mount_pcpu *mpcpu;
1893 int cpu, sum;
1894
1895 switch (which) {
1896 case MNT_COUNT_REF:
1897 sum = mp->mnt_ref;
1898 break;
1899 case MNT_COUNT_LOCKREF:
1900 sum = mp->mnt_lockref;
1901 break;
1902 case MNT_COUNT_WRITEOPCOUNT:
1903 sum = mp->mnt_writeopcount;
1904 break;
1905 }
1906
1907 CPU_FOREACH(cpu) {
1908 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1909 switch (which) {
1910 case MNT_COUNT_REF:
1911 sum += mpcpu->mntp_ref;
1912 break;
1913 case MNT_COUNT_LOCKREF:
1914 sum += mpcpu->mntp_lockref;
1915 break;
1916 case MNT_COUNT_WRITEOPCOUNT:
1917 sum += mpcpu->mntp_writeopcount;
1918 break;
1919 }
1920 }
1921 return (sum);
1922}
1923
1924static bool
1925deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1926 int timeout_ticks)
1927{
1928 bool enqueued;
1929
1930 enqueued = false;
1931 mtx_lock(&deferred_unmount_lock);
1932 if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1933 mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1934 STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1935 mnt_taskqueue_link);
1936 enqueued = true;
1937 }
1938 mtx_unlock(&deferred_unmount_lock);
1939
1940 if (enqueued) {
1941 taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1942 &deferred_unmount_task, timeout_ticks);
1943 }
1944
1945 return (enqueued);
1946}
1947
1948/*
1949 * Taskqueue handler for processing async/recursive unmounts
1950 */
1951static void
1952vfs_deferred_unmount(void *argi __unused, int pending __unused)
1953{
1954 STAILQ_HEAD(, mount) local_unmounts;
1955 uint64_t flags;
1956 struct mount *mp, *tmp;
1957 int error;
1958 unsigned int retries;
1959 bool unmounted;
1960
1961 STAILQ_INIT(&local_unmounts);
1962 mtx_lock(&deferred_unmount_lock);
1963 STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1964 mtx_unlock(&deferred_unmount_lock);
1965
1966 STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1967 flags = mp->mnt_taskqueue_flags;
1968 KASSERT((flags & MNT_DEFERRED) != 0,
1969 ("taskqueue unmount without MNT_DEFERRED"));
1970 error = dounmount(mp, flags, curthread);
1971 if (error != 0) {
1972 MNT_ILOCK(mp);
1973 unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
1974 MNT_IUNLOCK(mp);
1975
1976 /*
1977 * The deferred unmount thread is the only thread that
1978 * modifies the retry counts, so locking/atomics aren't
1979 * needed here.
1980 */
1981 retries = (mp->mnt_unmount_retries)++;
1983 if (!unmounted && retries < deferred_unmount_retry_limit) {
1986 } else {
1987 if (retries >= deferred_unmount_retry_limit) {
1988 printf("giving up on deferred unmount "
1989 "of %s after %d retries, error %d\n",
1990 mp->mnt_stat.f_mntonname, retries, error);
1991 }
1992 vfs_rel(mp);
1993 }
1994 }
1995 }
1996}
1997
1998/*
1999 * Do the actual filesystem unmount.
2000 */
2001int
2002dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2003{
2004 struct mount_upper_node *upper;
2005 struct vnode *coveredvp, *rootvp;
2006 int error;
2007 uint64_t async_flag;
2008 int mnt_gen_r;
2009 unsigned int retries;
2010
2011 KASSERT((flags & MNT_DEFERRED) == 0 ||
2012 (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2013 ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2014
2015 /*
2016 * If the caller has explicitly requested the unmount to be handled by
2017 * the taskqueue and we're not already in taskqueue context, queue
2018 * up the unmount request and exit. This is done prior to any
2019 * credential checks; MNT_DEFERRED should be used only for kernel-
2020 * initiated unmounts and will therefore be processed with the
2021 * (kernel) credentials of the taskqueue thread. Still, callers
2022 * should be sure this is the behavior they want.
2023 */
2024 if ((flags & MNT_DEFERRED) != 0 &&
2025 taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2026 if (!deferred_unmount_enqueue(mp, flags, false, 0))
2027 vfs_rel(mp);
2028 return (EINPROGRESS);
2029 }
2030
2031 /*
2032 * Only privileged root, or (if MNT_USER is set) the user that did the
2033 * original mount is permitted to unmount this filesystem.
2034 * This check should be made prior to queueing up any recursive
2035 * unmounts of upper filesystems. Those unmounts will be executed
2036 * with kernel thread credentials and are expected to succeed, so
2037 * we must at least ensure the originating context has sufficient
2038 * privilege to unmount the base filesystem before proceeding with
2039 * the uppers.
2040 */
2041 error = vfs_suser(mp, td);
2042 if (error != 0) {
2043 KASSERT((flags & MNT_DEFERRED) == 0,
2044 ("taskqueue unmount with insufficient privilege"));
2045 vfs_rel(mp);
2046 return (error);
2047 }
2048
2049 if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2050 flags |= MNT_RECURSE;
2051
2052 if ((flags & MNT_RECURSE) != 0) {
2053 KASSERT((flags & MNT_FORCE) != 0,
2054 ("MNT_RECURSE requires MNT_FORCE"));
2055
2056 MNT_ILOCK(mp);
2057 /*
2058 * Set MNTK_RECURSE to prevent new upper mounts from being
2059 * added, and note that an operation on the uppers list is in
2060 * progress. This will ensure that unregistration from the
2061 * uppers list, and therefore any pending unmount of the upper
2062 * FS, can't complete until after we finish walking the list.
2063 */
2064 mp->mnt_kern_flag |= MNTK_RECURSE;
2065 mp->mnt_upper_pending++;
2066 TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2067 retries = upper->mp->mnt_unmount_retries;
2068 if (retries > deferred_unmount_retry_limit) {
2069 error = EBUSY;
2070 continue;
2071 }
2072 MNT_IUNLOCK(mp);
2073
2074 vfs_ref(upper->mp);
2075 if (!deferred_unmount_enqueue(upper->mp, flags,
2076 false, 0))
2077 vfs_rel(upper->mp);
2078 MNT_ILOCK(mp);
2079 }
2080 mp->mnt_upper_pending--;
2081 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2082 mp->mnt_upper_pending == 0) {
2083 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2084 wakeup(&mp->mnt_uppers);
2085 }
2086
2087 /*
2088 * If we're not on the taskqueue, wait until the uppers list
2089 * is drained before proceeding with unmount. Otherwise, if
2090 * we are on the taskqueue and there are still pending uppers,
2091 * just re-enqueue on the end of the taskqueue.
