FreeBSD kernel ATH device code
ar2317.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#include "ah_eeprom_v3.h"
31
32#define AH_5212_2317
33#include "ar5212/ar5212.ini"
34
35#define N(a) (sizeof(a)/sizeof(a[0]))
36
39#define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
40
42 RF_HAL_FUNCS base; /* public state, must be first */
44
45 uint32_t Bank1Data[N(ar5212Bank1_2317)];
46 uint32_t Bank2Data[N(ar5212Bank2_2317)];
47 uint32_t Bank3Data[N(ar5212Bank3_2317)];
48 uint32_t Bank6Data[N(ar5212Bank6_2317)];
49 uint32_t Bank7Data[N(ar5212Bank7_2317)];
50
51 /*
52 * Private state for reduced stack usage.
53 */
54 /* filled out Vpd table for all pdGains (chanL) */
57 /* filled out Vpd table for all pdGains (chanR) */
60 /* filled out Vpd table for all pdGains (interpolated) */
63};
64#define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal)
65
66extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
67 uint32_t numBits, uint32_t firstBit, uint32_t column);
68
69static void
70ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
71 int writes)
72{
73 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
74 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
75 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
76}
77
78/*
79 * Take the MHz channel value and set the Channel value
80 *
81 * ASSUMES: Writes enabled to analog bus
82 */
83static HAL_BOOL
84ar2317SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
85{
86 uint16_t freq = ath_hal_gethwchannel(ah, chan);
87 uint32_t channelSel = 0;
88 uint32_t bModeSynth = 0;
89 uint32_t aModeRefSel = 0;
90 uint32_t reg32 = 0;
91
92 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
93
94 if (freq < 4800) {
95 uint32_t txctl;
96 channelSel = freq - 2272 ;
97 channelSel = ath_hal_reverseBits(channelSel, 8);
98
100 if (freq == 2484) {
101 /* Enable channel spreading for channel 14 */
104 } else {
106 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
107 }
108 } else if ((freq % 20) == 0 && freq >= 5120) {
109 channelSel = ath_hal_reverseBits(
110 ((freq - 4800) / 20 << 2), 8);
111 aModeRefSel = ath_hal_reverseBits(3, 2);
112 } else if ((freq % 10) == 0) {
113 channelSel = ath_hal_reverseBits(
114 ((freq - 4800) / 10 << 1), 8);
115 aModeRefSel = ath_hal_reverseBits(2, 2);
116 } else if ((freq % 5) == 0) {
117 channelSel = ath_hal_reverseBits(
118 (freq - 4800) / 5, 8);
119 aModeRefSel = ath_hal_reverseBits(1, 2);
120 } else {
121 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
122 __func__, freq);
123 return AH_FALSE;
124 }
125
126 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
127 (1 << 12) | 0x1;
128 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
129
130 reg32 >>= 8;
131 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
132
133 AH_PRIVATE(ah)->ah_curchan = chan;
134 return AH_TRUE;
135}
136
137/*
138 * Reads EEPROM header info from device structure and programs
139 * all rf registers
140 *
141 * REQUIRES: Access to the analog rf device
142 */
143static HAL_BOOL
145 const struct ieee80211_channel *chan,
146 uint16_t modesIndex, uint16_t *rfXpdGain)
147{
148#define RF_BANK_SETUP(_priv, _ix, _col) do { \
149 int i; \
150 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \
151 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
152} while (0)
153 struct ath_hal_5212 *ahp = AH5212(ah);
154 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
155 uint16_t ob2GHz = 0, db2GHz = 0;
156 struct ar2317State *priv = AR2317(ah);
157 int regWrites = 0;
158
159 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
160 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
161
162 HALASSERT(priv);
163
164 /* Setup rf parameters */
165 if (IEEE80211_IS_CHAN_B(chan)) {
166 ob2GHz = ee->ee_obFor24;
167 db2GHz = ee->ee_dbFor24;
168 } else {
169 ob2GHz = ee->ee_obFor24g;
170 db2GHz = ee->ee_dbFor24g;
171 }
172
173 /* Bank 1 Write */
174 RF_BANK_SETUP(priv, 1, 1);
175
176 /* Bank 2 Write */
177 RF_BANK_SETUP(priv, 2, modesIndex);
178
179 /* Bank 3 Write */
180 RF_BANK_SETUP(priv, 3, modesIndex);
181
182 /* Bank 6 Write */
183 RF_BANK_SETUP(priv, 6, modesIndex);
184
185 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
186 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
187
188 /* Bank 7 Setup */
189 RF_BANK_SETUP(priv, 7, modesIndex);
190
191 /* Write Analog registers */
192 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
193 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
194 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
195 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
196 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
197 /* Now that we have reprogrammed rfgain value, clear the flag. */
199
200 return AH_TRUE;
201#undef RF_BANK_SETUP
202}
203
204/*
205 * Return a reference to the requested RF Bank.
