FreeBSD kernel kern code
subr_epoch.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/counter.h>
35#include <sys/epoch.h>
36#include <sys/gtaskqueue.h>
37#include <sys/kernel.h>
38#include <sys/limits.h>
39#include <sys/lock.h>
40#include <sys/malloc.h>
41#include <sys/mutex.h>
42#include <sys/pcpu.h>
43#include <sys/proc.h>
44#include <sys/sched.h>
45#include <sys/sx.h>
46#include <sys/smp.h>
47#include <sys/sysctl.h>
48#include <sys/turnstile.h>
49#ifdef EPOCH_TRACE
50#include <machine/stdarg.h>
51#include <sys/stack.h>
52#include <sys/tree.h>
53#endif
54#include <vm/vm.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_kern.h>
57#include <vm/uma.h>
58
59#include <ck_epoch.h>
60
61#ifdef __amd64__
62#define EPOCH_ALIGN CACHE_LINE_SIZE*2
63#else
64#define EPOCH_ALIGN CACHE_LINE_SIZE
65#endif
66
67TAILQ_HEAD (epoch_tdlist, epoch_tracker);
68typedef struct epoch_record {
69 ck_epoch_record_t er_record;
70 struct epoch_context er_drain_ctx;
71 struct epoch *er_parent;
72 volatile struct epoch_tdlist er_tdlist;
73 volatile uint32_t er_gen;
74 uint32_t er_cpuid;
75#ifdef INVARIANTS
76 /* Used to verify record ownership for non-preemptible epochs. */
77 struct thread *er_td;
78#endif
79} __aligned(EPOCH_ALIGN) *epoch_record_t;
81struct epoch {
82 struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
83 epoch_record_t e_pcpu_record;
84 int e_in_use;
85 int e_flags;
86 struct sx e_drain_sx;
87 struct mtx e_drain_mtx;
88 volatile int e_drain_count;
89 const char *e_name;
90};
91
92/* arbitrary --- needs benchmarking */
93#define MAX_ADAPTIVE_SPIN 100
94#define MAX_EPOCHS 64
95
96CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
97SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
98 "epoch information");
99SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
100 "epoch stats");
101
102/* Stats. */
103static counter_u64_t block_count;
104
105SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
106 &block_count, "# of times a thread was in an epoch when epoch_wait was called");
107static counter_u64_t migrate_count;
108
109SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
110 &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
111static counter_u64_t turnstile_count;
112
113SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
114 &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
115static counter_u64_t switch_count;
116
117SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
118 &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
119static counter_u64_t epoch_call_count;
120
121SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
122 &epoch_call_count, "# of times a callback was deferred");
123static counter_u64_t epoch_call_task_count;
124
125SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
126 &epoch_call_task_count, "# of times a callback task was run");
127
128TAILQ_HEAD (threadlist, thread);
129
130CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
131 ck_epoch_entry_container)
132
133static struct epoch epoch_array[MAX_EPOCHS];
134
135DPCPU_DEFINE(struct grouptask, epoch_cb_task);
136DPCPU_DEFINE(int, epoch_cb_count);
137
138static __read_mostly int inited;
139__read_mostly epoch_t global_epoch;
140__read_mostly epoch_t global_epoch_preempt;
141
142static void epoch_call_task(void *context __unused);
143static uma_zone_t pcpu_zone_record;
144
145static struct sx epoch_sx;
146
147#define EPOCH_LOCK() sx_xlock(&epoch_sx)
148#define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
149
150static epoch_record_t
151epoch_currecord(epoch_t epoch)
152{
153
154 return (zpcpu_get(epoch->e_pcpu_record));
155}
156
157#ifdef EPOCH_TRACE
158struct stackentry {
159 RB_ENTRY(stackentry) se_node;
160 struct stack se_stack;
161};
162
163static int
164stackentry_compare(struct stackentry *a, struct stackentry *b)
165{
166
167 if (a->se_stack.depth > b->se_stack.depth)
168 return (1);
169 if (a->se_stack.depth < b->se_stack.depth)
170 return (-1);
171 for (int i = 0; i < a->se_stack.depth; i++) {
172 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
173 return (1);
174 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
175 return (-1);
176 }
177
178 return (0);
179}
180
181RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
182RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
183
184static struct mtx epoch_stacks_lock;
185MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
186
187static bool epoch_trace_stack_print = true;
188SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
189 &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
190
191static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
192static inline void
193epoch_trace_report(const char *fmt, ...)