2092 */
2093 if ((flags & MNT_DEFERRED) == 0) {
2094 while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2095 mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2096 error = msleep(&mp->mnt_taskqueue_link,
2097 MNT_MTX(mp), PCATCH, "umntqw", 0);
2098 }
2099 if (error != 0) {
2100 MNT_REL(mp);
2101 MNT_IUNLOCK(mp);
2102 return (error);
2103 }
2104 } else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2105 MNT_IUNLOCK(mp);
2106 if (error == 0)
2107 deferred_unmount_enqueue(mp, flags, true, 0);
2108 return (error);
2109 }
2110 MNT_IUNLOCK(mp);
2111 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2112 }
2113
2114 /* Allow the taskqueue to safely re-enqueue on failure */
2115 if ((flags & MNT_DEFERRED) != 0)
2116 vfs_ref(mp);
2117
2118 if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2119 mnt_gen_r = mp->mnt_gen;
2120 VI_LOCK(coveredvp);
2121 vholdl(coveredvp);
2122 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2123 /*
2124 * Check for mp being unmounted while waiting for the
2125 * covered vnode lock.
2126 */
2127 if (coveredvp->v_mountedhere != mp ||
2128 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2129 VOP_UNLOCK(coveredvp);
2130 vdrop(coveredvp);
2131 vfs_rel(mp);
2132 return (EBUSY);
2133 }
2134 }
2135
2136 vfs_op_enter(mp);
2137
2138 vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
2139 MNT_ILOCK(mp);
2140 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2141 (mp->mnt_flag & MNT_UPDATE) != 0 ||
2142 !TAILQ_EMPTY(&mp->mnt_uppers)) {
2143 dounmount_cleanup(mp, coveredvp, 0);
2144 return (EBUSY);
2145 }
2146 mp->mnt_kern_flag |= MNTK_UNMOUNT;
2147 rootvp = vfs_cache_root_clear(mp);
2148 if (coveredvp != NULL)
2149 vn_seqc_write_begin(coveredvp);
2150 if (flags & MNT_NONBUSY) {
2151 MNT_IUNLOCK(mp);
2152 error = vfs_check_usecounts(mp);
2153 MNT_ILOCK(mp);
2154 if (error != 0) {
2155 vn_seqc_write_end(coveredvp);
2156 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2157 if (rootvp != NULL) {
2158 vn_seqc_write_end(rootvp);
2159 vrele(rootvp);
2160 }
2161 return (error);
2162 }
2163 }
2164 /* Allow filesystems to detect that a forced unmount is in progress. */
2165 if (flags & MNT_FORCE) {
2166 mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2167 MNT_IUNLOCK(mp);
2168 /*
2169 * Must be done after setting MNTK_UNMOUNTF and before
2170 * waiting for mnt_lockref to become 0.
2171 */
2172 VFS_PURGE(mp);
2173 MNT_ILOCK(mp);
2174 }
2175 error = 0;
2176 if (mp->mnt_lockref) {
2177 mp->mnt_kern_flag |= MNTK_DRAINING;
2178 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2179 "mount drain", 0);
2180 }
2181 MNT_IUNLOCK(mp);
2182 KASSERT(mp->mnt_lockref == 0,
2183 ("%s: invalid lock refcount in the drain path @ %s:%d",
2184 __func__, __FILE__, __LINE__));
2185 KASSERT(error == 0,
2186 ("%s: invalid return value for msleep in the drain path @ %s:%d",
2187 __func__, __FILE__, __LINE__));
2188
2189 /*
2190 * We want to keep the vnode around so that we can vn_seqc_write_end
2191 * after we are done with unmount. Downgrade our reference to a mere
2192 * hold count so that we don't interefere with anything.
2193 */
2194 if (rootvp != NULL) {
2195 vhold(rootvp);
2196 vrele(rootvp);
2197 }
2198
2199 if (mp->mnt_flag & MNT_EXPUBLIC)
2200 vfs_setpublicfs(NULL, NULL, NULL);
2201
2202 vfs_periodic(mp, MNT_WAIT);
2203 MNT_ILOCK(mp);
2204 async_flag = mp->mnt_flag & MNT_ASYNC;
2205 mp->mnt_flag &= ~MNT_ASYNC;
2206 mp->mnt_kern_flag &= ~MNTK_ASYNC;
2207 MNT_IUNLOCK(mp);
2209 error = VFS_UNMOUNT(mp, flags);
2211 /*
2212 * If we failed to flush the dirty blocks for this mount point,
2213 * undo all the cdir/rdir and rootvnode changes we made above.
2214 * Unless we failed to do so because the device is reporting that
2215 * it doesn't exist anymore.
2216 */
2217 if (error && error != ENXIO) {
2218 MNT_ILOCK(mp);
2219 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2220 MNT_IUNLOCK(mp);
2222 MNT_ILOCK(mp);
2223 }
2224 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2225 mp->mnt_flag |= async_flag;
2226 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2227 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2228 mp->mnt_kern_flag |= MNTK_ASYNC;
2229 if (mp->mnt_kern_flag & MNTK_MWAIT) {
2230 mp->mnt_kern_flag &= ~MNTK_MWAIT;
2231 wakeup(mp);
2232 }
2234 MNT_IUNLOCK(mp);
2235 if (coveredvp) {
2236 vn_seqc_write_end(coveredvp);
2237 VOP_UNLOCK(coveredvp);
2238 vdrop(coveredvp);
2239 }
2240 if (rootvp != NULL) {
2241 vn_seqc_write_end(rootvp);
2242 vdrop(rootvp);
2243 }
2244 return (error);
2245 }
2246
2247 mtx_lock(&mountlist_mtx);
2248 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2249 mtx_unlock(&mountlist_mtx);
2250 EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2251 if (coveredvp != NULL) {
2252 VI_LOCK(coveredvp);
2253 vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2254 coveredvp->v_mountedhere = NULL;
2255 vn_seqc_write_end_locked(coveredvp);
2256 VI_UNLOCK(coveredvp);
2257 VOP_UNLOCK(coveredvp);
2258 vdrop(coveredvp);
2259 }
2260 mount_devctl_event("UNMOUNT", mp, false);
2261 if (rootvp != NULL) {
2262 vn_seqc_write_end(rootvp);
2263 vdrop(rootvp);
2264 }
2265 vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2266 if (rootvnode != NULL && mp == rootvnode->v_mount) {
2268 rootvnode = NULL;
2269 }
2270 if (mp == rootdevmp)
2271 rootdevmp = NULL;
2272 if ((flags & MNT_DEFERRED) != 0)
2273 vfs_rel(mp);
2275 return (0);
2276}
2277
2278/*
2279 * Report errors during filesystem mounting.