206 */
207static uint32_t *
208ar2317GetRfBank(struct ath_hal *ah, int bank)
209{
210 struct ar2317State *priv = AR2317(ah);
211
212 HALASSERT(priv != AH_NULL);
213 switch (bank) {
214 case 1: return priv->Bank1Data;
215 case 2: return priv->Bank2Data;
216 case 3: return priv->Bank3Data;
217 case 6: return priv->Bank6Data;
218 case 7: return priv->Bank7Data;
219 }
220 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
221 __func__, bank);
222 return AH_NULL;
223}
224
225/*
226 * Return indices surrounding the value in sorted integer lists.
227 *
228 * NB: the input list is assumed to be sorted in ascending order
229 */
230static void
231GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
232 uint32_t *vlo, uint32_t *vhi)
233{
234 int16_t target = v;
235 const int16_t *ep = lp+listSize;
236 const int16_t *tp;
237
238 /*
239 * Check first and last elements for out-of-bounds conditions.
240 */
241 if (target < lp[0]) {
242 *vlo = *vhi = 0;
243 return;
244 }
245 if (target >= ep[-1]) {
246 *vlo = *vhi = listSize - 1;
247 return;
248 }
249
250 /* look for value being near or between 2 values in list */
251 for (tp = lp; tp < ep; tp++) {
252 /*
253 * If value is close to the current value of the list
254 * then target is not between values, it is one of the values
255 */
256 if (*tp == target) {
257 *vlo = *vhi = tp - (const int16_t *) lp;
258 return;
259 }
260 /*
261 * Look for value being between current value and next value
262 * if so return these 2 values
263 */
264 if (target < tp[1]) {
265 *vlo = tp - (const int16_t *) lp;
266 *vhi = *vlo + 1;
267 return;
268 }
269 }
270}
271
272/*
273 * Fill the Vpdlist for indices Pmax-Pmin
274 */
275static HAL_BOOL
276ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
277 const int16_t *pwrList, const int16_t *VpdList,
278 uint16_t numIntercepts, uint16_t retVpdList[][64])
279{
280 uint16_t ii, jj, kk;
281 int16_t currPwr = (int16_t)(2*Pmin);
282 /* since Pmin is pwr*2 and pwrList is 4*pwr */
283 uint32_t idxL, idxR;
284
285 ii = 0;
286 jj = 0;
287
288 if (numIntercepts < 2)
289 return AH_FALSE;
290
291 while (ii <= (uint16_t)(Pmax - Pmin)) {
292 GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
293 &(idxL), &(idxR));
294 if (idxR < 1)
295 idxR = 1; /* extrapolate below */
296 if (idxL == (uint32_t)(numIntercepts - 1))
297 idxL = numIntercepts - 2; /* extrapolate above */
298 if (pwrList[idxL] == pwrList[idxR])
299 kk = VpdList[idxL];
300 else
301 kk = (uint16_t)
302 (((currPwr - pwrList[idxL])*VpdList[idxR]+
303 (pwrList[idxR] - currPwr)*VpdList[idxL])/
304 (pwrList[idxR] - pwrList[idxL]));
305 retVpdList[pdGainIdx][ii] = kk;
306 ii++;
307 currPwr += 2; /* half dB steps */
308 }
309
310 return AH_TRUE;
311}
312
313/*
314 * Returns interpolated or the scaled up interpolated value
315 */
316static int16_t
317interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
318 int16_t targetLeft, int16_t targetRight)
319{
320 int16_t rv;
321
322 if (srcRight != srcLeft) {
323 rv = ((target - srcLeft)*targetRight +
324 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
325 } else {
326 rv = targetLeft;
327 }
328 return rv;
329}
330
331/*
332 * Uses the data points read from EEPROM to reconstruct the pdadc power table
333 * Called by ar2317SetPowerTable()
334 */
335static int
337 const RAW_DATA_STRUCT_2317 *pRawDataset,
338 uint16_t pdGainOverlap_t2,
339 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
340 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
341{
342 struct ar2317State *priv = AR2317(ah);
343#define VpdTable_L priv->vpdTable_L
344#define VpdTable_R priv->vpdTable_R
345#define VpdTable_I priv->vpdTable_I
346 /* XXX excessive stack usage? */
347 uint32_t ii, jj, kk;
348 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
349 uint32_t idxL, idxR;
350 uint32_t numPdGainsUsed = 0;
351 /*
352 * If desired to support -ve power levels in future, just