194{
195 va_list ap;
196 struct stackentry se, *new;
197
198 stack_zero(&se.se_stack); /* XXX: is it really needed? */
199 stack_save(&se.se_stack);
200
201 /* Tree is never reduced - go lockless. */
202 if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
203 return;
204
205 new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
206 if (new != NULL) {
207 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
208
209 mtx_lock(&epoch_stacks_lock);
210 new = RB_INSERT(stacktree, &epoch_stacks, new);
211 mtx_unlock(&epoch_stacks_lock);
212 if (new != NULL)
213 free(new, M_STACK);
214 }
215
216 va_start(ap, fmt);
217 (void)vprintf(fmt, ap);
218 va_end(ap);
219 if (epoch_trace_stack_print)
220 stack_print_ddb(&se.se_stack);
221}
222
223static inline void
224epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
225 const char *file, int line)
226{
227 epoch_tracker_t iet;
228
229 SLIST_FOREACH(iet, &td->td_epochs, et_tlink) {
230 if (iet->et_epoch != epoch)
231 continue;
232 epoch_trace_report("Recursively entering epoch %s "
233 "at %s:%d, previously entered at %s:%d\n",
234 epoch->e_name, file, line,
235 iet->et_file, iet->et_line);
236 }
237 et->et_epoch = epoch;
238 et->et_file = file;
239 et->et_line = line;
240 et->et_flags = 0;
241 SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
242}
243
244static inline void
245epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
246 const char *file, int line)
247{
248
249 if (SLIST_FIRST(&td->td_epochs) != et) {
250 epoch_trace_report("Exiting epoch %s in a not nested order "
251 "at %s:%d. Most recently entered %s at %s:%d\n",
252 epoch->e_name,
253 file, line,
254 SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
255 SLIST_FIRST(&td->td_epochs)->et_file,
256 SLIST_FIRST(&td->td_epochs)->et_line);
257 /* This will panic if et is not anywhere on td_epochs. */
258 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
259 } else
260 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
261 if (et->et_flags & ET_REPORT_EXIT)
262 printf("Td %p exiting epoch %s at %s:%d\n", td, epoch->e_name,
263 file, line);
264}
265
266/* Used by assertions that check thread state before going to sleep. */
267void
268epoch_trace_list(struct thread *td)
269{
270 epoch_tracker_t iet;
271
272 SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
273 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
274 iet->et_file, iet->et_line);
275}
276
277void
278epoch_where_report(epoch_t epoch)
279{
280 epoch_record_t er;
281 struct epoch_tracker *tdwait;
282
283 MPASS(epoch != NULL);
284 MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
285 MPASS(!THREAD_CAN_SLEEP());
286 critical_enter();
287 er = epoch_currecord(epoch);
288 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
289 if (tdwait->et_td == curthread)
290 break;
291 critical_exit();
292 if (tdwait != NULL) {
293 tdwait->et_flags |= ET_REPORT_EXIT;
294 printf("Td %p entered epoch %s at %s:%d\n", curthread,
295 epoch->e_name, tdwait->et_file, tdwait->et_line);
296 }
297}
298#endif /* EPOCH_TRACE */
299
300static void
301epoch_init(void *arg __unused)
302{
303 int cpu;
304
305 block_count = counter_u64_alloc(M_WAITOK);
311
312 pcpu_zone_record = uma_zcreate("epoch_record pcpu",
313 sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
314 UMA_ALIGN_PTR, UMA_ZONE_PCPU);
315 CPU_FOREACH(cpu) {
316 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
317 epoch_call_task, NULL);
318 taskqgroup_attach_cpu(qgroup_softirq,
319 DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
320 "epoch call task");
321 }
322#ifdef EPOCH_TRACE
323 SLIST_INIT(&thread0.td_epochs);
324#endif
325 sx_init(&epoch_sx, "epoch-sx");
326 inited = 1;
327 global_epoch = epoch_alloc("Global", 0);
328 global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
329}
330SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
331
332#if !defined(EARLY_AP_STARTUP)
333static void
334epoch_init_smp(void *dummy __unused)
335{
336 inited = 2;
337}
338SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
339#endif
340
341static void
342epoch_ctor(epoch_t epoch)
343{
344 epoch_record_t er;
345 int cpu;
346
347 epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
348 CPU_FOREACH(cpu) {
349 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
350 bzero(er, sizeof(*er));
351 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
352 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
353 er->er_cpuid = cpu;
354 er->er_parent = epoch;
355 }
356}
357
358static void
359epoch_adjust_prio(struct thread *td, u_char prio)
360{
361
362 thread_lock(td);
363 sched_prio(td, prio);
364 thread_unlock(td);
365}
366
367epoch_t
368epoch_alloc(const char *name, int flags)
369{
370 epoch_t epoch;
371 int i;
372
373 MPASS(name != NULL);
374
375 if (__predict_false(!inited))
376 panic("%s called too early in boot", __func__);
377
378 EPOCH_LOCK();
379
380 /*
381 * Find a free index in the epoch array. If no free index is
382 * found, try to use the index after the last one.