2280 */
2281void
2282vfs_mount_error(struct mount *mp, const char *fmt, ...)
2283{
2284 struct vfsoptlist *moptlist = mp->mnt_optnew;
2285 va_list ap;
2286 int error, len;
2287 char *errmsg;
2288
2289 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2290 if (error || errmsg == NULL || len <= 0)
2291 return;
2292
2293 va_start(ap, fmt);
2294 vsnprintf(errmsg, (size_t)len, fmt, ap);
2295 va_end(ap);
2296}
2297
2298void
2299vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2300{
2301 va_list ap;
2302 int error, len;
2303 char *errmsg;
2304
2305 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2306 if (error || errmsg == NULL || len <= 0)
2307 return;
2308
2309 va_start(ap, fmt);
2310 vsnprintf(errmsg, (size_t)len, fmt, ap);
2311 va_end(ap);
2312}
2313
2314/*
2315 * ---------------------------------------------------------------------
2316 * Functions for querying mount options/arguments from filesystems.
2317 */
2318
2319/*
2320 * Check that no unknown options are given
2321 */
2322int
2323vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2324{
2325 struct vfsopt *opt;
2326 char errmsg[255];
2327 const char **t, *p, *q;
2328 int ret = 0;
2329
2330 TAILQ_FOREACH(opt, opts, link) {
2331 p = opt->name;
2332 q = NULL;
2333 if (p[0] == 'n' && p[1] == 'o')
2334 q = p + 2;
2335 for(t = global_opts; *t != NULL; t++) {
2336 if (strcmp(*t, p) == 0)
2337 break;
2338 if (q != NULL) {
2339 if (strcmp(*t, q) == 0)
2340 break;
2341 }
2342 }
2343 if (*t != NULL)
2344 continue;
2345 for(t = legal; *t != NULL; t++) {
2346 if (strcmp(*t, p) == 0)
2347 break;
2348 if (q != NULL) {
2349 if (strcmp(*t, q) == 0)
2350 break;
2351 }
2352 }
2353 if (*t != NULL)
2354 continue;
2355 snprintf(errmsg, sizeof(errmsg),
2356 "mount option <%s> is unknown", p);
2357 ret = EINVAL;
2358 }
2359 if (ret != 0) {
2360 TAILQ_FOREACH(opt, opts, link) {
2361 if (strcmp(opt->name, "errmsg") == 0) {
2362 strncpy((char *)opt->value, errmsg, opt->len);
2363 break;
2364 }
2365 }
2366 if (opt == NULL)
2367 printf("%s\n", errmsg);
2368 }
2369 return (ret);
2370}
2371
2372/*
2373 * Get a mount option by its name.
2374 *
2375 * Return 0 if the option was found, ENOENT otherwise.
2376 * If len is non-NULL it will be filled with the length
2377 * of the option. If buf is non-NULL, it will be filled
2378 * with the address of the option.
2379 */
2380int
2381vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2382{
2383 struct vfsopt *opt;
2384
2385 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2386
2387 TAILQ_FOREACH(opt, opts, link) {
2388 if (strcmp(name, opt->name) == 0) {
2389 opt->seen = 1;
2390 if (len != NULL)
2391 *len = opt->len;
2392 if (buf != NULL)
2393 *buf = opt->value;
2394 return (0);
2395 }
2396 }
2397 return (ENOENT);
2398}
2399
2400int
2401vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2402{
2403 struct vfsopt *opt;
2404
2405 if (opts == NULL)
2406 return (-1);
2407
2408 TAILQ_FOREACH(opt, opts, link) {
2409 if (strcmp(name, opt->name) == 0) {
2410 opt->seen = 1;
2411 return (opt->pos);
2412 }
2413 }
2414 return (-1);
2415}
2416
2417int
2418vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2419{
2420 char *opt_value, *vtp;
2421 quad_t iv;
2422 int error, opt_len;
2423
2424 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2425 if (error != 0)
2426 return (error);
2427 if (opt_len == 0 || opt_value == NULL)
2428 return (EINVAL);
2429 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2430 return (EINVAL);
2431 iv = strtoq(opt_value, &vtp, 0);
2432 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2433 return (EINVAL);
2434 if (iv < 0)
2435 return (EINVAL);
2436 switch (vtp[0]) {
2437 case 't': case 'T':
2438 iv *= 1024;
2439 /* FALLTHROUGH */
2440 case 'g': case 'G':
2441 iv *= 1024;
2442 /* FALLTHROUGH */
2443 case 'm': case 'M':
2444 iv *= 1024;
2445 /* FALLTHROUGH */
2446 case 'k': case 'K':
2447 iv *= 1024;
2448 case '\0':
2449 break;
2450 default:
2451 return (EINVAL);
2452 }
2453 *value = iv;
2454
2455 return (0);
2456}
2457
2458char *
2459vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2460{
2461 struct vfsopt *opt;
2462
2463 *error = 0;
2464 TAILQ_FOREACH(opt, opts, link) {
2465 if (strcmp(name, opt->name) != 0)
2466 continue;
2467 opt->seen = 1;
2468 if (opt->len == 0 ||
2469 ((char *)opt->value)[opt->len - 1] != '\0') {
2470 *error = EINVAL;
2471 return (NULL);
2472 }
2473 return (opt->value);
2474 }
2475 *error = ENOENT;
2476 return (NULL);
2477}
2478
2479int
2480vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2481 uint64_t val)
2482{
2483 struct vfsopt *opt;
2484
2485 TAILQ_FOREACH(opt, opts, link) {
2486 if (strcmp(name, opt->name) == 0) {
2487 opt->seen = 1;
2488 if (w != NULL)
2489 *w |= val;
2490 return (1);
2491 }
2492 }
2493 if (w != NULL)
2494 *w &= ~val;
2495 return (0);
2496}
2497
2498int
2499vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2500{
2501 va_list ap;
2502 struct vfsopt *opt;
2503 int ret;
2504
2505 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2506
2507 TAILQ_FOREACH(opt, opts, link) {
2508 if (strcmp(name, opt->name) != 0)
2509 continue;
2510 opt->seen = 1;
2511 if (opt->len == 0 || opt->value == NULL)