353 * change pwr_I_0 to signed 5-bits.
354 */
355 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356 /* to accommodate -ve power levels later on. */
357 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
358 /* to accommodate -ve power levels later on */
359 uint16_t numVpd = 0;
360 uint16_t Vpd_step;
361 int16_t tmpVal ;
362 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
363
364 /* Get upper lower index */
365 GetLowerUpperIndex(channel, pRawDataset->pChannels,
366 pRawDataset->numChannels, &(idxL), &(idxR));
367
368 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
369 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
370 /* work backwards 'cause highest pdGain for lowest power */
371 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
372 if (numVpd > 0) {
373 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
374 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
375 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
376 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
377 }
378 Pmin_t2[numPdGainsUsed] = (int16_t)
379 (Pmin_t2[numPdGainsUsed] / 2);
380 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
381 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
382 Pmax_t2[numPdGainsUsed] =
383 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
384 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
386 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
387 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
388 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
389 );
391 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
392 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
393 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
394 );
395 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
396 VpdTable_I[numPdGainsUsed][kk] =
398 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
399 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
400 }
401 /* fill VpdTable_I for this pdGain */
402 numPdGainsUsed++;
403 }
404 /* if this pdGain is used */
405 }
406
407 *pMinCalPower = Pmin_t2[0];
408 kk = 0; /* index for the final table */
409 for (ii = 0; ii < numPdGainsUsed; ii++) {
410 if (ii == (numPdGainsUsed - 1))
411 pPdGainBoundaries[ii] = Pmax_t2[ii] +
413 else
414 pPdGainBoundaries[ii] = (uint16_t)
415 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
416 if (pPdGainBoundaries[ii] > 63) {
418 "%s: clamp pPdGainBoundaries[%d] %d\n",
419 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
420 pPdGainBoundaries[ii] = 63;
421 }
422
423 /* Find starting index for this pdGain */
424 if (ii == 0)
425 ss = 0; /* for the first pdGain, start from index 0 */
426 else
427 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
428 pdGainOverlap_t2;
429 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
430 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
431 /*
432 *-ve ss indicates need to extrapolate data below for this pdGain
433 */
434 while (ss < 0) {
435 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
436 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
437 ss++;
438 }
439
440 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
441 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
442 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
443
444 while (ss < (int16_t)maxIndex)
445 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
446
447 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
448 VpdTable_I[ii][sizeCurrVpdTable-2]);
449 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
450 /*
451 * for last gain, pdGainBoundary == Pmax_t2, so will
452 * have to extrapolate
453 */
454 if (tgtIndex > maxIndex) { /* need to extrapolate above */
455 while(ss < (int16_t)tgtIndex) {
456 tmpVal = (uint16_t)
457 (VpdTable_I[ii][sizeCurrVpdTable-1] +
458 (ss-maxIndex)*Vpd_step);
459 pPDADCValues[kk++] = (tmpVal > 127) ?