383 */
384 for (i = 0;; i++) {
385 /*
386 * If too many epochs are currently allocated,
387 * return NULL.
388 */
389 if (i == MAX_EPOCHS) {
390 epoch = NULL;
391 goto done;
392 }
393 if (epoch_array[i].e_in_use == 0)
394 break;
395 }
396
397 epoch = epoch_array + i;
398 ck_epoch_init(&epoch->e_epoch);
399 epoch_ctor(epoch);
400 epoch->e_flags = flags;
401 epoch->e_name = name;
402 sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
403 mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
404
405 /*
406 * Set e_in_use last, because when this field is set the
407 * epoch_call_task() function will start scanning this epoch
408 * structure.
409 */
410 atomic_store_rel_int(&epoch->e_in_use, 1);
411done:
412 EPOCH_UNLOCK();
413 return (epoch);
414}
415
416void
417epoch_free(epoch_t epoch)
418{
419#ifdef INVARIANTS
420 int cpu;
421#endif
422
423 EPOCH_LOCK();
424
425 MPASS(epoch->e_in_use != 0);
426
428
429 atomic_store_rel_int(&epoch->e_in_use, 0);
430 /*
431 * Make sure the epoch_call_task() function see e_in_use equal
432 * to zero, by calling epoch_wait() on the global_epoch:
433 */
434 epoch_wait(global_epoch);
435#ifdef INVARIANTS
436 CPU_FOREACH(cpu) {
437 epoch_record_t er;
438
439 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
440
441 /*
442 * Sanity check: none of the records should be in use anymore.
443 * We drained callbacks above and freeing the pcpu records is
444 * imminent.
445 */
446 MPASS(er->er_td == NULL);
447 MPASS(TAILQ_EMPTY(&er->er_tdlist));
448 }
449#endif
450 uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
451 mtx_destroy(&epoch->e_drain_mtx);
452 sx_destroy(&epoch->e_drain_sx);
453 memset(epoch, 0, sizeof(*epoch));
454
455 EPOCH_UNLOCK();
456}
457
458#define INIT_CHECK(epoch) \
459 do { \
460 if (__predict_false((epoch) == NULL)) \
461 return; \
462 } while (0)
463
464void
465_epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
466{
467 struct epoch_record *er;
468 struct thread *td;
469
470 MPASS(cold || epoch != NULL);
471 td = curthread;
472 MPASS((vm_offset_t)et >= td->td_kstack &&
473 (vm_offset_t)et + sizeof(struct epoch_tracker) <=
474 td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
475
476 INIT_CHECK(epoch);
477 MPASS(epoch->e_flags & EPOCH_PREEMPT);
478
479#ifdef EPOCH_TRACE
480 epoch_trace_enter(td, epoch, et, file, line);
481#endif
482 et->et_td = td;
483 THREAD_NO_SLEEPING();
484 critical_enter();
485 sched_pin();
486 et->et_old_priority = td->td_priority;
487 er = epoch_currecord(epoch);
488 /* Record-level tracking is reserved for non-preemptible epochs. */
489 MPASS(er->er_td == NULL);
490 TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
491 ck_epoch_begin(&er->er_record, &et->et_section);
492 critical_exit();
493}
494
495void
496epoch_enter(epoch_t epoch)
497{
498 epoch_record_t er;
499
500 MPASS(cold || epoch != NULL);
501 INIT_CHECK(epoch);
502 critical_enter();
503 er = epoch_currecord(epoch);
504#ifdef INVARIANTS
505 if (er->er_record.active == 0) {
506 MPASS(er->er_td == NULL);
507 er->er_td = curthread;
508 } else {
509 /* We've recursed, just make sure our accounting isn't wrong. */