2512 return (0);
2513 if (((char *)opt->value)[opt->len - 1] != '\0')
2514 return (0);
2515 va_start(ap, fmt);
2516 ret = vsscanf(opt->value, fmt, ap);
2517 va_end(ap);
2518 return (ret);
2519 }
2520 return (0);
2521}
2522
2523int
2524vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2525{
2526 struct vfsopt *opt;
2527
2528 TAILQ_FOREACH(opt, opts, link) {
2529 if (strcmp(name, opt->name) != 0)
2530 continue;
2531 opt->seen = 1;
2532 if (opt->value == NULL)
2533 opt->len = len;
2534 else {
2535 if (opt->len != len)
2536 return (EINVAL);
2537 bcopy(value, opt->value, len);
2538 }
2539 return (0);
2540 }
2541 return (ENOENT);
2542}
2543
2544int
2545vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2546{
2547 struct vfsopt *opt;
2548
2549 TAILQ_FOREACH(opt, opts, link) {
2550 if (strcmp(name, opt->name) != 0)
2551 continue;
2552 opt->seen = 1;
2553 if (opt->value == NULL)
2554 opt->len = len;
2555 else {
2556 if (opt->len < len)
2557 return (EINVAL);
2558 opt->len = len;
2559 bcopy(value, opt->value, len);
2560 }
2561 return (0);
2562 }
2563 return (ENOENT);
2564}
2565
2566int
2567vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2568{
2569 struct vfsopt *opt;
2570
2571 TAILQ_FOREACH(opt, opts, link) {
2572 if (strcmp(name, opt->name) != 0)
2573 continue;
2574 opt->seen = 1;
2575 if (opt->value == NULL)
2576 opt->len = strlen(value) + 1;
2577 else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2578 return (EINVAL);
2579 return (0);
2580 }
2581 return (ENOENT);
2582}
2583
2584/*
2585 * Find and copy a mount option.
2586 *
2587 * The size of the buffer has to be specified
2588 * in len, if it is not the same length as the
2589 * mount option, EINVAL is returned.
2590 * Returns ENOENT if the option is not found.
2591 */
2592int
2593vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2594{
2595 struct vfsopt *opt;
2596
2597 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2598
2599 TAILQ_FOREACH(opt, opts, link) {
2600 if (strcmp(name, opt->name) == 0) {
2601 opt->seen = 1;
2602 if (len != opt->len)
2603 return (EINVAL);
2604 bcopy(opt->value, dest, opt->len);
2605 return (0);
2606 }
2607 }
2608 return (ENOENT);
2609}
2610
2611int
2612__vfs_statfs(struct mount *mp, struct statfs *sbp)
2613{
2614
2615 /*
2616 * Filesystems only fill in part of the structure for updates, we
2617 * have to read the entirety first to get all content.
2618 */
2619 if (sbp != &mp->mnt_stat)
2620 memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2621
2622 /*
2623 * Set these in case the underlying filesystem fails to do so.
2624 */
2625 sbp->f_version = STATFS_VERSION;
2626 sbp->f_namemax = NAME_MAX;
2627 sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2628
2629 return (mp->mnt_op->vfs_statfs(mp, sbp));
2630}
2631
2632void
2633vfs_mountedfrom(struct mount *mp, const char *from)
2634{
2635
2636 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2637 strlcpy(mp->mnt_stat.f_mntfromname, from,
2638 sizeof mp->mnt_stat.f_mntfromname);
2639}
2640
2641/*
2642 * ---------------------------------------------------------------------
2643 * This is the api for building mount args and mounting filesystems from
2644 * inside the kernel.
2645 *
2646 * The API works by accumulation of individual args. First error is
2647 * latched.
2648 *
2649 * XXX: should be documented in new manpage kernel_mount(9)
2650 */
2651
2652/* A memory allocation which must be freed when we are done */
2653struct mntaarg {
2654 SLIST_ENTRY(mntaarg) next;
2655};
2656
2657/* The header for the mount arguments */
2658struct mntarg {
2659 struct iovec *v;
2660 int len;
2662 SLIST_HEAD(, mntaarg) list;
2663};
2664
2665/*
2666 * Add a boolean argument.
2667 *
2668 * flag is the boolean value.
2669 * name must start with "no".
2670 */
2671struct mntarg *
2672mount_argb(struct mntarg *ma, int flag, const char *name)
2673{
2674
2675 KASSERT(name[0] == 'n' && name[1] == 'o',
2676 ("mount_argb(...,%s): name must start with 'no'", name));
2677
2678 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2679}
2680
2681/*
2682 * Add an argument printf style
2683 */
2684struct mntarg *
2685mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2686{
2687 va_list ap;
2688 struct mntaarg *maa;
2689 struct sbuf *sb;
2690 int len;
2691
2692 if (ma == NULL) {
2693 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2694 SLIST_INIT(&ma->list);
2695 }
2696 if (ma->error)
2697 return (ma);
2698
2699 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2700 M_MOUNT, M_WAITOK);
2701 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2702 ma->v[ma->len].iov_len = strlen(name) + 1;
2703 ma->len++;
2704
2705 sb = sbuf_new_auto();
2706 va_start(ap, fmt);
2707 sbuf_vprintf(sb, fmt, ap);
2708 va_end(ap);
2709 sbuf_finish(sb);
2710 len = sbuf_len(sb) + 1;
2711 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2712 SLIST_INSERT_HEAD(&ma->list, maa, next);
2713 bcopy(sbuf_data(sb), maa + 1, len);
2714 sbuf_delete(sb);
2715
2716 ma->v[ma->len].iov_base = maa + 1;
2717 ma->v[ma->len].iov_len = len;
2718 ma->len++;
2719
2720 return (ma);
2721}
2722
2723/*
2724 * Add an argument which is a userland string.