460 127 : tmpVal;
461 ss++;
462 }
463 } /* extrapolated above */
464 } /* for all pdGainUsed */
465
466 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
467 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
468 ii++;
469 }
470 while (kk < 128) {
471 pPDADCValues[kk] = pPDADCValues[kk-1];
472 kk++;
473 }
474
475 return numPdGainsUsed;
476#undef VpdTable_L
477#undef VpdTable_R
478#undef VpdTable_I
479}
480
481static HAL_BOOL
483 int16_t *minPower, int16_t *maxPower,
484 const struct ieee80211_channel *chan,
485 uint16_t *rfXpdGain)
486{
487 struct ath_hal_5212 *ahp = AH5212(ah);
488 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
489 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
490 uint16_t pdGainOverlap_t2;
491 int16_t minCalPower2317_t2;
492 uint16_t *pdadcValues = ahp->ah_pcdacTable;
493 uint16_t gainBoundaries[4];
494 uint32_t reg32, regoffset;
495 int i, numPdGainsUsed;
496#ifndef AH_USE_INIPDGAIN
497 uint32_t tpcrg1;
498#endif
499
500 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
501 __func__, chan->ic_freq, chan->ic_flags);
502
503 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
504 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
505 else if (IEEE80211_IS_CHAN_B(chan))
506 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
507 else {
508 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
509 return AH_FALSE;
510 }
511
512 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
514
516 chan->channel, pRawDataset, pdGainOverlap_t2,
517 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
518 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
519
520#ifdef AH_USE_INIPDGAIN
521 /*
522 * Use pd_gains curve from eeprom; Atheros always uses
523 * the default curve from the ini file but some vendors
524 * (e.g. Zcomax) want to override this curve and not
525 * honoring their settings results in tx power 5dBm low.
526 */
528 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
529#else
530 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
531 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
532 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
533 switch (numPdGainsUsed) {
534 case 3:
535 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
536 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
537 /* fall thru... */
538 case 2:
539 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
540 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
541 /* fall thru... */
542 case 1:
543 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
544 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
545 break;
546 }
547#ifdef AH_DEBUG
548 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
549 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
550 "pd_gains (default 0x%x, calculated 0x%x)\n",
551 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
552#endif
553 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
554#endif
555
556 /*
557 * Note the pdadc table may not start at 0 dBm power, could be
558 * negative or greater than 0. Need to offset the power
559 * values by the amount of minPower for griffin
560 */
561 if (minCalPower2317_t2 != 0)
562 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
563 else
564 ahp->ah_txPowerIndexOffset = 0;
565
566 /* Finally, write the power values into the baseband power table */
567 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
568 for (i = 0; i < 32; i++) {
569 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
570 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
571 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
572 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
573 OS_REG_WRITE(ah, regoffset, reg32);
574 regoffset += 4;
575 }
576
578 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
579 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
580 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
581 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
582 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
583
584 return AH_TRUE;
585}
586
587static int16_t
589{
590 uint32_t ii,jj;
591 uint16_t Pmin=0,numVpd;
592
593 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
594 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
595 /* work backwards 'cause highest pdGain for lowest power */
596 numVpd = data->pDataPerPDGain[jj].numVpd;
597 if (numVpd > 0) {
598 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
599 return(Pmin);
600 }
601 }
602 return(Pmin);
603}
604
605static int16_t
607{
608 uint32_t ii;
609 uint16_t Pmax=0,numVpd;
610 uint16_t vpdmax;
611