510 MPASS(er->er_td == curthread);
511 }
512#endif
513 ck_epoch_begin(&er->er_record, NULL);
514}
515
516void
517_epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
518{
519 struct epoch_record *er;
520 struct thread *td;
521
522 INIT_CHECK(epoch);
523 td = curthread;
524 critical_enter();
525 sched_unpin();
526 THREAD_SLEEPING_OK();
527 er = epoch_currecord(epoch);
528 MPASS(epoch->e_flags & EPOCH_PREEMPT);
529 MPASS(et != NULL);
530 MPASS(et->et_td == td);
531#ifdef INVARIANTS
532 et->et_td = (void*)0xDEADBEEF;
533 /* Record-level tracking is reserved for non-preemptible epochs. */
534 MPASS(er->er_td == NULL);
535#endif
536 ck_epoch_end(&er->er_record, &et->et_section);
537 TAILQ_REMOVE(&er->er_tdlist, et, et_link);
538 er->er_gen++;
539 if (__predict_false(et->et_old_priority != td->td_priority))
540 epoch_adjust_prio(td, et->et_old_priority);
541 critical_exit();
542#ifdef EPOCH_TRACE
543 epoch_trace_exit(td, epoch, et, file, line);
544#endif
545}
546
547void
548epoch_exit(epoch_t epoch)
549{
550 epoch_record_t er;
551
552 INIT_CHECK(epoch);
553 er = epoch_currecord(epoch);
554 ck_epoch_end(&er->er_record, NULL);
555#ifdef INVARIANTS
556 MPASS(er->er_td == curthread);
557 if (er->er_record.active == 0)
558 er->er_td = NULL;
559#endif
560 critical_exit();
561}
562
563/*
564 * epoch_block_handler_preempt() is a callback from the CK code when another
565 * thread is currently in an epoch section.
566 */
567static void
568epoch_block_handler_preempt(struct ck_epoch *global __unused,
569 ck_epoch_record_t *cr, void *arg __unused)
570{
571 epoch_record_t record;
572 struct thread *td, *owner, *curwaittd;
573 struct epoch_tracker *tdwait;
574 struct turnstile *ts;
575 struct lock_object *lock;
576 int spincount, gen;
577 int locksheld __unused;
578
579 record = __containerof(cr, struct epoch_record, er_record);
580 td = curthread;
581 locksheld = td->td_locks;
582 spincount = 0;
583 counter_u64_add(block_count, 1);
584 /*
585 * We lost a race and there's no longer any threads
586 * on the CPU in an epoch section.
587 */
588 if (TAILQ_EMPTY(&record->er_tdlist))
589 return;
590
591 if (record->er_cpuid != curcpu) {
592 /*
593 * If the head of the list is running, we can wait for it
594 * to remove itself from the list and thus save us the
595 * overhead of a migration
596 */
597 gen = record->er_gen;
598 thread_unlock(td);
599 /*
600 * We can't actually check if the waiting thread is running
601 * so we simply poll for it to exit before giving up and
602 * migrating.
603 */
604 do {
605 cpu_spinwait();
606 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
607 gen == record->er_gen &&
608 spincount++ < MAX_ADAPTIVE_SPIN);
609 thread_lock(td);
610 /*
611 * If the generation has changed we can poll again
612 * otherwise we need to migrate.
613 */
614 if (gen != record->er_gen)
615 return;
616 /*
617 * Being on the same CPU as that of the record on which
618 * we need to wait allows us access to the thread
619 * list associated with that CPU. We can then examine the
620 * oldest thread in the queue and wait on its turnstile
621 * until it resumes and so on until a grace period
622 * elapses.