2725 */
2726struct mntarg *
2727mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2728{
2729 struct mntaarg *maa;
2730 char *tbuf;
2731
2732 if (val == NULL)
2733 return (ma);
2734 if (ma == NULL) {
2735 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2736 SLIST_INIT(&ma->list);
2737 }
2738 if (ma->error)
2739 return (ma);
2740 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2741 SLIST_INSERT_HEAD(&ma->list, maa, next);
2742 tbuf = (void *)(maa + 1);
2743 ma->error = copyinstr(val, tbuf, len, NULL);
2744 return (mount_arg(ma, name, tbuf, -1));
2745}
2746
2747/*
2748 * Plain argument.
2749 *
2750 * If length is -1, treat value as a C string.
2751 */
2752struct mntarg *
2753mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2754{
2755
2756 if (ma == NULL) {
2757 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2758 SLIST_INIT(&ma->list);
2759 }
2760 if (ma->error)
2761 return (ma);
2762
2763 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2764 M_MOUNT, M_WAITOK);
2765 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2766 ma->v[ma->len].iov_len = strlen(name) + 1;
2767 ma->len++;
2768
2769 ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2770 if (len < 0)
2771 ma->v[ma->len].iov_len = strlen(val) + 1;
2772 else
2773 ma->v[ma->len].iov_len = len;
2774 ma->len++;
2775 return (ma);
2776}
2777
2778/*
2779 * Free a mntarg structure
2780 */
2781static void
2783{
2784 struct mntaarg *maa;
2785
2786 while (!SLIST_EMPTY(&ma->list)) {
2787 maa = SLIST_FIRST(&ma->list);
2788 SLIST_REMOVE_HEAD(&ma->list, next);
2789 free(maa, M_MOUNT);
2790 }
2791 free(ma->v, M_MOUNT);
2792 free(ma, M_MOUNT);
2793}
2794
2795/*
2796 * Mount a filesystem
2797 */
2798int
2799kernel_mount(struct mntarg *ma, uint64_t flags)
2800{
2801 struct uio auio;
2802 int error;
2803
2804 KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2805 KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2806 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2807
2808 auio.uio_iov = ma->v;
2809 auio.uio_iovcnt = ma->len;
2810 auio.uio_segflg = UIO_SYSSPACE;
2811
2812 error = ma->error;
2813 if (!error)
2814 error = vfs_donmount(curthread, flags, &auio);
2815 free_mntarg(ma);
2816 return (error);
2817}
2818
2819/* Map from mount options to printable formats. */
2820static struct mntoptnames optnames[] = {
2821 MNTOPT_NAMES
2822};
2823
2824#define DEVCTL_LEN 1024
2825static void
2826mount_devctl_event(const char *type, struct mount *mp, bool donew)
2827{
2828 const uint8_t *cp;
2829 struct mntoptnames *fp;
2830 struct sbuf sb;
2831 struct statfs *sfp = &mp->mnt_stat;
2832 char *buf;
2833
2834 buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2835 if (buf == NULL)
2836 return;
2837 sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2838 sbuf_cpy(&sb, "mount-point=\"");
2839 devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2840 sbuf_cat(&sb, "\" mount-dev=\"");
2841 devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2842 sbuf_cat(&sb, "\" mount-type=\"");
2843 devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2844 sbuf_cat(&sb, "\" fsid=0x");
2845 cp = (const uint8_t *)&sfp->f_fsid.val[0];
2846 for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2847 sbuf_printf(&sb, "%02x", cp[i]);
2848 sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2849 for (fp = optnames; fp->o_opt != 0; fp++) {
2850 if ((mp->mnt_flag & fp->o_opt) != 0) {
2851 sbuf_cat(&sb, fp->o_name);
2852 sbuf_putc(&sb, ';');
2853 }
2854 }
2855 sbuf_putc(&sb, '"');
2856 sbuf_finish(&sb);
2857
2858 /*
2859 * Options are not published because the form of the options depends on
2860 * the file system and may include binary data. In addition, they don't
2861 * necessarily provide enough useful information to be actionable when
2862 * devd processes them.
2863 */
2864
2865 if (sbuf_error(&sb) == 0)
2866 devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2867 sbuf_delete(&sb);
2868 free(buf, M_MOUNT);
2869}
2870
2871/*
2872 * Force remount specified mount point to read-only. The argument
2873 * must be busied to avoid parallel unmount attempts.
2874 *
2875 * Intended use is to prevent further writes if some metadata
2876 * inconsistency is detected. Note that the function still flushes
2877 * all cached metadata and data for the mount point, which might be
2878 * not always suitable.