612 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613 /* work forwards cuase lowest pdGain for highest power */
614 numVpd = data->pDataPerPDGain[ii].numVpd;
615 if (numVpd > 0) {
616 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
617 vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
618 return(Pmax);
619 }
620 }
621 return(Pmax);
622}
623
624static HAL_BOOL
626 const struct ieee80211_channel *chan,
627 int16_t *maxPow, int16_t *minPow)
628{
629 uint16_t freq = chan->ic_freq; /* NB: never mapped */
630 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
631 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
633 uint16_t numChannels;
634 int totalD,totalF, totalMin,last, i;
635
636 *maxPow = 0;
637
638 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
639 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
640 else if (IEEE80211_IS_CHAN_B(chan))
641 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
642 else
643 return(AH_FALSE);
644
645 numChannels = pRawDataset->numChannels;
646 data = pRawDataset->pDataPerChannel;
647
648 /* Make sure the channel is in the range of the TP values
649 * (freq piers)
650 */
651 if (numChannels < 1)
652 return(AH_FALSE);
653
654 if ((freq < data[0].channelValue) ||
655 (freq > data[numChannels-1].channelValue)) {
656 if (freq < data[0].channelValue) {
657 *maxPow = ar2317GetMaxPower(ah, &data[0]);
658 *minPow = ar2317GetMinPower(ah, &data[0]);
659 return(AH_TRUE);
660 } else {
661 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
662 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
663 return(AH_TRUE);
664 }
665 }
666
667 /* Linearly interpolate the power value now */
668 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
669 last = i++);
670 totalD = data[i].channelValue - data[last].channelValue;
671 if (totalD > 0) {
672 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
673 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
674 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
675 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
676 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
677 ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
678 return(AH_TRUE);
679 } else {
680 if (freq == data[i].channelValue) {
681 *maxPow = ar2317GetMaxPower(ah, &data[i]);
682 *minPow = ar2317GetMinPower(ah, &data[i]);
683 return(AH_TRUE);
684 } else
685 return(AH_FALSE);
686 }
687}
688
689/*
690 * Free memory for analog bank scratch buffers
691 */
692static void
694{
695 struct ath_hal_5212 *ahp = AH5212(ah);
696
697 HALASSERT(ahp->ah_rfHal != AH_NULL);
699 ahp->ah_rfHal = AH_NULL;
700}
701
702/*
703 * Allocate memory for analog bank scratch buffers
704 * Scratch Buffer will be reinitialized every reset so no need to zero now
705 */
706static HAL_BOOL
708{
709 struct ath_hal_5212 *ahp = AH5212(ah);
710 struct ar2317State *priv;
711
713
714 HALASSERT(ahp->ah_rfHal == AH_NULL);
715 priv = ath_hal_malloc(sizeof(struct ar2317State));
716 if (priv == AH_NULL) {
718 "%s: cannot allocate private state\n", __func__);
719 *status = HAL_ENOMEM; /* XXX */
720 return AH_FALSE;
721 }
730
731 ahp->ah_pcdacTable = priv->pcdacTable;
732 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
733 ahp->ah_rfHal = &priv->base;
734
735 return AH_TRUE;
736}
737
738static HAL_BOOL
740{
741 return IS_2317(ah);
742}
uint32_t ath_hal_reverseBits(uint32_t val, uint32_t n)
Definition: ah.c:333
HAL_STATUS
Definition: ah.h:71
@ HAL_ENOMEM
Definition: ah.h:74
@ HAL_RFGAIN_INACTIVE
Definition: ah.h:623
HAL_BOOL
Definition: ah.h:93
@ AH_FALSE
Definition: ah.h:94
@ AH_TRUE
Definition: ah.h:95
@ HAL_DEBUG_ANY
Definition: ah_debug.h:62
@ HAL_DEBUG_RFPARAM
Definition: ah_debug.h:37
@ AH_MARK_SETCHANNEL
Definition: ah_decode.h:53
@ headerInfo11G
Definition: ah_eeprom_v3.h:84
@ headerInfo11B
Definition: ah_eeprom_v3.h:83
#define MAX_NUM_PDGAINS_PER_CHANNEL
Definition: ah_eeprom_v3.h:286
#define PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB
Definition: ah_eeprom_v3.h:293
#define MAX_PWR_RANGE_IN_HALF_DB
Definition: ah_eeprom_v3.h:292
#define SM(_v, _f)
Definition: ah_internal.h:587
#define HAL_INI_WRITE_BANK(ah, regArray, bankData, regWr)
Definition: ah_internal.h:935
#define HAL_INI_WRITE_ARRAY(ah, regArray, col, regWr)
Definition: ah_internal.h:927
#define AH_PRIVATE(_ah)
Definition: ah_internal.h:442
void * ath_hal_malloc(size_t)
static OS_INLINE uint16_t ath_hal_gethwchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
Definition: ah_internal.h:732
#define OS_REG_RMW_FIELD(_a, _r, _f, _v)
Definition: ah_internal.h:591
#define AH_NULL
Definition: ah_internal.h:28
#define HALASSERT(_x)
Definition: ah_internal.h:683
#define HALDEBUG(_ah, __m,...)
Definition: ah_internal.h:658
void ath_hal_free(void *p)
Definition: ah_osdep.c:116
#define OS_REG_WRITE(_ah, _reg, _val)
Definition: ah_osdep.h:139
#define OS_MARK(_ah, _id, _v)
Definition: ah_osdep.h:148
#define OS_REG_READ(_ah, _reg)
Definition: ah_osdep.h:140
static HAL_BOOL ar2317SetPowerTable(struct ath_hal *ah, int16_t *minPower, int16_t *maxPower, const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
Definition: ar2317.c:482
static HAL_BOOL ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, const int16_t *pwrList, const int16_t *VpdList, uint16_t numIntercepts, uint16_t retVpdList[][64])
Definition: ar2317.c:276
static void ar2317RfDetach(struct ath_hal *ah)
Definition: ar2317.c:693
#define VpdTable_L
void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits, uint32_t firstBit, uint32_t column)
static HAL_BOOL ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
Definition: ar2317.c:707
AH_RF(RF2317, ar2317Probe, ar2317RfAttach)
#define VpdTable_I
static HAL_BOOL ar2317GetChannelMaxMinPower(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *maxPow, int16_t *minPow)
Definition: ar2317.c:625
#define VpdTable_R
RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317
Definition: ar2317.c:37
RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317
Definition: ar2317.c:38
static HAL_BOOL ar2317Probe(struct ath_hal *ah)
Definition: ar2317.c:739
static int16_t ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
Definition: ar2317.c:588
static uint32_t * ar2317GetRfBank(struct ath_hal *ah, int bank)
Definition: ar2317.c:208
static void GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, uint32_t *vlo, uint32_t *vhi)
Definition: ar2317.c:231
static HAL_BOOL ar2317SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
Definition: ar2317.c:144
static int16_t ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
Definition: ar2317.c:606
#define RF_BANK_SETUP(_priv, _ix, _col)
static HAL_BOOL ar2317SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
Definition: ar2317.c:84
static void ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, int writes)
Definition: ar2317.c:70
static int ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, const RAW_DATA_STRUCT_2317 *pRawDataset, uint16_t pdGainOverlap_t2, int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], uint16_t pPdGainValues[], uint16_t pPDADCValues[])
Definition: ar2317.c:336
#define PWR_TABLE_SIZE_2317
Definition: ar2317.c:39
#define AR2317(ah)
Definition: ar2317.c:64
static int16_t interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, int16_t targetLeft, int16_t targetRight)
Definition: ar2317.c:317
#define N(a)
Definition: ar2317.c:35
#define AR_PHY(_n)
Definition: ar5210phy.h:30
int16_t ar5212GetNfAdjust(struct ath_hal *, const HAL_CHANNEL_INTERNAL *)
Definition: ar5212_misc.c:769
#define AH5212(_ah)
Definition: ar5212.h:354
#define AR5212_MAGIC
Definition: ar5212.h:26
#define IS_2317(ah)
Definition: ar5212.h:363
#define AR_PHY_TPCRG1_PDGAIN_SETTING1
Definition: ar5212phy.h:342
#define AR_PHY_TPCRG1
Definition: ar5212phy.h:339
#define AR_PHY_CCK_TX_CTRL_JAPAN
Definition: ar5212phy.h:313
#define AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
Definition: ar5212phy.h:358
#define AR_PHY_TPCRG5
Definition: ar5212phy.h:349
#define AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
Definition: ar5212phy.h:354
#define AR_PHY_TPCRG1_PDGAIN_SETTING3
Definition: ar5212phy.h:346
#define AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
Definition: ar5212phy.h:352
#define AR_PHY_TPCRG5_PD_GAIN_OVERLAP
Definition: ar5212phy.h:350
#define AR_PHY_TPCRG1_PDGAIN_SETTING2
Definition: ar5212phy.h:344
#define AR_PHY_TPCRG1_NUM_PD_GAIN
Definition: ar5212phy.h:340
#define AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
Definition: ar5212phy.h:356
#define AR_PHY_CCK_TX_CTRL
Definition: ar5212phy.h:312
uint16_t ee_obFor24g
Definition: ah_eeprom_v3.h:412
uint16_t ee_dbFor24
Definition: ah_eeprom_v3.h:411
uint16_t ee_obFor24
Definition: ah_eeprom_v3.h:410
uint16_t ee_dbFor24g
Definition: ah_eeprom_v3.h:413
RAW_DATA_PER_PDGAIN_2413 pDataPerPDGain[MAX_NUM_PDGAINS_PER_CHANNEL]
Definition: ah_eeprom_v3.h:306
int16_t pwr_t4[NUM_POINTS_LAST_PDGAIN]
Definition: ah_eeprom_v3.h:299
uint16_t Vpd[NUM_POINTS_LAST_PDGAIN]
Definition: ah_eeprom_v3.h:298
uint16_t pChannels[NUM_11A_EEPROM_CHANNELS_2413]
Definition: ah_eeprom_v3.h:311
RAW_DATA_PER_CHANNEL_2413 pDataPerChannel[NUM_11A_EEPROM_CHANNELS_2413]
Definition: ah_eeprom_v3.h:314
HAL_BOOL(* getChannelMaxMinPower)(struct ath_hal *ah, const struct ieee80211_channel *, int16_t *maxPow, int16_t *minPow)
Definition: ar5212.h:147
HAL_BOOL(* setRfRegs)(struct ath_hal *, const struct ieee80211_channel *, uint16_t modesIndex, uint16_t *rfXpdGain)
Definition: ar5212.h:141
HAL_BOOL(* setPowerTable)(struct ath_hal *ah, int16_t *minPower, int16_t *maxPower, const struct ieee80211_channel *, uint16_t *rfXpdGain)
Definition: ar5212.h:144
HAL_BOOL(* setChannel)(struct ath_hal *, const struct ieee80211_channel *)
Definition: ar5212.h:139
uint32_t *(* getRfBank)(struct ath_hal *ah, int bank)
Definition: ar5212.h:138
void(* writeRegs)(struct ath_hal *, u_int modeIndex, u_int freqIndex, int regWrites)
Definition: ar5212.h:136
int16_t(* getNfAdjust)(struct ath_hal *, const HAL_CHANNEL_INTERNAL *)
Definition: ar5212.h:150
void(* rfDetach)(struct ath_hal *ah)
Definition: ar5212.h:135
uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]
Definition: ar2317.c:59
uint32_t Bank3Data[N(ar5212Bank3_2317)]
Definition: ar2317.c:47
uint16_t pcdacTable[PWR_TABLE_SIZE_2317]
Definition: ar2317.c:43
uint32_t Bank7Data[N(ar5212Bank7_2317)]
Definition: ar2317.c:49
uint32_t Bank2Data[N(ar5212Bank2_2317)]
Definition: ar2317.c:46
uint32_t Bank1Data[N(ar5212Bank1_2317)]
Definition: ar2317.c:45
uint32_t Bank6Data[N(ar5212Bank6_2317)]
Definition: ar2317.c:48
uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]
Definition: ar2317.c:62
RF_HAL_FUNCS base
Definition: ar2317.c:42
uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB]
Definition: ar2317.c:56
u_int ah_pcdacTableSize
Definition: ar5212.h:335
int16_t ah_txPowerIndexOffset
Definition: ar5212.h:301
uint16_t * ah_pcdacTable
Definition: ar5212.h:334
RF_HAL_FUNCS * ah_rfHal
Definition: ar5212.h:266
HAL_RFGAIN ah_rfgainState
Definition: ar5212.h:284
Definition: ah.h:1219
uint32_t ah_magic
Definition: ah.h:1220