623 *
624 */
625 counter_u64_add(migrate_count, 1);
626 sched_bind(td, record->er_cpuid);
627 /*
628 * At this point we need to return to the ck code
629 * to scan to see if a grace period has elapsed.
630 * We can't move on to check the thread list, because
631 * in the meantime new threads may have arrived that
632 * in fact belong to a different epoch.
633 */
634 return;
635 }
636 /*
637 * Try to find a thread in an epoch section on this CPU
638 * waiting on a turnstile. Otherwise find the lowest
639 * priority thread (highest prio value) and drop our priority
640 * to match to allow it to run.
641 */
642 TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
643 /*
644 * Propagate our priority to any other waiters to prevent us
645 * from starving them. They will have their original priority
646 * restore on exit from epoch_wait().
647 */
648 curwaittd = tdwait->et_td;
649 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
650 critical_enter();
651 thread_unlock(td);
652 thread_lock(curwaittd);
653 sched_prio(curwaittd, td->td_priority);
654 thread_unlock(curwaittd);
655 thread_lock(td);
656 critical_exit();
657 }
658 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
659 ((ts = curwaittd->td_blocked) != NULL)) {
660 /*
661 * We unlock td to allow turnstile_wait to reacquire
662 * the thread lock. Before unlocking it we enter a
663 * critical section to prevent preemption after we
664 * reenable interrupts by dropping the thread lock in
665 * order to prevent curwaittd from getting to run.
666 */
667 critical_enter();
668 thread_unlock(td);
669
670 if (turnstile_lock(ts, &lock, &owner)) {
671 if (ts == curwaittd->td_blocked) {
672 MPASS(TD_IS_INHIBITED(curwaittd) &&
673 TD_ON_LOCK(curwaittd));
674 critical_exit();
675 turnstile_wait(ts, owner,
676 curwaittd->td_tsqueue);
677 counter_u64_add(turnstile_count, 1);
678 thread_lock(td);
679 return;
680 }
681 turnstile_unlock(ts, lock);
682 }
683 thread_lock(td);
684 critical_exit();
685 KASSERT(td->td_locks == locksheld,
686 ("%d extra locks held", td->td_locks - locksheld));
687 }
688 }
689 /*
690 * We didn't find any threads actually blocked on a lock
691 * so we have nothing to do except context switch away.
692 */
693 counter_u64_add(switch_count, 1);
694 mi_switch(SW_VOL | SWT_RELINQUISH);
695 /*
696 * It is important the thread lock is dropped while yielding
697 * to allow other threads to acquire the lock pointed to by
698 * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
699 * thread lock before returning. Else a deadlock like
700 * situation might happen.
701 */
702 thread_lock(td);
703}
704
705void
706epoch_wait_preempt(epoch_t epoch)
707{
708 struct thread *td;
709 int was_bound;
710 int old_cpu;
711 int old_pinned;
712 u_char old_prio;
713 int locks __unused;
714
715 MPASS(cold || epoch != NULL);
716 INIT_CHECK(epoch);
717 td = curthread;
718#ifdef INVARIANTS
719 locks = curthread->td_locks;
720 MPASS(epoch->e_flags & EPOCH_PREEMPT);
721 if ((epoch->e_flags & EPOCH_LOCKED) == 0)
722 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
723 "epoch_wait() can be long running");
724 KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
725 "of an epoch section of the same epoch"));
726#endif
727 DROP_GIANT();
728 thread_lock(td);
729
730 old_cpu = PCPU_GET(cpuid);
731 old_pinned = td->td_pinned;
732 old_prio = td->td_priority;
733 was_bound = sched_is_bound(td);
734 sched_unbind(td);
735 td->td_pinned = 0;
736 sched_bind(td, old_cpu);
737
738 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
739 NULL);
740
741 /* restore CPU binding, if any */
742 if (was_bound != 0) {
743 sched_bind(td, old_cpu);
744 } else {
745 /* get thread back to initial CPU, if any */
746 if (old_pinned != 0)
747 sched_bind(td, old_cpu);
748 sched_unbind(td);
749 }
750 /* restore pinned after bind */
751 td->td_pinned = old_pinned;
752
753 /* restore thread priority */
754 sched_prio(td, old_prio);
755 thread_unlock(td);
756 PICKUP_GIANT();
757 KASSERT(td->td_locks == locks,