2879 */
2880int
2881vfs_remount_ro(struct mount *mp)
2882{
2883 struct vfsoptlist *opts;
2884 struct vfsopt *opt;
2885 struct vnode *vp_covered, *rootvp;
2886 int error;
2887
2888 KASSERT(mp->mnt_lockref > 0,
2889 ("vfs_remount_ro: mp %p is not busied", mp));
2890 KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2891 ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2892
2893 rootvp = NULL;
2894 vp_covered = mp->mnt_vnodecovered;
2895 error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2896 if (error != 0)
2897 return (error);
2898 VI_LOCK(vp_covered);
2899 if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2900 VI_UNLOCK(vp_covered);
2901 vput(vp_covered);
2902 return (EBUSY);
2903 }
2904 vp_covered->v_iflag |= VI_MOUNT;
2905 VI_UNLOCK(vp_covered);
2906 vfs_op_enter(mp);
2907 vn_seqc_write_begin(vp_covered);
2908
2909 MNT_ILOCK(mp);
2910 if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2911 MNT_IUNLOCK(mp);
2912 error = EBUSY;
2913 goto out;
2914 }
2915 mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2916 rootvp = vfs_cache_root_clear(mp);
2917 MNT_IUNLOCK(mp);
2918
2919 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2920 TAILQ_INIT(opts);
2921 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2922 opt->name = strdup("ro", M_MOUNT);
2923 opt->value = NULL;
2924 TAILQ_INSERT_TAIL(opts, opt, link);
2925 vfs_mergeopts(opts, mp->mnt_opt);
2926 mp->mnt_optnew = opts;
2927
2928 error = VFS_MOUNT(mp);
2929
2930 if (error == 0) {
2931 MNT_ILOCK(mp);
2932 mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2933 MNT_IUNLOCK(mp);
2935 if (mp->mnt_opt != NULL)
2936 vfs_freeopts(mp->mnt_opt);
2937 mp->mnt_opt = mp->mnt_optnew;
2938 } else {
2939 MNT_ILOCK(mp);
2940 mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2941 MNT_IUNLOCK(mp);
2942 vfs_freeopts(mp->mnt_optnew);
2943 }
2944 mp->mnt_optnew = NULL;
2945
2946out:
2947 vfs_op_exit(mp);
2948 VI_LOCK(vp_covered);
2949 vp_covered->v_iflag &= ~VI_MOUNT;
2950 VI_UNLOCK(vp_covered);
2951 vput(vp_covered);
2952 vn_seqc_write_end(vp_covered);
2953 if (rootvp != NULL) {
2954 vn_seqc_write_end(rootvp);
2955 vrele(rootvp);
2956 }
2957 return (error);
2958}
2959
2960/*
2961 * Suspend write operations on all local writeable filesystems. Does
2962 * full sync of them in the process.
2963 *
2964 * Iterate over the mount points in reverse order, suspending most
2965 * recently mounted filesystems first. It handles a case where a
2966 * filesystem mounted from a md(4) vnode-backed device should be
2967 * suspended before the filesystem that owns the vnode.
2968 */
2969void
2971{
2972 struct mount *mp;
2973 int error;
2974
2975 mtx_lock(&mountlist_mtx);
2976 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2977 error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2978 if (error != 0)
2979 continue;
2980 if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2981 (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2982 mtx_lock(&mountlist_mtx);
2983 vfs_unbusy(mp);
2984 continue;
2985 }
2986 error = vfs_write_suspend(mp, 0);
2987 if (error == 0) {
2988 MNT_ILOCK(mp);
2989 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2990 mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2991 MNT_IUNLOCK(mp);
2992 mtx_lock(&mountlist_mtx);
2993 } else {
2994 printf("suspend of %s failed, error %d\n",
2995 mp->mnt_stat.f_mntonname, error);
2996 mtx_lock(&mountlist_mtx);
2997 vfs_unbusy(mp);
2998 }
2999 }
3000 mtx_unlock(&mountlist_mtx);
3001}
3002
3003void
3005{
3006 struct mount *mp;
3007
3008 mtx_lock(&mountlist_mtx);
3009 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3010 if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3011 continue;
3012 mtx_unlock(&mountlist_mtx);
3013 MNT_ILOCK(mp);
3014 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3015 mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3016 MNT_IUNLOCK(mp);
3017 vfs_write_resume(mp, 0);
3018 mtx_lock(&mountlist_mtx);
3019 vfs_unbusy(mp);
3020 }
3021 mtx_unlock(&mountlist_mtx);
3022}
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
void mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
SLIST_HEAD(et_eventtimers_list, eventtimer)
TASKQUEUE_DEFINE_THREAD(kqueue_ctx)
int prison_allow(struct ucred *cred, unsigned flag)
Definition: kern_jail.c:2761
void lockdestroy(struct lock *lk)
Definition: kern_lock.c:511
void lockinit(struct lock *lk, int pri, const char *wmesg, int timo, int flags)
Definition: kern_lock.c:439
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void * realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:987
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
int priv_check_cred(struct ucred *cred, int priv)
Definition: kern_priv.c:151
int priv_check(struct thread *td, int priv)
Definition: kern_priv.c:271
struct ucred * crdup(struct ucred *cr)
Definition: kern_prot.c:2124
void crfree(struct ucred *cr)
Definition: kern_prot.c:2035
void panic(const char *fmt,...)
void wakeup(const void *ident)
Definition: kern_synch.c:349
caddr_t value
Definition: linker_if.m:63
struct iovec * v
Definition: vfs_mount.c:2659
int len
Definition: vfs_mount.c:2660
int error
Definition: vfs_mount.c:2661
char * path
Definition: vfs_mount.c:1014
char * type
Definition: vfs_mount.c:1013
caddr_t data
Definition: vfs_mount.c:1016
struct iovec * iovp
Definition: vfs_mount.c:427
unsigned int iovcnt
Definition: vfs_mount.c:428
char * path
Definition: vfs_mount.c:1576
struct smp_rendezvous_cpus_retry_arg srcra
Definition: vfs_mount.c:1781
struct mount * mp
Definition: vfs_mount.c:1780
void devctl_notify(const char *system, const char *subsystem, const char *type, const char *data)
Send a 'notification' to userland, using standard ways.
Definition: subr_bus.c:681
void devctl_safe_quote_sb(struct sbuf *sb, const char *src)
safely quotes strings that might have double quotes in them.
Definition: subr_bus.c:850
int hz
Definition: subr_param.c:85
uma_zone_t pcpu_zone_16
Definition: subr_pcpu.c:138
int vsnprintf(char *str, size_t size, const char *format, va_list ap)
Definition: subr_prf.c:565
int printf(const char *fmt,...)
Definition: subr_prf.c:397
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:550
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:833
int sbuf_putc(struct sbuf *s, int c)
Definition: subr_sbuf.c:754
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:898
int sbuf_printf(struct sbuf *s, const char *fmt,...)
Definition: subr_sbuf.c:739
int sbuf_vprintf(struct sbuf *s, const char *fmt, va_list ap)
Definition: subr_sbuf.c:650
ssize_t sbuf_len(struct sbuf *s)
Definition: subr_sbuf.c:877
char * sbuf_data(struct sbuf *s)
Definition: subr_sbuf.c:862
int sbuf_error(const struct sbuf *s)
Definition: subr_sbuf.c:823
int sbuf_cpy(struct sbuf *s, const char *str)
Definition: subr_sbuf.c:622
struct sbuf * sbuf_new(struct sbuf *s, char *buf, int length, int flags)
Definition: subr_sbuf.c:196
int sbuf_cat(struct sbuf *s, const char *str)
Definition: subr_sbuf.c:566
int sscanf(const char *ibuf, const char *fmt,...)
Definition: subr_scanf.c:96
int vsscanf(const char *inp, char const *fmt0, va_list ap)
Definition: subr_scanf.c:108
void smp_no_rendezvous_barrier(void *dummy)
Definition: subr_smp.c:893
void smp_rendezvous_cpus_retry(cpuset_t map, void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void(*wait_func)(void *, int), struct smp_rendezvous_cpus_retry_arg *arg)
Definition: subr_smp.c:901
void smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
Definition: subr_smp.c:951
cpuset_t all_cpus
Definition: subr_smp.c:70
uint16_t flags
Definition: subr_stats.c:2
int taskqueue_member(struct taskqueue *queue, struct thread *td)
int taskqueue_enqueue_timeout(struct taskqueue *queue, struct timeout_task *ttask, int ticks)
int copyinuio(const struct iovec *iovp, u_int iovcnt, struct uio **uiop)
Definition: subr_uio.c:365
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy
int vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, u_int pathlen)
Definition: vfs_cache.c:3759
void cache_purge(struct vnode *vp)
Definition: vfs_cache.c:2872
int vfs_export(struct mount *mp, struct export_args *argp)
Definition: vfs_export.c:300
int vfs_setpublicfs(struct mount *mp, struct netexport *nep, struct export_args *argp)
Definition: vfs_export.c:378
const char * path
Definition: vfs_extattr.c:715
struct vfsconfhead vfsconf
Definition: vfs_init.c:70
struct vfsconf * vfs_byname_kld(const char *fstype, struct thread *td, int *error)
Definition: vfs_init.c:140
struct vfsconf * vfs_byname(const char *name)
Definition: vfs_init.c:129
void() NDFREE(struct nameidata *ndp, const u_int flags)
Definition: vfs_lookup.c:1555
int namei(struct nameidata *ndp)
Definition: vfs_lookup.c:535
struct mntarg * mount_argf(struct mntarg *ma, const char *name, const char *fmt,...)
Definition: vfs_mount.c:2685
void vfs_mount_error(struct mount *mp, const char *fmt,...)
Definition: vfs_mount.c:2282
void vfs_freeopts(struct vfsoptlist *opts)
Definition: vfs_mount.c:213
static int vfs_isopt_ro(const char *opt)
Definition: vfs_mount.c:238
static void vfs_drain_upper_locked(struct mount *mp)
Definition: vfs_mount.c:599
void vfs_opterror(struct vfsoptlist *opts, const char *fmt,...)
Definition: vfs_mount.c:2299
#define DEVCTL_LEN
Definition: vfs_mount.c:2824
struct mtx_padalign __exclusive_cache_line mountlist_mtx
Definition: vfs_mount.c:124
static bool default_autoro
Definition: vfs_mount.c:89
static int usermount
Definition: vfs_mount.c:85
static void vfs_deferred_unmount(void *arg, int pending)
#define VFS_MOUNTARG_SIZE_MAX
Definition: vfs_mount.c:79
static bool recursive_forced_unmount
Definition: vfs_mount.c:93
MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure")
static void dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
Definition: vfs_mount.c:1701
struct mount * vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath, struct ucred *cred)
Definition: vfs_mount.c:665
int vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt,...)
Definition: vfs_mount.c:2499
static bool vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
Definition: vfs_mount.c:780
int vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
Definition: vfs_mount.c:2593
static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount, CTLFLAG_RD|CTLFLAG_MPSAFE, 0, "deferred unmount controls")
int __vfs_statfs(struct mount *mp, struct statfs *sbp)
Definition: vfs_mount.c:2612
void vfs_unregister_for_notification(struct mount *mp, struct mount_upper_node *upper)
Definition: vfs_mount.c:614
struct mntlist mountlist
Definition: vfs_mount.c:121
char * vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
Definition: vfs_mount.c:2459
static int vfs_equalopts(const char *opt1, const char *opt2)
Definition: vfs_mount.c:260
static int vfs_check_usecounts(struct mount *mp)
Definition: vfs_mount.c:1683
static struct mtx deferred_unmount_lock
Definition: vfs_mount.c:131
int vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
Definition: vfs_mount.c:2418
static void vfs_op_wait_func(void *arg, int cpu)
Definition: vfs_mount.c:1798
int vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
Definition: vfs_mount.c:2401
static struct mntoptnames optnames[]
Definition: vfs_mount.c:2820
static void mount_devctl_event(const char *type, struct mount *mp, bool donew)
Definition: vfs_mount.c:2826
static void vfs_mount_init(void *dummy __unused)
Definition: vfs_mount.c:183
int vfs_remount_ro(struct mount *mp)
Definition: vfs_mount.c:2881
void vfs_mountedfrom(struct mount *mp, const char *from)
Definition: vfs_mount.c:2633
static void vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
Definition: vfs_mount.c:403
int vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w, uint64_t val)
Definition: vfs_mount.c:2480
int vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
Definition: vfs_mount.c:2545
void vfs_deleteopt(struct vfsoptlist *opts, const char *name)
Definition: vfs_mount.c:225
static void vfs_op_action_func(void *arg)
Definition: vfs_mount.c:1785
static void vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
Definition: vfs_mount.c:201
static void free_mntarg(struct mntarg *ma)
Definition: vfs_mount.c:2782
void resume_all_fs(void)
Definition: vfs_mount.c:3004
int vfs_filteropt(struct vfsoptlist *opts, const char **legal)
Definition: vfs_mount.c:2323
SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0, "Retry failed r/w mount as r/o if no explicit ro/rw option is specified")
void vfs_op_enter(struct mount *mp)
Definition: vfs_mount.c:1727
int sys_mount(struct thread *td, struct mount_args *uap)
Definition: vfs_mount.c:1021
int vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
Definition: vfs_mount.c:2567
EVENTHANDLER_LIST_DEFINE(vfs_mounted)
int kern_unmount(struct thread *td, const char *path, int flags)
Definition: vfs_mount.c:1589
static void mount_fini(void *mem, int size)
Definition: vfs_mount.c:171
void vfs_op_barrier_wait(struct mount *mp)
Definition: vfs_mount.c:1813
MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount", MTX_DEF)
__FBSDID("$FreeBSD$")
static void vfs_sanitizeopts(struct vfsoptlist *opts)
Definition: vfs_mount.c:297
int dounmount(struct mount *mp, uint64_t flags, struct thread *td)
Definition: vfs_mount.c:2002
static int vfs_domount_first(struct thread *td, struct vfsconf *vfsp, char *fspath, struct vnode *vp, uint64_t fsflags, struct vfsoptlist **optlist)
Definition: vfs_mount.c:1080
void vfs_rel(struct mount *mp)
Definition: vfs_mount.c:645
void vfs_op_exit_locked(struct mount *mp)
Definition: vfs_mount.c:1759
int vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
Definition: vfs_mount.c:2524
static int deferred_unmount_total_retries
Definition: vfs_mount.c:111
int sys_unmount(struct thread *td, struct unmount_args *uap)
Definition: vfs_mount.c:1582
static uma_zone_t mount_zone
Definition: vfs_mount.c:118
int vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
Definition: vfs_mount.c:2381
struct mount * vfs_ref_from_vp(struct vnode *vp)
Definition: vfs_mount.c:496
static STAILQ_HEAD(mount)
Definition: vfs_mount.c:134
SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0, "Unprivileged users may mount and unmount file systems")
int kernel_mount(struct mntarg *ma, uint64_t flags)
Definition: vfs_mount.c:2799
int sys_nmount(struct thread *td, struct nmount_args *uap)
Definition: vfs_mount.c:433
struct mount * vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump, struct mount_upper_node *upper)
Definition: vfs_mount.c:556
static int deferred_unmount_retry_delay_hz
Definition: vfs_mount.c:106
void vfs_mount_destroy(struct mount *mp)
Definition: vfs_mount.c:718
void vfs_op_exit(struct mount *mp)
Definition: vfs_mount.c:1771
static int mount_init(void *mem, int size, int flags)
Definition: vfs_mount.c:155
SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW, &deferred_unmount_retry_limit, 0, "Maximum number of retries for deferred unmount failure")
static int vfs_domount_update(struct thread *td, struct vnode *vp, uint64_t fsflags, struct vfsoptlist **optlist)
Definition: vfs_mount.c:1256
void vfs_ref(struct mount *mp)
Definition: vfs_mount.c:527
int vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
Definition: vfs_mount.c:1890
static int vfs_isopt_rw(const char *opt)
Definition: vfs_mount.c:248
static int vfs_domount(struct thread *td, const char *fstype, char *fspath, uint64_t fsflags, struct vfsoptlist **optlist)
Definition: vfs_mount.c:1477
void vfs_register_for_notification(struct mount *mp, struct mount *ump, struct mount_upper_node *upper)
Definition: vfs_mount.c:589
void suspend_all_fs(void)
Definition: vfs_mount.c:2970
int vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
Definition: vfs_mount.c:319
struct mntarg * mount_argb(struct mntarg *ma, int flag, const char *name)
Definition: vfs_mount.c:2672
static unsigned int deferred_unmount_retry_limit
Definition: vfs_mount.c:101
static bool deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue, int timeout_ticks)
Definition: vfs_mount.c:1925
SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL)
void vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
Definition: vfs_mount.c:628
struct mntarg * mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
Definition: vfs_mount.c:2727
static struct timeout_task deferred_unmount_task
Definition: vfs_mount.c:130
int vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
Definition: vfs_mount.c:805
struct mntarg * mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
Definition: vfs_mount.c:2753
struct vnode * rootvnode
struct mount * rootdevmp
void vhold(struct vnode *vp)
Definition: vfs_subr.c:3376
void vfs_allocate_syncvnode(struct mount *mp)
Definition: vfs_subr.c:5026
void vfs_periodic(struct mount *mp, int flags)
Definition: vfs_subr.c:4914
void vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
Definition: vfs_subr.c:6135
void vn_printf(struct vnode *vp, const char *fmt,...)
Definition: vfs_subr.c:4134
void vn_irflag_unset_locked(struct vnode *vp, short tounset)
Definition: vfs_subr.c:7042
void vn_seqc_write_begin(struct vnode *vp)
Definition: vfs_subr.c:6950
void vfs_unbusy(struct mount *mp)
Definition: vfs_subr.c:850
void vn_irflag_set_locked(struct vnode *vp, short toset)
Definition: vfs_subr.c:7001
int vfs_suser(struct mount *mp, struct thread *td)
Definition: vfs_subr.c:965
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334
struct mount * vfs_getvfs(fsid_t *fsid)
Definition: vfs_subr.c:889
void vn_seqc_write_end_locked(struct vnode *vp)
Definition: vfs_subr.c:6959
void vput(struct vnode *vp)
Definition: vfs_subr.c:3348
struct vnode * vfs_cache_root_clear(struct mount *mp)
Definition: vfs_subr.c:6625
int vfs_busy(struct mount *mp, int flags)
Definition: vfs_subr.c:786
int vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
Definition: vfs_subr.c:2121
int vfs_emptydir(struct vnode *vp)
Definition: vfs_subr.c:6394
void vn_seqc_write_end(struct vnode *vp)
Definition: vfs_subr.c:6970
void vdrop(struct vnode *vp)
Definition: vfs_subr.c:3619
void vfs_deallocate_syncvnode(struct mount *mp)
Definition: vfs_subr.c:5081
int vget(struct vnode *vp, int flags)
Definition: vfs_subr.c:3002
struct stat * buf
int flag
int vfs_write_suspend(struct mount *mp, int flags)
Definition: vfs_vnops.c:2065
int vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
Definition: vfs_vnops.c:1901
void vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2, bool vp2_locked)
Definition: vfs_vnops.c:3659
void vn_finished_write(struct mount *mp)
Definition: vfs_vnops.c:2009
void vfs_write_resume(struct mount *mp, int flags)
Definition: vfs_vnops.c:2114