758 ("%d residual locks held", td->td_locks - locks));
759}
760
761static void
762epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
763 void *arg __unused)
764{
765 cpu_spinwait();
766}
767
768void
769epoch_wait(epoch_t epoch)
770{
771
772 MPASS(cold || epoch != NULL);
773 INIT_CHECK(epoch);
774 MPASS(epoch->e_flags == 0);
775 critical_enter();
776 ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
777 critical_exit();
778}
779
780void
781epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
782{
783 epoch_record_t er;
784 ck_epoch_entry_t *cb;
785
786 cb = (void *)ctx;
787
788 MPASS(callback);
789 /* too early in boot to have epoch set up */
790 if (__predict_false(epoch == NULL))
791 goto boottime;
792#if !defined(EARLY_AP_STARTUP)
793 if (__predict_false(inited < 2))
794 goto boottime;
795#endif
796
797 critical_enter();
798 *DPCPU_PTR(epoch_cb_count) += 1;
799 er = epoch_currecord(epoch);
800 ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
801 critical_exit();
802 return;
803boottime:
804 callback(ctx);
805}
806
807static void
808epoch_call_task(void *arg __unused)
809{
810 ck_stack_entry_t *cursor, *head, *next;
811 ck_epoch_record_t *record;
812 epoch_record_t er;
813 epoch_t epoch;
814 ck_stack_t cb_stack;
815 int i, npending, total;
816
817 ck_stack_init(&cb_stack);
818 critical_enter();
819 epoch_enter(global_epoch);
820 for (total = i = 0; i != MAX_EPOCHS; i++) {
821 epoch = epoch_array + i;
822 if (__predict_false(
823 atomic_load_acq_int(&epoch->e_in_use) == 0))
824 continue;
825 er = epoch_currecord(epoch);
826 record = &er->er_record;
827 if ((npending = record->n_pending) == 0)
828 continue;
829 ck_epoch_poll_deferred(record, &cb_stack);
830 total += npending - record->n_pending;
831 }
832 epoch_exit(global_epoch);
833 *DPCPU_PTR(epoch_cb_count) -= total;
834 critical_exit();
835
836 counter_u64_add(epoch_call_count, total);
837 counter_u64_add(epoch_call_task_count, 1);
838
839 head = ck_stack_batch_pop_npsc(&cb_stack);
840 for (cursor = head; cursor != NULL; cursor = next) {
841 struct ck_epoch_entry *entry =
842 ck_epoch_entry_container(cursor);
843
844 next = CK_STACK_NEXT(cursor);
845 entry->function(entry);
846 }
847}
848
849static int
850in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
851{
852 epoch_record_t er;
853 struct epoch_tracker *tdwait;
854 struct thread *td;
855
856 MPASS(epoch != NULL);
857 MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
858 td = curthread;
859 if (THREAD_CAN_SLEEP())
860 return (0);
861 critical_enter();
862 er = epoch_currecord(epoch);
863 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
864 if (tdwait->et_td == td) {
865 critical_exit();
866 return (1);
867 }
868#ifdef INVARIANTS
869 if (dump_onfail) {
870 MPASS(td->td_pinned);
871 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
872 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
873 printf("td_tid: %d ", tdwait->et_td->td_tid);
874 printf("\n");
875 }
876#endif
877 critical_exit();
878 return (0);
879}
880
881#ifdef INVARIANTS
882static void
883epoch_assert_nocpu(epoch_t epoch, struct thread *td)
884{
885 epoch_record_t er;
886 int cpu;
887 bool crit;
888
889 crit = td->td_critnest > 0;
890
891 /* Check for a critical section mishap. */
892 CPU_FOREACH(cpu) {
893 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
894 KASSERT(er->er_td != td,
895 ("%s critical section in epoch '%s', from cpu %d",
896 (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
897 }
898}
899#else
900#define epoch_assert_nocpu(e, td) do {} while (0)
901#endif
902
903int
904in_epoch_verbose(epoch_t epoch, int dump_onfail)
905{
906 epoch_record_t er;
907 struct thread *td;
908
909 if (__predict_false((epoch) == NULL))
910 return (0);
911 if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
912 return (in_epoch_verbose_preempt(epoch, dump_onfail));
913
914 /*
915 * The thread being in a critical section is a necessary
916 * condition to be correctly inside a non-preemptible epoch,
917 * so it's definitely not in this epoch.
918 */
919 td = curthread;
920 if (td->td_critnest == 0) {
921 epoch_assert_nocpu(epoch, td);
922 return (0);
923 }
924
925 /*
926 * The current cpu is in a critical section, so the epoch record will be
927 * stable for the rest of this function. Knowing that the record is not
928 * active is sufficient for knowing whether we're in this epoch or not,
929 * since it's a pcpu record.
930 */
931 er = epoch_currecord(epoch);
932 if (er->er_record.active == 0) {
933 epoch_assert_nocpu(epoch, td);
934 return (0);
935 }
936
937 MPASS(er->er_td == td);
938 return (1);
939}
940
941int
942in_epoch(epoch_t epoch)
943{
944 return (in_epoch_verbose(epoch, 0));
945}
946
947static void
948epoch_drain_cb(struct epoch_context *ctx)
949{
950 struct epoch *epoch =
951 __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
952
953 if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
954 mtx_lock(&epoch->e_drain_mtx);
955 wakeup(epoch);
956 mtx_unlock(&epoch->e_drain_mtx);
957 }
958}
959
960void
962{
963 epoch_record_t er;
964 struct thread *td;
965 int was_bound;
966 int old_pinned;
967 int old_cpu;
968 int cpu;
969
970 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
971 "epoch_drain_callbacks() may sleep!");
972
973 /* too early in boot to have epoch set up */
974 if (__predict_false(epoch == NULL))
975 return;
976#if !defined(EARLY_AP_STARTUP)
977 if (__predict_false(inited < 2))
978 return;
979#endif
980 DROP_GIANT();
981
982 sx_xlock(&epoch->e_drain_sx);
983 mtx_lock(&epoch->e_drain_mtx);
984
985 td = curthread;
986 thread_lock(td);
987 old_cpu = PCPU_GET(cpuid);
988 old_pinned = td->td_pinned;
989 was_bound = sched_is_bound(td);
990 sched_unbind(td);
991 td->td_pinned = 0;
992
993 CPU_FOREACH(cpu)
994 epoch->e_drain_count++;
995 CPU_FOREACH(cpu) {
996 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
997 sched_bind(td, cpu);
998 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
999 }
1000
1001 /* restore CPU binding, if any */
1002 if (was_bound != 0) {
1003 sched_bind(td, old_cpu);
1004 } else {
1005 /* get thread back to initial CPU, if any */
1006 if (old_pinned != 0)
1007 sched_bind(td, old_cpu);
1008 sched_unbind(td);
1009 }
1010 /* restore pinned after bind */
1011 td->td_pinned = old_pinned;
1012
1013 thread_unlock(td);
1014
1015 while (epoch->e_drain_count != 0)
1016 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
1017
1018 mtx_unlock(&epoch->e_drain_mtx);
1019 sx_xunlock(&epoch->e_drain_sx);
1020
1021 PICKUP_GIANT();
1022}
struct timespec * ts
Definition: clock_if.m:39
const char * name
Definition: kern_fail.c:145
SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, CTLFLAG_RWTUN, &__elfN(allow_wx), 0, "Allow pages to be mapped simultaneously writable and executable")
DPCPU_DEFINE(sbintime_t, hardclocktime)
MTX_SYSINIT(et_eventtimers_init, &et_eventtimers_mtx, "et_mtx", MTX_DEF)
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
void panic(const char *fmt,...)
void sx_destroy(struct sx *sx)
Definition: kern_sx.c:266
void mi_switch(int flags)
Definition: kern_synch.c:491
void wakeup(const void *ident)
Definition: kern_synch.c:349
linker_function_name_callback_t callback
Definition: linker_if.m:74
void sched_bind(struct thread *td, int cpu)
Definition: sched_4bsd.c:1531
void sched_unbind(struct thread *td)
Definition: sched_4bsd.c:1552
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:901
int sched_is_bound(struct thread *td)
Definition: sched_4bsd.c:1560
uint32_t er_cpuid
Definition: subr_epoch.c:74
ck_epoch_record_t er_record
Definition: subr_epoch.c:69
volatile uint32_t er_gen
Definition: subr_epoch.c:73
volatile struct epoch_tdlist er_tdlist
Definition: subr_epoch.c:72
struct epoch * er_parent
Definition: subr_epoch.c:71
struct epoch_context er_drain_ctx
Definition: subr_epoch.c:70
static bool kasan_enabled __read_mostly
Definition: subr_asan.c:95
counter_u64_t counter_u64_alloc(int flags)
Definition: subr_counter.c:61
#define EPOCH_ALIGN
Definition: subr_epoch.c:64
ck_epoch_record_t er_record
Definition: subr_epoch.c:80
void epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
Definition: subr_epoch.c:781
struct epoch_record __aligned(EPOCH_ALIGN)
Definition: subr_epoch.c:79
static void epoch_drain_cb(struct epoch_context *ctx)
Definition: subr_epoch.c:948
static void epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, void *arg __unused)
Definition: subr_epoch.c:762
void epoch_free(epoch_t epoch)
Definition: subr_epoch.c:417
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, &block_count, "# of times a thread was in an epoch when epoch_wait was called")
static void epoch_init_smp(void *dummy __unused)
Definition: subr_epoch.c:334
#define EPOCH_LOCK()
epoch_t epoch_alloc(const char *name, int flags)
Definition: subr_epoch.c:368
#define MAX_EPOCHS
Definition: subr_epoch.c:94
CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, ck_epoch_entry_container)
Definition: subr_epoch.c:130
void epoch_wait_preempt(epoch_t epoch)
Definition: subr_epoch.c:706
static counter_u64_t epoch_call_count
Definition: subr_epoch.c:119
void epoch_wait(epoch_t epoch)
Definition: subr_epoch.c:769
static counter_u64_t switch_count
Definition: subr_epoch.c:115
#define INIT_CHECK(epoch)
Definition: subr_epoch.c:458
static void epoch_adjust_prio(struct thread *td, u_char prio)
Definition: subr_epoch.c:359
struct epoch_context er_drain_ctx
Definition: subr_epoch.c:81
#define MAX_ADAPTIVE_SPIN
Definition: subr_epoch.c:93
static void epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr, void *arg __unused)
Definition: subr_epoch.c:568
SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW|CTLFLAG_MPSAFE, 0, "epoch information")
static void epoch_init(void *arg __unused)
Definition: subr_epoch.c:301
void epoch_drain_callbacks(epoch_t epoch)
Definition: subr_epoch.c:961
__FBSDID("$FreeBSD$")
static counter_u64_t turnstile_count
Definition: subr_epoch.c:111
static void epoch_call_task(void *arg __unused)
Definition: subr_epoch.c:808
void epoch_enter(epoch_t epoch)
Definition: subr_epoch.c:496
static void epoch_ctor(epoch_t epoch)
Definition: subr_epoch.c:342
void _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
Definition: subr_epoch.c:517
void _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
Definition: subr_epoch.c:465
int in_epoch_verbose(epoch_t epoch, int dump_onfail)
Definition: subr_epoch.c:904
void epoch_exit(epoch_t epoch)
Definition: subr_epoch.c:548
#define epoch_assert_nocpu(e, td)
Definition: subr_epoch.c:900
int in_epoch(epoch_t epoch)
Definition: subr_epoch.c:942
static counter_u64_t block_count
Definition: subr_epoch.c:103
static int in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
Definition: subr_epoch.c:850
TAILQ_HEAD(epoch_tdlist, epoch_tracker)
static counter_u64_t migrate_count
Definition: subr_epoch.c:107
#define EPOCH_UNLOCK()
SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL)
static counter_u64_t epoch_call_task_count
Definition: subr_epoch.c:123
CTASSERT(sizeof(ck_epoch_entry_t)==sizeof(struct epoch_context))
int taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
int printf(const char *fmt,...)
Definition: subr_prf.c:397
int vprintf(const char *fmt, va_list ap)
Definition: subr_prf.c:410
void stack_zero(struct stack *st)
Definition: subr_stack.c:89
void stack_print_ddb(const struct stack *st)
Definition: subr_stack.c:132
uint16_t flags
Definition: subr_stats.c:2
bool turnstile_lock(struct turnstile *ts, struct lock_object **lockp, struct thread **tdp)
void turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
void turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy