FreeBSD kernel IPv4 code
rack.c
Go to the documentation of this file.
1/*-
2 * Copyright (c) 2016-2020 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_ipsec.h"
33#include "opt_tcpdebug.h"
34#include "opt_ratelimit.h"
35#include "opt_kern_tls.h"
36#include <sys/param.h>
37#include <sys/arb.h>
38#include <sys/module.h>
39#include <sys/kernel.h>
40#ifdef TCP_HHOOK
41#include <sys/hhook.h>
42#endif
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/proc.h> /* for proc0 declaration */
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/systm.h>
53#ifdef STATS
54#include <sys/qmath.h>
55#include <sys/tree.h>
56#include <sys/stats.h> /* Must come after qmath.h and tree.h */
57#else
58#include <sys/tree.h>
59#endif
60#include <sys/refcount.h>
61#include <sys/queue.h>
62#include <sys/tim_filter.h>
63#include <sys/smp.h>
64#include <sys/kthread.h>
65#include <sys/kern_prefetch.h>
66#include <sys/protosw.h>
67#ifdef TCP_ACCOUNTING
68#include <sys/sched.h>
69#include <machine/cpu.h>
70#endif
71#include <vm/uma.h>
72
73#include <net/route.h>
74#include <net/route/nhop.h>
75#include <net/vnet.h>
76
77#define TCPSTATES /* for logging */
78
79#include <netinet/in.h>
80#include <netinet/in_kdtrace.h>
81#include <netinet/in_pcb.h>
82#include <netinet/ip.h>
83#include <netinet/ip_icmp.h> /* required for icmp_var.h */
84#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
85#include <netinet/ip_var.h>
86#include <netinet/ip6.h>
87#include <netinet6/in6_pcb.h>
88#include <netinet6/ip6_var.h>
89#include <netinet/tcp.h>
90#define TCPOUTFLAGS
91#include <netinet/tcp_fsm.h>
92#include <netinet/tcp_log_buf.h>
93#include <netinet/tcp_seq.h>
94#include <netinet/tcp_timer.h>
95#include <netinet/tcp_var.h>
97#include <netinet/tcp_hpts.h>
100#include <netinet/tcpip.h>
101#include <netinet/cc/cc.h>
103#include <netinet/tcp_fastopen.h>
104#include <netinet/tcp_lro.h>
105#ifdef NETFLIX_SHARED_CWND
106#include <netinet/tcp_shared_cwnd.h>
107#endif
108#ifdef TCPDEBUG
109#include <netinet/tcp_debug.h>
110#endif /* TCPDEBUG */
111#ifdef TCP_OFFLOAD
112#include <netinet/tcp_offload.h>
113#endif
114#ifdef INET6
115#include <netinet6/tcp6_var.h>
116#endif
117#include <netinet/tcp_ecn.h>
118
119#include <netipsec/ipsec_support.h>
120
121#if defined(IPSEC) || defined(IPSEC_SUPPORT)
122#include <netipsec/ipsec.h>
123#include <netipsec/ipsec6.h>
124#endif /* IPSEC */
125
126#include <netinet/udp.h>
127#include <netinet/udp_var.h>
128#include <machine/in_cksum.h>
129
130#ifdef MAC
131#include <security/mac/mac_framework.h>
132#endif
133#include "sack_filter.h"
134#include "tcp_rack.h"
135#include "rack_bbr_common.h"
136
137uma_zone_t rack_zone;
138uma_zone_t rack_pcb_zone;
139
140#ifndef TICKS2SBT
141#define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t)))
142#endif
143
144VNET_DECLARE(uint32_t, newreno_beta);
145VNET_DECLARE(uint32_t, newreno_beta_ecn);
146#define V_newreno_beta VNET(newreno_beta)
147#define V_newreno_beta_ecn VNET(newreno_beta_ecn)
148
149
150MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block");
151MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options");
152
153struct sysctl_ctx_list rack_sysctl_ctx;
154struct sysctl_oid *rack_sysctl_root;
155
156#define CUM_ACKED 1
157#define SACKED 2
158
159/*
160 * The RACK module incorporates a number of
161 * TCP ideas that have been put out into the IETF
162 * over the last few years:
163 * - Matt Mathis's Rate Halving which slowly drops
164 * the congestion window so that the ack clock can
165 * be maintained during a recovery.
166 * - Yuchung Cheng's RACK TCP (for which its named) that
167 * will stop us using the number of dup acks and instead
168 * use time as the gage of when we retransmit.
169 * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
170 * of Dukkipati et.al.
171 * RACK depends on SACK, so if an endpoint arrives that
172 * cannot do SACK the state machine below will shuttle the
173 * connection back to using the "default" TCP stack that is
174 * in FreeBSD.
175 *
176 * To implement RACK the original TCP stack was first decomposed
177 * into a functional state machine with individual states
178 * for each of the possible TCP connection states. The do_segment
179 * functions role in life is to mandate the connection supports SACK
180 * initially and then assure that the RACK state matches the conenction
181 * state before calling the states do_segment function. Each
182 * state is simplified due to the fact that the original do_segment
183 * has been decomposed and we *know* what state we are in (no
184 * switches on the state) and all tests for SACK are gone. This
185 * greatly simplifies what each state does.
186 *
187 * TCP output is also over-written with a new version since it
188 * must maintain the new rack scoreboard.
189 *
190 */
191static int32_t rack_tlp_thresh = 1;
192static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */
193static int32_t rack_tlp_use_greater = 1;
194static int32_t rack_reorder_thresh = 2;
195static int32_t rack_reorder_fade = 60000000; /* 0 - never fade, def 60,000,000
196 * - 60 seconds */
198/* Attack threshold detections */
201static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */
202static int32_t rack_hw_pace_extra_slots = 2; /* 2 extra MSS time betweens */
203static int32_t rack_hw_rate_caps = 1; /* 1; */
204static int32_t rack_hw_rate_min = 0; /* 1500000;*/
205static int32_t rack_hw_rate_to_low = 0; /* 1200000; */
206static int32_t rack_hw_up_only = 1;
207static int32_t rack_stats_gets_ms_rtt = 1;
208static int32_t rack_prr_addbackmax = 2;
209static int32_t rack_do_hystart = 0;
211
212static int32_t rack_pkt_delay = 1000;
213static int32_t rack_send_a_lot_in_prr = 1;
214static int32_t rack_min_to = 1000; /* Number of microsecond min timeout */
215static int32_t rack_verbose_logging = 0;
217static int32_t rack_enable_shared_cwnd = 1;
218static int32_t rack_use_cmp_acks = 1;
219static int32_t rack_use_fsb = 1;
220static int32_t rack_use_rfo = 1;
221static int32_t rack_use_rsm_rfo = 1;
222static int32_t rack_max_abc_post_recovery = 2;
223static int32_t rack_client_low_buf = 0;
224static int32_t rack_dsack_std_based = 0x3; /* bit field bit 1 sets rc_rack_tmr_std_based and bit 2 sets rc_rack_use_dsack */
225#ifdef TCP_ACCOUNTING
226static int32_t rack_tcp_accounting = 0;
227#endif
228static int32_t rack_limits_scwnd = 1;
230static int32_t rack_disable_prr = 0;
231static int32_t use_rack_rr = 1;
232static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
233static int32_t rack_persist_min = 250000; /* 250usec */
234static int32_t rack_persist_max = 2000000; /* 2 Second in usec's */
235static int32_t rack_sack_not_required = 1; /* set to one to allow non-sack to use rack */
236static int32_t rack_default_init_window = 0; /* Use system default */
237static int32_t rack_limit_time_with_srtt = 0;
238static int32_t rack_autosndbuf_inc = 20; /* In percentage form */
239static int32_t rack_enobuf_hw_boost_mult = 2; /* How many times the hw rate we boost slot using time_between */
240static int32_t rack_enobuf_hw_max = 12000; /* 12 ms in usecs */
241static int32_t rack_enobuf_hw_min = 10000; /* 10 ms in usecs */
242static int32_t rack_hw_rwnd_factor = 2; /* How many max_segs the rwnd must be before we hold off sending */
243/*
244 * Currently regular tcp has a rto_min of 30ms
245 * the backoff goes 12 times so that ends up
246 * being a total of 122.850 seconds before a
247 * connection is killed.
248 */
253static int32_t rack_tlp_min = 10000; /* 10ms */
254static int32_t rack_rto_min = 30000; /* 30,000 usec same as main freebsd */
255static int32_t rack_rto_max = 4000000; /* 4 seconds in usec's */
256static const int32_t rack_free_cache = 2;
257static int32_t rack_hptsi_segments = 40;
259static int32_t rack_pace_every_seg = 0;
260static int32_t rack_delayed_ack_time = 40000; /* 40ms in usecs */
261static int32_t rack_slot_reduction = 4;
262static int32_t rack_wma_divisor = 8; /* For WMA calculation */
265static int32_t rack_def_profile = 0;
266
267static int32_t rack_lower_cwnd_at_tlp = 0;
268static int32_t rack_limited_retran = 0;
269static int32_t rack_always_send_oldest = 0;
271
272static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */
273static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */
274static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */
275
276/* Probertt */
277static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */
278static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */
279static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
280static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */
281static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */
282
283static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */
284static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */
285static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */
288static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */
289static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in usecs */
290static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */
291static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */
292static uint32_t rack_min_probertt_hold = 40000; /* Equal to delayed ack time */
295static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds) to count as a lowering */
296static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */
297static int32_t rack_probertt_clear_is = 1;
298static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */
299static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */
300
301/* Part of pacing */
302static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */
303
304/* Timely information */
305/* Combine these two gives the range of 'no change' to bw */
306/* ie the up/down provide the upper and lower bound */
307static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */
308static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */
309static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */
310static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */
311static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */
312static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multipler */
313static int32_t rack_gp_increase_per = 2; /* 2% increase in multipler */
314static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */
315static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */
316static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */
317static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */
318static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */
319static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */
320static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */
321static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */
322static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */
323static int32_t rack_use_max_for_nobackoff = 0;
324static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */
325static int32_t rack_timely_no_stopping = 0;
326static int32_t rack_down_raise_thresh = 100;
327static int32_t rack_req_segs = 1;
328static uint64_t rack_bw_rate_cap = 0;
329
330/* Weird delayed ack mode */
331static int32_t rack_use_imac_dack = 0;
332/* Rack specific counters */
333counter_u64_t rack_saw_enobuf;
334counter_u64_t rack_saw_enobuf_hw;
337counter_u64_t rack_persists_acks;
338counter_u64_t rack_persists_loss;
340#ifdef INVARIANTS
341counter_u64_t rack_adjust_map_bw;
342#endif
343/* Tail loss probe counters */
344counter_u64_t rack_tlp_tot;
345counter_u64_t rack_tlp_newdata;
346counter_u64_t rack_tlp_retran;
348counter_u64_t rack_to_tot;
349counter_u64_t rack_hot_alloc;
350counter_u64_t rack_to_alloc;
351counter_u64_t rack_to_alloc_hard;
355counter_u64_t rack_split_limited;
356
359
360counter_u64_t rack_fto_send;
361counter_u64_t rack_fto_rsm_send;
362counter_u64_t rack_nfto_resend;
363counter_u64_t rack_non_fto_send;
364counter_u64_t rack_extended_rfo;
365
366counter_u64_t rack_sack_proc_all;
372counter_u64_t rack_sack_splits;
375counter_u64_t rack_ack_total;
376counter_u64_t rack_express_sack;
377counter_u64_t rack_sack_total;
378counter_u64_t rack_move_none;
379counter_u64_t rack_move_some;
380
382counter_u64_t rack_collapsed_win;
383counter_u64_t rack_try_scwnd;
385counter_u64_t rack_hw_pace_lost;
386
389
390
391#define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2)))
392
393#define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do { \
394 (tv) = (value) + slop; \
395 if ((u_long)(tv) < (u_long)(tvmin)) \
396 (tv) = (tvmin); \
397 if ((u_long)(tv) > (u_long)(tvmax)) \
398 (tv) = (tvmax); \
399} while (0)
400
401static void
402rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line);
403
404static int
405rack_process_ack(struct mbuf *m, struct tcphdr *th,
406 struct socket *so, struct tcpcb *tp, struct tcpopt *to,
407 uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
408static int
409rack_process_data(struct mbuf *m, struct tcphdr *th,
410 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
411 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
412static void
413rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
414 uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery);
415static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
416static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
417 uint8_t limit_type);
418static struct rack_sendmap *
420 uint32_t tsused);
421static void
422rack_cong_signal(struct tcpcb *tp,
423 uint32_t type, uint32_t ack);
424static void rack_counter_destroy(void);
425static int
426rack_ctloutput(struct inpcb *inp, struct sockopt *sopt);
427static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
428static void
429rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override);
430static void
431rack_do_segment(struct mbuf *m, struct tcphdr *th,
432 struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
433 uint8_t iptos);
434static void rack_dtor(void *mem, int32_t size, void *arg);
435static void
437 uint32_t flex1, uint32_t flex2,
438 uint32_t flex3, uint32_t flex4,
439 uint32_t flex5, uint32_t flex6,
440 uint16_t flex7, uint8_t mod);
441
442static void
444 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line,
445 struct rack_sendmap *rsm, uint8_t quality);
446static struct rack_sendmap *
448 struct rack_sendmap *rsm);
449static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
450static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
451static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
452static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt);
453static void
454rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
455 tcp_seq th_ack, int line, uint8_t quality);
456static uint32_t
457rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
458static int32_t rack_handoff_ok(struct tcpcb *tp);
459static int32_t rack_init(struct tcpcb *tp);
460static void rack_init_sysctls(void);
461static void
462rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
463 struct tcphdr *th, int entered_rec, int dup_ack_struck);
464static void
465rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
466 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts,
467 struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls);
468
469static void
470rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
471 struct rack_sendmap *rsm);
472static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
473static int32_t rack_output(struct tcpcb *tp);
474
475static uint32_t
476rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
477 struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
478 uint32_t cts, int *moved_two);
479static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq);
480static void rack_remxt_tmr(struct tcpcb *tp);
481static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt);
482static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
483static int32_t rack_stopall(struct tcpcb *tp);
484static void
485rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
486 uint32_t delta);
487static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
488static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
489static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
490static uint32_t
491rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
492 struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag);
493static void
494rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
495 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag);
496static int
497rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
498 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
499static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
500static int
501rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
502 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
503 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
504static int
505rack_do_closing(struct mbuf *m, struct tcphdr *th,
506 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
507 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
508static int
509rack_do_established(struct mbuf *m, struct tcphdr *th,
510 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
511 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
512static int
513rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
514 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
515 int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
516static int
517rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
518 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
519 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
520static int
521rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
522 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
523 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
524static int
525rack_do_lastack(struct mbuf *m, struct tcphdr *th,
526 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
527 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
528static int
529rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
530 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
531 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
532static int
533rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
534 struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
535 int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
536struct rack_sendmap *
537tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
538 uint32_t tsused);
539static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
540 uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
541static void
542 tcp_rack_partialack(struct tcpcb *tp);
543static int
544rack_set_profile(struct tcp_rack *rack, int prof);
545static void
547
549
550static void
552{
553 struct sockopt sopt;
554 struct cc_newreno_opts opt;
555 struct newreno old, *ptr;
556 struct tcpcb *tp;
557 int error;
558
559 if (rack->rc_pacing_cc_set)
560 return;
561
562 tp = rack->rc_tp;
563 if (tp->cc_algo == NULL) {
564 /* Tcb is leaving */
565 printf("No cc algorithm?\n");
566 return;
567 }
568 rack->rc_pacing_cc_set = 1;
569 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
570 /* Not new-reno we can't play games with beta! */
571 goto out;
572 }
573 ptr = ((struct newreno *)tp->ccv->cc_data);
574 if (CC_ALGO(tp)->ctl_output == NULL) {
575 /* Huh, why does new_reno no longer have a set function? */
576 goto out;
577 }
578 if (ptr == NULL) {
579 /* Just the default values */
582 old.newreno_flags = 0;
583 } else {
584 old.beta = ptr->beta;
585 old.beta_ecn = ptr->beta_ecn;
586 old.newreno_flags = ptr->newreno_flags;
587 }
588 sopt.sopt_valsize = sizeof(struct cc_newreno_opts);
589 sopt.sopt_dir = SOPT_SET;
590 opt.name = CC_NEWRENO_BETA;
591 opt.val = rack->r_ctl.rc_saved_beta.beta;
592 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
593 if (error) {
594 goto out;
595 }
596 /*
597 * Hack alert we need to set in our newreno_flags
598 * so that Abe behavior is also applied.
599 */
600 ((struct newreno *)tp->ccv->cc_data)->newreno_flags |= CC_NEWRENO_BETA_ECN_ENABLED;
602 opt.val = rack->r_ctl.rc_saved_beta.beta_ecn;
603 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
604 if (error) {
605 goto out;
606 }
607 /* Save off the original values for restoral */
608 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
609out:
611 union tcp_log_stackspecific log;
612 struct timeval tv;
613
614 ptr = ((struct newreno *)tp->ccv->cc_data);
615 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
616 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
617 if (ptr) {
618 log.u_bbr.flex1 = ptr->beta;
619 log.u_bbr.flex2 = ptr->beta_ecn;
620 log.u_bbr.flex3 = ptr->newreno_flags;
621 }
622 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
625 log.u_bbr.flex7 = rack->gp_ready;
626 log.u_bbr.flex7 <<= 1;
627 log.u_bbr.flex7 |= rack->use_fixed_rate;
628 log.u_bbr.flex7 <<= 1;
629 log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
630 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
631 log.u_bbr.flex8 = 3;
632 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error,
633 0, &log, false, NULL, NULL, 0, &tv);
634 }
635}
636
637static void
639{
640 struct newreno old, *ptr;
641 struct tcpcb *tp;
642
643 if (rack->rc_pacing_cc_set == 0)
644 return;
645 tp = rack->rc_tp;
646 rack->rc_pacing_cc_set = 0;
647 if (tp->cc_algo == NULL)
648 /* Tcb is leaving */
649 return;
650 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
651 /* Not new-reno nothing to do! */
652 return;
653 }
654 ptr = ((struct newreno *)tp->ccv->cc_data);
655 if (ptr == NULL) {
656 /*
657 * This happens at rack_fini() if the
658 * cc module gets freed on us. In that
659 * case we loose our "new" settings but
660 * thats ok, since the tcb is going away anyway.
661 */
662 return;
663 }
664 /* Grab out our set values */
665 memcpy(&old, ptr, sizeof(struct newreno));
666 /* Copy back in the original values */
667 memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno));
668 /* Now save back the values we had set in (for when pacing is restored) */
669 memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
671 union tcp_log_stackspecific log;
672 struct timeval tv;
673
674 ptr = ((struct newreno *)tp->ccv->cc_data);
675 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
676 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
677 log.u_bbr.flex1 = ptr->beta;
678 log.u_bbr.flex2 = ptr->beta_ecn;
679 log.u_bbr.flex3 = ptr->newreno_flags;
680 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
683 log.u_bbr.flex7 = rack->gp_ready;
684 log.u_bbr.flex7 <<= 1;
685 log.u_bbr.flex7 |= rack->use_fixed_rate;
686 log.u_bbr.flex7 <<= 1;
687 log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
688 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
689 log.u_bbr.flex8 = 4;
690 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
691 0, &log, false, NULL, NULL, 0, &tv);
692 }
693}
694
695#ifdef NETFLIX_PEAKRATE
696static inline void
697rack_update_peakrate_thr(struct tcpcb *tp)
698{
699 /* Keep in mind that t_maxpeakrate is in B/s. */
700 uint64_t peak;
701 peak = uqmax((tp->t_maxseg * 2),
702 (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC));
703 tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX);
704}
705#endif
706
707static int
708sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
709{
710 uint32_t stat;
711 int32_t error;
712
713 error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
714 if (error || req->newptr == NULL)
715 return error;
716
717 error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
718 if (error)
719 return (error);
720 if (stat == 1) {
721#ifdef INVARIANTS
722 printf("Clearing RACK counters\n");
723#endif
724 counter_u64_zero(rack_tlp_tot);
725 counter_u64_zero(rack_tlp_newdata);
726 counter_u64_zero(rack_tlp_retran);
727 counter_u64_zero(rack_tlp_retran_bytes);
728 counter_u64_zero(rack_to_tot);
729 counter_u64_zero(rack_saw_enobuf);
730 counter_u64_zero(rack_saw_enobuf_hw);
731 counter_u64_zero(rack_saw_enetunreach);
732 counter_u64_zero(rack_persists_sends);
733 counter_u64_zero(rack_persists_acks);
734 counter_u64_zero(rack_persists_loss);
735 counter_u64_zero(rack_persists_lost_ends);
736#ifdef INVARIANTS
737 counter_u64_zero(rack_adjust_map_bw);
738#endif
739 counter_u64_zero(rack_to_alloc_hard);
740 counter_u64_zero(rack_to_alloc_emerg);
741 counter_u64_zero(rack_sack_proc_all);
742 counter_u64_zero(rack_fto_send);
743 counter_u64_zero(rack_fto_rsm_send);
744 counter_u64_zero(rack_extended_rfo);
745 counter_u64_zero(rack_hw_pace_init_fail);
746 counter_u64_zero(rack_hw_pace_lost);
747 counter_u64_zero(rack_non_fto_send);
748 counter_u64_zero(rack_nfto_resend);
749 counter_u64_zero(rack_sack_proc_short);
750 counter_u64_zero(rack_sack_proc_restart);
751 counter_u64_zero(rack_to_alloc);
752 counter_u64_zero(rack_to_alloc_limited);
753 counter_u64_zero(rack_alloc_limited_conns);
754 counter_u64_zero(rack_split_limited);
755 counter_u64_zero(rack_multi_single_eq);
756 counter_u64_zero(rack_proc_non_comp_ack);
757 counter_u64_zero(rack_sack_attacks_detected);
758 counter_u64_zero(rack_sack_attacks_reversed);
759 counter_u64_zero(rack_sack_used_next_merge);
760 counter_u64_zero(rack_sack_used_prev_merge);
761 counter_u64_zero(rack_sack_splits);
762 counter_u64_zero(rack_sack_skipped_acked);
763 counter_u64_zero(rack_ack_total);
764 counter_u64_zero(rack_express_sack);
765 counter_u64_zero(rack_sack_total);
766 counter_u64_zero(rack_move_none);
767 counter_u64_zero(rack_move_some);
768 counter_u64_zero(rack_try_scwnd);
769 counter_u64_zero(rack_collapsed_win);
770 }
772 return (0);
773}
774
775static void
777{
778 struct sysctl_oid *rack_counters;
779 struct sysctl_oid *rack_attack;
780 struct sysctl_oid *rack_pacing;
781 struct sysctl_oid *rack_timely;
782 struct sysctl_oid *rack_timers;
783 struct sysctl_oid *rack_tlp;
784 struct sysctl_oid *rack_misc;
785 struct sysctl_oid *rack_features;
786 struct sysctl_oid *rack_measure;
787 struct sysctl_oid *rack_probertt;
788 struct sysctl_oid *rack_hw_pacing;
789
790 rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
791 SYSCTL_CHILDREN(rack_sysctl_root),
792 OID_AUTO,
793 "sack_attack",
794 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
795 "Rack Sack Attack Counters and Controls");
796 rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
797 SYSCTL_CHILDREN(rack_sysctl_root),
798 OID_AUTO,
799 "stats",
800 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
801 "Rack Counters");
802 SYSCTL_ADD_S32(&rack_sysctl_ctx,
803 SYSCTL_CHILDREN(rack_sysctl_root),
804 OID_AUTO, "rate_sample_method", CTLFLAG_RW,
806 "What method should we use for rate sampling 0=high, 1=low ");
807 /* Probe rtt related controls */
808 rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
809 SYSCTL_CHILDREN(rack_sysctl_root),
810 OID_AUTO,
811 "probertt",
812 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
813 "ProbeRTT related Controls");
814 SYSCTL_ADD_U16(&rack_sysctl_ctx,
815 SYSCTL_CHILDREN(rack_probertt),
816 OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
818 "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
819 SYSCTL_ADD_U16(&rack_sysctl_ctx,
820 SYSCTL_CHILDREN(rack_probertt),
821 OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
822 &rack_atexit_prtt, 130,
823 "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
824 SYSCTL_ADD_U16(&rack_sysctl_ctx,
825 SYSCTL_CHILDREN(rack_probertt),
826 OID_AUTO, "gp_per_mul", CTLFLAG_RW,
828 "What percentage of goodput do we pace at in probertt");
829 SYSCTL_ADD_U16(&rack_sysctl_ctx,
830 SYSCTL_CHILDREN(rack_probertt),
831 OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
833 "What percentage of goodput do we reduce every gp_srtt");
834 SYSCTL_ADD_U16(&rack_sysctl_ctx,
835 SYSCTL_CHILDREN(rack_probertt),
836 OID_AUTO, "gp_per_low", CTLFLAG_RW,
838 "What percentage of goodput do we allow the multiplier to fall to");
839 SYSCTL_ADD_U32(&rack_sysctl_ctx,
840 SYSCTL_CHILDREN(rack_probertt),
841 OID_AUTO, "time_between", CTLFLAG_RW,
842 & rack_time_between_probertt, 96000000,
843 "How many useconds between the lowest rtt falling must past before we enter probertt");
844 SYSCTL_ADD_U32(&rack_sysctl_ctx,
845 SYSCTL_CHILDREN(rack_probertt),
846 OID_AUTO, "safety", CTLFLAG_RW,
848 "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
849 SYSCTL_ADD_U32(&rack_sysctl_ctx,
850 SYSCTL_CHILDREN(rack_probertt),
851 OID_AUTO, "sets_cwnd", CTLFLAG_RW,
853 "Do we set the cwnd too (if always_lower is on)");
854 SYSCTL_ADD_U32(&rack_sysctl_ctx,
855 SYSCTL_CHILDREN(rack_probertt),
856 OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
858 "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
859 SYSCTL_ADD_U32(&rack_sysctl_ctx,
860 SYSCTL_CHILDREN(rack_probertt),
861 OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
862 &rack_must_drain, 1,
863 "We must drain this many gp_srtt's waiting for flight to reach goal");
864 SYSCTL_ADD_U32(&rack_sysctl_ctx,
865 SYSCTL_CHILDREN(rack_probertt),
866 OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
868 "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
869 SYSCTL_ADD_U32(&rack_sysctl_ctx,
870 SYSCTL_CHILDREN(rack_probertt),
871 OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
873 "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
874 SYSCTL_ADD_U32(&rack_sysctl_ctx,
875 SYSCTL_CHILDREN(rack_probertt),
876 OID_AUTO, "length_div", CTLFLAG_RW,
878 "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
879 SYSCTL_ADD_U32(&rack_sysctl_ctx,
880 SYSCTL_CHILDREN(rack_probertt),
881 OID_AUTO, "length_mul", CTLFLAG_RW,
883 "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
884 SYSCTL_ADD_U32(&rack_sysctl_ctx,
885 SYSCTL_CHILDREN(rack_probertt),
886 OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
887 &rack_min_probertt_hold, 200000,
888 "What is the minimum time we hold probertt at target");
889 SYSCTL_ADD_U32(&rack_sysctl_ctx,
890 SYSCTL_CHILDREN(rack_probertt),
891 OID_AUTO, "filter_life", CTLFLAG_RW,
892 &rack_probertt_filter_life, 10000000,
893 "What is the time for the filters life in useconds");
894 SYSCTL_ADD_U32(&rack_sysctl_ctx,
895 SYSCTL_CHILDREN(rack_probertt),
896 OID_AUTO, "lower_within", CTLFLAG_RW,
898 "If the rtt goes lower within this percentage of the time, go into probe-rtt");
899 SYSCTL_ADD_U32(&rack_sysctl_ctx,
900 SYSCTL_CHILDREN(rack_probertt),
901 OID_AUTO, "must_move", CTLFLAG_RW,
903 "How much is the minimum movement in rtt to count as a drop for probertt purposes");
904 SYSCTL_ADD_U32(&rack_sysctl_ctx,
905 SYSCTL_CHILDREN(rack_probertt),
906 OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
908 "Do we clear I/S counts on exiting probe-rtt");
909 SYSCTL_ADD_S32(&rack_sysctl_ctx,
910 SYSCTL_CHILDREN(rack_probertt),
911 OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
913 "How many extra drain gpsrtt's do we get in highly buffered paths");
914 SYSCTL_ADD_S32(&rack_sysctl_ctx,
915 SYSCTL_CHILDREN(rack_probertt),
916 OID_AUTO, "hbp_threshold", CTLFLAG_RW,
917 &rack_hbp_thresh, 3,
918 "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
919 /* Pacing related sysctls */
920 rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
921 SYSCTL_CHILDREN(rack_sysctl_root),
922 OID_AUTO,
923 "pacing",
924 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
925 "Pacing related Controls");
926 SYSCTL_ADD_S32(&rack_sysctl_ctx,
927 SYSCTL_CHILDREN(rack_pacing),
928 OID_AUTO, "max_pace_over", CTLFLAG_RW,
930 "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
931 SYSCTL_ADD_S32(&rack_sysctl_ctx,
932 SYSCTL_CHILDREN(rack_pacing),
933 OID_AUTO, "pace_to_one", CTLFLAG_RW,
935 "Do we allow low b/w pacing of 1MSS instead of two");
936 SYSCTL_ADD_S32(&rack_sysctl_ctx,
937 SYSCTL_CHILDREN(rack_pacing),
938 OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
940 "Do we limit pacing time based on srtt");
941 SYSCTL_ADD_S32(&rack_sysctl_ctx,
942 SYSCTL_CHILDREN(rack_pacing),
943 OID_AUTO, "init_win", CTLFLAG_RW,
945 "Do we have a rack initial window 0 = system default");
946 SYSCTL_ADD_U16(&rack_sysctl_ctx,
947 SYSCTL_CHILDREN(rack_pacing),
948 OID_AUTO, "gp_per_ss", CTLFLAG_RW,
949 &rack_per_of_gp_ss, 250,
950 "If non zero, what percentage of goodput to pace at in slow start");
951 SYSCTL_ADD_U16(&rack_sysctl_ctx,
952 SYSCTL_CHILDREN(rack_pacing),
953 OID_AUTO, "gp_per_ca", CTLFLAG_RW,
954 &rack_per_of_gp_ca, 150,
955 "If non zero, what percentage of goodput to pace at in congestion avoidance");
956 SYSCTL_ADD_U16(&rack_sysctl_ctx,
957 SYSCTL_CHILDREN(rack_pacing),
958 OID_AUTO, "gp_per_rec", CTLFLAG_RW,
959 &rack_per_of_gp_rec, 200,
960 "If non zero, what percentage of goodput to pace at in recovery");
961 SYSCTL_ADD_S32(&rack_sysctl_ctx,
962 SYSCTL_CHILDREN(rack_pacing),
963 OID_AUTO, "pace_max_seg", CTLFLAG_RW,
965 "What size is the max for TSO segments in pacing and burst mitigation");
966 SYSCTL_ADD_S32(&rack_sysctl_ctx,
967 SYSCTL_CHILDREN(rack_pacing),
968 OID_AUTO, "burst_reduces", CTLFLAG_RW,
970 "When doing only burst mitigation what is the reduce divisor");
971 SYSCTL_ADD_S32(&rack_sysctl_ctx,
972 SYSCTL_CHILDREN(rack_sysctl_root),
973 OID_AUTO, "use_pacing", CTLFLAG_RW,
975 "If set we use pacing, if clear we use only the original burst mitigation");
976 SYSCTL_ADD_U64(&rack_sysctl_ctx,
977 SYSCTL_CHILDREN(rack_pacing),
978 OID_AUTO, "rate_cap", CTLFLAG_RW,
980 "If set we apply this value to the absolute rate cap used by pacing");
981 SYSCTL_ADD_U8(&rack_sysctl_ctx,
982 SYSCTL_CHILDREN(rack_sysctl_root),
983 OID_AUTO, "req_measure_cnt", CTLFLAG_RW,
985 "If doing dynamic pacing, how many measurements must be in before we start pacing?");
986 /* Hardware pacing */
987 rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
988 SYSCTL_CHILDREN(rack_sysctl_root),
989 OID_AUTO,
990 "hdwr_pacing",
991 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
992 "Pacing related Controls");
993 SYSCTL_ADD_S32(&rack_sysctl_ctx,
994 SYSCTL_CHILDREN(rack_hw_pacing),
995 OID_AUTO, "rwnd_factor", CTLFLAG_RW,
997 "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?");
998 SYSCTL_ADD_S32(&rack_sysctl_ctx,
999 SYSCTL_CHILDREN(rack_hw_pacing),
1000 OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW,
1002 "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?");
1003 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1004 SYSCTL_CHILDREN(rack_hw_pacing),
1005 OID_AUTO, "pace_enobuf_max", CTLFLAG_RW,
1007 "What is the max boost the pacing time if we see a ENOBUFS?");
1008 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1009 SYSCTL_CHILDREN(rack_hw_pacing),
1010 OID_AUTO, "pace_enobuf_min", CTLFLAG_RW,
1012 "What is the min boost the pacing time if we see a ENOBUFS?");
1013 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1014 SYSCTL_CHILDREN(rack_hw_pacing),
1015 OID_AUTO, "enable", CTLFLAG_RW,
1017 "Should RACK attempt to use hw pacing?");
1018 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1019 SYSCTL_CHILDREN(rack_hw_pacing),
1020 OID_AUTO, "rate_cap", CTLFLAG_RW,
1022 "Does the highest hardware pacing rate cap the rate we will send at??");
1023 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1024 SYSCTL_CHILDREN(rack_hw_pacing),
1025 OID_AUTO, "rate_min", CTLFLAG_RW,
1026 &rack_hw_rate_min, 0,
1027 "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?");
1028 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1029 SYSCTL_CHILDREN(rack_hw_pacing),
1030 OID_AUTO, "rate_to_low", CTLFLAG_RW,
1032 "If we fall below this rate, dis-engage hw pacing?");
1033 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1034 SYSCTL_CHILDREN(rack_hw_pacing),
1035 OID_AUTO, "up_only", CTLFLAG_RW,
1036 &rack_hw_up_only, 1,
1037 "Do we allow hw pacing to lower the rate selected?");
1038 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1039 SYSCTL_CHILDREN(rack_hw_pacing),
1040 OID_AUTO, "extra_mss_precise", CTLFLAG_RW,
1042 "If the rates between software and hardware match precisely how many extra time_betweens do we get?");
1043 rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1044 SYSCTL_CHILDREN(rack_sysctl_root),
1045 OID_AUTO,
1046 "timely",
1047 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1048 "Rack Timely RTT Controls");
1049 /* Timely based GP dynmics */
1050 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1051 SYSCTL_CHILDREN(rack_timely),
1052 OID_AUTO, "upper", CTLFLAG_RW,
1054 "Rack timely upper range for equal b/w (in percentage)");
1055 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1056 SYSCTL_CHILDREN(rack_timely),
1057 OID_AUTO, "lower", CTLFLAG_RW,
1059 "Rack timely lower range for equal b/w (in percentage)");
1060 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1061 SYSCTL_CHILDREN(rack_timely),
1062 OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
1064 "Rack timely multipler of lowest rtt for rtt_max");
1065 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1066 SYSCTL_CHILDREN(rack_timely),
1067 OID_AUTO, "rtt_min_div", CTLFLAG_RW,
1069 "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
1070 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1071 SYSCTL_CHILDREN(rack_timely),
1072 OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
1074 "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
1075 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1076 SYSCTL_CHILDREN(rack_timely),
1077 OID_AUTO, "decrease", CTLFLAG_RW,
1079 "Rack timely decrease percentage of our GP multiplication factor");
1080 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1081 SYSCTL_CHILDREN(rack_timely),
1082 OID_AUTO, "increase", CTLFLAG_RW,
1084 "Rack timely increase perentage of our GP multiplication factor");
1085 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1086 SYSCTL_CHILDREN(rack_timely),
1087 OID_AUTO, "lowerbound", CTLFLAG_RW,
1089 "Rack timely lowest percentage we allow GP multiplier to fall to");
1090 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1091 SYSCTL_CHILDREN(rack_timely),
1092 OID_AUTO, "upperboundss", CTLFLAG_RW,
1094 "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
1095 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1096 SYSCTL_CHILDREN(rack_timely),
1097 OID_AUTO, "upperboundca", CTLFLAG_RW,
1099 "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
1100 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1101 SYSCTL_CHILDREN(rack_timely),
1102 OID_AUTO, "dynamicgp", CTLFLAG_RW,
1103 &rack_do_dyn_mul, 0,
1104 "Rack timely do we enable dynmaic timely goodput by default");
1105 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1106 SYSCTL_CHILDREN(rack_timely),
1107 OID_AUTO, "no_rec_red", CTLFLAG_RW,
1109 "Rack timely do we prohibit the recovery multiplier from being lowered");
1110 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1111 SYSCTL_CHILDREN(rack_timely),
1112 OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
1114 "Rack timely what threshold do we count to before another boost during b/w decent");
1115 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1116 SYSCTL_CHILDREN(rack_timely),
1117 OID_AUTO, "max_push_rise", CTLFLAG_RW,
1119 "Rack timely how many times do we push up with b/w increase");
1120 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1121 SYSCTL_CHILDREN(rack_timely),
1122 OID_AUTO, "max_push_drop", CTLFLAG_RW,
1124 "Rack timely how many times do we push back on b/w decent");
1125 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1126 SYSCTL_CHILDREN(rack_timely),
1127 OID_AUTO, "min_segs", CTLFLAG_RW,
1129 "Rack timely when setting the cwnd what is the min num segments");
1130 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1131 SYSCTL_CHILDREN(rack_timely),
1132 OID_AUTO, "noback_max", CTLFLAG_RW,
1134 "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
1135 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1136 SYSCTL_CHILDREN(rack_timely),
1137 OID_AUTO, "interim_timely_only", CTLFLAG_RW,
1139 "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
1140 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1141 SYSCTL_CHILDREN(rack_timely),
1142 OID_AUTO, "nonstop", CTLFLAG_RW,
1144 "Rack timely don't stop increase");
1145 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1146 SYSCTL_CHILDREN(rack_timely),
1147 OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
1149 "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
1150 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1151 SYSCTL_CHILDREN(rack_timely),
1152 OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
1153 &rack_req_segs, 1,
1154 "Bottom dragging if not these many segments outstanding and room");
1155
1156 /* TLP and Rack related parameters */
1157 rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1158 SYSCTL_CHILDREN(rack_sysctl_root),
1159 OID_AUTO,
1160 "tlp",
1161 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1162 "TLP and Rack related Controls");
1163 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1164 SYSCTL_CHILDREN(rack_tlp),
1165 OID_AUTO, "use_rrr", CTLFLAG_RW,
1166 &use_rack_rr, 1,
1167 "Do we use Rack Rapid Recovery");
1168 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1169 SYSCTL_CHILDREN(rack_tlp),
1170 OID_AUTO, "post_rec_labc", CTLFLAG_RW,
1172 "Since we do early recovery, do we override the l_abc to a value, if so what?");
1173 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1174 SYSCTL_CHILDREN(rack_tlp),
1175 OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
1177 "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
1178 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1179 SYSCTL_CHILDREN(rack_tlp),
1180 OID_AUTO, "tlpmethod", CTLFLAG_RW,
1182 "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
1183 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1184 SYSCTL_CHILDREN(rack_tlp),
1185 OID_AUTO, "limit", CTLFLAG_RW,
1186 &rack_tlp_limit, 2,
1187 "How many TLP's can be sent without sending new data");
1188 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1189 SYSCTL_CHILDREN(rack_tlp),
1190 OID_AUTO, "use_greater", CTLFLAG_RW,
1192 "Should we use the rack_rtt time if its greater than srtt");
1193 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1194 SYSCTL_CHILDREN(rack_tlp),
1195 OID_AUTO, "tlpminto", CTLFLAG_RW,
1196 &rack_tlp_min, 10000,
1197 "TLP minimum timeout per the specification (in microseconds)");
1198 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1199 SYSCTL_CHILDREN(rack_tlp),
1200 OID_AUTO, "send_oldest", CTLFLAG_RW,
1202 "Should we always send the oldest TLP and RACK-TLP");
1203 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1204 SYSCTL_CHILDREN(rack_tlp),
1205 OID_AUTO, "rack_tlimit", CTLFLAG_RW,
1207 "How many times can a rack timeout drive out sends");
1208 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1209 SYSCTL_CHILDREN(rack_tlp),
1210 OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
1212 "When a TLP completes a retran should we enter recovery");
1213 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1214 SYSCTL_CHILDREN(rack_tlp),
1215 OID_AUTO, "reorder_thresh", CTLFLAG_RW,
1217 "What factor for rack will be added when seeing reordering (shift right)");
1218 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1219 SYSCTL_CHILDREN(rack_tlp),
1220 OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
1221 &rack_tlp_thresh, 1,
1222 "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
1223 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1224 SYSCTL_CHILDREN(rack_tlp),
1225 OID_AUTO, "reorder_fade", CTLFLAG_RW,
1226 &rack_reorder_fade, 60000000,
1227 "Does reorder detection fade, if so how many microseconds (0 means never)");
1228 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1229 SYSCTL_CHILDREN(rack_tlp),
1230 OID_AUTO, "pktdelay", CTLFLAG_RW,
1231 &rack_pkt_delay, 1000,
1232 "Extra RACK time (in microseconds) besides reordering thresh");
1233
1234 /* Timer related controls */
1235 rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1236 SYSCTL_CHILDREN(rack_sysctl_root),
1237 OID_AUTO,
1238 "timers",
1239 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1240 "Timer related controls");
1241 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1242 SYSCTL_CHILDREN(rack_timers),
1243 OID_AUTO, "persmin", CTLFLAG_RW,
1244 &rack_persist_min, 250000,
1245 "What is the minimum time in microseconds between persists");
1246 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1247 SYSCTL_CHILDREN(rack_timers),
1248 OID_AUTO, "persmax", CTLFLAG_RW,
1249 &rack_persist_max, 2000000,
1250 "What is the largest delay in microseconds between persists");
1251 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1252 SYSCTL_CHILDREN(rack_timers),
1253 OID_AUTO, "delayed_ack", CTLFLAG_RW,
1254 &rack_delayed_ack_time, 40000,
1255 "Delayed ack time (40ms in microseconds)");
1256 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1257 SYSCTL_CHILDREN(rack_timers),
1258 OID_AUTO, "minrto", CTLFLAG_RW,
1259 &rack_rto_min, 30000,
1260 "Minimum RTO in microseconds -- set with caution below 1000 due to TLP");
1261 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1262 SYSCTL_CHILDREN(rack_timers),
1263 OID_AUTO, "maxrto", CTLFLAG_RW,
1264 &rack_rto_max, 4000000,
1265 "Maximum RTO in microseconds -- should be at least as large as min_rto");
1266 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1267 SYSCTL_CHILDREN(rack_timers),
1268 OID_AUTO, "minto", CTLFLAG_RW,
1269 &rack_min_to, 1000,
1270 "Minimum rack timeout in microseconds");
1271 /* Measure controls */
1272 rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1273 SYSCTL_CHILDREN(rack_sysctl_root),
1274 OID_AUTO,
1275 "measure",
1276 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1277 "Measure related controls");
1278 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1279 SYSCTL_CHILDREN(rack_measure),
1280 OID_AUTO, "wma_divisor", CTLFLAG_RW,
1281 &rack_wma_divisor, 8,
1282 "When doing b/w calculation what is the divisor for the WMA");
1283 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1284 SYSCTL_CHILDREN(rack_measure),
1285 OID_AUTO, "end_cwnd", CTLFLAG_RW,
1287 "Does a cwnd just-return end the measurement window (app limited)");
1288 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1289 SYSCTL_CHILDREN(rack_measure),
1290 OID_AUTO, "end_rwnd", CTLFLAG_RW,
1292 "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1293 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1294 SYSCTL_CHILDREN(rack_measure),
1295 OID_AUTO, "min_target", CTLFLAG_RW,
1297 "What is the minimum target window (in mss) for a GP measurements");
1298 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1299 SYSCTL_CHILDREN(rack_measure),
1300 OID_AUTO, "goal_bdp", CTLFLAG_RW,
1301 &rack_goal_bdp, 2,
1302 "What is the goal BDP to measure");
1303 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1304 SYSCTL_CHILDREN(rack_measure),
1305 OID_AUTO, "min_srtts", CTLFLAG_RW,
1306 &rack_min_srtts, 1,
1307 "What is the goal BDP to measure");
1308 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1309 SYSCTL_CHILDREN(rack_measure),
1310 OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1312 "What is the Minimum time time for a measurement if 0, this is off");
1313 /* Features */
1314 rack_features = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1315 SYSCTL_CHILDREN(rack_sysctl_root),
1316 OID_AUTO,
1317 "features",
1318 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1319 "Feature controls");
1320 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1321 SYSCTL_CHILDREN(rack_features),
1322 OID_AUTO, "cmpack", CTLFLAG_RW,
1324 "Should RACK have LRO send compressed acks");
1325 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1326 SYSCTL_CHILDREN(rack_features),
1327 OID_AUTO, "fsb", CTLFLAG_RW,
1328 &rack_use_fsb, 1,
1329 "Should RACK use the fast send block?");
1330 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1331 SYSCTL_CHILDREN(rack_features),
1332 OID_AUTO, "rfo", CTLFLAG_RW,
1333 &rack_use_rfo, 1,
1334 "Should RACK use rack_fast_output()?");
1335 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1336 SYSCTL_CHILDREN(rack_features),
1337 OID_AUTO, "rsmrfo", CTLFLAG_RW,
1338 &rack_use_rsm_rfo, 1,
1339 "Should RACK use rack_fast_rsm_output()?");
1340 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1341 SYSCTL_CHILDREN(rack_features),
1342 OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1344 "Should RACK use mbuf queuing for non-paced connections");
1345 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1346 SYSCTL_CHILDREN(rack_features),
1347 OID_AUTO, "hystartplusplus", CTLFLAG_RW,
1348 &rack_do_hystart, 0,
1349 "Should RACK enable HyStart++ on connections?");
1350 /* Misc rack controls */
1351 rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1352 SYSCTL_CHILDREN(rack_sysctl_root),
1353 OID_AUTO,
1354 "misc",
1355 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1356 "Misc related controls");
1357#ifdef TCP_ACCOUNTING
1358 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1359 SYSCTL_CHILDREN(rack_misc),
1360 OID_AUTO, "tcp_acct", CTLFLAG_RW,
1361 &rack_tcp_accounting, 0,
1362 "Should we turn on TCP accounting for all rack sessions?");
1363#endif
1364 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1365 SYSCTL_CHILDREN(rack_misc),
1366 OID_AUTO, "apply_rtt_with_low_conf", CTLFLAG_RW,
1368 "When a persist or keep-alive probe is not answered do we calculate rtt on subsequent answers?");
1369 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1370 SYSCTL_CHILDREN(rack_misc),
1371 OID_AUTO, "rack_dsack_ctl", CTLFLAG_RW,
1373 "How do we process dsack with respect to rack timers, bit field, 3 is standards based?");
1374 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1375 SYSCTL_CHILDREN(rack_misc),
1376 OID_AUTO, "prr_addback_max", CTLFLAG_RW,
1378 "What is the maximum number of MSS we allow to be added back if prr can't send all its data?");
1379 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1380 SYSCTL_CHILDREN(rack_misc),
1381 OID_AUTO, "stats_gets_ms", CTLFLAG_RW,
1383 "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?");
1384 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1385 SYSCTL_CHILDREN(rack_misc),
1386 OID_AUTO, "clientlowbuf", CTLFLAG_RW,
1388 "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?");
1389 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1390 SYSCTL_CHILDREN(rack_misc),
1391 OID_AUTO, "defprofile", CTLFLAG_RW,
1392 &rack_def_profile, 0,
1393 "Should RACK use a default profile (0=no, num == profile num)?");
1394 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1395 SYSCTL_CHILDREN(rack_misc),
1396 OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1398 "Should RACK try to use the shared cwnd on connections where allowed");
1399 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1400 SYSCTL_CHILDREN(rack_misc),
1401 OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1403 "Should RACK place low end time limits on the shared cwnd feature");
1404 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1405 SYSCTL_CHILDREN(rack_misc),
1406 OID_AUTO, "iMac_dack", CTLFLAG_RW,
1408 "Should RACK try to emulate iMac delayed ack");
1409 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1410 SYSCTL_CHILDREN(rack_misc),
1411 OID_AUTO, "no_prr", CTLFLAG_RW,
1412 &rack_disable_prr, 0,
1413 "Should RACK not use prr and only pace (must have pacing on)");
1414 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1415 SYSCTL_CHILDREN(rack_misc),
1416 OID_AUTO, "bb_verbose", CTLFLAG_RW,
1418 "Should RACK black box logging be verbose");
1419 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1420 SYSCTL_CHILDREN(rack_misc),
1421 OID_AUTO, "data_after_close", CTLFLAG_RW,
1423 "Do we hold off sending a RST until all pending data is ack'd");
1424 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1425 SYSCTL_CHILDREN(rack_misc),
1426 OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1428 "Do we allow rack to run on connections not supporting SACK");
1429 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1430 SYSCTL_CHILDREN(rack_misc),
1431 OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1433 "Send a lot in prr");
1434 SYSCTL_ADD_S32(&rack_sysctl_ctx,
1435 SYSCTL_CHILDREN(rack_misc),
1436 OID_AUTO, "autoscale", CTLFLAG_RW,
1438 "What percentage should rack scale up its snd buffer by?");
1439 /* Sack Attacker detection stuff */
1440 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1441 SYSCTL_CHILDREN(rack_attack),
1442 OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1444 "Highest sack to ack ratio seen");
1445 SYSCTL_ADD_U32(&rack_sysctl_ctx,
1446 SYSCTL_CHILDREN(rack_attack),
1447 OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1449 "Highest move to non-move ratio seen");
1450 rack_ack_total = counter_u64_alloc(M_WAITOK);
1451 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1452 SYSCTL_CHILDREN(rack_attack),
1453 OID_AUTO, "acktotal", CTLFLAG_RD,
1455 "Total number of Ack's");
1456 rack_express_sack = counter_u64_alloc(M_WAITOK);
1457 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1458 SYSCTL_CHILDREN(rack_attack),
1459 OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1461 "Total expresss number of Sack's");
1462 rack_sack_total = counter_u64_alloc(M_WAITOK);
1463 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1464 SYSCTL_CHILDREN(rack_attack),
1465 OID_AUTO, "sacktotal", CTLFLAG_RD,
1467 "Total number of SACKs");
1468 rack_move_none = counter_u64_alloc(M_WAITOK);
1469 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1470 SYSCTL_CHILDREN(rack_attack),
1471 OID_AUTO, "move_none", CTLFLAG_RD,
1473 "Total number of SACK index reuse of postions under threshold");
1474 rack_move_some = counter_u64_alloc(M_WAITOK);
1475 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1476 SYSCTL_CHILDREN(rack_attack),
1477 OID_AUTO, "move_some", CTLFLAG_RD,
1479 "Total number of SACK index reuse of postions over threshold");
1480 rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1481 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1482 SYSCTL_CHILDREN(rack_attack),
1483 OID_AUTO, "attacks", CTLFLAG_RD,
1485 "Total number of SACK attackers that had sack disabled");
1486 rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1487 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1488 SYSCTL_CHILDREN(rack_attack),
1489 OID_AUTO, "reversed", CTLFLAG_RD,
1491 "Total number of SACK attackers that were later determined false positive");
1492 rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1493 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1494 SYSCTL_CHILDREN(rack_attack),
1495 OID_AUTO, "nextmerge", CTLFLAG_RD,
1497 "Total number of times we used the next merge");
1498 rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1499 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1500 SYSCTL_CHILDREN(rack_attack),
1501 OID_AUTO, "prevmerge", CTLFLAG_RD,
1503 "Total number of times we used the prev merge");
1504 /* Counters */
1505 rack_fto_send = counter_u64_alloc(M_WAITOK);
1506 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1507 SYSCTL_CHILDREN(rack_counters),
1508 OID_AUTO, "fto_send", CTLFLAG_RD,
1509 &rack_fto_send, "Total number of rack_fast_output sends");
1510 rack_fto_rsm_send = counter_u64_alloc(M_WAITOK);
1511 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1512 SYSCTL_CHILDREN(rack_counters),
1513 OID_AUTO, "fto_rsm_send", CTLFLAG_RD,
1514 &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends");
1515 rack_nfto_resend = counter_u64_alloc(M_WAITOK);
1516 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1517 SYSCTL_CHILDREN(rack_counters),
1518 OID_AUTO, "nfto_resend", CTLFLAG_RD,
1519 &rack_nfto_resend, "Total number of rack_output retransmissions");
1520 rack_non_fto_send = counter_u64_alloc(M_WAITOK);
1521 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1522 SYSCTL_CHILDREN(rack_counters),
1523 OID_AUTO, "nfto_send", CTLFLAG_RD,
1524 &rack_non_fto_send, "Total number of rack_output first sends");
1525 rack_extended_rfo = counter_u64_alloc(M_WAITOK);
1526 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1527 SYSCTL_CHILDREN(rack_counters),
1528 OID_AUTO, "rfo_extended", CTLFLAG_RD,
1529 &rack_extended_rfo, "Total number of times we extended rfo");
1530
1531 rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK);
1532 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1533 SYSCTL_CHILDREN(rack_counters),
1534 OID_AUTO, "hwpace_init_fail", CTLFLAG_RD,
1535 &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing");
1536 rack_hw_pace_lost = counter_u64_alloc(M_WAITOK);
1537
1538 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1539 SYSCTL_CHILDREN(rack_counters),
1540 OID_AUTO, "hwpace_lost", CTLFLAG_RD,
1541 &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing");
1542 rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1543 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1544 SYSCTL_CHILDREN(rack_counters),
1545 OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1546 &rack_tlp_tot,
1547 "Total number of tail loss probe expirations");
1548 rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1549 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1550 SYSCTL_CHILDREN(rack_counters),
1551 OID_AUTO, "tlp_new", CTLFLAG_RD,
1553 "Total number of tail loss probe sending new data");
1554 rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1555 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1556 SYSCTL_CHILDREN(rack_counters),
1557 OID_AUTO, "tlp_retran", CTLFLAG_RD,
1559 "Total number of tail loss probe sending retransmitted data");
1560 rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1561 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1562 SYSCTL_CHILDREN(rack_counters),
1563 OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1565 "Total bytes of tail loss probe sending retransmitted data");
1566 rack_to_tot = counter_u64_alloc(M_WAITOK);
1567 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1568 SYSCTL_CHILDREN(rack_counters),
1569 OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1570 &rack_to_tot,
1571 "Total number of times the rack to expired");
1572 rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1573 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1574 SYSCTL_CHILDREN(rack_counters),
1575 OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1577 "Total number of times a sends returned enobuf for non-hdwr paced connections");
1578 rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK);
1579 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1580 SYSCTL_CHILDREN(rack_counters),
1581 OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD,
1583 "Total number of times a send returned enobuf for hdwr paced connections");
1584 rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1585 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1586 SYSCTL_CHILDREN(rack_counters),
1587 OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1589 "Total number of times a send received a enetunreachable");
1590 rack_hot_alloc = counter_u64_alloc(M_WAITOK);
1591 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1592 SYSCTL_CHILDREN(rack_counters),
1593 OID_AUTO, "alloc_hot", CTLFLAG_RD,
1595 "Total allocations from the top of our list");
1596 rack_to_alloc = counter_u64_alloc(M_WAITOK);
1597 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1598 SYSCTL_CHILDREN(rack_counters),
1599 OID_AUTO, "allocs", CTLFLAG_RD,
1601 "Total allocations of tracking structures");
1602 rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1603 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1604 SYSCTL_CHILDREN(rack_counters),
1605 OID_AUTO, "allochard", CTLFLAG_RD,
1607 "Total allocations done with sleeping the hard way");
1608 rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1609 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1610 SYSCTL_CHILDREN(rack_counters),
1611 OID_AUTO, "allocemerg", CTLFLAG_RD,
1613 "Total allocations done from emergency cache");
1614 rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1615 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1616 SYSCTL_CHILDREN(rack_counters),
1617 OID_AUTO, "alloc_limited", CTLFLAG_RD,
1619 "Total allocations dropped due to limit");
1620 rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1621 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1622 SYSCTL_CHILDREN(rack_counters),
1623 OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1625 "Connections with allocations dropped due to limit");
1626 rack_split_limited = counter_u64_alloc(M_WAITOK);
1627 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1628 SYSCTL_CHILDREN(rack_counters),
1629 OID_AUTO, "split_limited", CTLFLAG_RD,
1631 "Split allocations dropped due to limit");
1632 rack_persists_sends = counter_u64_alloc(M_WAITOK);
1633 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1634 SYSCTL_CHILDREN(rack_counters),
1635 OID_AUTO, "persist_sends", CTLFLAG_RD,
1637 "Number of times we sent a persist probe");
1638 rack_persists_acks = counter_u64_alloc(M_WAITOK);
1639 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1640 SYSCTL_CHILDREN(rack_counters),
1641 OID_AUTO, "persist_acks", CTLFLAG_RD,
1643 "Number of times a persist probe was acked");
1644 rack_persists_loss = counter_u64_alloc(M_WAITOK);
1645 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1646 SYSCTL_CHILDREN(rack_counters),
1647 OID_AUTO, "persist_loss", CTLFLAG_RD,
1649 "Number of times we detected a lost persist probe (no ack)");
1650 rack_persists_lost_ends = counter_u64_alloc(M_WAITOK);
1651 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1652 SYSCTL_CHILDREN(rack_counters),
1653 OID_AUTO, "persist_loss_ends", CTLFLAG_RD,
1655 "Number of lost persist probe (no ack) that the run ended with a PERSIST abort");
1656#ifdef INVARIANTS
1657 rack_adjust_map_bw = counter_u64_alloc(M_WAITOK);
1658 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1659 SYSCTL_CHILDREN(rack_counters),
1660 OID_AUTO, "map_adjust_req", CTLFLAG_RD,
1661 &rack_adjust_map_bw,
1662 "Number of times we hit the case where the sb went up and down on a sendmap entry");
1663#endif
1664 rack_multi_single_eq = counter_u64_alloc(M_WAITOK);
1665 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1666 SYSCTL_CHILDREN(rack_counters),
1667 OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD,
1669 "Number of compressed acks total represented");
1670 rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK);
1671 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1672 SYSCTL_CHILDREN(rack_counters),
1673 OID_AUTO, "cmp_ack_not", CTLFLAG_RD,
1675 "Number of non compresseds acks that we processed");
1676
1677
1678 rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1679 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1680 SYSCTL_CHILDREN(rack_counters),
1681 OID_AUTO, "sack_long", CTLFLAG_RD,
1683 "Total times we had to walk whole list for sack processing");
1684 rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1685 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1686 SYSCTL_CHILDREN(rack_counters),
1687 OID_AUTO, "sack_restart", CTLFLAG_RD,
1689 "Total times we had to walk whole list due to a restart");
1690 rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1691 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1692 SYSCTL_CHILDREN(rack_counters),
1693 OID_AUTO, "sack_short", CTLFLAG_RD,
1695 "Total times we took shortcut for sack processing");
1696 rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1697 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1698 SYSCTL_CHILDREN(rack_attack),
1699 OID_AUTO, "skipacked", CTLFLAG_RD,
1701 "Total number of times we skipped previously sacked");
1702 rack_sack_splits = counter_u64_alloc(M_WAITOK);
1703 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1704 SYSCTL_CHILDREN(rack_attack),
1705 OID_AUTO, "ofsplit", CTLFLAG_RD,
1707 "Total number of times we did the old fashion tree split");
1708 rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1709 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1710 SYSCTL_CHILDREN(rack_counters),
1711 OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1713 "Total number of idle reductions on input");
1714 rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1715 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1716 SYSCTL_CHILDREN(rack_counters),
1717 OID_AUTO, "collapsed_win", CTLFLAG_RD,
1719 "Total number of collapsed windows");
1720 rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1721 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1722 SYSCTL_CHILDREN(rack_counters),
1723 OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1725 "Total number of scwnd attempts");
1726 COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1727 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1728 OID_AUTO, "outsize", CTLFLAG_RD,
1729 rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1730 COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1731 SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1732 OID_AUTO, "opts", CTLFLAG_RD,
1733 rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1734 SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1735 SYSCTL_CHILDREN(rack_sysctl_root),
1736 OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1737 &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1738}
1739
1740static __inline int
1742{
1743 if (SEQ_GEQ(b->r_start, a->r_start) &&
1744 SEQ_LT(b->r_start, a->r_end)) {
1745 /*
1746 * The entry b is within the
1747 * block a. i.e.:
1748 * a -- |-------------|
1749 * b -- |----|
1750 * <or>
1751 * b -- |------|
1752 * <or>
1753 * b -- |-----------|
1754 */
1755 return (0);
1756 } else if (SEQ_GEQ(b->r_start, a->r_end)) {
1757 /*
1758 * b falls as either the next
1759 * sequence block after a so a
1760 * is said to be smaller than b.
1761 * i.e:
1762 * a -- |------|
1763 * b -- |--------|
1764 * or
1765 * b -- |-----|
1766 */
1767 return (1);
1768 }
1769 /*
1770 * Whats left is where a is
1771 * larger than b. i.e:
1772 * a -- |-------|
1773 * b -- |---|
1774 * or even possibly
1775 * b -- |--------------|
1776 */
1777 return (-1);
1778}
1779
1780RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1781RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1782
1783static uint32_t
1785{
1786 uint32_t win;
1787
1788 if (rack->rc_init_win == 0) {
1789 /*
1790 * Nothing set by the user, use the system stack
1791 * default.
1792 */
1793 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1794 }
1795 win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1796 return (win);
1797}
1798
1799static uint64_t
1801{
1802 if (IN_FASTRECOVERY(rack->rc_tp->t_flags))
1803 return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1804 else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1805 return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1806 else
1807 return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1808}
1809
1810static uint64_t
1812{
1813 if (rack->use_fixed_rate) {
1814 /* Return the fixed pacing rate */
1815 return (rack_get_fixed_pacing_bw(rack));
1816 }
1817 if (rack->r_ctl.gp_bw == 0) {
1818 /*
1819 * We have yet no b/w measurement,
1820 * if we have a user set initial bw
1821 * return it. If we don't have that and
1822 * we have an srtt, use the tcp IW (10) to
1823 * calculate a fictional b/w over the SRTT
1824 * which is more or less a guess. Note
1825 * we don't use our IW from rack on purpose
1826 * so if we have like IW=30, we are not
1827 * calculating a "huge" b/w.
1828 */
1829 uint64_t bw, srtt;
1830 if (rack->r_ctl.init_rate)
1831 return (rack->r_ctl.init_rate);
1832
1833 /* Has the user set a max peak rate? */
1834#ifdef NETFLIX_PEAKRATE
1835 if (rack->rc_tp->t_maxpeakrate)
1836 return (rack->rc_tp->t_maxpeakrate);
1837#endif
1838 /* Ok lets come up with the IW guess, if we have a srtt */
1839 if (rack->rc_tp->t_srtt == 0) {
1840 /*
1841 * Go with old pacing method
1842 * i.e. burst mitigation only.
1843 */
1844 return (0);
1845 }
1846 /* Ok lets get the initial TCP win (not racks) */
1848 srtt = (uint64_t)rack->rc_tp->t_srtt;
1849 bw *= (uint64_t)USECS_IN_SECOND;
1850 bw /= srtt;
1851 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1852 bw = rack->r_ctl.bw_rate_cap;
1853 return (bw);
1854 } else {
1855 uint64_t bw;
1856
1857 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
1858 /* Averaging is done, we can return the value */
1859 bw = rack->r_ctl.gp_bw;
1860 } else {
1861 /* Still doing initial average must calculate */
1862 bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements;
1863 }
1864#ifdef NETFLIX_PEAKRATE
1865 if ((rack->rc_tp->t_maxpeakrate) &&
1866 (bw > rack->rc_tp->t_maxpeakrate)) {
1867 /* The user has set a peak rate to pace at
1868 * don't allow us to pace faster than that.
1869 */
1870 return (rack->rc_tp->t_maxpeakrate);
1871 }
1872#endif
1873 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
1874 bw = rack->r_ctl.bw_rate_cap;
1875 return (bw);
1876 }
1877}
1878
1879static uint16_t
1881{
1882 if (rack->use_fixed_rate) {
1883 return (100);
1884 } else if (rack->in_probe_rtt && (rsm == NULL))
1885 return (rack->r_ctl.rack_per_of_gp_probertt);
1886 else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
1887 rack->r_ctl.rack_per_of_gp_rec)) {
1888 if (rsm) {
1889 /* a retransmission always use the recovery rate */
1890 return (rack->r_ctl.rack_per_of_gp_rec);
1891 } else if (rack->rack_rec_nonrxt_use_cr) {
1892 /* Directed to use the configured rate */
1893 goto configured_rate;
1894 } else if (rack->rack_no_prr &&
1895 (rack->r_ctl.rack_per_of_gp_rec > 100)) {
1896 /* No PRR, lets just use the b/w estimate only */
1897 return (100);
1898 } else {
1899 /*
1900 * Here we may have a non-retransmit but we
1901 * have no overrides, so just use the recovery
1902 * rate (prr is in effect).
1903 */
1904 return (rack->r_ctl.rack_per_of_gp_rec);
1905 }
1906 }
1907configured_rate:
1908 /* For the configured rate we look at our cwnd vs the ssthresh */
1909 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1910 return (rack->r_ctl.rack_per_of_gp_ss);
1911 else
1912 return (rack->r_ctl.rack_per_of_gp_ca);
1913}
1914
1915static void
1916rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6)
1917{
1918 /*
1919 * Types of logs (mod value)
1920 * 1 = dsack_persists reduced by 1 via T-O or fast recovery exit.
1921 * 2 = a dsack round begins, persist is reset to 16.
1922 * 3 = a dsack round ends
1923 * 4 = Dsack option increases rack rtt flex5 is the srtt input, flex6 is thresh
1924 * 5 = Socket option set changing the control flags rc_rack_tmr_std_based, rc_rack_use_dsack
1925 * 6 = Final rack rtt, flex4 is srtt and flex6 is final limited thresh.
1926 */
1927 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1928 union tcp_log_stackspecific log;
1929 struct timeval tv;
1930
1931 memset(&log, 0, sizeof(log));
1932 log.u_bbr.flex1 = rack->rc_rack_tmr_std_based;
1933 log.u_bbr.flex1 <<= 1;
1934 log.u_bbr.flex1 |= rack->rc_rack_use_dsack;
1935 log.u_bbr.flex1 <<= 1;
1936 log.u_bbr.flex1 |= rack->rc_dsack_round_seen;
1937 log.u_bbr.flex2 = rack->r_ctl.dsack_round_end;
1938 log.u_bbr.flex3 = rack->r_ctl.num_dsack;
1939 log.u_bbr.flex4 = flex4;
1940 log.u_bbr.flex5 = flex5;
1941 log.u_bbr.flex6 = flex6;
1942 log.u_bbr.flex7 = rack->r_ctl.dsack_persist;
1943 log.u_bbr.flex8 = mod;
1944 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1945 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1946 &rack->rc_inp->inp_socket->so_rcv,
1947 &rack->rc_inp->inp_socket->so_snd,
1949 0, &log, false, &tv);
1950 }
1951}
1952
1953static void
1955 uint64_t rate, uint64_t hw_rate, int line,
1956 int error, uint16_t mod)
1957{
1958 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1959 union tcp_log_stackspecific log;
1960 struct timeval tv;
1961 const struct ifnet *ifp;
1962
1963 memset(&log, 0, sizeof(log));
1964 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
1965 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
1966 if (rack->r_ctl.crte) {
1967 ifp = rack->r_ctl.crte->ptbl->rs_ifp;
1968 } else if (rack->rc_inp->inp_route.ro_nh &&
1969 rack->rc_inp->inp_route.ro_nh->nh_ifp) {
1970 ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp;
1971 } else
1972 ifp = NULL;
1973 if (ifp) {
1974 log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff);
1975 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
1976 }
1977 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1978 log.u_bbr.bw_inuse = rate;
1979 log.u_bbr.flex5 = line;
1980 log.u_bbr.flex6 = error;
1981 log.u_bbr.flex7 = mod;
1983 log.u_bbr.flex8 = rack->use_fixed_rate;
1984 log.u_bbr.flex8 <<= 1;
1985 log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
1986 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
1987 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate;
1988 if (rack->r_ctl.crte)
1989 log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate;
1990 else
1991 log.u_bbr.cur_del_rate = 0;
1992 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req;
1993 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1994 &rack->rc_inp->inp_socket->so_rcv,
1995 &rack->rc_inp->inp_socket->so_snd,
1997 0, &log, false, &tv);
1998 }
1999}
2000
2001static uint64_t
2002rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
2003{
2004 /*
2005 * We allow rack_per_of_gp_xx to dictate our bw rate we want.
2006 */
2007 uint64_t bw_est, high_rate;
2008 uint64_t gain;
2009
2010 gain = (uint64_t)rack_get_output_gain(rack, rsm);
2011 bw_est = bw * gain;
2012 bw_est /= (uint64_t)100;
2013 /* Never fall below the minimum (def 64kbps) */
2014 if (bw_est < RACK_MIN_BW)
2015 bw_est = RACK_MIN_BW;
2016 if (rack->r_rack_hw_rate_caps) {
2017 /* Rate caps are in place */
2018 if (rack->r_ctl.crte != NULL) {
2019 /* We have a hdwr rate already */
2020 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
2021 if (bw_est >= high_rate) {
2022 /* We are capping bw at the highest rate table entry */
2024 bw_est, high_rate, __LINE__,
2025 0, 3);
2026 bw_est = high_rate;
2027 if (capped)
2028 *capped = 1;
2029 }
2030 } else if ((rack->rack_hdrw_pacing == 0) &&
2031 (rack->rack_hdw_pace_ena) &&
2032 (rack->rack_attempt_hdwr_pace == 0) &&
2033 (rack->rc_inp->inp_route.ro_nh != NULL) &&
2034 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
2035 /*
2036 * Special case, we have not yet attempted hardware
2037 * pacing, and yet we may, when we do, find out if we are
2038 * above the highest rate. We need to know the maxbw for the interface
2039 * in question (if it supports ratelimiting). We get back
2040 * a 0, if the interface is not found in the RL lists.
2041 */
2042 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
2043 if (high_rate) {
2044 /* Yep, we have a rate is it above this rate? */
2045 if (bw_est > high_rate) {
2046 bw_est = high_rate;
2047 if (capped)
2048 *capped = 1;
2049 }
2050 }
2051 }
2052 }
2053 return (bw_est);
2054}
2055
2056static void
2057rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
2058{
2059 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2060 union tcp_log_stackspecific log;
2061 struct timeval tv;
2062
2063 if ((mod != 1) && (rack_verbose_logging == 0)) {
2064 /*
2065 * We get 3 values currently for mod
2066 * 1 - We are retransmitting and this tells the reason.
2067 * 2 - We are clearing a dup-ack count.
2068 * 3 - We are incrementing a dup-ack count.
2069 *
2070 * The clear/increment are only logged
2071 * if you have BBverbose on.
2072 */
2073 return;
2074 }
2075 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2076 log.u_bbr.flex1 = tsused;
2077 log.u_bbr.flex2 = thresh;
2078 log.u_bbr.flex3 = rsm->r_flags;
2079 log.u_bbr.flex4 = rsm->r_dupack;
2080 log.u_bbr.flex5 = rsm->r_start;
2081 log.u_bbr.flex6 = rsm->r_end;
2082 log.u_bbr.flex8 = mod;
2083 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2084 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2085 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2086 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2088 log.u_bbr.pacing_gain = rack->r_must_retran;
2089 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2090 &rack->rc_inp->inp_socket->so_rcv,
2091 &rack->rc_inp->inp_socket->so_snd,
2093 0, &log, false, &tv);
2094 }
2095}
2096
2097static void
2098rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
2099{
2100 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2101 union tcp_log_stackspecific log;
2102 struct timeval tv;
2103
2104 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2105 log.u_bbr.flex1 = rack->rc_tp->t_srtt;
2106 log.u_bbr.flex2 = to;
2107 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
2108 log.u_bbr.flex4 = slot;
2109 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
2110 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2111 log.u_bbr.flex7 = rack->rc_in_persist;
2112 log.u_bbr.flex8 = which;
2113 if (rack->rack_no_prr)
2114 log.u_bbr.pkts_out = 0;
2115 else
2116 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
2117 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2118 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2119 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2120 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2122 log.u_bbr.pacing_gain = rack->r_must_retran;
2123 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift;
2124 log.u_bbr.lost = rack_rto_min;
2125 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2126 &rack->rc_inp->inp_socket->so_rcv,
2127 &rack->rc_inp->inp_socket->so_snd,
2129 0, &log, false, &tv);
2130 }
2131}
2132
2133static void
2134rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
2135{
2136 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2137 union tcp_log_stackspecific log;
2138 struct timeval tv;
2139
2140 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2141 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2142 log.u_bbr.flex8 = to_num;
2143 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
2144 log.u_bbr.flex2 = rack->rc_rack_rtt;
2145 if (rsm == NULL)
2146 log.u_bbr.flex3 = 0;
2147 else
2148 log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
2149 if (rack->rack_no_prr)
2150 log.u_bbr.flex5 = 0;
2151 else
2152 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2153 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2154 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2155 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2157 log.u_bbr.pacing_gain = rack->r_must_retran;
2158 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2159 &rack->rc_inp->inp_socket->so_rcv,
2160 &rack->rc_inp->inp_socket->so_snd,
2161 BBR_LOG_RTO, 0,
2162 0, &log, false, &tv);
2163 }
2164}
2165
2166static void
2167rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack,
2168 struct rack_sendmap *prev,
2169 struct rack_sendmap *rsm,
2170 struct rack_sendmap *next,
2171 int flag, uint32_t th_ack, int line)
2172{
2174 union tcp_log_stackspecific log;
2175 struct timeval tv;
2176
2177 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2178 log.u_bbr.flex8 = flag;
2179 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2180 log.u_bbr.cur_del_rate = (uint64_t)prev;
2181 log.u_bbr.delRate = (uint64_t)rsm;
2182 log.u_bbr.rttProp = (uint64_t)next;
2183 log.u_bbr.flex7 = 0;
2184 if (prev) {
2185 log.u_bbr.flex1 = prev->r_start;
2186 log.u_bbr.flex2 = prev->r_end;
2187 log.u_bbr.flex7 |= 0x4;
2188 }
2189 if (rsm) {
2190 log.u_bbr.flex3 = rsm->r_start;
2191 log.u_bbr.flex4 = rsm->r_end;
2192 log.u_bbr.flex7 |= 0x2;
2193 }
2194 if (next) {
2195 log.u_bbr.flex5 = next->r_start;
2196 log.u_bbr.flex6 = next->r_end;
2197 log.u_bbr.flex7 |= 0x1;
2198 }
2199 log.u_bbr.applimited = line;
2200 log.u_bbr.pkts_out = th_ack;
2201 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2202 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2203 if (rack->rack_no_prr)
2204 log.u_bbr.lost = 0;
2205 else
2206 log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt;
2207 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2208 &rack->rc_inp->inp_socket->so_rcv,
2209 &rack->rc_inp->inp_socket->so_snd,
2210 TCP_LOG_MAPCHG, 0,
2211 0, &log, false, &tv);
2212 }
2213}
2214
2215static void
2216rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
2217 struct rack_sendmap *rsm, int conf)
2218{
2219 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2220 union tcp_log_stackspecific log;
2221 struct timeval tv;
2222 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2223 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2224 log.u_bbr.flex1 = t;
2225 log.u_bbr.flex2 = len;
2226 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt;
2229 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2230 log.u_bbr.flex7 = conf;
2231 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot;
2233 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2235 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
2236 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2237 if (rsm) {
2238 log.u_bbr.pkt_epoch = rsm->r_start;
2239 log.u_bbr.lost = rsm->r_end;
2240 log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
2241 /* We loose any upper of the 24 bits */
2242 log.u_bbr.pacing_gain = (uint16_t)rsm->r_flags;
2243 } else {
2244 /* Its a SYN */
2245 log.u_bbr.pkt_epoch = rack->rc_tp->iss;
2246 log.u_bbr.lost = 0;
2247 log.u_bbr.cwnd_gain = 0;
2248 log.u_bbr.pacing_gain = 0;
2249 }
2250 /* Write out general bits of interest rrs here */
2252 log.u_bbr.use_lt_bw <<= 1;
2253 log.u_bbr.use_lt_bw |= rack->forced_ack;
2254 log.u_bbr.use_lt_bw <<= 1;
2255 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
2256 log.u_bbr.use_lt_bw <<= 1;
2257 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
2258 log.u_bbr.use_lt_bw <<= 1;
2260 log.u_bbr.use_lt_bw <<= 1;
2262 log.u_bbr.use_lt_bw <<= 1;
2263 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
2264 log.u_bbr.use_lt_bw <<= 1;
2265 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
2270 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
2272 log.u_bbr.bw_inuse <<= 32;
2273 if (rsm)
2274 log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
2275 TCP_LOG_EVENTP(tp, NULL,
2276 &rack->rc_inp->inp_socket->so_rcv,
2277 &rack->rc_inp->inp_socket->so_snd,
2278 BBR_LOG_BBRRTT, 0,
2279 0, &log, false, &tv);
2280
2281
2282 }
2283}
2284
2285static void
2287{
2288 /*
2289 * Log the rtt sample we are
2290 * applying to the srtt algorithm in
2291 * useconds.
2292 */
2293 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2294 union tcp_log_stackspecific log;
2295 struct timeval tv;
2296
2297 /* Convert our ms to a microsecond */
2298 memset(&log, 0, sizeof(log));
2299 log.u_bbr.flex1 = rtt;
2300 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2301 log.u_bbr.flex3 = rack->r_ctl.sack_count;
2302 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2303 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
2304 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2305 log.u_bbr.flex7 = 1;
2306 log.u_bbr.flex8 = rack->sack_attack_disable;
2307 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2308 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2309 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2311 log.u_bbr.pacing_gain = rack->r_must_retran;
2312 /*
2313 * We capture in delRate the upper 32 bits as
2314 * the confidence level we had declared, and the
2315 * lower 32 bits as the actual RTT using the arrival
2316 * timestamp.
2317 */
2318 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence;
2319 log.u_bbr.delRate <<= 32;
2320 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt;
2321 /* Lets capture all the things that make up t_rtxcur */
2323 log.u_bbr.epoch = rack_rto_max;
2324 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop;
2325 log.u_bbr.lost = rack_rto_min;
2326 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop);
2327 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp);
2328 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec;
2330 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec;
2331 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2332 &rack->rc_inp->inp_socket->so_rcv,
2333 &rack->rc_inp->inp_socket->so_snd,
2334 TCP_LOG_RTT, 0,
2335 0, &log, false, &tv);
2336 }
2337}
2338
2339static void
2340rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
2341{
2343 union tcp_log_stackspecific log;
2344 struct timeval tv;
2345
2346 /* Convert our ms to a microsecond */
2347 memset(&log, 0, sizeof(log));
2348 log.u_bbr.flex1 = rtt;
2349 log.u_bbr.flex2 = send_time;
2350 log.u_bbr.flex3 = ack_time;
2351 log.u_bbr.flex4 = where;
2352 log.u_bbr.flex7 = 2;
2353 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2354 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2355 &rack->rc_inp->inp_socket->so_rcv,
2356 &rack->rc_inp->inp_socket->so_snd,
2357 TCP_LOG_RTT, 0,
2358 0, &log, false, &tv);
2359 }
2360}
2361
2362
2363
2364static inline void
2365rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line)
2366{
2368 union tcp_log_stackspecific log;
2369 struct timeval tv;
2370
2371 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2372 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2373 log.u_bbr.flex1 = line;
2374 log.u_bbr.flex2 = tick;
2375 log.u_bbr.flex3 = tp->t_maxunacktime;
2376 log.u_bbr.flex4 = tp->t_acktime;
2377 log.u_bbr.flex8 = event;
2378 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2379 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2380 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2382 log.u_bbr.pacing_gain = rack->r_must_retran;
2383 TCP_LOG_EVENTP(tp, NULL,
2384 &rack->rc_inp->inp_socket->so_rcv,
2385 &rack->rc_inp->inp_socket->so_snd,
2387 0, &log, false, &tv);
2388 }
2389}
2390
2391static void
2392rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
2393{
2394 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2395 union tcp_log_stackspecific log;
2396
2397 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2398 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2399 log.u_bbr.flex1 = slot;
2400 if (rack->rack_no_prr)
2401 log.u_bbr.flex2 = 0;
2402 else
2403 log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
2404 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
2405 log.u_bbr.flex8 = rack->rc_in_persist;
2406 log.u_bbr.timeStamp = cts;
2407 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2408 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2410 log.u_bbr.pacing_gain = rack->r_must_retran;
2411 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2412 &rack->rc_inp->inp_socket->so_rcv,
2413 &rack->rc_inp->inp_socket->so_snd,
2414 BBR_LOG_BBRSND, 0,
2415 0, &log, false, tv);
2416 }
2417}
2418
2419static void
2420rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
2421{
2422 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2423 union tcp_log_stackspecific log;
2424 struct timeval tv;
2425
2426 memset(&log, 0, sizeof(log));
2427 log.u_bbr.flex1 = did_out;
2428 log.u_bbr.flex2 = nxt_pkt;
2429 log.u_bbr.flex3 = way_out;
2430 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2431 if (rack->rack_no_prr)
2432 log.u_bbr.flex5 = 0;
2433 else
2434 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2435 log.u_bbr.flex6 = nsegs;
2437 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data; /* Do we have ack-can-send set */
2438 log.u_bbr.flex7 <<= 1;
2439 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */
2440 log.u_bbr.flex7 <<= 1;
2441 log.u_bbr.flex7 |= rack->r_wanted_output; /* Do we want output */
2442 log.u_bbr.flex8 = rack->rc_in_persist;
2443 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2444 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2445 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2446 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2447 log.u_bbr.use_lt_bw <<= 1;
2448 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2449 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2451 log.u_bbr.pacing_gain = rack->r_must_retran;
2452 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2453 &rack->rc_inp->inp_socket->so_rcv,
2454 &rack->rc_inp->inp_socket->so_snd,
2456 0, &log, false, &tv);
2457 }
2458}
2459
2460static void
2461rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
2462{
2463 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2464 union tcp_log_stackspecific log;
2465 struct timeval tv;
2466
2467 memset(&log, 0, sizeof(log));
2468 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
2469 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
2470 log.u_bbr.flex4 = arg1;
2471 log.u_bbr.flex5 = arg2;
2472 log.u_bbr.flex6 = arg3;
2473 log.u_bbr.flex8 = frm;
2474 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2475 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2476 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2477 log.u_bbr.applimited = rack->r_ctl.rc_sacked;
2479 log.u_bbr.pacing_gain = rack->r_must_retran;
2480 TCP_LOG_EVENTP(tp, NULL,
2481 &tp->t_inpcb->inp_socket->so_rcv,
2482 &tp->t_inpcb->inp_socket->so_snd,
2484 0, &log, false, &tv);
2485 }
2486}
2487
2488static void
2490 uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
2491{
2492 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2493 union tcp_log_stackspecific log;
2494 struct timeval tv;
2495
2496 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2497 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2498 log.u_bbr.flex1 = slot;
2499 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
2500 log.u_bbr.flex4 = reason;
2501 if (rack->rack_no_prr)
2502 log.u_bbr.flex5 = 0;
2503 else
2504 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2505 log.u_bbr.flex7 = hpts_calling;
2506 log.u_bbr.flex8 = rack->rc_in_persist;
2507 log.u_bbr.lt_epoch = cwnd_to_use;
2508 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2509 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2510 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2512 log.u_bbr.pacing_gain = rack->r_must_retran;
2513 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2514 &rack->rc_inp->inp_socket->so_rcv,
2515 &rack->rc_inp->inp_socket->so_snd,
2516 BBR_LOG_JUSTRET, 0,
2517 tlen, &log, false, &tv);
2518 }
2519}
2520
2521static void
2522rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
2523 struct timeval *tv, uint32_t flags_on_entry)
2524{
2525 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2526 union tcp_log_stackspecific log;
2527
2528 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2529 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
2530 log.u_bbr.flex1 = line;
2531 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
2532 log.u_bbr.flex3 = flags_on_entry;
2533 log.u_bbr.flex4 = us_cts;
2534 if (rack->rack_no_prr)
2535 log.u_bbr.flex5 = 0;
2536 else
2537 log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2538 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2539 log.u_bbr.flex7 = hpts_removed;
2540 log.u_bbr.flex8 = 1;
2541 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
2542 log.u_bbr.timeStamp = us_cts;
2543 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2544 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2546 log.u_bbr.pacing_gain = rack->r_must_retran;
2547 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2548 &rack->rc_inp->inp_socket->so_rcv,
2549 &rack->rc_inp->inp_socket->so_snd,
2551 0, &log, false, tv);
2552 }
2553}
2554
2555static void
2557 uint32_t flex1, uint32_t flex2,
2558 uint32_t flex3, uint32_t flex4,
2559 uint32_t flex5, uint32_t flex6,
2560 uint16_t flex7, uint8_t mod)
2561{
2562 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2563 union tcp_log_stackspecific log;
2564 struct timeval tv;
2565
2566 if (mod == 1) {
2567 /* No you can't use 1, its for the real to cancel */
2568 return;
2569 }
2570 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2571 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2572 log.u_bbr.flex1 = flex1;
2573 log.u_bbr.flex2 = flex2;
2574 log.u_bbr.flex3 = flex3;
2575 log.u_bbr.flex4 = flex4;
2576 log.u_bbr.flex5 = flex5;
2577 log.u_bbr.flex6 = flex6;
2578 log.u_bbr.flex7 = flex7;
2579 log.u_bbr.flex8 = mod;
2580 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2581 &rack->rc_inp->inp_socket->so_rcv,
2582 &rack->rc_inp->inp_socket->so_snd,
2584 0, &log, false, &tv);
2585 }
2586}
2587
2588static void
2589rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2590{
2591 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2592 union tcp_log_stackspecific log;
2593 struct timeval tv;
2594
2595 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2596 log.u_bbr.flex1 = timers;
2597 log.u_bbr.flex2 = ret;
2598 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2599 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2600 log.u_bbr.flex5 = cts;
2601 if (rack->rack_no_prr)
2602 log.u_bbr.flex6 = 0;
2603 else
2604 log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2605 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2607 log.u_bbr.pacing_gain = rack->r_must_retran;
2608 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2609 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2610 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2611 &rack->rc_inp->inp_socket->so_rcv,
2612 &rack->rc_inp->inp_socket->so_snd,
2614 0, &log, false, &tv);
2615 }
2616}
2617
2618static void
2619rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd)
2620{
2621 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2622 union tcp_log_stackspecific log;
2623 struct timeval tv;
2624
2625 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2626 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2627 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2628 if (rack->rack_no_prr)
2629 log.u_bbr.flex3 = 0;
2630 else
2631 log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2632 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2633 log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2634 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2635 log.u_bbr.flex8 = frm;
2636 log.u_bbr.pkts_out = orig_cwnd;
2637 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2638 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2639 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2640 log.u_bbr.use_lt_bw <<= 1;
2641 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2642 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2643 &rack->rc_inp->inp_socket->so_rcv,
2644 &rack->rc_inp->inp_socket->so_snd,
2645 BBR_LOG_BBRUPD, 0,
2646 0, &log, false, &tv);
2647 }
2648}
2649
2650#ifdef NETFLIX_EXP_DETECTION
2651static void
2652rack_log_sad(struct tcp_rack *rack, int event)
2653{
2654 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2655 union tcp_log_stackspecific log;
2656 struct timeval tv;
2657
2658 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2659 log.u_bbr.flex1 = rack->r_ctl.sack_count;
2660 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2661 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2662 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2663 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2664 log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2665 log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2666 log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2667 log.u_bbr.lt_epoch |= rack->do_detection;
2668 log.u_bbr.applimited = tcp_map_minimum;
2669 log.u_bbr.flex7 = rack->sack_attack_disable;
2670 log.u_bbr.flex8 = event;
2671 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2672 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2673 log.u_bbr.delivered = tcp_sad_decay_val;
2674 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2675 &rack->rc_inp->inp_socket->so_rcv,
2676 &rack->rc_inp->inp_socket->so_snd,
2678 0, &log, false, &tv);
2679 }
2680}
2681#endif
2682
2683static void
2685{
2686 counter_u64_free(rack_fto_send);
2687 counter_u64_free(rack_fto_rsm_send);
2688 counter_u64_free(rack_nfto_resend);
2689 counter_u64_free(rack_hw_pace_init_fail);
2690 counter_u64_free(rack_hw_pace_lost);
2691 counter_u64_free(rack_non_fto_send);
2692 counter_u64_free(rack_extended_rfo);
2693 counter_u64_free(rack_ack_total);
2694 counter_u64_free(rack_express_sack);
2695 counter_u64_free(rack_sack_total);
2696 counter_u64_free(rack_move_none);
2697 counter_u64_free(rack_move_some);
2698 counter_u64_free(rack_sack_attacks_detected);
2699 counter_u64_free(rack_sack_attacks_reversed);
2700 counter_u64_free(rack_sack_used_next_merge);
2701 counter_u64_free(rack_sack_used_prev_merge);
2702 counter_u64_free(rack_tlp_tot);
2703 counter_u64_free(rack_tlp_newdata);
2704 counter_u64_free(rack_tlp_retran);
2705 counter_u64_free(rack_tlp_retran_bytes);
2706 counter_u64_free(rack_to_tot);
2707 counter_u64_free(rack_saw_enobuf);
2708 counter_u64_free(rack_saw_enobuf_hw);
2709 counter_u64_free(rack_saw_enetunreach);
2710 counter_u64_free(rack_hot_alloc);
2711 counter_u64_free(rack_to_alloc);
2712 counter_u64_free(rack_to_alloc_hard);
2713 counter_u64_free(rack_to_alloc_emerg);
2714 counter_u64_free(rack_to_alloc_limited);
2715 counter_u64_free(rack_alloc_limited_conns);
2716 counter_u64_free(rack_split_limited);
2717 counter_u64_free(rack_multi_single_eq);
2718 counter_u64_free(rack_proc_non_comp_ack);
2719 counter_u64_free(rack_sack_proc_all);
2720 counter_u64_free(rack_sack_proc_restart);
2721 counter_u64_free(rack_sack_proc_short);
2722 counter_u64_free(rack_sack_skipped_acked);
2723 counter_u64_free(rack_sack_splits);
2724 counter_u64_free(rack_input_idle_reduces);
2725 counter_u64_free(rack_collapsed_win);
2726 counter_u64_free(rack_try_scwnd);
2727 counter_u64_free(rack_persists_sends);
2728 counter_u64_free(rack_persists_acks);
2729 counter_u64_free(rack_persists_loss);
2730 counter_u64_free(rack_persists_lost_ends);
2731#ifdef INVARIANTS
2732 counter_u64_free(rack_adjust_map_bw);
2733#endif
2734 COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2735 COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2736}
2737
2738static struct rack_sendmap *
2740{
2741 struct rack_sendmap *rsm;
2742
2743 /*
2744 * First get the top of the list it in
2745 * theory is the "hottest" rsm we have,
2746 * possibly just freed by ack processing.
2747 */
2748 if (rack->rc_free_cnt > rack_free_cache) {
2749 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2750 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2751 counter_u64_add(rack_hot_alloc, 1);
2752 rack->rc_free_cnt--;
2753 return (rsm);
2754 }
2755 /*
2756 * Once we get under our free cache we probably
2757 * no longer have a "hot" one available. Lets
2758 * get one from UMA.
2759 */
2760 rsm = uma_zalloc(rack_zone, M_NOWAIT);
2761 if (rsm) {
2762 rack->r_ctl.rc_num_maps_alloced++;
2763 counter_u64_add(rack_to_alloc, 1);
2764 return (rsm);
2765 }
2766 /*
2767 * Dig in to our aux rsm's (the last two) since
2768 * UMA failed to get us one.
2769 */
2770 if (rack->rc_free_cnt) {
2771 counter_u64_add(rack_to_alloc_emerg, 1);
2772 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2773 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2774 rack->rc_free_cnt--;
2775 return (rsm);
2776 }
2777 return (NULL);
2778}
2779
2780static struct rack_sendmap *
2782{
2783 if ((V_tcp_map_entries_limit > 0) &&
2784 (rack->do_detection == 0) &&
2786 counter_u64_add(rack_to_alloc_limited, 1);
2787 if (!rack->alloc_limit_reported) {
2788 rack->alloc_limit_reported = 1;
2789 counter_u64_add(rack_alloc_limited_conns, 1);
2790 }
2791 return (NULL);
2792 }
2793 return (rack_alloc(rack));
2794}
2795
2796/* wrapper to allocate a sendmap entry, subject to a specific limit */
2797static struct rack_sendmap *
2798rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2799{
2800 struct rack_sendmap *rsm;
2801
2802 if (limit_type) {
2803 /* currently there is only one limit type */
2804 if (V_tcp_map_split_limit > 0 &&
2805 (rack->do_detection == 0) &&
2807 counter_u64_add(rack_split_limited, 1);
2808 if (!rack->alloc_limit_reported) {
2809 rack->alloc_limit_reported = 1;
2810 counter_u64_add(rack_alloc_limited_conns, 1);
2811 }
2812 return (NULL);
2813 }
2814 }
2815
2816 /* allocate and mark in the limit type, if set */
2817 rsm = rack_alloc(rack);
2818 if (rsm != NULL && limit_type) {
2819 rsm->r_limit_type = limit_type;
2820 rack->r_ctl.rc_num_split_allocs++;
2821 }
2822 return (rsm);
2823}
2824
2825static void
2826rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2827{
2828 if (rsm->r_flags & RACK_APP_LIMITED) {
2829 if (rack->r_ctl.rc_app_limited_cnt > 0) {
2830 rack->r_ctl.rc_app_limited_cnt--;
2831 }
2832 }
2833 if (rsm->r_limit_type) {
2834 /* currently there is only one limit type */
2835 rack->r_ctl.rc_num_split_allocs--;
2836 }
2837 if (rsm == rack->r_ctl.rc_first_appl) {
2838 if (rack->r_ctl.rc_app_limited_cnt == 0)
2839 rack->r_ctl.rc_first_appl = NULL;
2840 else {
2841 /* Follow the next one out */
2842 struct rack_sendmap fe;
2843
2844 fe.r_start = rsm->r_nseq_appl;
2845 rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
2846 }
2847 }
2848 if (rsm == rack->r_ctl.rc_resend)
2849 rack->r_ctl.rc_resend = NULL;
2850 if (rsm == rack->r_ctl.rc_end_appl)
2851 rack->r_ctl.rc_end_appl = NULL;
2852 if (rack->r_ctl.rc_tlpsend == rsm)
2853 rack->r_ctl.rc_tlpsend = NULL;
2854 if (rack->r_ctl.rc_sacklast == rsm)
2855 rack->r_ctl.rc_sacklast = NULL;
2856 memset(rsm, 0, sizeof(struct rack_sendmap));
2857 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext);
2858 rack->rc_free_cnt++;
2859}
2860
2861static void
2863{
2864 struct rack_sendmap *rsm;
2865
2866 /*
2867 * Free up all the tail entries until
2868 * we get our list down to the limit.
2869 */
2870 while (rack->rc_free_cnt > rack_free_cache) {
2871 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head);
2872 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2873 rack->rc_free_cnt--;
2874 uma_zfree(rack_zone, rsm);
2875 }
2876}
2877
2878
2879static uint32_t
2880rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
2881{
2882 uint64_t srtt, bw, len, tim;
2883 uint32_t segsiz, def_len, minl;
2884
2885 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2886 def_len = rack_def_data_window * segsiz;
2887 if (rack->rc_gp_filled == 0) {
2888 /*
2889 * We have no measurement (IW is in flight?) so
2890 * we can only guess using our data_window sysctl
2891 * value (usually 20MSS).
2892 */
2893 return (def_len);
2894 }
2895 /*
2896 * Now we have a number of factors to consider.
2897 *
2898 * 1) We have a desired BDP which is usually
2899 * at least 2.
2900 * 2) We have a minimum number of rtt's usually 1 SRTT
2901 * but we allow it too to be more.
2902 * 3) We want to make sure a measurement last N useconds (if
2903 * we have set rack_min_measure_usec.
2904 *
2905 * We handle the first concern here by trying to create a data
2906 * window of max(rack_def_data_window, DesiredBDP). The
2907 * second concern we handle in not letting the measurement
2908 * window end normally until at least the required SRTT's
2909 * have gone by which is done further below in
2910 * rack_enough_for_measurement(). Finally the third concern
2911 * we also handle here by calculating how long that time
2912 * would take at the current BW and then return the
2913 * max of our first calculation and that length. Note
2914 * that if rack_min_measure_usec is 0, we don't deal
2915 * with concern 3. Also for both Concern 1 and 3 an
2916 * application limited period could end the measurement
2917 * earlier.
2918 *
2919 * So lets calculate the BDP with the "known" b/w using
2920 * the SRTT has our rtt and then multiply it by the
2921 * goal.
2922 */
2923 bw = rack_get_bw(rack);
2924 srtt = (uint64_t)tp->t_srtt;
2925 len = bw * srtt;
2926 len /= (uint64_t)HPTS_USEC_IN_SEC;
2927 len *= max(1, rack_goal_bdp);
2928 /* Now we need to round up to the nearest MSS */
2929 len = roundup(len, segsiz);
2931 /* Now calculate our min length for this b/w */
2933 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
2934 if (minl == 0)
2935 minl = 1;
2936 minl = roundup(minl, segsiz);
2937 if (len < minl)
2938 len = minl;
2939 }
2940 /*
2941 * Now if we have a very small window we want
2942 * to attempt to get the window that is
2943 * as small as possible. This happens on
2944 * low b/w connections and we don't want to
2945 * span huge numbers of rtt's between measurements.
2946 *
2947 * We basically include 2 over our "MIN window" so
2948 * that the measurement can be shortened (possibly) by
2949 * an ack'ed packet.
2950 */
2951 if (len < def_len)
2952 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
2953 else
2954 return (max((uint32_t)len, def_len));
2955
2956}
2957
2958static int
2959rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality)
2960{
2961 uint32_t tim, srtts, segsiz;
2962
2963 /*
2964 * Has enough time passed for the GP measurement to be valid?
2965 */
2966 if ((tp->snd_max == tp->snd_una) ||
2967 (th_ack == tp->snd_max)){
2968 /* All is acked */
2969 *quality = RACK_QUALITY_ALLACKED;
2970 return (1);
2971 }
2972 if (SEQ_LT(th_ack, tp->gput_seq)) {
2973 /* Not enough bytes yet */
2974 return (0);
2975 }
2976 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2977 if (SEQ_LT(th_ack, tp->gput_ack) &&
2978 ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
2979 /* Not enough bytes yet */
2980 return (0);
2981 }
2982 if (rack->r_ctl.rc_first_appl &&
2983 (SEQ_GEQ(th_ack, rack->r_ctl.rc_first_appl->r_end))) {
2984 /*
2985 * We are up to the app limited send point
2986 * we have to measure irrespective of the time..
2987 */
2988 *quality = RACK_QUALITY_APPLIMITED;
2989 return (1);
2990 }
2991 /* Now what about time? */
2992 srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
2993 tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
2994 if (tim >= srtts) {
2995 *quality = RACK_QUALITY_HIGH;
2996 return (1);
2997 }
2998 /* Nope not even a full SRTT has passed */
2999 return (0);
3000}
3001
3002static void
3004 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
3005 uint64_t up_bnd, int line, uint8_t method)
3006{
3007 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3008 union tcp_log_stackspecific log;
3009 struct timeval tv;
3010
3011 memset(&log, 0, sizeof(log));
3012 log.u_bbr.flex1 = logged;
3013 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
3014 log.u_bbr.flex2 <<= 4;
3015 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
3016 log.u_bbr.flex2 <<= 4;
3017 log.u_bbr.flex2 |= rack->rc_gp_incr;
3018 log.u_bbr.flex2 <<= 4;
3019 log.u_bbr.flex2 |= rack->rc_gp_bwred;
3020 log.u_bbr.flex3 = rack->rc_gp_incr;
3021 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3022 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
3023 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
3024 log.u_bbr.flex7 = rack->rc_gp_bwred;
3025 log.u_bbr.flex8 = method;
3026 log.u_bbr.cur_del_rate = cur_bw;
3027 log.u_bbr.delRate = low_bnd;
3028 log.u_bbr.bw_inuse = up_bnd;
3029 log.u_bbr.rttProp = rack_get_bw(rack);
3030 log.u_bbr.pkt_epoch = line;
3031 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3032 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3033 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3034 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3035 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3036 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
3037 log.u_bbr.cwnd_gain <<= 1;
3038 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
3039 log.u_bbr.cwnd_gain <<= 1;
3040 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
3041 log.u_bbr.cwnd_gain <<= 1;
3042 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
3043 log.u_bbr.lost = rack->r_ctl.rc_loss_count;
3044 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3045 &rack->rc_inp->inp_socket->so_rcv,
3046 &rack->rc_inp->inp_socket->so_snd,
3047 TCP_TIMELY_WORK, 0,
3048 0, &log, false, &tv);
3049 }
3050}
3051
3052static int
3053rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
3054{
3055 /*
3056 * Before we increase we need to know if
3057 * the estimate just made was less than
3058 * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
3059 *
3060 * If we already are pacing at a fast enough
3061 * rate to push us faster there is no sense of
3062 * increasing.
3063 *
3064 * We first caculate our actual pacing rate (ss or ca multipler
3065 * times our cur_bw).
3066 *
3067 * Then we take the last measured rate and multipy by our
3068 * maximum pacing overage to give us a max allowable rate.
3069 *
3070 * If our act_rate is smaller than our max_allowable rate
3071 * then we should increase. Else we should hold steady.
3072 *
3073 */
3074 uint64_t act_rate, max_allow_rate;
3075
3077 return (1);
3078
3079 if ((cur_bw == 0) || (last_bw_est == 0)) {
3080 /*
3081 * Initial startup case or
3082 * everything is acked case.
3083 */
3084 rack_log_timely(rack, mult, cur_bw, 0, 0,
3085 __LINE__, 9);
3086 return (1);
3087 }
3088 if (mult <= 100) {
3089 /*
3090 * We can always pace at or slightly above our rate.
3091 */
3092 rack_log_timely(rack, mult, cur_bw, 0, 0,
3093 __LINE__, 9);
3094 return (1);
3095 }
3096 act_rate = cur_bw * (uint64_t)mult;
3097 act_rate /= 100;
3098 max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
3099 max_allow_rate /= 100;
3100 if (act_rate < max_allow_rate) {
3101 /*
3102 * Here the rate we are actually pacing at
3103 * is smaller than 10% above our last measurement.
3104 * This means we are pacing below what we would
3105 * like to try to achieve (plus some wiggle room).
3106 */
3107 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate,
3108 __LINE__, 9);
3109 return (1);
3110 } else {
3111 /*
3112 * Here we are already pacing at least rack_max_per_above(10%)
3113 * what we are getting back. This indicates most likely
3114 * that we are being limited (cwnd/rwnd/app) and can't
3115 * get any more b/w. There is no sense of trying to
3116 * raise up the pacing rate its not speeding us up
3117 * and we already are pacing faster than we are getting.
3118 */
3119 rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate,
3120 __LINE__, 8);
3121 return (0);
3122 }
3123}
3124
3125static void
3127{
3128 /*
3129 * When we drag bottom, we want to assure
3130 * that no multiplier is below 1.0, if so
3131 * we want to restore it to at least that.
3132 */
3133 if (rack->r_ctl.rack_per_of_gp_rec < 100) {
3134 /* This is unlikely we usually do not touch recovery */
3135 rack->r_ctl.rack_per_of_gp_rec = 100;
3136 }
3137 if (rack->r_ctl.rack_per_of_gp_ca < 100) {
3138 rack->r_ctl.rack_per_of_gp_ca = 100;
3139 }
3140 if (rack->r_ctl.rack_per_of_gp_ss < 100) {
3141 rack->r_ctl.rack_per_of_gp_ss = 100;
3142 }
3143}
3144
3145static void
3147{
3148 if (rack->r_ctl.rack_per_of_gp_ca > 100) {
3149 rack->r_ctl.rack_per_of_gp_ca = 100;
3150 }
3151 if (rack->r_ctl.rack_per_of_gp_ss > 100) {
3152 rack->r_ctl.rack_per_of_gp_ss = 100;
3153 }
3154}
3155
3156static void
3157rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
3158{
3159 int32_t calc, logged, plus;
3160
3161 logged = 0;
3162
3163 if (override) {
3164 /*
3165 * override is passed when we are
3166 * loosing b/w and making one last
3167 * gasp at trying to not loose out
3168 * to a new-reno flow.
3169 */
3170 goto extra_boost;
3171 }
3172 /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
3173 if (rack->rc_gp_incr &&
3175 /*
3176 * Reset and get 5 strokes more before the boost. Note
3177 * that the count is 0 based so we have to add one.
3178 */
3179extra_boost:
3181 rack->rc_gp_timely_inc_cnt = 0;
3182 } else
3184 /* Must be at least 1% increase for true timely increases */
3185 if ((plus < 1) &&
3186 ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
3187 plus = 1;
3188 if (rack->rc_gp_saw_rec &&
3189 (rack->rc_gp_no_rec_chg == 0) &&
3190 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3191 rack->r_ctl.rack_per_of_gp_rec)) {
3192 /* We have been in recovery ding it too */
3193 calc = rack->r_ctl.rack_per_of_gp_rec + plus;
3194 if (calc > 0xffff)
3195 calc = 0xffff;
3196 logged |= 1;
3197 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
3199 (rack->rc_dragged_bottom == 0) &&
3202 }
3203 if (rack->rc_gp_saw_ca &&
3204 (rack->rc_gp_saw_ss == 0) &&
3205 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3206 rack->r_ctl.rack_per_of_gp_ca)) {
3207 /* In CA */
3208 calc = rack->r_ctl.rack_per_of_gp_ca + plus;
3209 if (calc > 0xffff)
3210 calc = 0xffff;
3211 logged |= 2;
3212 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
3214 (rack->rc_dragged_bottom == 0) &&
3217 }
3218 if (rack->rc_gp_saw_ss &&
3219 rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3220 rack->r_ctl.rack_per_of_gp_ss)) {
3221 /* In SS */
3222 calc = rack->r_ctl.rack_per_of_gp_ss + plus;
3223 if (calc > 0xffff)
3224 calc = 0xffff;
3225 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
3227 (rack->rc_dragged_bottom == 0) &&
3230 logged |= 4;
3231 }
3232 if (logged &&
3233 (rack->rc_gp_incr == 0)){
3234 /* Go into increment mode */
3235 rack->rc_gp_incr = 1;
3236 rack->rc_gp_timely_inc_cnt = 0;
3237 }
3238 if (rack->rc_gp_incr &&
3239 logged &&
3241 rack->rc_gp_timely_inc_cnt++;
3242 }
3243 rack_log_timely(rack, logged, plus, 0, 0,
3244 __LINE__, 1);
3245}
3246
3247static uint32_t
3248rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
3249{
3250 /*
3251 * norm_grad = rtt_diff / minrtt;
3252 * new_per = curper * (1 - B * norm_grad)
3253 *
3254 * B = rack_gp_decrease_per (default 10%)
3255 * rtt_dif = input var current rtt-diff
3256 * curper = input var current percentage
3257 * minrtt = from rack filter
3258 *
3259 */
3260 uint64_t perf;
3261
3262 perf = (((uint64_t)curper * ((uint64_t)1000000 -
3263 ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
3264 (((uint64_t)rtt_diff * (uint64_t)1000000)/
3265 (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
3266 (uint64_t)1000000)) /
3267 (uint64_t)1000000);
3268 if (perf > curper) {
3269 /* TSNH */
3270 perf = curper - 1;
3271 }
3272 return ((uint32_t)perf);
3273}
3274
3275static uint32_t
3277{
3278 /*
3279 * highrttthresh
3280 * result = curper * (1 - (B * ( 1 - ------ ))
3281 * gp_srtt
3282 *
3283 * B = rack_gp_decrease_per (default 10%)
3284 * highrttthresh = filter_min * rack_gp_rtt_maxmul
3285 */
3286 uint64_t perf;
3287 uint32_t highrttthresh;
3288
3289 highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3290
3291 perf = (((uint64_t)curper * ((uint64_t)1000000 -
3292 ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
3293 ((uint64_t)highrttthresh * (uint64_t)1000000) /
3294 (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
3295 return (perf);
3296}
3297
3298static void
3299rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
3300{
3301 uint64_t logvar, logvar2, logvar3;
3302 uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
3303
3304 if (rack->rc_gp_incr) {
3305 /* Turn off increment counting */
3306 rack->rc_gp_incr = 0;
3307 rack->rc_gp_timely_inc_cnt = 0;
3308 }
3309 ss_red = ca_red = rec_red = 0;
3310 logged = 0;
3311 /* Calculate the reduction value */
3312 if (rtt_diff < 0) {
3313 rtt_diff *= -1;
3314 }
3315 /* Must be at least 1% reduction */
3316 if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
3317 /* We have been in recovery ding it too */
3318 if (timely_says == 2) {
3319 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
3320 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3321 if (alt < new_per)
3322 val = alt;
3323 else
3324 val = new_per;
3325 } else
3326 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3327 if (rack->r_ctl.rack_per_of_gp_rec > val) {
3328 rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
3329 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
3330 } else {
3332 rec_red = 0;
3333 }
3336 logged |= 1;
3337 }
3338 if (rack->rc_gp_saw_ss) {
3339 /* Sent in SS */
3340 if (timely_says == 2) {
3341 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
3342 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3343 if (alt < new_per)
3344 val = alt;
3345 else
3346 val = new_per;
3347 } else
3348 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
3349 if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
3350 ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
3351 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
3352 } else {
3353 ss_red = new_per;
3355 logvar = new_per;
3356 logvar <<= 32;
3357 logvar |= alt;
3358 logvar2 = (uint32_t)rtt;
3359 logvar2 <<= 32;
3360 logvar2 |= (uint32_t)rtt_diff;
3361 logvar3 = rack_gp_rtt_maxmul;
3362 logvar3 <<= 32;
3363 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3364 rack_log_timely(rack, timely_says,
3365 logvar2, logvar3,
3366 logvar, __LINE__, 10);
3367 }
3370 logged |= 4;
3371 } else if (rack->rc_gp_saw_ca) {
3372 /* Sent in CA */
3373 if (timely_says == 2) {
3374 new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
3375 alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3376 if (alt < new_per)
3377 val = alt;
3378 else
3379 val = new_per;
3380 } else
3381 val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
3382 if (rack->r_ctl.rack_per_of_gp_ca > val) {
3383 ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
3384 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
3385 } else {
3387 ca_red = 0;
3388 logvar = new_per;
3389 logvar <<= 32;
3390 logvar |= alt;
3391 logvar2 = (uint32_t)rtt;
3392 logvar2 <<= 32;
3393 logvar2 |= (uint32_t)rtt_diff;
3394 logvar3 = rack_gp_rtt_maxmul;
3395 logvar3 <<= 32;
3396 logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3397 rack_log_timely(rack, timely_says,
3398 logvar2, logvar3,
3399 logvar, __LINE__, 10);
3400 }
3403 logged |= 2;
3404 }
3405 if (rack->rc_gp_timely_dec_cnt < 0x7) {
3406 rack->rc_gp_timely_dec_cnt++;
3409 rack->rc_gp_timely_dec_cnt = 0;
3410 }
3411 logvar = ss_red;
3412 logvar <<= 32;
3413 logvar |= ca_red;
3414 rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar,
3415 __LINE__, 2);
3416}
3417
3418static void
3420 uint32_t rtt, uint32_t line, uint8_t reas)
3421{
3422 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3423 union tcp_log_stackspecific log;
3424 struct timeval tv;
3425
3426 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
3427 log.u_bbr.flex1 = line;
3430 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3431 log.u_bbr.flex5 = rtt;
3432 log.u_bbr.flex6 = rack->rc_highly_buffered;
3433 log.u_bbr.flex6 <<= 1;
3434 log.u_bbr.flex6 |= rack->forced_ack;
3435 log.u_bbr.flex6 <<= 1;
3436 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
3437 log.u_bbr.flex6 <<= 1;
3438 log.u_bbr.flex6 |= rack->in_probe_rtt;
3439 log.u_bbr.flex6 <<= 1;
3440 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
3444 log.u_bbr.flex8 = reas;
3445 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3446 log.u_bbr.delRate = rack_get_bw(rack);
3448 log.u_bbr.cur_del_rate <<= 32;
3451 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3452 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3453 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3454 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3457 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3458 log.u_bbr.rttProp = us_cts;
3459 log.u_bbr.rttProp <<= 32;
3460 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
3461 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3462 &rack->rc_inp->inp_socket->so_rcv,
3463 &rack->rc_inp->inp_socket->so_snd,
3465 0, &log, false, &rack->r_ctl.act_rcv_time);
3466 }
3467}
3468
3469static void
3471{
3472 uint64_t bwdp;
3473
3474 bwdp = rack_get_bw(rack);
3475 bwdp *= (uint64_t)rtt;
3476 bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
3477 rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
3478 if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
3479 /*
3480 * A window protocol must be able to have 4 packets
3481 * outstanding as the floor in order to function
3482 * (especially considering delayed ack :D).
3483 */
3485 }
3486}
3487
3488static void
3490{
3503 uint32_t segsiz;
3504
3505 if (rack->rc_gp_dyn_mul == 0)
3506 return;
3507
3508 if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
3509 /* We are idle */
3510 return;
3511 }
3512 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3513 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3514 /*
3515 * Stop the goodput now, the idea here is
3516 * that future measurements with in_probe_rtt
3517 * won't register if they are not greater so
3518 * we want to get what info (if any) is available
3519 * now.
3520 */
3522 rack->rc_tp->snd_una, __LINE__,
3524 }
3526 rack->r_ctl.rc_time_probertt_entered = us_cts;
3527 segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3528 rack->r_ctl.rc_pace_min_segs);
3529 rack->in_probe_rtt = 1;
3530 rack->measure_saw_probe_rtt = 1;
3531 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3533 rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
3535 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3536 else
3537 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
3538 rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3539 __LINE__, RACK_RTTS_ENTERPROBE);
3540}
3541
3542static void
3544{
3545 struct rack_sendmap *rsm;
3546 uint32_t segsiz;
3547
3548 segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3549 rack->r_ctl.rc_pace_min_segs);
3550 rack->in_probe_rtt = 0;
3551 if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3552 SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3553 /*
3554 * Stop the goodput now, the idea here is
3555 * that future measurements with in_probe_rtt
3556 * won't register if they are not greater so
3557 * we want to get what info (if any) is available
3558 * now.
3559 */
3561 rack->rc_tp->snd_una, __LINE__,
3563 } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
3564 /*
3565 * We don't have enough data to make a measurement.
3566 * So lets just stop and start here after exiting
3567 * probe-rtt. We probably are not interested in
3568 * the results anyway.
3569 */
3570 rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
3571 }
3572 /*
3573 * Measurements through the current snd_max are going
3574 * to be limited by the slower pacing rate.
3575 *
3576 * We need to mark these as app-limited so we
3577 * don't collapse the b/w.
3578 */
3579 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3580 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
3581 if (rack->r_ctl.rc_app_limited_cnt == 0)
3582 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
3583 else {
3584 /*
3585 * Go out to the end app limited and mark
3586 * this new one as next and move the end_appl up
3587 * to this guy.
3588 */
3589 if (rack->r_ctl.rc_end_appl)
3590 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
3591 rack->r_ctl.rc_end_appl = rsm;
3592 }
3593 rsm->r_flags |= RACK_APP_LIMITED;
3594 rack->r_ctl.rc_app_limited_cnt++;
3595 }
3596 /*
3597 * Now, we need to examine our pacing rate multipliers.
3598 * If its under 100%, we need to kick it back up to
3599 * 100%. We also don't let it be over our "max" above
3600 * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3601 * Note setting clamp_atexit_prtt to 0 has the effect
3602 * of setting CA/SS to 100% always at exit (which is
3603 * the default behavior).
3604 */
3606 rack->rc_gp_incr = 0;
3607 rack->rc_gp_bwred = 0;
3608 rack->rc_gp_timely_inc_cnt = 0;
3609 rack->rc_gp_timely_dec_cnt = 0;
3610 }
3611 /* Do we do any clamping at exit? */
3615 }
3616 if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3619 }
3620 /*
3621 * Lets set rtt_diff to 0, so that we will get a "boost"
3622 * after exiting.
3623 */
3624 rack->r_ctl.rc_rtt_diff = 0;
3625
3626 /* Clear all flags so we start fresh */
3627 rack->rc_tp->t_bytes_acked = 0;
3628 rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND;
3629 /*
3630 * If configured to, set the cwnd and ssthresh to
3631 * our targets.
3632 */
3634 uint64_t ebdp;
3635 uint32_t setto;
3636
3637 /* Set ssthresh so we get into CA once we hit our target */
3639 /* Set to min rtt */
3640 rack_set_prtt_target(rack, segsiz,
3641 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3642 } else if (rack_probertt_use_min_rtt_exit == 2) {
3643 /* Set to current gp rtt */
3644 rack_set_prtt_target(rack, segsiz,
3645 rack->r_ctl.rc_gp_srtt);
3646 } else if (rack_probertt_use_min_rtt_exit == 3) {
3647 /* Set to entry gp rtt */
3648 rack_set_prtt_target(rack, segsiz,
3649 rack->r_ctl.rc_entry_gp_rtt);
3650 } else {
3651 uint64_t sum;
3652 uint32_t setval;
3653
3654 sum = rack->r_ctl.rc_entry_gp_rtt;
3655 sum *= 10;
3656 sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3657 if (sum >= 20) {
3658 /*
3659 * A highly buffered path needs
3660 * cwnd space for timely to work.
3661 * Lets set things up as if
3662 * we are heading back here again.
3663 */
3664 setval = rack->r_ctl.rc_entry_gp_rtt;
3665 } else if (sum >= 15) {
3666 /*
3667 * Lets take the smaller of the
3668 * two since we are just somewhat
3669 * buffered.
3670 */
3671 setval = rack->r_ctl.rc_gp_srtt;
3672 if (setval > rack->r_ctl.rc_entry_gp_rtt)
3673 setval = rack->r_ctl.rc_entry_gp_rtt;
3674 } else {
3675 /*
3676 * Here we are not highly buffered
3677 * and should pick the min we can to
3678 * keep from causing loss.
3679 */
3680 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3681 }
3682 rack_set_prtt_target(rack, segsiz,
3683 setval);
3684 }
3685 if (rack_probe_rtt_sets_cwnd > 1) {
3686 /* There is a percentage here to boost */
3687 ebdp = rack->r_ctl.rc_target_probertt_flight;
3689 ebdp /= 100;
3690 setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3691 } else
3692 setto = rack->r_ctl.rc_target_probertt_flight;
3693 rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3694 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3695 /* Enforce a min */
3696 rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3697 }
3698 /* If we set in the cwnd also set the ssthresh point so we are in CA */
3699 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3700 }
3701 rack_log_rtt_shrinks(rack, us_cts,
3702 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3703 __LINE__, RACK_RTTS_EXITPROBE);
3704 /* Clear times last so log has all the info */
3706 rack->r_ctl.rc_time_probertt_entered = us_cts;
3708 rack->r_ctl.rc_time_of_last_probertt = us_cts;
3709}
3710
3711static void
3713{
3714 /* Check in on probe-rtt */
3715 if (rack->rc_gp_filled == 0) {
3716 /* We do not do p-rtt unless we have gp measurements */
3717 return;
3718 }
3719 if (rack->in_probe_rtt) {
3720 uint64_t no_overflow;
3721 uint32_t endtime, must_stay;
3722
3723 if (rack->r_ctl.rc_went_idle_time &&
3724 ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3725 /*
3726 * We went idle during prtt, just exit now.
3727 */
3728 rack_exit_probertt(rack, us_cts);
3729 } else if (rack_probe_rtt_safety_val &&
3730 TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3732 /*
3733 * Probe RTT safety value triggered!
3734 */
3735 rack_log_rtt_shrinks(rack, us_cts,
3736 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3737 __LINE__, RACK_RTTS_SAFETY);
3738 rack_exit_probertt(rack, us_cts);
3739 }
3740 /* Calculate the max we will wait */
3742 if (rack->rc_highly_buffered)
3743 endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3744 /* Calculate the min we must wait */
3745 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3747 TSTMP_LT(us_cts, endtime)) {
3748 uint32_t calc;
3749 /* Do we lower more? */
3750no_exit:
3751 if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3752 calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3753 else
3754 calc = 0;
3755 calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3756 if (calc) {
3757 /* Maybe */
3760 /* Limit it too */
3763 }
3764 /* We must reach target or the time set */
3765 return;
3766 }
3767 if (rack->r_ctl.rc_time_probertt_starts == 0) {
3768 if ((TSTMP_LT(us_cts, must_stay) &&
3769 rack->rc_highly_buffered) ||
3770 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3772 /* We are not past the must_stay time */
3773 goto no_exit;
3774 }
3775 rack_log_rtt_shrinks(rack, us_cts,
3776 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3777 __LINE__, RACK_RTTS_REACHTARGET);
3778 rack->r_ctl.rc_time_probertt_starts = us_cts;
3779 if (rack->r_ctl.rc_time_probertt_starts == 0)
3781 /* Restore back to our rate we want to pace at in prtt */
3783 }
3784 /*
3785 * Setup our end time, some number of gp_srtts plus 200ms.
3786 */
3787 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3790 endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3791 else
3792 endtime = 0;
3793 endtime += rack_min_probertt_hold;
3794 endtime += rack->r_ctl.rc_time_probertt_starts;
3795 if (TSTMP_GEQ(us_cts, endtime)) {
3796 /* yes, exit probertt */
3797 rack_exit_probertt(rack, us_cts);
3798 }
3799
3800 } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3801 /* Go into probertt, its been too long since we went lower */
3802 rack_enter_probertt(rack, us_cts);
3803 }
3804}
3805
3806static void
3807rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3808 uint32_t rtt, int32_t rtt_diff)
3809{
3810 uint64_t cur_bw, up_bnd, low_bnd, subfr;
3811 uint32_t losses;
3812
3813 if ((rack->rc_gp_dyn_mul == 0) ||
3814 (rack->use_fixed_rate) ||
3815 (rack->in_probe_rtt) ||
3816 (rack->rc_always_pace == 0)) {
3817 /* No dynamic GP multipler in play */
3818 return;
3819 }
3820 losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3821 cur_bw = rack_get_bw(rack);
3822 /* Calculate our up and down range */
3823 up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3824 up_bnd /= 100;
3825 up_bnd += rack->r_ctl.last_gp_comp_bw;
3826
3827 subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3828 subfr /= 100;
3829 low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3830 if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3831 /*
3832 * This is the case where our RTT is above
3833 * the max target and we have been configured
3834 * to just do timely no bonus up stuff in that case.
3835 *
3836 * There are two configurations, set to 1, and we
3837 * just do timely if we are over our max. If its
3838 * set above 1 then we slam the multipliers down
3839 * to 100 and then decrement per timely.
3840 */
3841 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3842 __LINE__, 3);
3843 if (rack->r_ctl.rc_no_push_at_mrtt > 1)
3845 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3846 } else if ((last_bw_est < low_bnd) && !losses) {
3847 /*
3848 * We are decreasing this is a bit complicated this
3849 * means we are loosing ground. This could be
3850 * because another flow entered and we are competing
3851 * for b/w with it. This will push the RTT up which
3852 * makes timely unusable unless we want to get shoved
3853 * into a corner and just be backed off (the age
3854 * old problem with delay based CC).
3855 *
3856 * On the other hand if it was a route change we
3857 * would like to stay somewhat contained and not
3858 * blow out the buffers.
3859 */
3860 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3861 __LINE__, 3);
3862 rack->r_ctl.last_gp_comp_bw = cur_bw;
3863 if (rack->rc_gp_bwred == 0) {
3864 /* Go into reduction counting */
3865 rack->rc_gp_bwred = 1;
3866 rack->rc_gp_timely_dec_cnt = 0;
3867 }
3869 (timely_says == 0)) {
3870 /*
3871 * Push another time with a faster pacing
3872 * to try to gain back (we include override to
3873 * get a full raise factor).
3874 */
3877 (timely_says == 0) ||
3878 (rack_down_raise_thresh == 0)) {
3879 /*
3880 * Do an override up in b/w if we were
3881 * below the threshold or if the threshold
3882 * is zero we always do the raise.
3883 */
3884 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
3885 } else {
3886 /* Log it stays the same */
3887 rack_log_timely(rack, 0, last_bw_est, low_bnd, 0,
3888 __LINE__, 11);
3889 }
3890 rack->rc_gp_timely_dec_cnt++;
3891 /* We are not incrementing really no-count */
3892 rack->rc_gp_incr = 0;
3893 rack->rc_gp_timely_inc_cnt = 0;
3894 } else {
3895 /*
3896 * Lets just use the RTT
3897 * information and give up
3898 * pushing.
3899 */
3900 goto use_timely;
3901 }
3902 } else if ((timely_says != 2) &&
3903 !losses &&
3904 (last_bw_est > up_bnd)) {
3905 /*
3906 * We are increasing b/w lets keep going, updating
3907 * our b/w and ignoring any timely input, unless
3908 * of course we are at our max raise (if there is one).
3909 */
3910
3911 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3912 __LINE__, 3);
3913 rack->r_ctl.last_gp_comp_bw = cur_bw;
3914 if (rack->rc_gp_saw_ss &&
3917 /*
3918 * In cases where we can't go higher
3919 * we should just use timely.
3920 */
3921 goto use_timely;
3922 }
3923 if (rack->rc_gp_saw_ca &&
3926 /*
3927 * In cases where we can't go higher
3928 * we should just use timely.
3929 */
3930 goto use_timely;
3931 }
3932 rack->rc_gp_bwred = 0;
3933 rack->rc_gp_timely_dec_cnt = 0;
3934 /* You get a set number of pushes if timely is trying to reduce */
3935 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
3936 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3937 } else {
3938 /* Log it stays the same */
3939 rack_log_timely(rack, 0, last_bw_est, up_bnd, 0,
3940 __LINE__, 12);
3941 }
3942 return;
3943 } else {
3944 /*
3945 * We are staying between the lower and upper range bounds
3946 * so use timely to decide.
3947 */
3948 rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd,
3949 __LINE__, 3);
3950use_timely:
3951 if (timely_says) {
3952 rack->rc_gp_incr = 0;
3953 rack->rc_gp_timely_inc_cnt = 0;
3955 !losses &&
3956 (last_bw_est < low_bnd)) {
3957 /* We are loosing ground */
3958 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3959 rack->rc_gp_timely_dec_cnt++;
3960 /* We are not incrementing really no-count */
3961 rack->rc_gp_incr = 0;
3962 rack->rc_gp_timely_inc_cnt = 0;
3963 } else
3964 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3965 } else {
3966 rack->rc_gp_bwred = 0;
3967 rack->rc_gp_timely_dec_cnt = 0;
3968 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3969 }
3970 }
3971}
3972
3973static int32_t
3974rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
3975{
3976 int32_t timely_says;
3977 uint64_t log_mult, log_rtt_a_diff;
3978
3979 log_rtt_a_diff = rtt;
3980 log_rtt_a_diff <<= 32;
3981 log_rtt_a_diff |= (uint32_t)rtt_diff;
3982 if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
3984 /* Reduce the b/w multipler */
3985 timely_says = 2;
3986 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3987 log_mult <<= 32;
3988 log_mult |= prev_rtt;
3989 rack_log_timely(rack, timely_says, log_mult,
3990 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3991 log_rtt_a_diff, __LINE__, 4);
3992 } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3993 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3994 max(rack_gp_rtt_mindiv , 1)))) {
3995 /* Increase the b/w multipler */
3996 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3997 ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3998 max(rack_gp_rtt_mindiv , 1));
3999 log_mult <<= 32;
4000 log_mult |= prev_rtt;
4001 timely_says = 0;
4002 rack_log_timely(rack, timely_says, log_mult ,
4003 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4004 log_rtt_a_diff, __LINE__, 5);
4005 } else {
4006 /*
4007 * Use a gradient to find it the timely gradient
4008 * is:
4009 * grad = rc_rtt_diff / min_rtt;
4010 *
4011 * anything below or equal to 0 will be
4012 * a increase indication. Anything above
4013 * zero is a decrease. Note we take care
4014 * of the actual gradient calculation
4015 * in the reduction (its not needed for
4016 * increase).
4017 */
4018 log_mult = prev_rtt;
4019 if (rtt_diff <= 0) {
4020 /*
4021 * Rttdiff is less than zero, increase the
4022 * b/w multipler (its 0 or negative)
4023 */
4024 timely_says = 0;
4025 rack_log_timely(rack, timely_says, log_mult,
4026 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
4027 } else {
4028 /* Reduce the b/w multipler */
4029 timely_says = 1;
4030 rack_log_timely(rack, timely_says, log_mult,
4031 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
4032 }
4033 }
4034 return (timely_says);
4035}
4036
4037static void
4039 tcp_seq th_ack, int line, uint8_t quality)
4040{
4041 uint64_t tim, bytes_ps, ltim, stim, utim;
4042 uint32_t segsiz, bytes, reqbytes, us_cts;
4043 int32_t gput, new_rtt_diff, timely_says;
4044 uint64_t resid_bw, subpart = 0, addpart = 0, srtt;
4045 int did_add = 0;
4046
4047 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4048 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4049 if (TSTMP_GEQ(us_cts, tp->gput_ts))
4050 tim = us_cts - tp->gput_ts;
4051 else
4052 tim = 0;
4053 if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts)
4054 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
4055 else
4056 stim = 0;
4057 /*
4058 * Use the larger of the send time or ack time. This prevents us
4059 * from being influenced by ack artifacts to come up with too
4060 * high of measurement. Note that since we are spanning over many more
4061 * bytes in most of our measurements hopefully that is less likely to
4062 * occur.
4063 */
4064 if (tim > stim)
4065 utim = max(tim, 1);
4066 else
4067 utim = max(stim, 1);
4068 /* Lets get a msec time ltim too for the old stuff */
4069 ltim = max(1, (utim / HPTS_USEC_IN_MSEC));
4070 gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
4071 reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
4072 if ((tim == 0) && (stim == 0)) {
4073 /*
4074 * Invalid measurement time, maybe
4075 * all on one ack/one send?
4076 */
4077 bytes = 0;
4078 bytes_ps = 0;
4079 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4080 0, 0, 0, 10, __LINE__, NULL, quality);
4081 goto skip_measurement;
4082 }
4083 if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
4084 /* We never made a us_rtt measurement? */
4085 bytes = 0;
4086 bytes_ps = 0;
4087 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4088 0, 0, 0, 10, __LINE__, NULL, quality);
4089 goto skip_measurement;
4090 }
4091 /*
4092 * Calculate the maximum possible b/w this connection
4093 * could have. We base our calculation on the lowest
4094 * rtt we have seen during the measurement and the
4095 * largest rwnd the client has given us in that time. This
4096 * forms a BDP that is the maximum that we could ever
4097 * get to the client. Anything larger is not valid.
4098 *
4099 * I originally had code here that rejected measurements
4100 * where the time was less than 1/2 the latest us_rtt.
4101 * But after thinking on that I realized its wrong since
4102 * say you had a 150Mbps or even 1Gbps link, and you
4103 * were a long way away.. example I am in Europe (100ms rtt)
4104 * talking to my 1Gbps link in S.C. Now measuring say 150,000
4105 * bytes my time would be 1.2ms, and yet my rtt would say
4106 * the measurement was invalid the time was < 50ms. The
4107 * same thing is true for 150Mb (8ms of time).
4108 *
4109 * A better way I realized is to look at what the maximum
4110 * the connection could possibly do. This is gated on
4111 * the lowest RTT we have seen and the highest rwnd.
4112 * We should in theory never exceed that, if we are
4113 * then something on the path is storing up packets
4114 * and then feeding them all at once to our endpoint
4115 * messing up our measurement.
4116 */
4117 rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
4119 rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
4120 if (SEQ_LT(th_ack, tp->gput_seq)) {
4121 /* No measurement can be made */
4122 bytes = 0;
4123 bytes_ps = 0;
4124 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4125 0, 0, 0, 10, __LINE__, NULL, quality);
4126 goto skip_measurement;
4127 } else
4128 bytes = (th_ack - tp->gput_seq);
4129 bytes_ps = (uint64_t)bytes;
4130 /*
4131 * Don't measure a b/w for pacing unless we have gotten at least
4132 * an initial windows worth of data in this measurement interval.
4133 *
4134 * Small numbers of bytes get badly influenced by delayed ack and
4135 * other artifacts. Note we take the initial window or our
4136 * defined minimum GP (defaulting to 10 which hopefully is the
4137 * IW).
4138 */
4139 if (rack->rc_gp_filled == 0) {
4140 /*
4141 * The initial estimate is special. We
4142 * have blasted out an IW worth of packets
4143 * without a real valid ack ts results. We
4144 * then setup the app_limited_needs_set flag,
4145 * this should get the first ack in (probably 2
4146 * MSS worth) to be recorded as the timestamp.
4147 * We thus allow a smaller number of bytes i.e.
4148 * IW - 2MSS.
4149 */
4150 reqbytes -= (2 * segsiz);
4151 /* Also lets fill previous for our first measurement to be neutral */
4152 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4153 }
4154 if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
4155 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4157 0, 0, 10, __LINE__, NULL, quality);
4158 goto skip_measurement;
4159 }
4160 /*
4161 * We now need to calculate the Timely like status so
4162 * we can update (possibly) the b/w multipliers.
4163 */
4164 new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
4165 if (rack->rc_gp_filled == 0) {
4166 /* No previous reading */
4167 rack->r_ctl.rc_rtt_diff = new_rtt_diff;
4168 } else {
4169 if (rack->measure_saw_probe_rtt == 0) {
4170 /*
4171 * We don't want a probertt to be counted
4172 * since it will be negative incorrectly. We
4173 * expect to be reducing the RTT when we
4174 * pace at a slower rate.
4175 */
4176 rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
4177 rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
4178 }
4179 }
4180 timely_says = rack_make_timely_judgement(rack,
4181 rack->r_ctl.rc_gp_srtt,
4182 rack->r_ctl.rc_rtt_diff,
4184 );
4185 bytes_ps *= HPTS_USEC_IN_SEC;
4186 bytes_ps /= utim;
4187 if (bytes_ps > rack->r_ctl.last_max_bw) {
4188 /*
4189 * Something is on path playing
4190 * since this b/w is not possible based
4191 * on our BDP (highest rwnd and lowest rtt
4192 * we saw in the measurement window).
4193 *
4194 * Another option here would be to
4195 * instead skip the measurement.
4196 */
4197 rack_log_pacing_delay_calc(rack, bytes, reqbytes,
4198 bytes_ps, rack->r_ctl.last_max_bw, 0,
4199 11, __LINE__, NULL, quality);
4200 bytes_ps = rack->r_ctl.last_max_bw;
4201 }
4202 /* We store gp for b/w in bytes per second */
4203 if (rack->rc_gp_filled == 0) {
4204 /* Initial measurement */
4205 if (bytes_ps) {
4206 rack->r_ctl.gp_bw = bytes_ps;
4207 rack->rc_gp_filled = 1;
4208 rack->r_ctl.num_measurements = 1;
4209 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
4210 } else {
4211 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4213 0, 0, 10, __LINE__, NULL, quality);
4214 }
4215 if (tcp_in_hpts(rack->rc_inp) &&
4217 /*
4218 * Ok we can't trust the pacer in this case
4219 * where we transition from un-paced to paced.
4220 * Or for that matter when the burst mitigation
4221 * was making a wild guess and got it wrong.
4222 * Stop the pacer and clear up all the aggregate
4223 * delays etc.
4224 */
4225 tcp_hpts_remove(rack->rc_inp);
4226 rack->r_ctl.rc_hpts_flags = 0;
4227 rack->r_ctl.rc_last_output_to = 0;
4228 }
4229 did_add = 2;
4230 } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) {
4231 /* Still a small number run an average */
4232 rack->r_ctl.gp_bw += bytes_ps;
4233 addpart = rack->r_ctl.num_measurements;
4234 rack->r_ctl.num_measurements++;
4235 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
4236 /* We have collected enought to move forward */
4237 rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements;
4238 }
4239 did_add = 3;
4240 } else {
4241 /*
4242 * We want to take 1/wma of the goodput and add in to 7/8th
4243 * of the old value weighted by the srtt. So if your measurement
4244 * period is say 2 SRTT's long you would get 1/4 as the
4245 * value, if it was like 1/2 SRTT then you would get 1/16th.
4246 *
4247 * But we must be careful not to take too much i.e. if the
4248 * srtt is say 20ms and the measurement is taken over
4249 * 400ms our weight would be 400/20 i.e. 20. On the
4250 * other hand if we get a measurement over 1ms with a
4251 * 10ms rtt we only want to take a much smaller portion.
4252 */
4253 if (rack->r_ctl.num_measurements < 0xff) {
4254 rack->r_ctl.num_measurements++;
4255 }
4256 srtt = (uint64_t)tp->t_srtt;
4257 if (srtt == 0) {
4258 /*
4259 * Strange why did t_srtt go back to zero?
4260 */
4261 if (rack->r_ctl.rc_rack_min_rtt)
4262 srtt = rack->r_ctl.rc_rack_min_rtt;
4263 else
4264 srtt = HPTS_USEC_IN_MSEC;
4265 }
4266 /*
4267 * XXXrrs: Note for reviewers, in playing with
4268 * dynamic pacing I discovered this GP calculation
4269 * as done originally leads to some undesired results.
4270 * Basically you can get longer measurements contributing
4271 * too much to the WMA. Thus I changed it if you are doing
4272 * dynamic adjustments to only do the aportioned adjustment
4273 * if we have a very small (time wise) measurement. Longer
4274 * measurements just get there weight (defaulting to 1/8)
4275 * add to the WMA. We may want to think about changing
4276 * this to always do that for both sides i.e. dynamic
4277 * and non-dynamic... but considering lots of folks
4278 * were playing with this I did not want to change the
4279 * calculation per.se. without your thoughts.. Lawerence?
4280 * Peter??
4281 */
4282 if (rack->rc_gp_dyn_mul == 0) {
4283 subpart = rack->r_ctl.gp_bw * utim;
4284 subpart /= (srtt * 8);
4285 if (subpart < (rack->r_ctl.gp_bw / 2)) {
4286 /*
4287 * The b/w update takes no more
4288 * away then 1/2 our running total
4289 * so factor it in.
4290 */
4291 addpart = bytes_ps * utim;
4292 addpart /= (srtt * 8);
4293 } else {
4294 /*
4295 * Don't allow a single measurement
4296 * to account for more than 1/2 of the
4297 * WMA. This could happen on a retransmission
4298 * where utim becomes huge compared to
4299 * srtt (multiple retransmissions when using
4300 * the sending rate which factors in all the
4301 * transmissions from the first one).
4302 */
4303 subpart = rack->r_ctl.gp_bw / 2;
4304 addpart = bytes_ps / 2;
4305 }
4306 resid_bw = rack->r_ctl.gp_bw - subpart;
4307 rack->r_ctl.gp_bw = resid_bw + addpart;
4308 did_add = 1;
4309 } else {
4310 if ((utim / srtt) <= 1) {
4311 /*
4312 * The b/w update was over a small period
4313 * of time. The idea here is to prevent a small
4314 * measurement time period from counting
4315 * too much. So we scale it based on the
4316 * time so it attributes less than 1/rack_wma_divisor
4317 * of its measurement.
4318 */
4319 subpart = rack->r_ctl.gp_bw * utim;
4320 subpart /= (srtt * rack_wma_divisor);
4321 addpart = bytes_ps * utim;
4322 addpart /= (srtt * rack_wma_divisor);
4323 } else {
4324 /*
4325 * The scaled measurement was long
4326 * enough so lets just add in the
4327 * portion of the measurement i.e. 1/rack_wma_divisor
4328 */
4329 subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
4330 addpart = bytes_ps / rack_wma_divisor;
4331 }
4332 if ((rack->measure_saw_probe_rtt == 0) ||
4333 (bytes_ps > rack->r_ctl.gp_bw)) {
4334 /*
4335 * For probe-rtt we only add it in
4336 * if its larger, all others we just
4337 * add in.
4338 */
4339 did_add = 1;
4340 resid_bw = rack->r_ctl.gp_bw - subpart;
4341 rack->r_ctl.gp_bw = resid_bw + addpart;
4342 }
4343 }
4344 }
4345 if ((rack->gp_ready == 0) &&
4346 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
4347 /* We have enough measurements now */
4348 rack->gp_ready = 1;
4349 rack_set_cc_pacing(rack);
4350 if (rack->defer_options)
4352 }
4353 rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim,
4354 rack_get_bw(rack), 22, did_add, NULL, quality);
4355 /* We do not update any multipliers if we are in or have seen a probe-rtt */
4356 if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
4357 rack_update_multiplier(rack, timely_says, bytes_ps,
4358 rack->r_ctl.rc_gp_srtt,
4359 rack->r_ctl.rc_rtt_diff);
4360 rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
4361 rack_get_bw(rack), 3, line, NULL, quality);
4362 /* reset the gp srtt and setup the new prev */
4363 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4364 /* Record the lost count for the next measurement */
4366 /*
4367 * We restart our diffs based on the gpsrtt in the
4368 * measurement window.
4369 */
4370 rack->rc_gp_rtt_set = 0;
4371 rack->rc_gp_saw_rec = 0;
4372 rack->rc_gp_saw_ca = 0;
4373 rack->rc_gp_saw_ss = 0;
4374 rack->rc_dragged_bottom = 0;
4375skip_measurement:
4376
4377#ifdef STATS
4378 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
4379 gput);
4380 /*
4381 * XXXLAS: This is a temporary hack, and should be
4382 * chained off VOI_TCP_GPUT when stats(9) grows an
4383 * API to deal with chained VOIs.
4384 */
4385 if (tp->t_stats_gput_prev > 0)
4386 stats_voi_update_abs_s32(tp->t_stats,
4388 ((gput - tp->t_stats_gput_prev) * 100) /
4389 tp->t_stats_gput_prev);
4390#endif
4391 tp->t_flags &= ~TF_GPUTINPROG;
4392 tp->t_stats_gput_prev = gput;
4393 /*
4394 * Now are we app limited now and there is space from where we
4395 * were to where we want to go?
4396 *
4397 * We don't do the other case i.e. non-applimited here since
4398 * the next send will trigger us picking up the missing data.
4399 */
4400 if (rack->r_ctl.rc_first_appl &&
4402 rack->r_ctl.rc_app_limited_cnt &&
4403 (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
4404 ((rack->r_ctl.rc_first_appl->r_end - th_ack) >
4405 max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
4406 /*
4407 * Yep there is enough outstanding to make a measurement here.
4408 */
4409 struct rack_sendmap *rsm, fe;
4410
4411 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
4412 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
4414 rack->app_limited_needs_set = 0;
4415 tp->gput_seq = th_ack;
4416 if (rack->in_probe_rtt)
4417 rack->measure_saw_probe_rtt = 1;
4418 else if ((rack->measure_saw_probe_rtt) &&
4420 rack->measure_saw_probe_rtt = 0;
4421 if ((rack->r_ctl.rc_first_appl->r_end - th_ack) >= rack_get_measure_window(tp, rack)) {
4422 /* There is a full window to gain info from */
4423 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
4424 } else {
4425 /* We can only measure up to the applimited point */
4426 tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_end - th_ack);
4427 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
4428 /*
4429 * We don't have enough to make a measurement.
4430 */
4431 tp->t_flags &= ~TF_GPUTINPROG;
4433 0, 0, 0, 6, __LINE__, NULL, quality);
4434 return;
4435 }
4436 }
4437 if (tp->t_state >= TCPS_FIN_WAIT_1) {
4438 /*
4439 * We will get no more data into the SB
4440 * this means we need to have the data available
4441 * before we start a measurement.
4442 */
4443 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) < (tp->gput_ack - tp->gput_seq)) {
4444 /* Nope not enough data. */
4445 return;
4446 }
4447 }
4448 tp->t_flags |= TF_GPUTINPROG;
4449 /*
4450 * Now we need to find the timestamp of the send at tp->gput_seq
4451 * for the send based measurement.
4452 */
4453 fe.r_start = tp->gput_seq;
4454 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4455 if (rsm) {
4456 /* Ok send-based limit is set */
4457 if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
4458 /*
4459 * Move back to include the earlier part
4460 * so our ack time lines up right (this may
4461 * make an overlapping measurement but thats
4462 * ok).
4463 */
4464 tp->gput_seq = rsm->r_start;
4465 }
4466 if (rsm->r_flags & RACK_ACKED)
4467 tp->gput_ts = (uint32_t)rsm->r_ack_arrival;
4468 else
4469 rack->app_limited_needs_set = 1;
4470 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
4471 } else {
4472 /*
4473 * If we don't find the rsm due to some
4474 * send-limit set the current time, which
4475 * basically disables the send-limit.
4476 */
4477 struct timeval tv;
4478
4479 microuptime(&tv);
4481 }
4483 tp->gput_seq,
4484 tp->gput_ack,
4485 (uint64_t)rsm,
4486 tp->gput_ts,
4488 9,
4489 __LINE__, NULL, quality);
4490 }
4491}
4492
4493/*
4494 * CC wrapper hook functions
4495 */
4496static void
4497rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs,
4498 uint16_t type, int32_t recovery)
4499{
4500 uint32_t prior_cwnd, acked;
4501 struct tcp_log_buffer *lgb = NULL;
4502 uint8_t labc_to_use, quality;
4503
4505 tp->ccv->nsegs = nsegs;
4506 acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una);
4507 if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
4508 uint32_t max;
4509
4511 if (tp->ccv->bytes_this_ack > max) {
4512 tp->ccv->bytes_this_ack = max;
4513 }
4514 }
4515#ifdef STATS
4516 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
4517 ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
4518#endif
4519 quality = RACK_QUALITY_NONE;
4520 if ((tp->t_flags & TF_GPUTINPROG) &&
4521 rack_enough_for_measurement(tp, rack, th_ack, &quality)) {
4522 /* Measure the Goodput */
4523 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__, quality);
4524#ifdef NETFLIX_PEAKRATE
4525 if ((type == CC_ACK) &&
4526 (tp->t_maxpeakrate)) {
4527 /*
4528 * We update t_peakrate_thr. This gives us roughly
4529 * one update per round trip time. Note
4530 * it will only be used if pace_always is off i.e
4531 * we don't do this for paced flows.
4532 */
4533 rack_update_peakrate_thr(tp);
4534 }
4535#endif
4536 }
4537 /* Which way our we limited, if not cwnd limited no advance in CA */
4538 if (tp->snd_cwnd <= tp->snd_wnd)
4539 tp->ccv->flags |= CCF_CWND_LIMITED;
4540 else
4541 tp->ccv->flags &= ~CCF_CWND_LIMITED;
4542 if (tp->snd_cwnd > tp->snd_ssthresh) {
4543 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
4544 nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
4545 /* For the setting of a window past use the actual scwnd we are using */
4546 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
4547 tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
4548 tp->ccv->flags |= CCF_ABC_SENTAWND;
4549 }
4550 } else {
4551 tp->ccv->flags &= ~CCF_ABC_SENTAWND;
4552 tp->t_bytes_acked = 0;
4553 }
4554 prior_cwnd = tp->snd_cwnd;
4555 if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec ||
4557 labc_to_use = rack->rc_labc;
4558 else
4559 labc_to_use = rack_max_abc_post_recovery;
4561 union tcp_log_stackspecific log;
4562 struct timeval tv;
4563
4564 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4565 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4566 log.u_bbr.flex1 = th_ack;
4567 log.u_bbr.flex2 = tp->ccv->flags;
4568 log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4569 log.u_bbr.flex4 = tp->ccv->nsegs;
4570 log.u_bbr.flex5 = labc_to_use;
4571 log.u_bbr.flex6 = prior_cwnd;
4573 log.u_bbr.flex8 = 1;
4574 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4575 0, &log, false, NULL, NULL, 0, &tv);
4576 }
4577 if (CC_ALGO(tp)->ack_received != NULL) {
4578 /* XXXLAS: Find a way to live without this */
4579 tp->ccv->curack = th_ack;
4580 tp->ccv->labc = labc_to_use;
4581 tp->ccv->flags |= CCF_USE_LOCAL_ABC;
4582 CC_ALGO(tp)->ack_received(tp->ccv, type);
4583 }
4584 if (lgb) {
4585 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd;
4586 }
4587 if (rack->r_must_retran) {
4588 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) {
4589 /*
4590 * We now are beyond the rxt point so lets disable
4591 * the flag.
4592 */
4593 rack->r_ctl.rc_out_at_rto = 0;
4594 rack->r_must_retran = 0;
4595 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) {
4596 /*
4597 * Only decrement the rc_out_at_rto if the cwnd advances
4598 * at least a whole segment. Otherwise next time the peer
4599 * acks, we won't be able to send this generaly happens
4600 * when we are in Congestion Avoidance.
4601 */
4602 if (acked <= rack->r_ctl.rc_out_at_rto){
4603 rack->r_ctl.rc_out_at_rto -= acked;
4604 } else {
4605 rack->r_ctl.rc_out_at_rto = 0;
4606 }
4607 }
4608 }
4609#ifdef STATS
4610 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
4611#endif
4612 if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
4614 }
4615#ifdef NETFLIX_PEAKRATE
4616 /* we enforce max peak rate if it is set and we are not pacing */
4617 if ((rack->rc_always_pace == 0) &&
4618 tp->t_peakrate_thr &&
4619 (tp->snd_cwnd > tp->t_peakrate_thr)) {
4620 tp->snd_cwnd = tp->t_peakrate_thr;
4621 }
4622#endif
4623}
4624
4625static void
4627{
4628 struct tcp_rack *rack;
4629
4630 rack = (struct tcp_rack *)tp->t_fb_ptr;
4632 /*
4633 * If we are doing PRR and have enough
4634 * room to send <or> we are pacing and prr
4635 * is disabled we will want to see if we
4636 * can send data (by setting r_wanted_output to
4637 * true).
4638 */
4639 if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
4640 rack->rack_no_prr)
4641 rack->r_wanted_output = 1;
4642}
4643
4644static void
4646{
4647 struct tcp_rack *rack;
4648 uint32_t orig_cwnd;
4649
4650 orig_cwnd = tp->snd_cwnd;
4652 rack = (struct tcp_rack *)tp->t_fb_ptr;
4653 /* only alert CC if we alerted when we entered */
4654 if (CC_ALGO(tp)->post_recovery != NULL) {
4655 tp->ccv->curack = th_ack;
4656 CC_ALGO(tp)->post_recovery(tp->ccv);
4657 if (tp->snd_cwnd < tp->snd_ssthresh) {
4658 /*
4659 * Rack has burst control and pacing
4660 * so lets not set this any lower than
4661 * snd_ssthresh per RFC-6582 (option 2).
4662 */
4663 tp->snd_cwnd = tp->snd_ssthresh;
4664 }
4665 }
4667 union tcp_log_stackspecific log;
4668 struct timeval tv;
4669
4670 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4671 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4672 log.u_bbr.flex1 = th_ack;
4673 log.u_bbr.flex2 = tp->ccv->flags;
4674 log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4675 log.u_bbr.flex4 = tp->ccv->nsegs;
4677 log.u_bbr.flex6 = orig_cwnd;
4679 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
4680 log.u_bbr.flex8 = 2;
4681 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4682 0, &log, false, NULL, NULL, 0, &tv);
4683 }
4684 if ((rack->rack_no_prr == 0) &&
4685 (rack->no_prr_addback == 0) &&
4686 (rack->r_ctl.rc_prr_sndcnt > 0)) {
4687 /*
4688 * Suck the next prr cnt back into cwnd, but
4689 * only do that if we are not application limited.
4690 */
4691 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
4692 /*
4693 * We are allowed to add back to the cwnd the amount we did
4694 * not get out if:
4695 * a) no_prr_addback is off.
4696 * b) we are not app limited
4697 * c) we are doing prr
4698 * <and>
4699 * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none).
4700 */
4702 rack->r_ctl.rc_prr_sndcnt);
4703 }
4704 rack->r_ctl.rc_prr_sndcnt = 0;
4705 rack_log_to_prr(rack, 1, 0);
4706 }
4707 rack_log_to_prr(rack, 14, orig_cwnd);
4708 tp->snd_recover = tp->snd_una;
4709 if (rack->r_ctl.dsack_persist) {
4710 rack->r_ctl.dsack_persist--;
4711 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
4712 rack->r_ctl.num_dsack = 0;
4713 }
4714 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
4715 }
4717}
4718
4719static void
4721{
4722 struct tcp_rack *rack;
4723 uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd;
4724
4726#ifdef STATS
4727 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
4728#endif
4729 if (IN_RECOVERY(tp->t_flags) == 0) {
4730 in_rec_at_entry = 0;
4731 ssthresh_enter = tp->snd_ssthresh;
4732 cwnd_enter = tp->snd_cwnd;
4733 } else
4734 in_rec_at_entry = 1;
4735 rack = (struct tcp_rack *)tp->t_fb_ptr;
4736 switch (type) {
4737 case CC_NDUPACK:
4738 tp->t_flags &= ~TF_WASFRECOVERY;
4739 tp->t_flags &= ~TF_WASCRECOVERY;
4740 if (!IN_FASTRECOVERY(tp->t_flags)) {
4741 rack->r_ctl.rc_prr_delivered = 0;
4742 rack->r_ctl.rc_prr_out = 0;
4743 if (rack->rack_no_prr == 0) {
4745 rack_log_to_prr(rack, 2, in_rec_at_entry);
4746 }
4747 rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4748 tp->snd_recover = tp->snd_max;
4749 if (tp->t_flags2 & TF2_ECN_PERMIT)
4751 }
4752 break;
4753 case CC_ECN:
4754 if (!IN_CONGRECOVERY(tp->t_flags) ||
4755 /*
4756 * Allow ECN reaction on ACK to CWR, if
4757 * that data segment was also CE marked.
4758 */
4759 SEQ_GEQ(ack, tp->snd_recover)) {
4761 KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4762 tp->snd_recover = tp->snd_max + 1;
4763 if (tp->t_flags2 & TF2_ECN_PERMIT)
4765 }
4766 break;
4767 case CC_RTO:
4768 tp->t_dupacks = 0;
4769 tp->t_bytes_acked = 0;
4771 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4773 orig_cwnd = tp->snd_cwnd;
4774 tp->snd_cwnd = ctf_fixed_maxseg(tp);
4775 rack_log_to_prr(rack, 16, orig_cwnd);
4776 if (tp->t_flags2 & TF2_ECN_PERMIT)
4778 break;
4779 case CC_RTO_ERR:
4780 KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4781 /* RTO was unnecessary, so reset everything. */
4782 tp->snd_cwnd = tp->snd_cwnd_prev;
4784 tp->snd_recover = tp->snd_recover_prev;
4785 if (tp->t_flags & TF_WASFRECOVERY) {
4787 tp->t_flags &= ~TF_WASFRECOVERY;
4788 }
4789 if (tp->t_flags & TF_WASCRECOVERY) {
4791 tp->t_flags &= ~TF_WASCRECOVERY;
4792 }
4793 tp->snd_nxt = tp->snd_max;
4794 tp->t_badrxtwin = 0;
4795 break;
4796 }
4797 if ((CC_ALGO(tp)->cong_signal != NULL) &&
4798 (type != CC_RTO)){
4799 tp->ccv->curack = ack;
4800 CC_ALGO(tp)->cong_signal(tp->ccv, type);
4801 }
4802 if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) {
4803 rack_log_to_prr(rack, 15, cwnd_enter);
4804 rack->r_ctl.dsack_byte_cnt = 0;
4805 rack->r_ctl.retran_during_recovery = 0;
4806 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter;
4807 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter;
4808 rack->r_ent_rec_ns = 1;
4809 }
4810}
4811
4812static inline void
4813rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4814{
4815 uint32_t i_cwnd;
4816
4818
4819#ifdef NETFLIX_STATS
4820 KMOD_TCPSTAT_INC(tcps_idle_restarts);
4821 if (tp->t_state == TCPS_ESTABLISHED)
4822 KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4823#endif
4824 if (CC_ALGO(tp)->after_idle != NULL)
4825 CC_ALGO(tp)->after_idle(tp->ccv);
4826
4827 if (tp->snd_cwnd == 1)
4828 i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */
4829 else
4830 i_cwnd = rc_init_window(rack);
4831
4832 /*
4833 * Being idle is no different than the initial window. If the cc
4834 * clamps it down below the initial window raise it to the initial
4835 * window.
4836 */
4837 if (tp->snd_cwnd < i_cwnd) {
4838 tp->snd_cwnd = i_cwnd;
4839 }
4840}
4841
4842/*
4843 * Indicate whether this ack should be delayed. We can delay the ack if
4844 * following conditions are met:
4845 * - There is no delayed ack timer in progress.
4846 * - Our last ack wasn't a 0-sized window. We never want to delay
4847 * the ack that opens up a 0-sized window.
4848 * - LRO wasn't used for this segment. We make sure by checking that the
4849 * segment size is not larger than the MSS.
4850 * - Delayed acks are enabled or this is a half-synchronized T/TCP
4851 * connection.
4852 */
4853#define DELAY_ACK(tp, tlen) \
4854 (((tp->t_flags & TF_RXWIN0SENT) == 0) && \
4855 ((tp->t_flags & TF_DELACK) == 0) && \
4856 (tlen <= tp->t_maxseg) && \
4857 (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
4858
4859static struct rack_sendmap *
4861{
4862 struct rack_sendmap *rsm;
4863
4864 /*
4865 * Walk the time-order transmitted list looking for an rsm that is
4866 * not acked. This will be the one that was sent the longest time
4867 * ago that is still outstanding.
4868 */
4869 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
4870 if (rsm->r_flags & RACK_ACKED) {
4871 continue;
4872 }
4873 goto finish;
4874 }
4875finish:
4876 return (rsm);
4877}
4878
4879static struct rack_sendmap *
4881{
4882 struct rack_sendmap *prsm;
4883
4884 /*
4885 * Walk the sequence order list backward until we hit and arrive at
4886 * the highest seq not acked. In theory when this is called it
4887 * should be the last segment (which it was not).
4888 */
4889 prsm = rsm;
4890 RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
4891 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
4892 continue;
4893 }
4894 return (prsm);
4895 }
4896 return (NULL);
4897}
4898
4899static uint32_t
4901{
4902 int32_t lro;
4903 uint32_t thresh;
4904
4905 /*
4906 * lro is the flag we use to determine if we have seen reordering.
4907 * If it gets set we have seen reordering. The reorder logic either
4908 * works in one of two ways:
4909 *
4910 * If reorder-fade is configured, then we track the last time we saw
4911 * re-ordering occur. If we reach the point where enough time as
4912 * passed we no longer consider reordering has occuring.
4913 *
4914 * Or if reorder-face is 0, then once we see reordering we consider
4915 * the connection to alway be subject to reordering and just set lro
4916 * to 1.
4917 *
4918 * In the end if lro is non-zero we add the extra time for
4919 * reordering in.
4920 */
4921 if (srtt == 0)
4922 srtt = 1;
4923 if (rack->r_ctl.rc_reorder_ts) {
4924 if (rack->r_ctl.rc_reorder_fade) {
4925 if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
4926 lro = cts - rack->r_ctl.rc_reorder_ts;
4927 if (lro == 0) {
4928 /*
4929 * No time as passed since the last
4930 * reorder, mark it as reordering.
4931 */
4932 lro = 1;
4933 }
4934 } else {
4935 /* Negative time? */
4936 lro = 0;
4937 }
4938 if (lro > rack->r_ctl.rc_reorder_fade) {
4939 /* Turn off reordering seen too */
4940 rack->r_ctl.rc_reorder_ts = 0;
4941 lro = 0;
4942 }
4943 } else {
4944 /* Reodering does not fade */
4945 lro = 1;
4946 }
4947 } else {
4948 lro = 0;
4949 }
4950 if (rack->rc_rack_tmr_std_based == 0) {
4951 thresh = srtt + rack->r_ctl.rc_pkt_delay;
4952 } else {
4953 /* Standards based pkt-delay is 1/4 srtt */
4954 thresh = srtt + (srtt >> 2);
4955 }
4956 if (lro && (rack->rc_rack_tmr_std_based == 0)) {
4957 /* It must be set, if not you get 1/4 rtt */
4958 if (rack->r_ctl.rc_reorder_shift)
4959 thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
4960 else
4961 thresh += (srtt >> 2);
4962 }
4963 if (rack->rc_rack_use_dsack &&
4964 lro &&
4965 (rack->r_ctl.num_dsack > 0)) {
4966 /*
4967 * We only increase the reordering window if we
4968 * have seen reordering <and> we have a DSACK count.
4969 */
4970 thresh += rack->r_ctl.num_dsack * (srtt >> 2);
4971 rack_log_dsack_event(rack, 4, __LINE__, srtt, thresh);
4972 }
4973 /* SRTT * 2 is the ceiling */
4974 if (thresh > (srtt * 2)) {
4975 thresh = srtt * 2;
4976 }
4977 /* And we don't want it above the RTO max either */
4978 if (thresh > rack_rto_max) {
4979 thresh = rack_rto_max;
4980 }
4981 rack_log_dsack_event(rack, 6, __LINE__, srtt, thresh);
4982 return (thresh);
4983}
4984
4985static uint32_t
4986rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
4987 struct rack_sendmap *rsm, uint32_t srtt)
4988{
4989 struct rack_sendmap *prsm;
4990 uint32_t thresh, len;
4991 int segsiz;
4992
4993 if (srtt == 0)
4994 srtt = 1;
4995 if (rack->r_ctl.rc_tlp_threshold)
4996 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
4997 else
4998 thresh = (srtt * 2);
4999
5000 /* Get the previous sent packet, if any */
5001 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
5002 len = rsm->r_end - rsm->r_start;
5003 if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
5004 /* Exactly like the ID */
5005 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
5006 uint32_t alt_thresh;
5007 /*
5008 * Compensate for delayed-ack with the d-ack time.
5009 */
5010 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5011 if (alt_thresh > thresh)
5012 thresh = alt_thresh;
5013 }
5014 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
5015 /* 2.1 behavior */
5016 prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
5017 if (prsm && (len <= segsiz)) {
5018 /*
5019 * Two packets outstanding, thresh should be (2*srtt) +
5020 * possible inter-packet delay (if any).
5021 */
5022 uint32_t inter_gap = 0;
5023 int idx, nidx;
5024
5025 idx = rsm->r_rtr_cnt - 1;
5026 nidx = prsm->r_rtr_cnt - 1;
5027 if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) {
5028 /* Yes it was sent later (or at the same time) */
5029 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
5030 }
5031 thresh += inter_gap;
5032 } else if (len <= segsiz) {
5033 /*
5034 * Possibly compensate for delayed-ack.
5035 */
5036 uint32_t alt_thresh;
5037
5038 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5039 if (alt_thresh > thresh)
5040 thresh = alt_thresh;
5041 }
5042 } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
5043 /* 2.2 behavior */
5044 if (len <= segsiz) {
5045 uint32_t alt_thresh;
5046 /*
5047 * Compensate for delayed-ack with the d-ack time.
5048 */
5049 alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5050 if (alt_thresh > thresh)
5051 thresh = alt_thresh;
5052 }
5053 }
5054 /* Not above an RTO */
5055 if (thresh > tp->t_rxtcur) {
5056 thresh = tp->t_rxtcur;
5057 }
5058 /* Not above a RTO max */
5059 if (thresh > rack_rto_max) {
5060 thresh = rack_rto_max;
5061 }
5062 /* Apply user supplied min TLP */
5063 if (thresh < rack_tlp_min) {
5064 thresh = rack_tlp_min;
5065 }
5066 return (thresh);
5067}
5068
5069static uint32_t
5070rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
5071{
5072 /*
5073 * We want the rack_rtt which is the
5074 * last rtt we measured. However if that
5075 * does not exist we fallback to the srtt (which
5076 * we probably will never do) and then as a last
5077 * resort we use RACK_INITIAL_RTO if no srtt is
5078 * yet set.
5079 */
5080 if (rack->rc_rack_rtt)
5081 return (rack->rc_rack_rtt);
5082 else if (tp->t_srtt == 0)
5083 return (RACK_INITIAL_RTO);
5084 return (tp->t_srtt);
5085}
5086
5087static struct rack_sendmap *
5089{
5090 /*
5091 * Check to see that we don't need to fall into recovery. We will
5092 * need to do so if our oldest transmit is past the time we should
5093 * have had an ack.
5094 */
5095 struct tcp_rack *rack;
5096 struct rack_sendmap *rsm;
5097 int32_t idx;
5098 uint32_t srtt, thresh;
5099
5100 rack = (struct tcp_rack *)tp->t_fb_ptr;
5101 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
5102 return (NULL);
5103 }
5104 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5105 if (rsm == NULL)
5106 return (NULL);
5107
5108 if (rsm->r_flags & RACK_ACKED) {
5109 rsm = rack_find_lowest_rsm(rack);
5110 if (rsm == NULL)
5111 return (NULL);
5112 }
5113 idx = rsm->r_rtr_cnt - 1;
5114 srtt = rack_grab_rtt(tp, rack);
5115 thresh = rack_calc_thresh_rack(rack, srtt, tsused);
5116 if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) {
5117 return (NULL);
5118 }
5119 if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) {
5120 return (NULL);
5121 }
5122 /* Ok if we reach here we are over-due and this guy can be sent */
5124 return (rsm);
5125}
5126
5127static uint32_t
5129{
5130 int32_t t;
5131 int32_t tt;
5132 uint32_t ret_val;
5133
5134 t = (tp->t_srtt + (tp->t_rttvar << 2));
5138 ret_val = (uint32_t)tt;
5139 return (ret_val);
5140}
5141
5142static uint32_t
5143rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
5144{
5145 /*
5146 * Start the FR timer, we do this based on getting the first one in
5147 * the rc_tmap. Note that if its NULL we must stop the timer. in all
5148 * events we need to stop the running timer (if its running) before
5149 * starting the new one.
5150 */
5151 uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
5152 uint32_t srtt_cur;
5153 int32_t idx;
5154 int32_t is_tlp_timer = 0;
5155 struct rack_sendmap *rsm;
5156
5157 if (rack->t_timers_stopped) {
5158 /* All timers have been stopped none are to run */
5159 return (0);
5160 }
5161 if (rack->rc_in_persist) {
5162 /* We can't start any timer in persists */
5163 return (rack_get_persists_timer_val(tp, rack));
5164 }
5165 rack->rc_on_min_to = 0;
5166 if ((tp->t_state < TCPS_ESTABLISHED) ||
5167 ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
5168 goto activate_rxt;
5169 }
5170 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5171 if ((rsm == NULL) || sup_rack) {
5172 /* Nothing on the send map or no rack */
5173activate_rxt:
5174 time_since_sent = 0;
5175 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5176 if (rsm) {
5177 /*
5178 * Should we discount the RTX timer any?
5179 *
5180 * We want to discount it the smallest amount.
5181 * If a timer (Rack/TLP or RXT) has gone off more
5182 * recently thats the discount we want to use (now - timer time).
5183 * If the retransmit of the oldest packet was more recent then
5184 * we want to use that (now - oldest-packet-last_transmit_time).
5185 *
5186 */
5187 idx = rsm->r_rtr_cnt - 1;
5189 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5190 else
5191 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5192 if (TSTMP_GT(cts, tstmp_touse))
5193 time_since_sent = cts - tstmp_touse;
5194 }
5195 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
5197 to = tp->t_rxtcur;
5198 if (to > time_since_sent)
5199 to -= time_since_sent;
5200 else
5201 to = rack->r_ctl.rc_min_to;
5202 if (to == 0)
5203 to = 1;
5204 /* Special case for KEEPINIT */
5205 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
5206 (TP_KEEPINIT(tp) != 0) &&
5207 rsm) {
5208 /*
5209 * We have to put a ceiling on the rxt timer
5210 * of the keep-init timeout.
5211 */
5212 uint32_t max_time, red;
5213
5214 max_time = TICKS_2_USEC(TP_KEEPINIT(tp));
5215 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) {
5216 red = (cts - (uint32_t)rsm->r_tim_lastsent[0]);
5217 if (red < max_time)
5218 max_time -= red;
5219 else
5220 max_time = 1;
5221 }
5222 /* Reduce timeout to the keep value if needed */
5223 if (max_time < to)
5224 to = max_time;
5225 }
5226 return (to);
5227 }
5228 return (0);
5229 }
5230 if (rsm->r_flags & RACK_ACKED) {
5231 rsm = rack_find_lowest_rsm(rack);
5232 if (rsm == NULL) {
5233 /* No lowest? */
5234 goto activate_rxt;
5235 }
5236 }
5237 if (rack->sack_attack_disable) {
5238 /*
5239 * We don't want to do
5240 * any TLP's if you are an attacker.
5241 * Though if you are doing what
5242 * is expected you may still have
5243 * SACK-PASSED marks.
5244 */
5245 goto activate_rxt;
5246 }
5247 /* Convert from ms to usecs */
5248 if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
5249 if ((tp->t_flags & TF_SENTFIN) &&
5250 ((tp->snd_max - tp->snd_una) == 1) &&
5251 (rsm->r_flags & RACK_HAS_FIN)) {
5252 /*
5253 * We don't start a rack timer if all we have is a
5254 * FIN outstanding.
5255 */
5256 goto activate_rxt;
5257 }
5258 if ((rack->use_rack_rr == 0) &&
5259 (IN_FASTRECOVERY(tp->t_flags)) &&
5260 (rack->rack_no_prr == 0) &&
5261 (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
5262 /*
5263 * We are not cheating, in recovery and
5264 * not enough ack's to yet get our next
5265 * retransmission out.
5266 *
5267 * Note that classified attackers do not
5268 * get to use the rack-cheat.
5269 */
5270 goto activate_tlp;
5271 }
5272 srtt = rack_grab_rtt(tp, rack);
5273 thresh = rack_calc_thresh_rack(rack, srtt, cts);
5274 idx = rsm->r_rtr_cnt - 1;
5275 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh;
5276 if (SEQ_GEQ(exp, cts)) {
5277 to = exp - cts;
5278 if (to < rack->r_ctl.rc_min_to) {
5279 to = rack->r_ctl.rc_min_to;
5280 if (rack->r_rr_config == 3)
5281 rack->rc_on_min_to = 1;
5282 }
5283 } else {
5284 to = rack->r_ctl.rc_min_to;
5285 if (rack->r_rr_config == 3)
5286 rack->rc_on_min_to = 1;
5287 }
5288 } else {
5289 /* Ok we need to do a TLP not RACK */
5290activate_tlp:
5291 if ((rack->rc_tlp_in_progress != 0) &&
5292 (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
5293 /*
5294 * The previous send was a TLP and we have sent
5295 * N TLP's without sending new data.
5296 */
5297 goto activate_rxt;
5298 }
5299 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
5300 if (rsm == NULL) {
5301 /* We found no rsm to TLP with. */
5302 goto activate_rxt;
5303 }
5304 if (rsm->r_flags & RACK_HAS_FIN) {
5305 /* If its a FIN we dont do TLP */
5306 rsm = NULL;
5307 goto activate_rxt;
5308 }
5309 idx = rsm->r_rtr_cnt - 1;
5310 time_since_sent = 0;
5312 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5313 else
5314 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5315 if (TSTMP_GT(cts, tstmp_touse))
5316 time_since_sent = cts - tstmp_touse;
5317 is_tlp_timer = 1;
5318 if (tp->t_srtt) {
5319 if ((rack->rc_srtt_measure_made == 0) &&
5320 (tp->t_srtt == 1)) {
5321 /*
5322 * If another stack as run and set srtt to 1,
5323 * then the srtt was 0, so lets use the initial.
5324 */
5325 srtt = RACK_INITIAL_RTO;
5326 } else {
5327 srtt_cur = tp->t_srtt;
5328 srtt = srtt_cur;
5329 }
5330 } else
5331 srtt = RACK_INITIAL_RTO;
5332 /*
5333 * If the SRTT is not keeping up and the
5334 * rack RTT has spiked we want to use
5335 * the last RTT not the smoothed one.
5336 */
5338 tp->t_srtt &&
5339 (srtt < rack_grab_rtt(tp, rack))) {
5340 srtt = rack_grab_rtt(tp, rack);
5341 }
5342 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
5343 if (thresh > time_since_sent) {
5344 to = thresh - time_since_sent;
5345 } else {
5346 to = rack->r_ctl.rc_min_to;
5348 thresh, /* flex1 */
5349 time_since_sent, /* flex2 */
5350 tstmp_touse, /* flex3 */
5351 rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
5352 (uint32_t)rsm->r_tim_lastsent[idx],
5353 srtt,
5354 idx, 99);
5355 }
5356 if (to < rack_tlp_min) {
5357 to = rack_tlp_min;
5358 }
5359 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) {
5360 /*
5361 * If the TLP time works out to larger than the max
5362 * RTO lets not do TLP.. just RTO.
5363 */
5364 goto activate_rxt;
5365 }
5366 }
5367 if (is_tlp_timer == 0) {
5369 } else {
5371 }
5372 if (to == 0)
5373 to = 1;
5374 return (to);
5375}
5376
5377static void
5378rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5379{
5380 if (rack->rc_in_persist == 0) {
5381 if (tp->t_flags & TF_GPUTINPROG) {
5382 /*
5383 * Stop the goodput now, the calling of the
5384 * measurement function clears the flag.
5385 */
5386 rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__,
5388 }
5389#ifdef NETFLIX_SHARED_CWND
5390 if (rack->r_ctl.rc_scw) {
5391 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5392 rack->rack_scwnd_is_idle = 1;
5393 }
5394#endif
5396 if (rack->r_ctl.rc_went_idle_time == 0)
5397 rack->r_ctl.rc_went_idle_time = 1;
5398 rack_timer_cancel(tp, rack, cts, __LINE__);
5399 rack->r_ctl.persist_lost_ends = 0;
5400 rack->probe_not_answered = 0;
5401 rack->forced_ack = 0;
5402 tp->t_rxtshift = 0;
5405 rack->rc_in_persist = 1;
5406 }
5407}
5408
5409static void
5410rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5411{
5412 if (tcp_in_hpts(rack->rc_inp)) {
5413 tcp_hpts_remove(rack->rc_inp);
5414 rack->r_ctl.rc_hpts_flags = 0;
5415 }
5416#ifdef NETFLIX_SHARED_CWND
5417 if (rack->r_ctl.rc_scw) {
5418 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5419 rack->rack_scwnd_is_idle = 0;
5420 }
5421#endif
5422 if (rack->rc_gp_dyn_mul &&
5423 (rack->use_fixed_rate == 0) &&
5424 (rack->rc_always_pace)) {
5425 /*
5426 * Do we count this as if a probe-rtt just
5427 * finished?
5428 */
5429 uint32_t time_idle, idle_min;
5430
5431 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
5432 idle_min = rack_min_probertt_hold;
5434 uint64_t extra;
5435 extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
5437 extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
5438 idle_min += (uint32_t)extra;
5439 }
5440 if (time_idle >= idle_min) {
5441 /* Yes, we count it as a probe-rtt. */
5442 uint32_t us_cts;
5443
5444 us_cts = tcp_get_usecs(NULL);
5445 if (rack->in_probe_rtt == 0) {
5446 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
5450 } else {
5451 rack_exit_probertt(rack, us_cts);
5452 }
5453 }
5454 }
5455 rack->rc_in_persist = 0;
5456 rack->r_ctl.rc_went_idle_time = 0;
5457 tp->t_rxtshift = 0;
5460 rack->r_ctl.rc_agg_delayed = 0;
5461 rack->r_early = 0;
5462 rack->r_late = 0;
5463 rack->r_ctl.rc_agg_early = 0;
5464}
5465
5466static void
5468 struct hpts_diag *diag, struct timeval *tv)
5469{
5471 union tcp_log_stackspecific log;
5472
5473 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5474 log.u_bbr.flex1 = diag->p_nxt_slot;
5475 log.u_bbr.flex2 = diag->p_cur_slot;
5476 log.u_bbr.flex3 = diag->slot_req;
5477 log.u_bbr.flex4 = diag->inp_hptsslot;
5478 log.u_bbr.flex5 = diag->slot_remaining;
5479 log.u_bbr.flex6 = diag->need_new_to;
5480 log.u_bbr.flex7 = diag->p_hpts_active;
5481 log.u_bbr.flex8 = diag->p_on_min_sleep;
5482 /* Hijack other fields as needed */
5483 log.u_bbr.epoch = diag->have_slept;
5484 log.u_bbr.lt_epoch = diag->yet_to_sleep;
5485 log.u_bbr.pkts_out = diag->co_ret;
5486 log.u_bbr.applimited = diag->hpts_sleep_time;
5487 log.u_bbr.delivered = diag->p_prev_slot;
5488 log.u_bbr.inflight = diag->p_runningslot;
5489 log.u_bbr.bw_inuse = diag->wheel_slot;
5490 log.u_bbr.rttProp = diag->wheel_cts;
5491 log.u_bbr.timeStamp = cts;
5492 log.u_bbr.delRate = diag->maxslots;
5493 log.u_bbr.cur_del_rate = diag->p_curtick;
5494 log.u_bbr.cur_del_rate <<= 32;
5495 log.u_bbr.cur_del_rate |= diag->p_lasttick;
5496 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5497 &rack->rc_inp->inp_socket->so_rcv,
5498 &rack->rc_inp->inp_socket->so_snd,
5500 0, &log, false, tv);
5501 }
5502
5503}
5504
5505static void
5506rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
5507{
5509 union tcp_log_stackspecific log;
5510 struct timeval tv;
5511
5512 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5513 log.u_bbr.flex1 = sb->sb_flags;
5514 log.u_bbr.flex2 = len;
5515 log.u_bbr.flex3 = sb->sb_state;
5516 log.u_bbr.flex8 = type;
5517 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
5518 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5519 &rack->rc_inp->inp_socket->so_rcv,
5520 &rack->rc_inp->inp_socket->so_snd,
5521 TCP_LOG_SB_WAKE, 0,
5522 len, &log, false, &tv);
5523 }
5524}
5525
5526static void
5527rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
5528 int32_t slot, uint32_t tot_len_this_send, int sup_rack)
5529{
5530 struct hpts_diag diag;
5531 struct inpcb *inp;
5532 struct timeval tv;
5534 uint32_t hpts_timeout;
5535 uint32_t entry_slot = slot;
5536 uint8_t stopped;
5537 uint32_t left = 0;
5538 uint32_t us_cts;
5539
5540 inp = tp->t_inpcb;
5541 if ((tp->t_state == TCPS_CLOSED) ||
5542 (tp->t_state == TCPS_LISTEN)) {
5543 return;
5544 }
5545 if (tcp_in_hpts(inp)) {
5546 /* Already on the pacer */
5547 return;
5548 }
5549 stopped = rack->rc_tmr_stopped;
5550 if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
5551 left = rack->r_ctl.rc_timer_exp - cts;
5552 }
5553 rack->r_ctl.rc_timer_exp = 0;
5554 rack->r_ctl.rc_hpts_flags = 0;
5555 us_cts = tcp_get_usecs(&tv);
5556 /* Now early/late accounting */
5557 rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL, 0);
5558 if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) {
5559 /*
5560 * We have a early carry over set,
5561 * we can always add more time so we
5562 * can always make this compensation.
5563 *
5564 * Note if ack's are allowed to wake us do not
5565 * penalize the next timer for being awoke
5566 * by an ack aka the rc_agg_early (non-paced mode).
5567 */
5568 slot += rack->r_ctl.rc_agg_early;
5569 rack->r_early = 0;
5570 rack->r_ctl.rc_agg_early = 0;
5571 }
5572 if (rack->r_late) {
5573 /*
5574 * This is harder, we can
5575 * compensate some but it
5576 * really depends on what
5577 * the current pacing time is.
5578 */
5579 if (rack->r_ctl.rc_agg_delayed >= slot) {
5580 /*
5581 * We can't compensate for it all.
5582 * And we have to have some time
5583 * on the clock. We always have a min
5584 * 10 slots (10 x 10 i.e. 100 usecs).
5585 */
5586 if (slot <= HPTS_TICKS_PER_SLOT) {
5587 /* We gain delay */
5588 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_SLOT - slot);
5589 slot = HPTS_TICKS_PER_SLOT;
5590 } else {
5591 /* We take off some */
5592 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_SLOT);
5593 slot = HPTS_TICKS_PER_SLOT;
5594 }
5595 } else {
5596 slot -= rack->r_ctl.rc_agg_delayed;
5597 rack->r_ctl.rc_agg_delayed = 0;
5598 /* Make sure we have 100 useconds at minimum */
5599 if (slot < HPTS_TICKS_PER_SLOT) {
5601 slot = HPTS_TICKS_PER_SLOT;
5602 }
5603 if (rack->r_ctl.rc_agg_delayed == 0)
5604 rack->r_late = 0;
5605 }
5606 }
5607 if (slot) {
5608 /* We are pacing too */
5610 }
5611 hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
5612#ifdef NETFLIX_EXP_DETECTION
5613 if (rack->sack_attack_disable &&
5614 (slot < tcp_sad_pacing_interval)) {
5615 /*
5616 * We have a potential attacker on
5617 * the line. We have possibly some
5618 * (or now) pacing time set. We want to
5619 * slow down the processing of sacks by some
5620 * amount (if it is an attacker). Set the default
5621 * slot for attackers in place (unless the orginal
5622 * interval is longer). Its stored in
5623 * micro-seconds, so lets convert to msecs.
5624 */
5625 slot = tcp_sad_pacing_interval;
5626 }
5627#endif
5628 if (tp->t_flags & TF_DELACK) {
5629 delayed_ack = TICKS_2_USEC(tcp_delacktime);
5631 }
5632 if (delayed_ack && ((hpts_timeout == 0) ||
5633 (delayed_ack < hpts_timeout)))
5634 hpts_timeout = delayed_ack;
5635 else
5636 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5637 /*
5638 * If no timers are going to run and we will fall off the hptsi
5639 * wheel, we resort to a keep-alive timer if its configured.
5640 */
5641 if ((hpts_timeout == 0) &&
5642 (slot == 0)) {
5643 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5644 (tp->t_state <= TCPS_CLOSING)) {
5645 /*
5646 * Ok we have no timer (persists, rack, tlp, rxt or
5647 * del-ack), we don't have segments being paced. So
5648 * all that is left is the keepalive timer.
5649 */
5650 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
5651 /* Get the established keep-alive time */
5652 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
5653 } else {
5654 /*
5655 * Get the initial setup keep-alive time,
5656 * note that this is probably not going to
5657 * happen, since rack will be running a rxt timer
5658 * if a SYN of some sort is outstanding. It is
5659 * actually handled in rack_timeout_rxt().
5660 */
5661 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
5662 }
5664 if (rack->in_probe_rtt) {
5665 /*
5666 * We want to instead not wake up a long time from
5667 * now but to wake up about the time we would
5668 * exit probe-rtt and initiate a keep-alive ack.
5669 * This will get us out of probe-rtt and update
5670 * our min-rtt.
5671 */
5672 hpts_timeout = rack_min_probertt_hold;
5673 }
5674 }
5675 }
5676 if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
5677 (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
5678 /*
5679 * RACK, TLP, persists and RXT timers all are restartable
5680 * based on actions input .. i.e we received a packet (ack
5681 * or sack) and that changes things (rw, or snd_una etc).
5682 * Thus we can restart them with a new value. For
5683 * keep-alive, delayed_ack we keep track of what was left
5684 * and restart the timer with a smaller value.
5685 */
5686 if (left < hpts_timeout)
5687 hpts_timeout = left;
5688 }
5689 if (hpts_timeout) {
5690 /*
5691 * Hack alert for now we can't time-out over 2,147,483
5692 * seconds (a bit more than 596 hours), which is probably ok
5693 * :).
5694 */
5695 if (hpts_timeout > 0x7ffffffe)
5696 hpts_timeout = 0x7ffffffe;
5697 rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
5698 }
5699 rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL, 0);
5700 if ((rack->gp_ready == 0) &&
5701 (rack->use_fixed_rate == 0) &&
5702 (hpts_timeout < slot) &&
5704 /*
5705 * We have no good estimate yet for the
5706 * old clunky burst mitigation or the
5707 * real pacing. And the tlp or rxt is smaller
5708 * than the pacing calculation. Lets not
5709 * pace that long since we know the calculation
5710 * so far is not accurate.
5711 */
5712 slot = hpts_timeout;
5713 }
5744 if (slot) {
5745 rack->r_ctl.rc_last_output_to = us_cts + slot;
5746 /*
5747 * A pacing timer (slot) is being set, in
5748 * such a case we cannot send (we are blocked by
5749 * the timer). So lets tell LRO that it should not
5750 * wake us unless there is a SACK. Note this only
5751 * will be effective if mbuf queueing is on or
5752 * compressed acks are being processed.
5753 */
5755 /*
5756 * But wait if we have a Rack timer running
5757 * even a SACK should not disturb us (with
5758 * the exception of r_rr_config 3).
5759 */
5760 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
5761 (rack->r_rr_config != 3))
5763 if (rack->rc_ack_can_sendout_data) {
5764 /*
5765 * Ahh but wait, this is that special case
5766 * where the pacing timer can be disturbed
5767 * backout the changes (used for non-paced
5768 * burst limiting).
5769 */
5771 }
5772 if ((rack->use_rack_rr) &&
5773 (rack->r_rr_config < 2) &&
5774 ((hpts_timeout) && (hpts_timeout < slot))) {
5775 /*
5776 * Arrange for the hpts to kick back in after the
5777 * t-o if the t-o does not cause a send.
5778 */
5779 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5780 __LINE__, &diag);
5781 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5782 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5783 } else {
5785 __LINE__, &diag);
5786 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5787 rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
5788 }
5789 } else if (hpts_timeout) {
5790 /*
5791 * With respect to inp_flags2 here, lets let any new acks wake
5792 * us up here. Since we are not pacing (no pacing timer), output
5793 * can happen so we should let it. If its a Rack timer, then any inbound
5794 * packet probably won't change the sending (we will be blocked)
5795 * but it may change the prr stats so letting it in (the set defaults
5796 * at the start of this block) are good enough.
5797 */
5798 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5799 __LINE__, &diag);
5800 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5801 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5802 } else {
5803 /* No timer starting */
5804#ifdef INVARIANTS
5805 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
5806 panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
5807 tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
5808 }
5809#endif
5810 }
5811 rack->rc_tmr_stopped = 0;
5812 if (slot)
5813 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
5814}
5815
5816/*
5817 * RACK Timer, here we simply do logging and house keeping.
5818 * the normal rack_output() function will call the
5819 * appropriate thing to check if we need to do a RACK retransmit.
5820 * We return 1, saying don't proceed with rack_output only
5821 * when all timers have been stopped (destroyed PCB?).
5822 */
5823static int
5824rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5825{
5826 /*
5827 * This timer simply provides an internal trigger to send out data.
5828 * The check_recovery_mode call will see if there are needed
5829 * retransmissions, if so we will enter fast-recovery. The output
5830 * call may or may not do the same thing depending on sysctl
5831 * settings.
5832 */
5833 struct rack_sendmap *rsm;
5834
5835 if (tp->t_timers->tt_flags & TT_STOPPED) {
5836 return (1);
5837 }
5838 counter_u64_add(rack_to_tot, 1);
5839 if (rack->r_state && (rack->r_state != tp->t_state))
5840 rack_set_state(tp, rack);
5841 rack->rc_on_min_to = 0;
5842 rsm = rack_check_recovery_mode(tp, cts);
5844 if (rsm) {
5845 rack->r_ctl.rc_resend = rsm;
5846 rack->r_timer_override = 1;
5847 if (rack->use_rack_rr) {
5848 /*
5849 * Don't accumulate extra pacing delay
5850 * we are allowing the rack timer to
5851 * over-ride pacing i.e. rrr takes precedence
5852 * if the pacing interval is longer than the rrr
5853 * time (in other words we get the min pacing
5854 * time versus rrr pacing time).
5855 */
5856 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5857 }
5858 }
5859 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
5860 if (rsm == NULL) {
5861 /* restart a timer and return 1 */
5862 rack_start_hpts_timer(rack, tp, cts,
5863 0, 0, 0);
5864 return (1);
5865 }
5866 return (0);
5867}
5868
5869static void
5871{
5872 if (rsm->m->m_len > rsm->orig_m_len) {
5873 /*
5874 * Mbuf grew, caused by sbcompress, our offset does
5875 * not change.
5876 */
5877 rsm->orig_m_len = rsm->m->m_len;
5878 } else if (rsm->m->m_len < rsm->orig_m_len) {
5879 /*
5880 * Mbuf shrank, trimmed off the top by an ack, our
5881 * offset changes.
5882 */
5883 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len);
5884 rsm->orig_m_len = rsm->m->m_len;
5885 }
5886}
5887
5888static void
5890{
5891 struct mbuf *m;
5892 uint32_t soff;
5893
5894 if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) {
5895 /* Fix up the orig_m_len and possibly the mbuf offset */
5896 rack_adjust_orig_mlen(src_rsm);
5897 }
5898 m = src_rsm->m;
5899 soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start);
5900 while (soff >= m->m_len) {
5901 /* Move out past this mbuf */
5902 soff -= m->m_len;
5903 m = m->m_next;
5904 KASSERT((m != NULL),
5905 ("rsm:%p nrsm:%p hit at soff:%u null m",
5906 src_rsm, rsm, soff));
5907 }
5908 rsm->m = m;
5909 rsm->soff = soff;
5910 rsm->orig_m_len = m->m_len;
5911}
5912
5913static __inline void
5914rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
5915 struct rack_sendmap *rsm, uint32_t start)
5916{
5917 int idx;
5918
5919 nrsm->r_start = start;
5920 nrsm->r_end = rsm->r_end;
5921 nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
5922 nrsm->r_flags = rsm->r_flags;
5923 nrsm->r_dupack = rsm->r_dupack;
5925 nrsm->r_rtr_bytes = 0;
5926 nrsm->r_fas = rsm->r_fas;
5927 rsm->r_end = nrsm->r_start;
5928 nrsm->r_just_ret = rsm->r_just_ret;
5929 for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
5930 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
5931 }
5932 /* Now if we have SYN flag we keep it on the left edge */
5933 if (nrsm->r_flags & RACK_HAS_SYN)
5934 nrsm->r_flags &= ~RACK_HAS_SYN;
5935 /* Now if we have a FIN flag we keep it on the right edge */
5936 if (rsm->r_flags & RACK_HAS_FIN)
5937 rsm->r_flags &= ~RACK_HAS_FIN;
5938 /* Push bit must go to the right edge as well */
5939 if (rsm->r_flags & RACK_HAD_PUSH)
5940 rsm->r_flags &= ~RACK_HAD_PUSH;
5941 /* Clone over the state of the hw_tls flag */
5942 nrsm->r_hw_tls = rsm->r_hw_tls;
5943 /*
5944 * Now we need to find nrsm's new location in the mbuf chain
5945 * we basically calculate a new offset, which is soff +
5946 * how much is left in original rsm. Then we walk out the mbuf
5947 * chain to find the righ postion, it may be the same mbuf
5948 * or maybe not.
5949 */
5950 KASSERT(((rsm->m != NULL) ||
5951 (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))),
5952 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack));
5953 if (rsm->m)
5954 rack_setup_offset_for_rsm(rsm, nrsm);
5955}
5956
5957static struct rack_sendmap *
5959 struct rack_sendmap *l_rsm,
5960 struct rack_sendmap *r_rsm)
5961{
5962 /*
5963 * We are merging two ack'd RSM's,
5964 * the l_rsm is on the left (lower seq
5965 * values) and the r_rsm is on the right
5966 * (higher seq value). The simplest way
5967 * to merge these is to move the right
5968 * one into the left. I don't think there
5969 * is any reason we need to try to find
5970 * the oldest (or last oldest retransmitted).
5971 */
5972#ifdef INVARIANTS
5973 struct rack_sendmap *rm;
5974#endif
5975 rack_log_map_chg(rack->rc_tp, rack, NULL,
5976 l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__);
5977 l_rsm->r_end = r_rsm->r_end;
5978 if (l_rsm->r_dupack < r_rsm->r_dupack)
5979 l_rsm->r_dupack = r_rsm->r_dupack;
5980 if (r_rsm->r_rtr_bytes)
5981 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
5982 if (r_rsm->r_in_tmap) {
5983 /* This really should not happen */
5984 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
5985 r_rsm->r_in_tmap = 0;
5986 }
5987
5988 /* Now the flags */
5989 if (r_rsm->r_flags & RACK_HAS_FIN)
5990 l_rsm->r_flags |= RACK_HAS_FIN;
5991 if (r_rsm->r_flags & RACK_TLP)
5992 l_rsm->r_flags |= RACK_TLP;
5993 if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
5994 l_rsm->r_flags |= RACK_RWND_COLLAPSED;
5995 if ((r_rsm->r_flags & RACK_APP_LIMITED) &&
5996 ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
5997 /*
5998 * If both are app-limited then let the
5999 * free lower the count. If right is app
6000 * limited and left is not, transfer.
6001 */
6002 l_rsm->r_flags |= RACK_APP_LIMITED;
6003 r_rsm->r_flags &= ~RACK_APP_LIMITED;
6004 if (r_rsm == rack->r_ctl.rc_first_appl)
6005 rack->r_ctl.rc_first_appl = l_rsm;
6006 }
6007#ifndef INVARIANTS
6008 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6009#else
6010 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6011 if (rm != r_rsm) {
6012 panic("removing head in rack:%p rsm:%p rm:%p",
6013 rack, r_rsm, rm);
6014 }
6015#endif
6016 if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
6017 /* Transfer the split limit to the map we free */
6018 r_rsm->r_limit_type = l_rsm->r_limit_type;
6019 l_rsm->r_limit_type = 0;
6020 }
6021 rack_free(rack, r_rsm);
6022 return (l_rsm);
6023}
6024
6025/*
6026 * TLP Timer, here we simply setup what segment we want to
6027 * have the TLP expire on, the normal rack_output() will then
6028 * send it out.
6029 *
6030 * We return 1, saying don't proceed with rack_output only
6031 * when all timers have been stopped (destroyed PCB?).
6032 */
6033static int
6034rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp)
6035{
6036 /*
6037 * Tail Loss Probe.
6038 */
6039 struct rack_sendmap *rsm = NULL;
6040#ifdef INVARIANTS
6041 struct rack_sendmap *insret;
6042#endif
6043 struct socket *so;
6044 uint32_t amm;
6045 uint32_t out, avail;
6046 int collapsed_win = 0;
6047
6048 if (tp->t_timers->tt_flags & TT_STOPPED) {
6049 return (1);
6050 }
6051 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6052 /* Its not time yet */
6053 return (0);
6054 }
6055 if (ctf_progress_timeout_check(tp, true)) {
6056 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6057 return (-ETIMEDOUT); /* tcp_drop() */
6058 }
6059 /*
6060 * A TLP timer has expired. We have been idle for 2 rtts. So we now
6061 * need to figure out how to force a full MSS segment out.
6062 */
6064 rack->r_ctl.retran_during_recovery = 0;
6065 rack->r_ctl.dsack_byte_cnt = 0;
6066 counter_u64_add(rack_tlp_tot, 1);
6067 if (rack->r_state && (rack->r_state != tp->t_state))
6068 rack_set_state(tp, rack);
6069 so = tp->t_inpcb->inp_socket;
6070 avail = sbavail(&so->so_snd);
6071 out = tp->snd_max - tp->snd_una;
6072 if (out > tp->snd_wnd) {
6073 /* special case, we need a retransmission */
6074 collapsed_win = 1;
6075 goto need_retran;
6076 }
6077 if (rack->r_ctl.dsack_persist && (rack->r_ctl.rc_tlp_cnt_out >= 1)) {
6078 rack->r_ctl.dsack_persist--;
6079 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6080 rack->r_ctl.num_dsack = 0;
6081 }
6082 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6083 }
6084 if ((tp->t_flags & TF_GPUTINPROG) &&
6085 (rack->r_ctl.rc_tlp_cnt_out == 1)) {
6086 /*
6087 * If this is the second in a row
6088 * TLP and we are doing a measurement
6089 * its time to abandon the measurement.
6090 * Something is likely broken on
6091 * the clients network and measuring a
6092 * broken network does us no good.
6093 */
6094 tp->t_flags &= ~TF_GPUTINPROG;
6095 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6096 rack->r_ctl.rc_gp_srtt /*flex1*/,
6097 tp->gput_seq,
6098 0, 0, 18, __LINE__, NULL, 0);
6099 }
6100 /*
6101 * Check our send oldest always settings, and if
6102 * there is an oldest to send jump to the need_retran.
6103 */
6104 if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
6105 goto need_retran;
6106
6107 if (avail > out) {
6108 /* New data is available */
6109 amm = avail - out;
6110 if (amm > ctf_fixed_maxseg(tp)) {
6111 amm = ctf_fixed_maxseg(tp);
6112 if ((amm + out) > tp->snd_wnd) {
6113 /* We are rwnd limited */
6114 goto need_retran;
6115 }
6116 } else if (amm < ctf_fixed_maxseg(tp)) {
6117 /* not enough to fill a MTU */
6118 goto need_retran;
6119 }
6120 if (IN_FASTRECOVERY(tp->t_flags)) {
6121 /* Unlikely */
6122 if (rack->rack_no_prr == 0) {
6123 if (out + amm <= tp->snd_wnd) {
6124 rack->r_ctl.rc_prr_sndcnt = amm;
6125 rack->r_ctl.rc_tlp_new_data = amm;
6126 rack_log_to_prr(rack, 4, 0);
6127 }
6128 } else
6129 goto need_retran;
6130 } else {
6131 /* Set the send-new override */
6132 if (out + amm <= tp->snd_wnd)
6133 rack->r_ctl.rc_tlp_new_data = amm;
6134 else
6135 goto need_retran;
6136 }
6137 rack->r_ctl.rc_tlpsend = NULL;
6138 counter_u64_add(rack_tlp_newdata, 1);
6139 goto send;
6140 }
6141need_retran:
6142 /*
6143 * Ok we need to arrange the last un-acked segment to be re-sent, or
6144 * optionally the first un-acked segment.
6145 */
6146 if (collapsed_win == 0) {
6148 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6149 else {
6150 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6151 if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
6152 rsm = rack_find_high_nonack(rack, rsm);
6153 }
6154 }
6155 if (rsm == NULL) {
6156#ifdef TCP_BLACKBOX
6157 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6158#endif
6159 goto out;
6160 }
6161 } else {
6162 /*
6163 * We must find the last segment
6164 * that was acceptable by the client.
6165 */
6166 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6167 if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
6168 /* Found one */
6169 break;
6170 }
6171 }
6172 if (rsm == NULL) {
6173 /* None? if so send the first */
6174 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6175 if (rsm == NULL) {
6176#ifdef TCP_BLACKBOX
6177 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6178#endif
6179 goto out;
6180 }
6181 }
6182 }
6183 if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
6184 /*
6185 * We need to split this the last segment in two.
6186 */
6187 struct rack_sendmap *nrsm;
6188
6189 nrsm = rack_alloc_full_limit(rack);
6190 if (nrsm == NULL) {
6191 /*
6192 * No memory to split, we will just exit and punt
6193 * off to the RXT timer.
6194 */
6195 goto out;
6196 }
6197 rack_clone_rsm(rack, nrsm, rsm,
6198 (rsm->r_end - ctf_fixed_maxseg(tp)));
6199 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
6200#ifndef INVARIANTS
6201 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6202#else
6203 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6204 if (insret != NULL) {
6205 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6206 nrsm, insret, rack, rsm);
6207 }
6208#endif
6209 if (rsm->r_in_tmap) {
6210 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6211 nrsm->r_in_tmap = 1;
6212 }
6213 rsm = nrsm;
6214 }
6215 rack->r_ctl.rc_tlpsend = rsm;
6216send:
6217 /* Make sure output path knows we are doing a TLP */
6218 *doing_tlp = 1;
6219 rack->r_timer_override = 1;
6220 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6221 return (0);
6222out:
6223 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6224 return (0);
6225}
6226
6227/*
6228 * Delayed ack Timer, here we simply need to setup the
6229 * ACK_NOW flag and remove the DELACK flag. From there
6230 * the output routine will send the ack out.
6231 *
6232 * We only return 1, saying don't proceed, if all timers
6233 * are stopped (destroyed PCB?).
6234 */
6235static int
6236rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6237{
6238 if (tp->t_timers->tt_flags & TT_STOPPED) {
6239 return (1);
6240 }
6242 tp->t_flags &= ~TF_DELACK;
6243 tp->t_flags |= TF_ACKNOW;
6244 KMOD_TCPSTAT_INC(tcps_delack);
6245 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
6246 return (0);
6247}
6248
6249/*
6250 * Persists timer, here we simply send the
6251 * same thing as a keepalive will.
6252 * the one byte send.
6253 *
6254 * We only return 1, saying don't proceed, if all timers
6255 * are stopped (destroyed PCB?).
6256 */
6257static int
6258rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6259{
6260 struct tcptemp *t_template;
6261#ifdef INVARIANTS
6262 struct inpcb *inp = tp->t_inpcb;
6263#endif
6264 int32_t retval = 1;
6265
6266 if (tp->t_timers->tt_flags & TT_STOPPED) {
6267 return (1);
6268 }
6269 if (rack->rc_in_persist == 0)
6270 return (0);
6271 if (ctf_progress_timeout_check(tp, false)) {
6273 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6274 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6275 return (-ETIMEDOUT); /* tcp_drop() */
6276 }
6277 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
6278 /*
6279 * Persistence timer into zero window. Force a byte to be output, if
6280 * possible.
6281 */
6282 KMOD_TCPSTAT_INC(tcps_persisttimeo);
6283 /*
6284 * Hack: if the peer is dead/unreachable, we do not time out if the
6285 * window is closed. After a full backoff, drop the connection if
6286 * the idle time (no responses to probes) reaches the maximum
6287 * backoff that we would use if retransmitting.
6288 */
6289 if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
6290 (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
6291 TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) {
6292 KMOD_TCPSTAT_INC(tcps_persistdrop);
6294 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6295 retval = -ETIMEDOUT; /* tcp_drop() */
6296 goto out;
6297 }
6298 if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
6299 tp->snd_una == tp->snd_max)
6300 rack_exit_persist(tp, rack, cts);
6301 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
6302 /*
6303 * If the user has closed the socket then drop a persisting
6304 * connection after a much reduced timeout.
6305 */
6306 if (tp->t_state > TCPS_CLOSE_WAIT &&
6307 (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
6308 KMOD_TCPSTAT_INC(tcps_persistdrop);
6310 counter_u64_add(rack_persists_lost_ends, rack->r_ctl.persist_lost_ends);
6311 retval = -ETIMEDOUT; /* tcp_drop() */
6312 goto out;
6313 }
6314 t_template = tcpip_maketemplate(rack->rc_inp);
6315 if (t_template) {
6316 /* only set it if we were answered */
6317 if (rack->forced_ack == 0) {
6318 rack->forced_ack = 1;
6319 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6320 } else {
6321 rack->probe_not_answered = 1;
6322 counter_u64_add(rack_persists_loss, 1);
6323 rack->r_ctl.persist_lost_ends++;
6324 }
6325 counter_u64_add(rack_persists_sends, 1);
6326 tcp_respond(tp, t_template->tt_ipgen,
6327 &t_template->tt_t, (struct mbuf *)NULL,
6328 tp->rcv_nxt, tp->snd_una - 1, 0);
6329 /* This sends an ack */
6330 if (tp->t_flags & TF_DELACK)
6331 tp->t_flags &= ~TF_DELACK;
6332 free(t_template, M_TEMP);
6333 }
6334 if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
6335 tp->t_rxtshift++;
6336out:
6338 rack_start_hpts_timer(rack, tp, cts,
6339 0, 0, 0);
6340 return (retval);
6341}
6342
6343/*
6344 * If a keepalive goes off, we had no other timers
6345 * happening. We always return 1 here since this
6346 * routine either drops the connection or sends
6347 * out a segment with respond.
6348 */
6349static int
6350rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6351{
6352 struct tcptemp *t_template;
6353 struct inpcb *inp;
6354
6355 if (tp->t_timers->tt_flags & TT_STOPPED) {
6356 return (1);
6357 }
6358 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
6359 inp = tp->t_inpcb;
6361 /*
6362 * Keep-alive timer went off; send something or drop connection if
6363 * idle for too long.
6364 */
6365 KMOD_TCPSTAT_INC(tcps_keeptimeo);
6366 if (tp->t_state < TCPS_ESTABLISHED)
6367 goto dropit;
6368 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
6369 tp->t_state <= TCPS_CLOSING) {
6370 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
6371 goto dropit;
6372 /*
6373 * Send a packet designed to force a response if the peer is
6374 * up and reachable: either an ACK if the connection is
6375 * still alive, or an RST if the peer has closed the
6376 * connection due to timeout or reboot. Using sequence
6377 * number tp->snd_una-1 causes the transmitted zero-length
6378 * segment to lie outside the receive window; by the
6379 * protocol spec, this requires the correspondent TCP to
6380 * respond.
6381 */
6382 KMOD_TCPSTAT_INC(tcps_keepprobe);
6383 t_template = tcpip_maketemplate(inp);
6384 if (t_template) {
6385 if (rack->forced_ack == 0) {
6386 rack->forced_ack = 1;
6387 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6388 } else {
6389 rack->probe_not_answered = 1;
6390 }
6391 tcp_respond(tp, t_template->tt_ipgen,
6392 &t_template->tt_t, (struct mbuf *)NULL,
6393 tp->rcv_nxt, tp->snd_una - 1, 0);
6394 free(t_template, M_TEMP);
6395 }
6396 }
6397 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
6398 return (1);
6399dropit:
6400 KMOD_TCPSTAT_INC(tcps_keepdrops);
6402 return (-ETIMEDOUT); /* tcp_drop() */
6403}
6404
6405/*
6406 * Retransmit helper function, clear up all the ack
6407 * flags and take care of important book keeping.
6408 */
6409static void
6411{
6412 /*
6413 * The retransmit timer went off, all sack'd blocks must be
6414 * un-acked.
6415 */
6416 struct rack_sendmap *rsm, *trsm = NULL;
6417 struct tcp_rack *rack;
6418
6419 rack = (struct tcp_rack *)tp->t_fb_ptr;
6420 rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__);
6422 if (rack->r_state && (rack->r_state != tp->t_state))
6423 rack_set_state(tp, rack);
6424 /*
6425 * Ideally we would like to be able to
6426 * mark SACK-PASS on anything not acked here.
6427 *
6428 * However, if we do that we would burst out
6429 * all that data 1ms apart. This would be unwise,
6430 * so for now we will just let the normal rxt timer
6431 * and tlp timer take care of it.
6432 *
6433 * Also we really need to stick them back in sequence
6434 * order. This way we send in the proper order and any
6435 * sacks that come floating in will "re-ack" the data.
6436 * To do this we zap the tmap with an INIT and then
6437 * walk through and place every rsm in the RB tree
6438 * back in its seq ordered place.
6439 */
6440 TAILQ_INIT(&rack->r_ctl.rc_tmap);
6441 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6442 rsm->r_dupack = 0;
6443 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6444 /* We must re-add it back to the tlist */
6445 if (trsm == NULL) {
6446 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6447 } else {
6448 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
6449 }
6450 rsm->r_in_tmap = 1;
6451 trsm = rsm;
6452 if (rsm->r_flags & RACK_ACKED)
6453 rsm->r_flags |= RACK_WAS_ACKED;
6455 rsm->r_flags |= RACK_MUST_RXT;
6456 }
6457 /* Clear the count (we just un-acked them) */
6459 rack->r_ctl.rc_sacked = 0;
6460 rack->r_ctl.rc_sacklast = NULL;
6461 rack->r_ctl.rc_agg_delayed = 0;
6462 rack->r_early = 0;
6463 rack->r_ctl.rc_agg_early = 0;
6464 rack->r_late = 0;
6465 /* Clear the tlp rtx mark */
6466 rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6467 if (rack->r_ctl.rc_resend != NULL)
6469 rack->r_ctl.rc_prr_sndcnt = 0;
6470 rack_log_to_prr(rack, 6, 0);
6471 rack->r_timer_override = 1;
6472 if ((((tp->t_flags & TF_SACK_PERMIT) == 0)
6473#ifdef NETFLIX_EXP_DETECTION
6474 || (rack->sack_attack_disable != 0)
6475#endif
6476 ) && ((tp->t_flags & TF_SENTFIN) == 0)) {
6477 /*
6478 * For non-sack customers new data
6479 * needs to go out as retransmits until
6480 * we retransmit up to snd_max.
6481 */
6482 rack->r_must_retran = 1;
6484 rack->r_ctl.rc_sacked);
6485 }
6486 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
6487}
6488
6489static void
6491{
6492 if (tp->t_srtt > 1) {
6493 uint32_t val, frac;
6494
6495 val = tp->t_srtt >> TCP_RTT_SHIFT;
6496 frac = tp->t_srtt & 0x1f;
6497 tp->t_srtt = TICKS_2_USEC(val);
6498 /*
6499 * frac is the fractional part of the srtt (if any)
6500 * but its in ticks and every bit represents
6501 * 1/32nd of a hz.
6502 */
6503 if (frac) {
6504 if (hz == 1000) {
6505 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6506 } else {
6507 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6508 }
6509 tp->t_srtt += frac;
6510 }
6511 }
6512 if (tp->t_rttvar) {
6513 uint32_t val, frac;
6514
6515 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
6516 frac = tp->t_rttvar & 0x1f;
6517 tp->t_rttvar = TICKS_2_USEC(val);
6518 /*
6519 * frac is the fractional part of the srtt (if any)
6520 * but its in ticks and every bit represents
6521 * 1/32nd of a hz.
6522 */
6523 if (frac) {
6524 if (hz == 1000) {
6525 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6526 } else {
6527 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6528 }
6529 tp->t_rttvar += frac;
6530 }
6531 }
6532 tp->t_rxtcur = RACK_REXMTVAL(tp);
6533 if (TCPS_HAVEESTABLISHED(tp->t_state)) {
6534 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop);
6535 }
6536 if (tp->t_rxtcur > rack_rto_max) {
6537 tp->t_rxtcur = rack_rto_max;
6538 }
6539}
6540
6541static void
6543{
6544 struct tcp_rack *rack;
6545 uint32_t srtt;
6546
6547 rack = (struct tcp_rack *)tp->t_fb_ptr;
6548 srtt = tp->t_srtt;
6549 cc_conn_init(tp);
6550 /*
6551 * Now convert to rack's internal format,
6552 * if required.
6553 */
6554 if ((srtt == 0) && (tp->t_srtt != 0))
6556 /*
6557 * We want a chance to stay in slowstart as
6558 * we create a connection. TCP spec says that
6559 * initially ssthresh is infinite. For our
6560 * purposes that is the snd_wnd.
6561 */
6562 if (tp->snd_ssthresh < tp->snd_wnd) {
6563 tp->snd_ssthresh = tp->snd_wnd;
6564 }
6565 /*
6566 * We also want to assure a IW worth of
6567 * data can get inflight.
6568 */
6569 if (rc_init_window(rack) < tp->snd_cwnd)
6570 tp->snd_cwnd = rc_init_window(rack);
6571}
6572
6573/*
6574 * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
6575 * we will setup to retransmit the lowest seq number outstanding.
6576 */
6577static int
6578rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6579{
6580 int32_t rexmt;
6581 int32_t retval = 0;
6582 bool isipv6;
6583
6584 if (tp->t_timers->tt_flags & TT_STOPPED) {
6585 return (1);
6586 }
6587 if ((tp->t_flags & TF_GPUTINPROG) &&
6588 (tp->t_rxtshift)) {
6589 /*
6590 * We have had a second timeout
6591 * measurements on successive rxt's are not profitable.
6592 * It is unlikely to be of any use (the network is
6593 * broken or the client went away).
6594 */
6595 tp->t_flags &= ~TF_GPUTINPROG;
6596 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6597 rack->r_ctl.rc_gp_srtt /*flex1*/,
6598 tp->gput_seq,
6599 0, 0, 18, __LINE__, NULL, 0);
6600 }
6601 if (ctf_progress_timeout_check(tp, false)) {
6603 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6604 return (-ETIMEDOUT); /* tcp_drop() */
6605 }
6606 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
6607 rack->r_ctl.retran_during_recovery = 0;
6608 rack->r_ctl.dsack_byte_cnt = 0;
6609 if (IN_FASTRECOVERY(tp->t_flags))
6610 tp->t_flags |= TF_WASFRECOVERY;
6611 else
6612 tp->t_flags &= ~TF_WASFRECOVERY;
6613 if (IN_CONGRECOVERY(tp->t_flags))
6614 tp->t_flags |= TF_WASCRECOVERY;
6615 else
6616 tp->t_flags &= ~TF_WASCRECOVERY;
6617 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
6618 (tp->snd_una == tp->snd_max)) {
6619 /* Nothing outstanding .. nothing to do */
6620 return (0);
6621 }
6622 if (rack->r_ctl.dsack_persist) {
6623 rack->r_ctl.dsack_persist--;
6624 if (rack->r_ctl.num_dsack && (rack->r_ctl.dsack_persist == 0)) {
6625 rack->r_ctl.num_dsack = 0;
6626 }
6627 rack_log_dsack_event(rack, 1, __LINE__, 0, 0);
6628 }
6629 /*
6630 * Rack can only run one timer at a time, so we cannot
6631 * run a KEEPINIT (gating SYN sending) and a retransmit
6632 * timer for the SYN. So if we are in a front state and
6633 * have a KEEPINIT timer we need to check the first transmit
6634 * against now to see if we have exceeded the KEEPINIT time
6635 * (if one is set).
6636 */
6637 if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
6638 (TP_KEEPINIT(tp) != 0)) {
6639 struct rack_sendmap *rsm;
6640
6641 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6642 if (rsm) {
6643 /* Ok we have something outstanding to test keepinit with */
6644 if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) &&
6645 ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) {
6646 /* We have exceeded the KEEPINIT time */
6648 goto drop_it;
6649 }
6650 }
6651 }
6652 /*
6653 * Retransmission timer went off. Message has not been acked within
6654 * retransmit interval. Back off to a longer retransmit interval
6655 * and retransmit one segment.
6656 */
6657 rack_remxt_tmr(tp);
6658 if ((rack->r_ctl.rc_resend == NULL) ||
6659 ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
6660 /*
6661 * If the rwnd collapsed on
6662 * the one we are retransmitting
6663 * it does not count against the
6664 * rxt count.
6665 */
6666 tp->t_rxtshift++;
6667 }
6668 if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
6670drop_it:
6672 KMOD_TCPSTAT_INC(tcps_timeoutdrop);
6673 /* XXXGL: previously t_softerror was casted to uint16_t */
6674 MPASS(tp->t_softerror >= 0);
6675 retval = tp->t_softerror ? -tp->t_softerror : -ETIMEDOUT;
6676 goto out; /* tcp_drop() */
6677 }
6678 if (tp->t_state == TCPS_SYN_SENT) {
6679 /*
6680 * If the SYN was retransmitted, indicate CWND to be limited
6681 * to 1 segment in cc_conn_init().
6682 */
6683 tp->snd_cwnd = 1;
6684 } else if (tp->t_rxtshift == 1) {
6685 /*
6686 * first retransmit; record ssthresh and cwnd so they can be
6687 * recovered if this turns out to be a "bad" retransmit. A
6688 * retransmit is considered "bad" if an ACK for this segment
6689 * is received within RTT/2 interval; the assumption here is
6690 * that the ACK was already in flight. See "On Estimating
6691 * End-to-End Network Path Properties" by Allman and Paxson
6692 * for more details.
6693 */
6694 tp->snd_cwnd_prev = tp->snd_cwnd;
6696 tp->snd_recover_prev = tp->snd_recover;
6697 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2);
6698 tp->t_flags |= TF_PREVVALID;
6699 } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0)
6700 tp->t_flags &= ~TF_PREVVALID;
6701 KMOD_TCPSTAT_INC(tcps_rexmttimeo);
6702 if ((tp->t_state == TCPS_SYN_SENT) ||
6703 (tp->t_state == TCPS_SYN_RECEIVED))
6705 else
6706 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift];
6707
6708 RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt,
6709 max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop);
6710 /*
6711 * We enter the path for PLMTUD if connection is established or, if
6712 * connection is FIN_WAIT_1 status, reason for the last is that if
6713 * amount of data we send is very small, we could send it in couple
6714 * of packets and process straight to FIN. In that case we won't
6715 * catch ESTABLISHED state.
6716 */
6717#ifdef INET6
6718 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
6719#else
6720 isipv6 = false;
6721#endif
6722 if (((V_tcp_pmtud_blackhole_detect == 1) ||
6723 (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
6724 (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
6725 ((tp->t_state == TCPS_ESTABLISHED) ||
6726 (tp->t_state == TCPS_FIN_WAIT_1))) {
6727 /*
6728 * Idea here is that at each stage of mtu probe (usually,
6729 * 1448 -> 1188 -> 524) should be given 2 chances to recover
6730 * before further clamping down. 'tp->t_rxtshift % 2 == 0'
6731 * should take care of that.
6732 */
6735 (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
6736 tp->t_rxtshift % 2 == 0)) {
6737 /*
6738 * Enter Path MTU Black-hole Detection mechanism: -
6739 * Disable Path MTU Discovery (IP "DF" bit). -
6740 * Reduce MTU to lower value than what we negotiated
6741 * with peer.
6742 */
6743 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
6744 /* Record that we may have found a black hole. */
6746 /* Keep track of previous MSS. */
6748 }
6749
6750 /*
6751 * Reduce the MSS to blackhole value or to the
6752 * default in an attempt to retransmit.
6753 */
6754#ifdef INET6
6755 if (isipv6 &&
6757 /* Use the sysctl tuneable blackhole MSS. */
6759 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6760 } else if (isipv6) {
6761 /* Use the default MSS. */
6762 tp->t_maxseg = V_tcp_v6mssdflt;
6763 /*
6764 * Disable Path MTU Discovery when we switch
6765 * to minmss.
6766 */
6767 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6768 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6769 }
6770#endif
6771#if defined(INET6) && defined(INET)
6772 else
6773#endif
6774#ifdef INET
6776 /* Use the sysctl tuneable blackhole MSS. */
6778 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6779 } else {
6780 /* Use the default MSS. */
6781 tp->t_maxseg = V_tcp_mssdflt;
6782 /*
6783 * Disable Path MTU Discovery when we switch
6784 * to minmss.
6785 */
6786 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6787 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6788 }
6789#endif
6790 } else {
6791 /*
6792 * If further retransmissions are still unsuccessful
6793 * with a lowered MTU, maybe this isn't a blackhole
6794 * and we restore the previous MSS and blackhole
6795 * detection flags. The limit '6' is determined by
6796 * giving each probe stage (1448, 1188, 524) 2
6797 * chances to recover.
6798 */
6799 if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
6800 (tp->t_rxtshift >= 6)) {
6802 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
6804 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
6805 }
6806 }
6807 }
6808 /*
6809 * Disable RFC1323 and SACK if we haven't got any response to
6810 * our third SYN to work-around some broken terminal servers
6811 * (most of which have hopefully been retired) that have bad VJ
6812 * header compression code which trashes TCP segments containing
6813 * unknown-to-them TCP options.
6814 */
6816 (tp->t_rxtshift == 3))
6818 /*
6819 * If we backed off this far, our srtt estimate is probably bogus.
6820 * Clobber it so we'll take the next rtt measurement as our srtt;
6821 * move the current srtt into rttvar to keep the current retransmit
6822 * times until then.
6823 */
6824 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
6825#ifdef INET6
6826 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
6827 in6_losing(tp->t_inpcb);
6828 else
6829#endif
6830 in_losing(tp->t_inpcb);
6831 tp->t_rttvar += tp->t_srtt;
6832 tp->t_srtt = 0;
6833 }
6835 tp->snd_recover = tp->snd_max;
6836 tp->t_flags |= TF_ACKNOW;
6837 tp->t_rtttime = 0;
6839out:
6840 return (retval);
6841}
6842
6843static int
6844rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp)
6845{
6846 int32_t ret = 0;
6847 int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
6848
6849 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
6850 (tp->t_flags & TF_GPUTINPROG)) {
6851 /*
6852 * We have a goodput in progress
6853 * and we have entered a late state.
6854 * Do we have enough data in the sb
6855 * to handle the GPUT request?
6856 */
6857 uint32_t bytes;
6858
6859 bytes = tp->gput_ack - tp->gput_seq;
6860 if (SEQ_GT(tp->gput_seq, tp->snd_una))
6861 bytes += tp->gput_seq - tp->snd_una;
6862 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
6863 /*
6864 * There are not enough bytes in the socket
6865 * buffer that have been sent to cover this
6866 * measurement. Cancel it.
6867 */
6868 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
6869 rack->r_ctl.rc_gp_srtt /*flex1*/,
6870 tp->gput_seq,
6871 0, 0, 18, __LINE__, NULL, 0);
6872 tp->t_flags &= ~TF_GPUTINPROG;
6873 }
6874 }
6875 if (timers == 0) {
6876 return (0);
6877 }
6878 if (tp->t_state == TCPS_LISTEN) {
6879 /* no timers on listen sockets */
6881 return (0);
6882 return (1);
6883 }
6884 if ((timers & PACE_TMR_RACK) &&
6885 rack->rc_on_min_to) {
6886 /*
6887 * For the rack timer when we
6888 * are on a min-timeout (which means rrr_conf = 3)
6889 * we don't want to check the timer. It may
6890 * be going off for a pace and thats ok we
6891 * want to send the retransmit (if its ready).
6892 *
6893 * If its on a normal rack timer (non-min) then
6894 * we will check if its expired.
6895 */
6896 goto skip_time_check;
6897 }
6898 if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6899 uint32_t left;
6900
6901 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
6902 ret = -1;
6903 rack_log_to_processing(rack, cts, ret, 0);
6904 return (0);
6905 }
6906 if (hpts_calling == 0) {
6907 /*
6908 * A user send or queued mbuf (sack) has called us? We
6909 * return 0 and let the pacing guards
6910 * deal with it if they should or
6911 * should not cause a send.
6912 */
6913 ret = -2;
6914 rack_log_to_processing(rack, cts, ret, 0);
6915 return (0);
6916 }
6917 /*
6918 * Ok our timer went off early and we are not paced false
6919 * alarm, go back to sleep.
6920 */
6921 ret = -3;
6922 left = rack->r_ctl.rc_timer_exp - cts;
6924 rack_log_to_processing(rack, cts, ret, left);
6925 return (1);
6926 }
6927skip_time_check:
6928 rack->rc_tmr_stopped = 0;
6929 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
6930 if (timers & PACE_TMR_DELACK) {
6931 ret = rack_timeout_delack(tp, rack, cts);
6932 } else if (timers & PACE_TMR_RACK) {
6933 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6934 rack->r_fast_output = 0;
6935 ret = rack_timeout_rack(tp, rack, cts);
6936 } else if (timers & PACE_TMR_TLP) {
6937 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6938 ret = rack_timeout_tlp(tp, rack, cts, doing_tlp);
6939 } else if (timers & PACE_TMR_RXT) {
6940 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6941 rack->r_fast_output = 0;
6942 ret = rack_timeout_rxt(tp, rack, cts);
6943 } else if (timers & PACE_TMR_PERSIT) {
6944 ret = rack_timeout_persist(tp, rack, cts);
6945 } else if (timers & PACE_TMR_KEEP) {
6946 ret = rack_timeout_keepalive(tp, rack, cts);
6947 }
6948 rack_log_to_processing(rack, cts, ret, timers);
6949 return (ret);
6950}
6951
6952static void
6953rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
6954{
6955 struct timeval tv;
6956 uint32_t us_cts, flags_on_entry;
6957 uint8_t hpts_removed = 0;
6958
6959 flags_on_entry = rack->r_ctl.rc_hpts_flags;
6960 us_cts = tcp_get_usecs(&tv);
6961 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
6962 ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
6963 ((tp->snd_max - tp->snd_una) == 0))) {
6964 tcp_hpts_remove(rack->rc_inp);
6965 hpts_removed = 1;
6966 /* If we were not delayed cancel out the flag. */
6967 if ((tp->snd_max - tp->snd_una) == 0)
6968 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
6969 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
6970 }
6971 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
6973 if (tcp_in_hpts(rack->rc_inp) &&
6974 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
6975 /*
6976 * Canceling timer's when we have no output being
6977 * paced. We also must remove ourselves from the
6978 * hpts.
6979 */
6980 tcp_hpts_remove(rack->rc_inp);
6981 hpts_removed = 1;
6982 }
6983 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
6984 }
6985 if (hpts_removed == 0)
6986 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
6987}
6988
6989static void
6990rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
6991{
6992 return;
6993}
6994
6995static int
6997{
6998 struct tcp_rack *rack;
6999 rack = (struct tcp_rack *)tp->t_fb_ptr;
7000 rack->t_timers_stopped = 1;
7001 return (0);
7002}
7003
7004static void
7005rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
7006{
7007 return;
7008}
7009
7010static int
7011rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
7012{
7013 return (0);
7014}
7015
7016static void
7018{
7019 struct tcp_rack *rack;
7020
7021 /*
7022 * Assure no timers are running.
7023 */
7024 if (tcp_timer_active(tp, TT_PERSIST)) {
7025 /* We enter in persists, set the flag appropriately */
7026 rack = (struct tcp_rack *)tp->t_fb_ptr;
7027 rack->rc_in_persist = 1;
7028 }
7033}
7034
7035static void
7036rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
7037 struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
7038{
7039 int32_t idx;
7040
7041 rsm->r_rtr_cnt++;
7042 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7043 rsm->r_dupack = 0;
7044 if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
7046 rsm->r_flags |= RACK_OVERMAX;
7047 }
7048 if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
7049 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
7050 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
7051 }
7052 idx = rsm->r_rtr_cnt - 1;
7053 rsm->r_tim_lastsent[idx] = ts;
7054 /*
7055 * Here we don't add in the len of send, since its already
7056 * in snduna <->snd_max.
7057 */
7058 rsm->r_fas = ctf_flight_size(rack->rc_tp,
7059 rack->r_ctl.rc_sacked);
7060 if (rsm->r_flags & RACK_ACKED) {
7061 /* Problably MTU discovery messing with us */
7062 rsm->r_flags &= ~RACK_ACKED;
7063 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7064 }
7065 if (rsm->r_in_tmap) {
7066 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7067 rsm->r_in_tmap = 0;
7068 }
7069 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7070 rsm->r_in_tmap = 1;
7071 if (rsm->r_flags & RACK_SACK_PASSED) {
7072 /* We have retransmitted due to the SACK pass */
7073 rsm->r_flags &= ~RACK_SACK_PASSED;
7074 rsm->r_flags |= RACK_WAS_SACKPASS;
7075 }
7076}
7077
7078static uint32_t
7079rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
7080 struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
7081{
7082 /*
7083 * We (re-)transmitted starting at rsm->r_start for some length
7084 * (possibly less than r_end.
7085 */
7086 struct rack_sendmap *nrsm;
7087#ifdef INVARIANTS
7088 struct rack_sendmap *insret;
7089#endif
7090 uint32_t c_end;
7091 int32_t len;
7092
7093 len = *lenp;
7094 c_end = rsm->r_start + len;
7095 if (SEQ_GEQ(c_end, rsm->r_end)) {
7096 /*
7097 * We retransmitted the whole piece or more than the whole
7098 * slopping into the next rsm.
7099 */
7100 rack_update_rsm(tp, rack, rsm, ts, add_flag);
7101 if (c_end == rsm->r_end) {
7102 *lenp = 0;
7103 return (0);
7104 } else {
7105 int32_t act_len;
7106
7107 /* Hangs over the end return whats left */
7108 act_len = rsm->r_end - rsm->r_start;
7109 *lenp = (len - act_len);
7110 return (rsm->r_end);
7111 }
7112 /* We don't get out of this block. */
7113 }
7114 /*
7115 * Here we retransmitted less than the whole thing which means we
7116 * have to split this into what was transmitted and what was not.
7117 */
7118 nrsm = rack_alloc_full_limit(rack);
7119 if (nrsm == NULL) {
7120 /*
7121 * We can't get memory, so lets not proceed.
7122 */
7123 *lenp = 0;
7124 return (0);
7125 }
7126 /*
7127 * So here we are going to take the original rsm and make it what we
7128 * retransmitted. nrsm will be the tail portion we did not
7129 * retransmit. For example say the chunk was 1, 11 (10 bytes). And
7130 * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
7131 * 1, 6 and the new piece will be 6, 11.
7132 */
7133 rack_clone_rsm(rack, nrsm, rsm, c_end);
7134 nrsm->r_dupack = 0;
7135 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7136#ifndef INVARIANTS
7137 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7138#else
7139 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7140 if (insret != NULL) {
7141 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7142 nrsm, insret, rack, rsm);
7143 }
7144#endif
7145 if (rsm->r_in_tmap) {
7146 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7147 nrsm->r_in_tmap = 1;
7148 }
7149 rsm->r_flags &= (~RACK_HAS_FIN);
7150 rack_update_rsm(tp, rack, rsm, ts, add_flag);
7151 /* Log a split of rsm into rsm and nrsm */
7152 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7153 *lenp = 0;
7154 return (0);
7155}
7156
7157static void
7158rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
7159 uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t cts,
7160 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff, int hw_tls)
7161{
7162 struct tcp_rack *rack;
7163 struct rack_sendmap *rsm, *nrsm, fe;
7164#ifdef INVARIANTS
7165 struct rack_sendmap *insret;
7166#endif
7167 register uint32_t snd_max, snd_una;
7168
7169 /*
7170 * Add to the RACK log of packets in flight or retransmitted. If
7171 * there is a TS option we will use the TS echoed, if not we will
7172 * grab a TS.
7173 *
7174 * Retransmissions will increment the count and move the ts to its
7175 * proper place. Note that if options do not include TS's then we
7176 * won't be able to effectively use the ACK for an RTT on a retran.
7177 *
7178 * Notes about r_start and r_end. Lets consider a send starting at
7179 * sequence 1 for 10 bytes. In such an example the r_start would be
7180 * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
7181 * This means that r_end is actually the first sequence for the next
7182 * slot (11).
7183 *
7184 */
7185 /*
7186 * If err is set what do we do XXXrrs? should we not add the thing?
7187 * -- i.e. return if err != 0 or should we pretend we sent it? --
7188 * i.e. proceed with add ** do this for now.
7189 */
7191 if (err)
7192 /*
7193 * We don't log errors -- we could but snd_max does not
7194 * advance in this case either.
7195 */
7196 return;
7197
7198 if (th_flags & TH_RST) {
7199 /*
7200 * We don't log resets and we return immediately from
7201 * sending
7202 */
7203 return;
7204 }
7205 rack = (struct tcp_rack *)tp->t_fb_ptr;
7206 snd_una = tp->snd_una;
7207 snd_max = tp->snd_max;
7208 if (th_flags & (TH_SYN | TH_FIN)) {
7209 /*
7210 * The call to rack_log_output is made before bumping
7211 * snd_max. This means we can record one extra byte on a SYN
7212 * or FIN if seq_out is adding more on and a FIN is present
7213 * (and we are not resending).
7214 */
7215 if ((th_flags & TH_SYN) && (seq_out == tp->iss))
7216 len++;
7217 if (th_flags & TH_FIN)
7218 len++;
7219 if (SEQ_LT(snd_max, tp->snd_nxt)) {
7220 /*
7221 * The add/update as not been done for the FIN/SYN
7222 * yet.
7223 */
7224 snd_max = tp->snd_nxt;
7225 }
7226 }
7227 if (SEQ_LEQ((seq_out + len), snd_una)) {
7228 /* Are sending an old segment to induce an ack (keep-alive)? */
7229 return;
7230 }
7231 if (SEQ_LT(seq_out, snd_una)) {
7232 /* huh? should we panic? */
7233 uint32_t end;
7234
7235 end = seq_out + len;
7236 seq_out = snd_una;
7237 if (SEQ_GEQ(end, seq_out))
7238 len = end - seq_out;
7239 else
7240 len = 0;
7241 }
7242 if (len == 0) {
7243 /* We don't log zero window probes */
7244 return;
7245 }
7246 if (IN_FASTRECOVERY(tp->t_flags)) {
7247 rack->r_ctl.rc_prr_out += len;
7248 }
7249 /* First question is it a retransmission or new? */
7250 if (seq_out == snd_max) {
7251 /* Its new */
7252again:
7253 rsm = rack_alloc(rack);
7254 if (rsm == NULL) {
7255 /*
7256 * Hmm out of memory and the tcb got destroyed while
7257 * we tried to wait.
7258 */
7259 return;
7260 }
7261 if (th_flags & TH_FIN) {
7262 rsm->r_flags = RACK_HAS_FIN|add_flag;
7263 } else {
7264 rsm->r_flags = add_flag;
7265 }
7266 if (hw_tls)
7267 rsm->r_hw_tls = 1;
7268 rsm->r_tim_lastsent[0] = cts;
7269 rsm->r_rtr_cnt = 1;
7270 rsm->r_rtr_bytes = 0;
7271 if (th_flags & TH_SYN) {
7272 /* The data space is one beyond snd_una */
7273 rsm->r_flags |= RACK_HAS_SYN;
7274 }
7275 rsm->r_start = seq_out;
7276 rsm->r_end = rsm->r_start + len;
7277 rsm->r_dupack = 0;
7278 /*
7279 * save off the mbuf location that
7280 * sndmbuf_noadv returned (which is
7281 * where we started copying from)..
7282 */
7283 rsm->m = s_mb;
7284 rsm->soff = s_moff;
7285 /*
7286 * Here we do add in the len of send, since its not yet
7287 * reflected in in snduna <->snd_max
7288 */
7289 rsm->r_fas = (ctf_flight_size(rack->rc_tp,
7290 rack->r_ctl.rc_sacked) +
7291 (rsm->r_end - rsm->r_start));
7292 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */
7293 if (rsm->m) {
7294 if (rsm->m->m_len <= rsm->soff) {
7295 /*
7296 * XXXrrs Question, will this happen?
7297 *
7298 * If sbsndptr is set at the correct place
7299 * then s_moff should always be somewhere
7300 * within rsm->m. But if the sbsndptr was
7301 * off then that won't be true. If it occurs
7302 * we need to walkout to the correct location.
7303 */
7304 struct mbuf *lm;
7305
7306 lm = rsm->m;
7307 while (lm->m_len <= rsm->soff) {
7308 rsm->soff -= lm->m_len;
7309 lm = lm->m_next;
7310 KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u",
7311 __func__, rack, s_moff, s_mb, rsm->soff));
7312 }
7313 rsm->m = lm;
7314 }
7315 rsm->orig_m_len = rsm->m->m_len;
7316 } else
7317 rsm->orig_m_len = 0;
7318 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7319 /* Log a new rsm */
7320 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__);
7321#ifndef INVARIANTS
7322 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7323#else
7324 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7325 if (insret != NULL) {
7326 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7327 nrsm, insret, rack, rsm);
7328 }
7329#endif
7330 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7331 rsm->r_in_tmap = 1;
7332 /*
7333 * Special case detection, is there just a single
7334 * packet outstanding when we are not in recovery?
7335 *
7336 * If this is true mark it so.
7337 */
7338 if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
7339 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
7340 struct rack_sendmap *prsm;
7341
7342 prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7343 if (prsm)
7344 prsm->r_one_out_nr = 1;
7345 }
7346 return;
7347 }
7348 /*
7349 * If we reach here its a retransmission and we need to find it.
7350 */
7351 memset(&fe, 0, sizeof(fe));
7352more:
7353 if (hintrsm && (hintrsm->r_start == seq_out)) {
7354 rsm = hintrsm;
7355 hintrsm = NULL;
7356 } else {
7357 /* No hints sorry */
7358 rsm = NULL;
7359 }
7360 if ((rsm) && (rsm->r_start == seq_out)) {
7361 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7362 if (len == 0) {
7363 return;
7364 } else {
7365 goto more;
7366 }
7367 }
7368 /* Ok it was not the last pointer go through it the hard way. */
7369refind:
7370 fe.r_start = seq_out;
7371 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
7372 if (rsm) {
7373 if (rsm->r_start == seq_out) {
7374 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7375 if (len == 0) {
7376 return;
7377 } else {
7378 goto refind;
7379 }
7380 }
7381 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
7382 /* Transmitted within this piece */
7383 /*
7384 * Ok we must split off the front and then let the
7385 * update do the rest
7386 */
7387 nrsm = rack_alloc_full_limit(rack);
7388 if (nrsm == NULL) {
7389 rack_update_rsm(tp, rack, rsm, cts, add_flag);
7390 return;
7391 }
7392 /*
7393 * copy rsm to nrsm and then trim the front of rsm
7394 * to not include this part.
7395 */
7396 rack_clone_rsm(rack, nrsm, rsm, seq_out);
7397 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7398#ifndef INVARIANTS
7399 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7400#else
7401 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7402 if (insret != NULL) {
7403 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7404 nrsm, insret, rack, rsm);
7405 }
7406#endif
7407 if (rsm->r_in_tmap) {
7408 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7409 nrsm->r_in_tmap = 1;
7410 }
7411 rsm->r_flags &= (~RACK_HAS_FIN);
7412 seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag);
7413 if (len == 0) {
7414 return;
7415 } else if (len > 0)
7416 goto refind;
7417 }
7418 }
7419 /*
7420 * Hmm not found in map did they retransmit both old and on into the
7421 * new?
7422 */
7423 if (seq_out == tp->snd_max) {
7424 goto again;
7425 } else if (SEQ_LT(seq_out, tp->snd_max)) {
7426#ifdef INVARIANTS
7427 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
7428 seq_out, len, tp->snd_una, tp->snd_max);
7429 printf("Starting Dump of all rack entries\n");
7430 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
7431 printf("rsm:%p start:%u end:%u\n",
7432 rsm, rsm->r_start, rsm->r_end);
7433 }
7434 printf("Dump complete\n");
7435 panic("seq_out not found rack:%p tp:%p",
7436 rack, tp);
7437#endif
7438 } else {
7439#ifdef INVARIANTS
7440 /*
7441 * Hmm beyond sndmax? (only if we are using the new rtt-pack
7442 * flag)
7443 */
7444 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
7445 seq_out, len, tp->snd_max, tp);
7446#endif
7447 }
7448}
7449
7450/*
7451 * Record one of the RTT updates from an ack into
7452 * our sample structure.
7453 */
7454
7455static void
7456tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
7457 int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
7458{
7459 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7460 (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
7461 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
7462 }
7463 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7464 (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
7465 rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
7466 }
7467 if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
7468 if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
7469 rack->r_ctl.rc_gp_lowrtt = us_rtt;
7470 if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
7471 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
7472 }
7473 if ((confidence == 1) &&
7474 ((rsm == NULL) ||
7475 (rsm->r_just_ret) ||
7476 (rsm->r_one_out_nr &&
7477 len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
7478 /*
7479 * If the rsm had a just return
7480 * hit it then we can't trust the
7481 * rtt measurement for buffer deterimination
7482 * Note that a confidence of 2, indicates
7483 * SACK'd which overrides the r_just_ret or
7484 * the r_one_out_nr. If it was a CUM-ACK and
7485 * we had only two outstanding, but get an
7486 * ack for only 1. Then that also lowers our
7487 * confidence.
7488 */
7489 confidence = 0;
7490 }
7491 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7492 (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
7493 if (rack->r_ctl.rack_rs.confidence == 0) {
7494 /*
7495 * We take anything with no current confidence
7496 * saved.
7497 */
7498 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7499 rack->r_ctl.rack_rs.confidence = confidence;
7500 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7501 } else if (confidence || rack->r_ctl.rack_rs.confidence) {
7502 /*
7503 * Once we have a confident number,
7504 * we can update it with a smaller
7505 * value since this confident number
7506 * may include the DSACK time until
7507 * the next segment (the second one) arrived.
7508 */
7509 rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7510 rack->r_ctl.rack_rs.confidence = confidence;
7511 rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7512 }
7513 }
7514 rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
7516 rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
7517 rack->r_ctl.rack_rs.rs_rtt_cnt++;
7518}
7519
7520/*
7521 * Collect new round-trip time estimate
7522 * and update averages and current timeout.
7523 */
7524static void
7526{
7527 int32_t delta;
7528 int32_t rtt;
7529
7531 /* No valid sample */
7532 return;
7534 /* We are to use the lowest RTT seen in a single ack */
7535 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
7536 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
7537 /* We are to use the highest RTT seen in a single ack */
7538 rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
7539 } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
7540 /* We are to use the average RTT seen in a single ack */
7541 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
7542 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
7543 } else {
7544#ifdef INVARIANTS
7545 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
7546#endif
7547 return;
7548 }
7549 if (rtt == 0)
7550 rtt = 1;
7551 if (rack->rc_gp_rtt_set == 0) {
7552 /*
7553 * With no RTT we have to accept
7554 * even one we are not confident of.
7555 */
7556 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
7557 rack->rc_gp_rtt_set = 1;
7558 } else if (rack->r_ctl.rack_rs.confidence) {
7559 /* update the running gp srtt */
7560 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
7561 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
7562 }
7563 if (rack->r_ctl.rack_rs.confidence) {
7564 /*
7565 * record the low and high for highly buffered path computation,
7566 * we only do this if we are confident (not a retransmission).
7567 */
7568 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
7570 }
7571 if (rack->rc_highly_buffered == 0) {
7572 /*
7573 * Currently once we declare a path has
7574 * highly buffered there is no going
7575 * back, which may be a problem...
7576 */
7580 rack->r_ctl.rc_lowest_us_rtt,
7582 rack->rc_highly_buffered = 1;
7583 }
7584 }
7585 }
7586 if ((rack->r_ctl.rack_rs.confidence) ||
7587 (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
7588 /*
7589 * If we are highly confident of it <or> it was
7590 * never retransmitted we accept it as the last us_rtt.
7591 */
7593 /* The lowest rtt can be set if its was not retransmited */
7594 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
7596 if (rack->r_ctl.rc_lowest_us_rtt == 0)
7597 rack->r_ctl.rc_lowest_us_rtt = 1;
7598 }
7599 }
7600 rack = (struct tcp_rack *)tp->t_fb_ptr;
7601 if (tp->t_srtt != 0) {
7602 /*
7603 * We keep a simple srtt in microseconds, like our rtt
7604 * measurement. We don't need to do any tricks with shifting
7605 * etc. Instead we just add in 1/8th of the new measurement
7606 * and subtract out 1/8 of the old srtt. We do the same with
7607 * the variance after finding the absolute value of the
7608 * difference between this sample and the current srtt.
7609 */
7610 delta = tp->t_srtt - rtt;
7611 /* Take off 1/8th of the current sRTT */
7612 tp->t_srtt -= (tp->t_srtt >> 3);
7613 /* Add in 1/8th of the new RTT just measured */
7614 tp->t_srtt += (rtt >> 3);
7615 if (tp->t_srtt <= 0)
7616 tp->t_srtt = 1;
7617 /* Now lets make the absolute value of the variance */
7618 if (delta < 0)
7619 delta = -delta;
7620 /* Subtract out 1/8th */
7621 tp->t_rttvar -= (tp->t_rttvar >> 3);
7622 /* Add in 1/8th of the new variance we just saw */
7623 tp->t_rttvar += (delta >> 3);
7624 if (tp->t_rttvar <= 0)
7625 tp->t_rttvar = 1;
7626 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
7627 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7628 } else {
7629 /*
7630 * No rtt measurement yet - use the unsmoothed rtt. Set the
7631 * variance to half the rtt (so our first retransmit happens
7632 * at 3*rtt).
7633 */
7634 tp->t_srtt = rtt;
7635 tp->t_rttvar = rtt >> 1;
7636 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7637 }
7638 rack->rc_srtt_measure_made = 1;
7639 KMOD_TCPSTAT_INC(tcps_rttupdated);
7640 tp->t_rttupdated++;
7641#ifdef STATS
7642 if (rack_stats_gets_ms_rtt == 0) {
7643 /* Send in the microsecond rtt used for rxt timeout purposes */
7644 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
7645 } else if (rack_stats_gets_ms_rtt == 1) {
7646 /* Send in the millisecond rtt used for rxt timeout purposes */
7647 int32_t ms_rtt;
7648
7649 /* Round up */
7650 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7651 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7652 } else if (rack_stats_gets_ms_rtt == 2) {
7653 /* Send in the millisecond rtt has close to the path RTT as we can get */
7654 int32_t ms_rtt;
7655
7656 /* Round up */
7658 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7659 } else {
7660 /* Send in the microsecond rtt has close to the path RTT as we can get */
7661 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt));
7662 }
7663
7664#endif
7665 /*
7666 * the retransmit should happen at rtt + 4 * rttvar. Because of the
7667 * way we do the smoothing, srtt and rttvar will each average +1/2
7668 * tick of bias. When we compute the retransmit timer, we want 1/2
7669 * tick of rounding and 1 extra tick because of +-1/2 tick
7670 * uncertainty in the firing of the timer. The bias will give us
7671 * exactly the 1.5 tick we need. But, because the bias is
7672 * statistical, we have to test that we don't drop below the minimum
7673 * feasible timer (which is 2 ticks).
7674 */
7675 tp->t_rxtshift = 0;
7677 max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop);
7678 rack_log_rtt_sample(rack, rtt);
7679 tp->t_softerror = 0;
7680}
7681
7682
7683static void
7685{
7686 /*
7687 * Apply to filter the inbound us-rtt at us_cts.
7688 */
7689 uint32_t old_rtt;
7690
7691 old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
7692 apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
7693 us_rtt, us_cts);
7694 if (old_rtt > us_rtt) {
7695 /* We just hit a new lower rtt time */
7696 rack_log_rtt_shrinks(rack, us_cts, old_rtt,
7697 __LINE__, RACK_RTTS_NEWRTT);
7698 /*
7699 * Only count it if its lower than what we saw within our
7700 * calculated range.
7701 */
7702 if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
7704 rack->rc_gp_dyn_mul &&
7705 (rack->use_fixed_rate == 0) &&
7706 (rack->rc_always_pace)) {
7707 /*
7708 * We are seeing a new lower rtt very close
7709 * to the time that we would have entered probe-rtt.
7710 * This is probably due to the fact that a peer flow
7711 * has entered probe-rtt. Lets go in now too.
7712 */
7713 uint32_t val;
7714
7716 val /= 100;
7717 if ((rack->in_probe_rtt == 0) &&
7718 ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) {
7719 rack_enter_probertt(rack, us_cts);
7720 }
7721 }
7722 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
7723 }
7724 }
7725}
7726
7727static int
7728rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
7729 struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
7730{
7731 uint32_t us_rtt;
7732 int32_t i, all;
7733 uint32_t t, len_acked;
7734
7735 if ((rsm->r_flags & RACK_ACKED) ||
7736 (rsm->r_flags & RACK_WAS_ACKED))
7737 /* Already done */
7738 return (0);
7739 if (rsm->r_no_rtt_allowed) {
7740 /* Not allowed */
7741 return (0);
7742 }
7743 if (ack_type == CUM_ACKED) {
7744 if (SEQ_GT(th_ack, rsm->r_end)) {
7745 len_acked = rsm->r_end - rsm->r_start;
7746 all = 1;
7747 } else {
7748 len_acked = th_ack - rsm->r_start;
7749 all = 0;
7750 }
7751 } else {
7752 len_acked = rsm->r_end - rsm->r_start;
7753 all = 0;
7754 }
7755 if (rsm->r_rtr_cnt == 1) {
7756
7757 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7758 if ((int)t <= 0)
7759 t = 1;
7760 if (!tp->t_rttlow || tp->t_rttlow > t)
7761 tp->t_rttlow = t;
7762 if (!rack->r_ctl.rc_rack_min_rtt ||
7763 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7764 rack->r_ctl.rc_rack_min_rtt = t;
7765 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7766 rack->r_ctl.rc_rack_min_rtt = 1;
7767 }
7768 }
7770 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7771 else
7772 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7773 if (us_rtt == 0)
7774 us_rtt = 1;
7775 if (CC_ALGO(tp)->rttsample != NULL) {
7776 /* Kick the RTT to the CC */
7777 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas);
7778 }
7780 if (ack_type == SACKED) {
7781 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1);
7782 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
7783 } else {
7784 /*
7785 * We need to setup what our confidence
7786 * is in this ack.
7787 *
7788 * If the rsm was app limited and it is
7789 * less than a mss in length (the end
7790 * of the send) then we have a gap. If we
7791 * were app limited but say we were sending
7792 * multiple MSS's then we are more confident
7793 * int it.
7794 *
7795 * When we are not app-limited then we see if
7796 * the rsm is being included in the current
7797 * measurement, we tell this by the app_limited_needs_set
7798 * flag.
7799 *
7800 * Note that being cwnd blocked is not applimited
7801 * as well as the pacing delay between packets which
7802 * are sending only 1 or 2 MSS's also will show up
7803 * in the RTT. We probably need to examine this algorithm
7804 * a bit more and enhance it to account for the delay
7805 * between rsm's. We could do that by saving off the
7806 * pacing delay of each rsm (in an rsm) and then
7807 * factoring that in somehow though for now I am
7808 * not sure how :)
7809 */
7810 int calc_conf = 0;
7811
7812 if (rsm->r_flags & RACK_APP_LIMITED) {
7813 if (all && (len_acked <= ctf_fixed_maxseg(tp)))
7814 calc_conf = 0;
7815 else
7816 calc_conf = 1;
7817 } else if (rack->app_limited_needs_set == 0) {
7818 calc_conf = 1;
7819 } else {
7820 calc_conf = 0;
7821 }
7822 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2);
7823 tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
7824 calc_conf, rsm, rsm->r_rtr_cnt);
7825 }
7826 if ((rsm->r_flags & RACK_TLP) &&
7827 (!IN_FASTRECOVERY(tp->t_flags))) {
7828 /* Segment was a TLP and our retrans matched */
7829 if (rack->r_ctl.rc_tlp_cwnd_reduce) {
7831 }
7832 }
7833 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7834 /* New more recent rack_tmit_time */
7835 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7836 rack->rc_rack_rtt = t;
7837 }
7838 return (1);
7839 }
7840 /*
7841 * We clear the soft/rxtshift since we got an ack.
7842 * There is no assurance we will call the commit() function
7843 * so we need to clear these to avoid incorrect handling.
7844 */
7845 tp->t_rxtshift = 0;
7848 tp->t_softerror = 0;
7849 if (to && (to->to_flags & TOF_TS) &&
7850 (ack_type == CUM_ACKED) &&
7851 (to->to_tsecr) &&
7852 ((rsm->r_flags & RACK_OVERMAX) == 0)) {
7853 /*
7854 * Now which timestamp does it match? In this block the ACK
7855 * must be coming from a previous transmission.
7856 */
7857 for (i = 0; i < rsm->r_rtr_cnt; i++) {
7858 if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) {
7859 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7860 if ((int)t <= 0)
7861 t = 1;
7862 if (CC_ALGO(tp)->rttsample != NULL) {
7863 /*
7864 * Kick the RTT to the CC, here
7865 * we lie a bit in that we know the
7866 * retransmission is correct even though
7867 * we retransmitted. This is because
7868 * we match the timestamps.
7869 */
7871 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[i];
7872 else
7873 us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[i];
7874 CC_ALGO(tp)->rttsample(tp->ccv, us_rtt, 1, rsm->r_fas);
7875 }
7876 if ((i + 1) < rsm->r_rtr_cnt) {
7877 /*
7878 * The peer ack'd from our previous
7879 * transmission. We have a spurious
7880 * retransmission and thus we dont
7881 * want to update our rack_rtt.
7882 *
7883 * Hmm should there be a CC revert here?
7884 *
7885 */
7886 return (0);
7887 }
7888 if (!tp->t_rttlow || tp->t_rttlow > t)
7889 tp->t_rttlow = t;
7890 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7891 rack->r_ctl.rc_rack_min_rtt = t;
7892 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7893 rack->r_ctl.rc_rack_min_rtt = 1;
7894 }
7895 }
7896 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
7897 (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7898 /* New more recent rack_tmit_time */
7899 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7900 rack->rc_rack_rtt = t;
7901 }
7902 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3);
7903 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm,
7904 rsm->r_rtr_cnt);
7905 return (1);
7906 }
7907 }
7908 goto ts_not_found;
7909 } else {
7910 /*
7911 * Ok its a SACK block that we retransmitted. or a windows
7912 * machine without timestamps. We can tell nothing from the
7913 * time-stamp since its not there or the time the peer last
7914 * recieved a segment that moved forward its cum-ack point.
7915 */
7916ts_not_found:
7917 i = rsm->r_rtr_cnt - 1;
7918 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7919 if ((int)t <= 0)
7920 t = 1;
7921 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7922 /*
7923 * We retransmitted and the ack came back in less
7924 * than the smallest rtt we have observed. We most
7925 * likely did an improper retransmit as outlined in
7926 * 6.2 Step 2 point 2 in the rack-draft so we
7927 * don't want to update our rack_rtt. We in
7928 * theory (in future) might want to think about reverting our
7929 * cwnd state but we won't for now.
7930 */
7931 return (0);
7932 } else if (rack->r_ctl.rc_rack_min_rtt) {
7933 /*
7934 * We retransmitted it and the retransmit did the
7935 * job.
7936 */
7937 if (!rack->r_ctl.rc_rack_min_rtt ||
7938 SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7939 rack->r_ctl.rc_rack_min_rtt = t;
7940 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7941 rack->r_ctl.rc_rack_min_rtt = 1;
7942 }
7943 }
7944 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) {
7945 /* New more recent rack_tmit_time */
7947 rack->rc_rack_rtt = t;
7948 }
7949 return (1);
7950 }
7951 }
7952 return (0);
7953}
7954
7955/*
7956 * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
7957 */
7958static void
7960 struct tcp_rack *rack, struct rack_sendmap *rsm)
7961{
7962 struct rack_sendmap *nrsm;
7963
7964 nrsm = rsm;
7965 TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
7966 rack_head, r_tnext) {
7967 if (nrsm == rsm) {
7968 /* Skip orginal segment he is acked */
7969 continue;
7970 }
7971 if (nrsm->r_flags & RACK_ACKED) {
7972 /*
7973 * Skip ack'd segments, though we
7974 * should not see these, since tmap
7975 * should not have ack'd segments.
7976 */
7977 continue;
7978 }
7979 if (nrsm->r_flags & RACK_SACK_PASSED) {
7980 /*
7981 * We found one that is already marked
7982 * passed, we have been here before and
7983 * so all others below this are marked.
7984 */
7985 break;
7986 }
7987 nrsm->r_flags |= RACK_SACK_PASSED;
7988 nrsm->r_flags &= ~RACK_WAS_SACKPASS;
7989 }
7990}
7991
7992static void
7994 struct tcp_rack *rack,
7995 struct rack_sendmap *rsm,
7996 tcp_seq th_ack,
7997 int line,
7998 int use_which)
7999{
8000
8001 if ((tp->t_flags & TF_GPUTINPROG) &&
8002 SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8003 /*
8004 * We were app limited, and this ack
8005 * butts up or goes beyond the point where we want
8006 * to start our next measurement. We need
8007 * to record the new gput_ts as here and
8008 * possibly update the start sequence.
8009 */
8010 uint32_t seq, ts;
8011
8012 if (rsm->r_rtr_cnt > 1) {
8013 /*
8014 * This is a retransmit, can we
8015 * really make any assessment at this
8016 * point? We are not really sure of
8017 * the timestamp, is it this or the
8018 * previous transmission?
8019 *
8020 * Lets wait for something better that
8021 * is not retransmitted.
8022 */
8023 return;
8024 }
8025 seq = tp->gput_seq;
8026 ts = tp->gput_ts;
8027 rack->app_limited_needs_set = 0;
8029 /* Do we start at a new end? */
8030 if ((use_which == RACK_USE_BEG) &&
8031 SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
8032 /*
8033 * When we get an ACK that just eats
8034 * up some of the rsm, we set RACK_USE_BEG
8035 * since whats at r_start (i.e. th_ack)
8036 * is left unacked and thats where the
8037 * measurement not starts.
8038 */
8039 tp->gput_seq = rsm->r_start;
8040 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8041 }
8042 if ((use_which == RACK_USE_END) &&
8043 SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8044 /*
8045 * We use the end when the cumack
8046 * is moving forward and completely
8047 * deleting the rsm passed so basically
8048 * r_end holds th_ack.
8049 *
8050 * For SACK's we also want to use the end
8051 * since this piece just got sacked and
8052 * we want to target anything after that
8053 * in our measurement.
8054 */
8055 tp->gput_seq = rsm->r_end;
8056 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8057 }
8058 if (use_which == RACK_USE_END_OR_THACK) {
8059 /*
8060 * special case for ack moving forward,
8061 * not a sack, we need to move all the
8062 * way up to where this ack cum-ack moves
8063 * to.
8064 */
8065 if (SEQ_GT(th_ack, rsm->r_end))
8066 tp->gput_seq = th_ack;
8067 else
8068 tp->gput_seq = rsm->r_end;
8069 rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8070 }
8071 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
8072 /*
8073 * We moved beyond this guy's range, re-calculate
8074 * the new end point.
8075 */
8076 if (rack->rc_gp_filled == 0) {
8077 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
8078 } else {
8079 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
8080 }
8081 }
8082 /*
8083 * We are moving the goal post, we may be able to clear the
8084 * measure_saw_probe_rtt flag.
8085 */
8086 if ((rack->in_probe_rtt == 0) &&
8087 (rack->measure_saw_probe_rtt) &&
8089 rack->measure_saw_probe_rtt = 0;
8090 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
8091 seq, tp->gput_seq, 0, 5, line, NULL, 0);
8092 if (rack->rc_gp_filled &&
8093 ((tp->gput_ack - tp->gput_seq) <
8094 max(rc_init_window(rack), (MIN_GP_WIN *
8095 ctf_fixed_maxseg(tp))))) {
8096 uint32_t ideal_amount;
8097
8098 ideal_amount = rack_get_measure_window(tp, rack);
8099 if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8100 /*
8101 * There is no sense of continuing this measurement
8102 * because its too small to gain us anything we
8103 * trust. Skip it and that way we can start a new
8104 * measurement quicker.
8105 */
8106 tp->t_flags &= ~TF_GPUTINPROG;
8108 0, 0, 0, 6, __LINE__, NULL, 0);
8109 } else {
8110 /*
8111 * Reset the window further out.
8112 */
8113 tp->gput_ack = tp->gput_seq + ideal_amount;
8114 }
8115 }
8116 }
8117}
8118
8119static inline int
8121{
8122 if (SEQ_LT(rsm->r_end, rack->r_ctl.last_tlp_acked_start)) {
8123 /* Behind our TLP definition or right at */
8124 return (0);
8125 }
8126 if (SEQ_GT(rsm->r_start, rack->r_ctl.last_tlp_acked_end)) {
8127 /* The start is beyond or right at our end of TLP definition */
8128 return (0);
8129 }
8130 /* It has to be a sub-part of the original TLP recorded */
8131 return (1);
8132}
8133
8134
8135static uint32_t
8136rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
8137 struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
8138{
8139 uint32_t start, end, changed = 0;
8140 struct rack_sendmap stack_map;
8141 struct rack_sendmap *rsm, *nrsm, fe, *prev, *next;
8142#ifdef INVARIANTS
8143 struct rack_sendmap *insret;
8144#endif
8145 int32_t used_ref = 1;
8146 int moved = 0;
8147
8148 start = sack->start;
8149 end = sack->end;
8150 rsm = *prsm;
8151 memset(&fe, 0, sizeof(fe));
8152do_rest_ofb:
8153 if ((rsm == NULL) ||
8154 (SEQ_LT(end, rsm->r_start)) ||
8155 (SEQ_GEQ(start, rsm->r_end)) ||
8156 (SEQ_LT(start, rsm->r_start))) {
8157 /*
8158 * We are not in the right spot,
8159 * find the correct spot in the tree.
8160 */
8161 used_ref = 0;
8162 fe.r_start = start;
8163 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8164 moved++;
8165 }
8166 if (rsm == NULL) {
8167 /* TSNH */
8168 goto out;
8169 }
8170 /* Ok we have an ACK for some piece of this rsm */
8171 if (rsm->r_start != start) {
8172 if ((rsm->r_flags & RACK_ACKED) == 0) {
8173 /*
8174 * Before any splitting or hookery is
8175 * done is it a TLP of interest i.e. rxt?
8176 */
8177 if ((rsm->r_flags & RACK_TLP) &&
8178 (rsm->r_rtr_cnt > 1)) {
8179 /*
8180 * We are splitting a rxt TLP, check
8181 * if we need to save off the start/end
8182 */
8183 if (rack->rc_last_tlp_acked_set &&
8184 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8185 /*
8186 * We already turned this on since we are inside
8187 * the previous one was a partially sack now we
8188 * are getting another one (maybe all of it).
8189 *
8190 */
8191 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8192 /*
8193 * Lets make sure we have all of it though.
8194 */
8195 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8196 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8197 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8199 }
8200 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8201 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8202 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8204 }
8205 } else {
8206 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8207 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8208 rack->rc_last_tlp_past_cumack = 0;
8209 rack->rc_last_tlp_acked_set = 1;
8210 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8211 }
8212 }
8229 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8230 if (next && (next->r_flags & RACK_ACKED) &&
8231 SEQ_GEQ(end, next->r_start)) {
8248 /* Copy up our fudge block */
8249 nrsm = &stack_map;
8250 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8251 /* Now adjust our tree blocks */
8252 rsm->r_end = start;
8253 next->r_start = start;
8254 /* Now we must adjust back where next->m is */
8256
8257 /* We don't need to adjust rsm, it did not change */
8258 /* Clear out the dup ack count of the remainder */
8259 rsm->r_dupack = 0;
8260 rsm->r_just_ret = 0;
8261 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8262 /* Now lets make sure our fudge block is right */
8263 nrsm->r_start = start;
8264 /* Now lets update all the stats and such */
8265 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8266 if (rack->app_limited_needs_set)
8267 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8268 changed += (nrsm->r_end - nrsm->r_start);
8269 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8270 if (nrsm->r_flags & RACK_SACK_PASSED) {
8271 rack->r_ctl.rc_reorder_ts = cts;
8272 }
8273 /*
8274 * Now we want to go up from rsm (the
8275 * one left un-acked) to the next one
8276 * in the tmap. We do this so when
8277 * we walk backwards we include marking
8278 * sack-passed on rsm (The one passed in
8279 * is skipped since it is generally called
8280 * on something sacked before removing it
8281 * from the tmap).
8282 */
8283 if (rsm->r_in_tmap) {
8284 nrsm = TAILQ_NEXT(rsm, r_tnext);
8285 /*
8286 * Now that we have the next
8287 * one walk backwards from there.
8288 */
8289 if (nrsm && nrsm->r_in_tmap)
8290 rack_log_sack_passed(tp, rack, nrsm);
8291 }
8292 /* Now are we done? */
8293 if (SEQ_LT(end, next->r_end) ||
8294 (end == next->r_end)) {
8295 /* Done with block */
8296 goto out;
8297 }
8298 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__);
8299 counter_u64_add(rack_sack_used_next_merge, 1);
8300 /* Postion for the next block */
8301 start = next->r_end;
8302 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
8303 if (rsm == NULL)
8304 goto out;
8305 } else {
8324 if (nrsm == NULL) {
8325 /*
8326 * failed XXXrrs what can we do but loose the sack
8327 * info?
8328 */
8329 goto out;
8330 }
8331 counter_u64_add(rack_sack_splits, 1);
8332 rack_clone_rsm(rack, nrsm, rsm, start);
8333 rsm->r_just_ret = 0;
8334#ifndef INVARIANTS
8335 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8336#else
8337 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8338 if (insret != NULL) {
8339 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8340 nrsm, insret, rack, rsm);
8341 }
8342#endif
8343 if (rsm->r_in_tmap) {
8344 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8345 nrsm->r_in_tmap = 1;
8346 }
8347 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__);
8348 rsm->r_flags &= (~RACK_HAS_FIN);
8349 /* Position us to point to the new nrsm that starts the sack blk */
8350 rsm = nrsm;
8351 }
8352 } else {
8353 /* Already sacked this piece */
8354 counter_u64_add(rack_sack_skipped_acked, 1);
8355 moved++;
8356 if (end == rsm->r_end) {
8357 /* Done with block */
8358 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8359 goto out;
8360 } else if (SEQ_LT(end, rsm->r_end)) {
8361 /* A partial sack to a already sacked block */
8362 moved++;
8363 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8364 goto out;
8365 } else {
8366 /*
8367 * The end goes beyond this guy
8368 * repostion the start to the
8369 * next block.
8370 */
8371 start = rsm->r_end;
8372 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8373 if (rsm == NULL)
8374 goto out;
8375 }
8376 }
8377 }
8378 if (SEQ_GEQ(end, rsm->r_end)) {
8387 if ((rsm->r_flags & RACK_ACKED) == 0) {
8388 /*
8389 * Is it a TLP of interest?
8390 */
8391 if ((rsm->r_flags & RACK_TLP) &&
8392 (rsm->r_rtr_cnt > 1)) {
8393 /*
8394 * We are splitting a rxt TLP, check
8395 * if we need to save off the start/end
8396 */
8397 if (rack->rc_last_tlp_acked_set &&
8398 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8399 /*
8400 * We already turned this on since we are inside
8401 * the previous one was a partially sack now we
8402 * are getting another one (maybe all of it).
8403 */
8404 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8405 /*
8406 * Lets make sure we have all of it though.
8407 */
8408 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8409 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8410 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8412 }
8413 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8414 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8415 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8417 }
8418 } else {
8419 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8420 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8421 rack->rc_last_tlp_past_cumack = 0;
8422 rack->rc_last_tlp_acked_set = 1;
8423 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8424 }
8425 }
8426 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8427 changed += (rsm->r_end - rsm->r_start);
8428 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8429 if (rsm->r_in_tmap) /* should be true */
8430 rack_log_sack_passed(tp, rack, rsm);
8431 /* Is Reordering occuring? */
8432 if (rsm->r_flags & RACK_SACK_PASSED) {
8433 rsm->r_flags &= ~RACK_SACK_PASSED;
8434 rack->r_ctl.rc_reorder_ts = cts;
8435 }
8436 if (rack->app_limited_needs_set)
8437 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8439 rsm->r_flags |= RACK_ACKED;
8440 if (rsm->r_in_tmap) {
8441 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8442 rsm->r_in_tmap = 0;
8443 }
8444 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__);
8445 } else {
8446 counter_u64_add(rack_sack_skipped_acked, 1);
8447 moved++;
8448 }
8449 if (end == rsm->r_end) {
8450 /* This block only - done, setup for next */
8451 goto out;
8452 }
8453 /*
8454 * There is more not coverend by this rsm move on
8455 * to the next block in the RB tree.
8456 */
8457 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8458 start = rsm->r_end;
8459 rsm = nrsm;
8460 if (rsm == NULL)
8461 goto out;
8462 goto do_rest_ofb;
8463 }
8470 if ((rsm->r_flags & RACK_ACKED) == 0) {
8471 /*
8472 * Is it a TLP of interest?
8473 */
8474 if ((rsm->r_flags & RACK_TLP) &&
8475 (rsm->r_rtr_cnt > 1)) {
8476 /*
8477 * We are splitting a rxt TLP, check
8478 * if we need to save off the start/end
8479 */
8480 if (rack->rc_last_tlp_acked_set &&
8481 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8482 /*
8483 * We already turned this on since we are inside
8484 * the previous one was a partially sack now we
8485 * are getting another one (maybe all of it).
8486 */
8487 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8488 /*
8489 * Lets make sure we have all of it though.
8490 */
8491 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8492 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8493 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8495 }
8496 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8497 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8498 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8500 }
8501 } else {
8502 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8503 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8504 rack->rc_last_tlp_past_cumack = 0;
8505 rack->rc_last_tlp_acked_set = 1;
8506 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8507 }
8508 }
8509 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8510 if (prev &&
8511 (prev->r_flags & RACK_ACKED)) {
8529 nrsm = &stack_map;
8530 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8531 prev->r_end = end;
8532 rsm->r_start = end;
8533 /* Now adjust nrsm (stack copy) to be
8534 * the one that is the small
8535 * piece that was "sacked".
8536 */
8537 nrsm->r_end = end;
8538 rsm->r_dupack = 0;
8539 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8540 /*
8541 * Now that the rsm has had its start moved forward
8542 * lets go ahead and get its new place in the world.
8543 */
8544 rack_setup_offset_for_rsm(prev, rsm);
8545 /*
8546 * Now nrsm is our new little piece
8547 * that is acked (which was merged
8548 * to prev). Update the rtt and changed
8549 * based on that. Also check for reordering.
8550 */
8551 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8552 if (rack->app_limited_needs_set)
8553 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8554 changed += (nrsm->r_end - nrsm->r_start);
8555 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8556 if (nrsm->r_flags & RACK_SACK_PASSED) {
8557 rack->r_ctl.rc_reorder_ts = cts;
8558 }
8559 rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__);
8560 rsm = prev;
8561 counter_u64_add(rack_sack_used_prev_merge, 1);
8562 } else {
8569 if (nrsm == NULL) {
8570 /* failed rrs what can we do but loose the sack info? */
8571 goto out;
8572 }
8573 if ((rsm->r_flags & RACK_TLP) &&
8574 (rsm->r_rtr_cnt > 1)) {
8575 /*
8576 * We are splitting a rxt TLP, check
8577 * if we need to save off the start/end
8578 */
8579 if (rack->rc_last_tlp_acked_set &&
8580 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8581 /*
8582 * We already turned this on since this block is inside
8583 * the previous one was a partially sack now we
8584 * are getting another one (maybe all of it).
8585 */
8586 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8587 /*
8588 * Lets make sure we have all of it though.
8589 */
8590 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8591 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8592 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8594 }
8595 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8596 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8597 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8599 }
8600 } else {
8601 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8602 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8603 rack->rc_last_tlp_acked_set = 1;
8604 rack->rc_last_tlp_past_cumack = 0;
8605 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8606 }
8607 }
8626 counter_u64_add(rack_sack_splits, 1);
8627 rack_clone_rsm(rack, nrsm, rsm, end);
8628 rsm->r_flags &= (~RACK_HAS_FIN);
8629 rsm->r_just_ret = 0;
8630#ifndef INVARIANTS
8631 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8632#else
8633 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8634 if (insret != NULL) {
8635 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8636 nrsm, insret, rack, rsm);
8637 }
8638#endif
8639 if (rsm->r_in_tmap) {
8640 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8641 nrsm->r_in_tmap = 1;
8642 }
8643 nrsm->r_dupack = 0;
8644 rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
8645 rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8646 changed += (rsm->r_end - rsm->r_start);
8647 rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8648 if (rsm->r_in_tmap) /* should be true */
8649 rack_log_sack_passed(tp, rack, rsm);
8650 /* Is Reordering occuring? */
8651 if (rsm->r_flags & RACK_SACK_PASSED) {
8652 rsm->r_flags &= ~RACK_SACK_PASSED;
8653 rack->r_ctl.rc_reorder_ts = cts;
8654 }
8655 if (rack->app_limited_needs_set)
8656 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8658 rsm->r_flags |= RACK_ACKED;
8659 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__);
8660 if (rsm->r_in_tmap) {
8661 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8662 rsm->r_in_tmap = 0;
8663 }
8664 }
8665 } else if (start != end){
8666 /*
8667 * The block was already acked.
8668 */
8669 counter_u64_add(rack_sack_skipped_acked, 1);
8670 moved++;
8671 }
8672out:
8673 if (rsm &&
8674 ((rsm->r_flags & RACK_TLP) == 0) &&
8675 (rsm->r_flags & RACK_ACKED)) {
8676 /*
8677 * Now can we merge where we worked
8678 * with either the previous or
8679 * next block?
8680 */
8681 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8682 while (next) {
8683 if (next->r_flags & RACK_TLP)
8684 break;
8685 if (next->r_flags & RACK_ACKED) {
8686 /* yep this and next can be merged */
8687 rsm = rack_merge_rsm(rack, rsm, next);
8688 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8689 } else
8690 break;
8691 }
8692 /* Now what about the previous? */
8693 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8694 while (prev) {
8695 if (prev->r_flags & RACK_TLP)
8696 break;
8697 if (prev->r_flags & RACK_ACKED) {
8698 /* yep the previous and this can be merged */
8699 rsm = rack_merge_rsm(rack, prev, rsm);
8700 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8701 } else
8702 break;
8703 }
8704 }
8705 if (used_ref == 0) {
8706 counter_u64_add(rack_sack_proc_all, 1);
8707 } else {
8708 counter_u64_add(rack_sack_proc_short, 1);
8709 }
8710 /* Save off the next one for quick reference. */
8711 if (rsm)
8712 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8713 else
8714 nrsm = NULL;
8715 *prsm = rack->r_ctl.rc_sacklast = nrsm;
8716 /* Pass back the moved. */
8717 *moved_two = moved;
8718 return (changed);
8719}
8720
8721static void inline
8722rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
8723{
8724 struct rack_sendmap *tmap;
8725
8726 tmap = NULL;
8727 while (rsm && (rsm->r_flags & RACK_ACKED)) {
8728 /* Its no longer sacked, mark it so */
8729 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8730#ifdef INVARIANTS
8731 if (rsm->r_in_tmap) {
8732 panic("rack:%p rsm:%p flags:0x%x in tmap?",
8733 rack, rsm, rsm->r_flags);
8734 }
8735#endif
8737 /* Rebuild it into our tmap */
8738 if (tmap == NULL) {
8739 TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8740 tmap = rsm;
8741 } else {
8742 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
8743 tmap = rsm;
8744 }
8745 tmap->r_in_tmap = 1;
8746 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8747 }
8748 /*
8749 * Now lets possibly clear the sack filter so we start
8750 * recognizing sacks that cover this area.
8751 */
8752 sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
8753
8754}
8755
8756static void
8758{
8759 struct timeval res;
8760
8761#define timersub(tvp, uvp, vvp) \
8762 do { \
8763 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
8764 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
8765 if ((vvp)->tv_usec < 0) { \
8766 (vvp)->tv_sec--; \
8767 (vvp)->tv_usec += 1000000; \
8768 } \
8769 } while (0)
8770
8771 timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
8772#undef timersub
8773
8774 rack->r_ctl.input_pkt++;
8775 if ((rack->rc_in_persist) ||
8776 (res.tv_sec >= 1) ||
8777 (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
8778 /*
8779 * Check for decay of non-SAD,
8780 * we want all SAD detection metrics to
8781 * decay 1/4 per second (or more) passed.
8782 */
8783#ifdef NETFLIX_EXP_DETECTION
8784 uint32_t pkt_delta;
8785
8786 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
8787#endif
8788 /* Update our saved tracking values */
8789 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
8791 /* Now do we escape without decay? */
8792#ifdef NETFLIX_EXP_DETECTION
8793 if (rack->rc_in_persist ||
8794 (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
8795 (pkt_delta < tcp_sad_low_pps)){
8796 /*
8797 * We don't decay idle connections
8798 * or ones that have a low input pps.
8799 */
8800 return;
8801 }
8802 /* Decay the counters */
8804 tcp_sad_decay_val);
8806 tcp_sad_decay_val);
8808 tcp_sad_decay_val);
8810 tcp_sad_decay_val);
8811#endif
8812 }
8813}
8814
8815static void
8816rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
8817{
8818 struct rack_sendmap *rsm;
8819#ifdef INVARIANTS
8820 struct rack_sendmap *rm;
8821#endif
8822
8823 /*
8824 * The ACK point is advancing to th_ack, we must drop off
8825 * the packets in the rack log and calculate any eligble
8826 * RTT's.
8827 */
8828 rack->r_wanted_output = 1;
8829
8830 /* Tend any TLP that has been marked for 1/2 the seq space (its old) */
8831 if ((rack->rc_last_tlp_acked_set == 1)&&
8832 (rack->rc_last_tlp_past_cumack == 1) &&
8833 (SEQ_GT(rack->r_ctl.last_tlp_acked_start, th_ack))) {
8834 /*
8835 * We have reached the point where our last rack
8836 * tlp retransmit sequence is ahead of the cum-ack.
8837 * This can only happen when the cum-ack moves all
8838 * the way around (its been a full 2^^31+1 bytes
8839 * or more since we sent a retransmitted TLP). Lets
8840 * turn off the valid flag since its not really valid.
8841 *
8842 * Note since sack's also turn on this event we have
8843 * a complication, we have to wait to age it out until
8844 * the cum-ack is by the TLP before checking which is
8845 * what the next else clause does.
8846 */
8847 rack_log_dsack_event(rack, 9, __LINE__,
8850 rack->rc_last_tlp_acked_set = 0;
8851 rack->rc_last_tlp_past_cumack = 0;
8852 } else if ((rack->rc_last_tlp_acked_set == 1) &&
8853 (rack->rc_last_tlp_past_cumack == 0) &&
8854 (SEQ_GEQ(th_ack, rack->r_ctl.last_tlp_acked_end))) {
8855 /*
8856 * It is safe to start aging TLP's out.
8857 */
8858 rack->rc_last_tlp_past_cumack = 1;
8859 }
8860 /* We do the same for the tlp send seq as well */
8861 if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8862 (rack->rc_last_sent_tlp_past_cumack == 1) &&
8863 (SEQ_GT(rack->r_ctl.last_sent_tlp_seq, th_ack))) {
8864 rack_log_dsack_event(rack, 9, __LINE__,
8866 (rack->r_ctl.last_sent_tlp_seq +
8867 rack->r_ctl.last_sent_tlp_len));
8870 } else if ((rack->rc_last_sent_tlp_seq_valid == 1) &&
8871 (rack->rc_last_sent_tlp_past_cumack == 0) &&
8872 (SEQ_GEQ(th_ack, rack->r_ctl.last_sent_tlp_seq))) {
8873 /*
8874 * It is safe to start aging TLP's send.
8875 */
8877 }
8878more:
8879 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8880 if (rsm == NULL) {
8881 if ((th_ack - 1) == tp->iss) {
8882 /*
8883 * For the SYN incoming case we will not
8884 * have called tcp_output for the sending of
8885 * the SYN, so there will be no map. All
8886 * other cases should probably be a panic.
8887 */
8888 return;
8889 }
8890 if (tp->t_flags & TF_SENTFIN) {
8891 /* if we sent a FIN we often will not have map */
8892 return;
8893 }
8894#ifdef INVARIANTS
8895 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n",
8896 tp,
8897 tp->t_state, th_ack, rack,
8898 tp->snd_una, tp->snd_max, tp->snd_nxt);
8899#endif
8900 return;
8901 }
8902 if (SEQ_LT(th_ack, rsm->r_start)) {
8903 /* Huh map is missing this */
8904#ifdef INVARIANTS
8905 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
8906 rsm->r_start,
8907 th_ack, tp->t_state, rack->r_state);
8908#endif
8909 return;
8910 }
8911 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
8912
8913 /* Now was it a retransmitted TLP? */
8914 if ((rsm->r_flags & RACK_TLP) &&
8915 (rsm->r_rtr_cnt > 1)) {
8916 /*
8917 * Yes, this rsm was a TLP and retransmitted, remember that
8918 * since if a DSACK comes back on this we don't want
8919 * to think of it as a reordered segment. This may
8920 * get updated again with possibly even other TLPs
8921 * in flight, but thats ok. Only when we don't send
8922 * a retransmitted TLP for 1/2 the sequences space
8923 * will it get turned off (above).
8924 */
8925 if (rack->rc_last_tlp_acked_set &&
8926 (is_rsm_inside_declared_tlp_block(rack, rsm))) {
8927 /*
8928 * We already turned this on since the end matches,
8929 * the previous one was a partially ack now we
8930 * are getting another one (maybe all of it).
8931 */
8932 rack_log_dsack_event(rack, 10, __LINE__, rsm->r_start, rsm->r_end);
8933 /*
8934 * Lets make sure we have all of it though.
8935 */
8936 if (SEQ_LT(rsm->r_start, rack->r_ctl.last_tlp_acked_start)) {
8937 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8938 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8940 }
8941 if (SEQ_GT(rsm->r_end, rack->r_ctl.last_tlp_acked_end)) {
8942 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8943 rack_log_dsack_event(rack, 11, __LINE__, rack->r_ctl.last_tlp_acked_start,
8945 }
8946 } else {
8947 rack->rc_last_tlp_past_cumack = 1;
8948 rack->r_ctl.last_tlp_acked_start = rsm->r_start;
8949 rack->r_ctl.last_tlp_acked_end = rsm->r_end;
8950 rack->rc_last_tlp_acked_set = 1;
8951 rack_log_dsack_event(rack, 8, __LINE__, rsm->r_start, rsm->r_end);
8952 }
8953 }
8954 /* Now do we consume the whole thing? */
8955 if (SEQ_GEQ(th_ack, rsm->r_end)) {
8956 /* Its all consumed. */
8957 uint32_t left;
8958 uint8_t newly_acked;
8959
8960 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__);
8961 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
8962 rsm->r_rtr_bytes = 0;
8963 /* Record the time of highest cumack sent */
8964 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8965#ifndef INVARIANTS
8966 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8967#else
8968 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8969 if (rm != rsm) {
8970 panic("removing head in rack:%p rsm:%p rm:%p",
8971 rack, rsm, rm);
8972 }
8973#endif
8974 if (rsm->r_in_tmap) {
8975 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8976 rsm->r_in_tmap = 0;
8977 }
8978 newly_acked = 1;
8979 if (rsm->r_flags & RACK_ACKED) {
8980 /*
8981 * It was acked on the scoreboard -- remove
8982 * it from total
8983 */
8984 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8985 newly_acked = 0;
8986 } else if (rsm->r_flags & RACK_SACK_PASSED) {
8987 /*
8988 * There are segments ACKED on the
8989 * scoreboard further up. We are seeing
8990 * reordering.
8991 */
8992 rsm->r_flags &= ~RACK_SACK_PASSED;
8994 rsm->r_flags |= RACK_ACKED;
8995 rack->r_ctl.rc_reorder_ts = cts;
8996 if (rack->r_ent_rec_ns) {
8997 /*
8998 * We have sent no more, and we saw an sack
8999 * then ack arrive.
9000 */
9001 rack->r_might_revert = 1;
9002 }
9003 }
9004 if ((rsm->r_flags & RACK_TO_REXT) &&
9005 (tp->t_flags & TF_RCVD_TSTMP) &&
9006 (to->to_flags & TOF_TS) &&
9007 (to->to_tsecr != 0) &&
9008 (tp->t_flags & TF_PREVVALID)) {
9009 /*
9010 * We can use the timestamp to see
9011 * if this retransmission was from the
9012 * first transmit. If so we made a mistake.
9013 */
9014 tp->t_flags &= ~TF_PREVVALID;
9015 if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) {
9016 /* The first transmit is what this ack is for */
9017 rack_cong_signal(tp, CC_RTO_ERR, th_ack);
9018 }
9019 }
9020 left = th_ack - rsm->r_end;
9021 if (rack->app_limited_needs_set && newly_acked)
9022 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
9023 /* Free back to zone */
9024 rack_free(rack, rsm);
9025 if (left) {
9026 goto more;
9027 }
9028 /* Check for reneging */
9029 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9030 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
9031 /*
9032 * The peer has moved snd_una up to
9033 * the edge of this send, i.e. one
9034 * that it had previously acked. The only
9035 * way that can be true if the peer threw
9036 * away data (space issues) that it had
9037 * previously sacked (else it would have
9038 * given us snd_una up to (rsm->r_end).
9039 * We need to undo the acked markings here.
9040 *
9041 * Note we have to look to make sure th_ack is
9042 * our rsm->r_start in case we get an old ack
9043 * where th_ack is behind snd_una.
9044 */
9045 rack_peer_reneges(rack, rsm, th_ack);
9046 }
9047 return;
9048 }
9049 if (rsm->r_flags & RACK_ACKED) {
9050 /*
9051 * It was acked on the scoreboard -- remove it from
9052 * total for the part being cum-acked.
9053 */
9054 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
9055 }
9056 /*
9057 * Clear the dup ack count for
9058 * the piece that remains.
9059 */
9060 rsm->r_dupack = 0;
9061 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
9062 if (rsm->r_rtr_bytes) {
9063 /*
9064 * It was retransmitted adjust the
9065 * sack holes for what was acked.
9066 */
9067 int ack_am;
9068
9069 ack_am = (th_ack - rsm->r_start);
9070 if (ack_am >= rsm->r_rtr_bytes) {
9071 rack->r_ctl.rc_holes_rxt -= ack_am;
9072 rsm->r_rtr_bytes -= ack_am;
9073 }
9074 }
9075 /*
9076 * Update where the piece starts and record
9077 * the time of send of highest cumack sent.
9078 */
9079 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
9080 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__);
9081 /* Now we need to move our offset forward too */
9082 if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) {
9083 /* Fix up the orig_m_len and possibly the mbuf offset */
9085 }
9086 rsm->soff += (th_ack - rsm->r_start);
9087 rsm->r_start = th_ack;
9088 /* Now do we need to move the mbuf fwd too? */
9089 if (rsm->m) {
9090 while (rsm->soff >= rsm->m->m_len) {
9091 rsm->soff -= rsm->m->m_len;
9092 rsm->m = rsm->m->m_next;
9093 KASSERT((rsm->m != NULL),
9094 (" nrsm:%p hit at soff:%u null m",
9095 rsm, rsm->soff));
9096 }
9097 rsm->orig_m_len = rsm->m->m_len;
9098 }
9099 if (rack->app_limited_needs_set)
9100 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
9101}
9102
9103static void
9104rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
9105{
9106 struct rack_sendmap *rsm;
9107 int sack_pass_fnd = 0;
9108
9109 if (rack->r_might_revert) {
9110 /*
9111 * Ok we have reordering, have not sent anything, we
9112 * might want to revert the congestion state if nothing
9113 * further has SACK_PASSED on it. Lets check.
9114 *
9115 * We also get here when we have DSACKs come in for
9116 * all the data that we FR'd. Note that a rxt or tlp
9117 * timer clears this from happening.
9118 */
9119
9120 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
9121 if (rsm->r_flags & RACK_SACK_PASSED) {
9122 sack_pass_fnd = 1;
9123 break;
9124 }
9125 }
9126 if (sack_pass_fnd == 0) {
9127 /*
9128 * We went into recovery
9129 * incorrectly due to reordering!
9130 */
9131 int orig_cwnd;
9132
9133 rack->r_ent_rec_ns = 0;
9134 orig_cwnd = tp->snd_cwnd;
9136 tp->snd_recover = tp->snd_una;
9137 rack_log_to_prr(rack, 14, orig_cwnd);
9139 }
9140 rack->r_might_revert = 0;
9141 }
9142}
9143
9144#ifdef NETFLIX_EXP_DETECTION
9145static void
9146rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack, uint32_t bytes_this_ack, uint32_t segsiz)
9147{
9148 if ((rack->do_detection || tcp_force_detection) &&
9149 tcp_sack_to_ack_thresh &&
9150 tcp_sack_to_move_thresh &&
9151 ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
9152 /*
9153 * We have thresholds set to find
9154 * possible attackers and disable sack.
9155 * Check them.
9156 */
9157 uint64_t ackratio, moveratio, movetotal;
9158
9159 /* Log detecting */
9160 rack_log_sad(rack, 1);
9161 ackratio = (uint64_t)(rack->r_ctl.sack_count);
9162 ackratio *= (uint64_t)(1000);
9163 if (rack->r_ctl.ack_count)
9164 ackratio /= (uint64_t)(rack->r_ctl.ack_count);
9165 else {
9166 /* We really should not hit here */
9167 ackratio = 1000;
9168 }
9169 if ((rack->sack_attack_disable == 0) &&
9170 (ackratio > rack_highest_sack_thresh_seen))
9172 movetotal = rack->r_ctl.sack_moved_extra;
9173 movetotal += rack->r_ctl.sack_noextra_move;
9174 moveratio = rack->r_ctl.sack_moved_extra;
9175 moveratio *= (uint64_t)1000;
9176 if (movetotal)
9177 moveratio /= movetotal;
9178 else {
9179 /* No moves, thats pretty good */
9180 moveratio = 0;
9181 }
9182 if ((rack->sack_attack_disable == 0) &&
9183 (moveratio > rack_highest_move_thresh_seen))
9185 if (rack->sack_attack_disable == 0) {
9186 if ((ackratio > tcp_sack_to_ack_thresh) &&
9187 (moveratio > tcp_sack_to_move_thresh)) {
9188 /* Disable sack processing */
9189 rack->sack_attack_disable = 1;
9190 if (rack->r_rep_attack == 0) {
9191 rack->r_rep_attack = 1;
9192 counter_u64_add(rack_sack_attacks_detected, 1);
9193 }
9194 if (tcp_attack_on_turns_on_logging) {
9195 /*
9196 * Turn on logging, used for debugging
9197 * false positives.
9198 */
9199 rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
9200 }
9201 /* Clamp the cwnd at flight size */
9202 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
9203 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
9204 rack_log_sad(rack, 2);
9205 }
9206 } else {
9207 /* We are sack-disabled check for false positives */
9208 if ((ackratio <= tcp_restoral_thresh) ||
9209 (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) {
9210 rack->sack_attack_disable = 0;
9211 rack_log_sad(rack, 3);
9212 /* Restart counting */
9213 rack->r_ctl.sack_count = 0;
9214 rack->r_ctl.sack_moved_extra = 0;
9215 rack->r_ctl.sack_noextra_move = 1;
9216 rack->r_ctl.ack_count = max(1,
9217 (bytes_this_ack / segsiz));
9218
9219 if (rack->r_rep_reverse == 0) {
9220 rack->r_rep_reverse = 1;
9221 counter_u64_add(rack_sack_attacks_reversed, 1);
9222 }
9223 /* Restore the cwnd */
9224 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
9225 rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
9226 }
9227 }
9228 }
9229}
9230#endif
9231
9232static int
9233rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
9234{
9235
9236 uint32_t am, l_end;
9237 int was_tlp = 0;
9238
9239 if (SEQ_GT(end, start))
9240 am = end - start;
9241 else
9242 am = 0;
9243 if ((rack->rc_last_tlp_acked_set ) &&
9244 (SEQ_GEQ(start, rack->r_ctl.last_tlp_acked_start)) &&
9245 (SEQ_LEQ(end, rack->r_ctl.last_tlp_acked_end))) {
9246 /*
9247 * The DSACK is because of a TLP which we don't
9248 * do anything with the reordering window over since
9249 * it was not reordering that caused the DSACK but
9250 * our previous retransmit TLP.
9251 */
9252 rack_log_dsack_event(rack, 7, __LINE__, start, end);
9253 was_tlp = 1;
9254 goto skip_dsack_round;
9255 }
9256 if (rack->rc_last_sent_tlp_seq_valid) {
9257 l_end = rack->r_ctl.last_sent_tlp_seq + rack->r_ctl.last_sent_tlp_len;
9258 if (SEQ_GEQ(start, rack->r_ctl.last_sent_tlp_seq) &&
9259 (SEQ_LEQ(end, l_end))) {
9260 /*
9261 * This dsack is from the last sent TLP, ignore it
9262 * for reordering purposes.
9263 */
9264 rack_log_dsack_event(rack, 7, __LINE__, start, end);
9265 was_tlp = 1;
9266 goto skip_dsack_round;
9267 }
9268 }
9269 if (rack->rc_dsack_round_seen == 0) {
9270 rack->rc_dsack_round_seen = 1;
9271 rack->r_ctl.dsack_round_end = rack->rc_tp->snd_max;
9272 rack->r_ctl.num_dsack++;
9273 rack->r_ctl.dsack_persist = 16; /* 16 is from the standard */
9274 rack_log_dsack_event(rack, 2, __LINE__, 0, 0);
9275 }
9276skip_dsack_round:
9277 /*
9278 * We keep track of how many DSACK blocks we get
9279 * after a recovery incident.
9280 */
9281 rack->r_ctl.dsack_byte_cnt += am;
9282 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
9285 /*
9286 * False recovery most likely culprit is reordering. If
9287 * nothing else is missing we need to revert.
9288 */
9289 rack->r_might_revert = 1;
9290 rack_handle_might_revert(rack->rc_tp, rack);
9291 rack->r_might_revert = 0;
9292 rack->r_ctl.retran_during_recovery = 0;
9293 rack->r_ctl.dsack_byte_cnt = 0;
9294 }
9295 return (was_tlp);
9296}
9297
9298static void
9299rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
9300{
9301 /* Deal with changed and PRR here (in recovery only) */
9302 uint32_t pipe, snd_una;
9303
9304 rack->r_ctl.rc_prr_delivered += changed;
9305
9306 if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) {
9307 /*
9308 * It is all outstanding, we are application limited
9309 * and thus we don't need more room to send anything.
9310 * Note we use tp->snd_una here and not th_ack because
9311 * the data as yet not been cut from the sb.
9312 */
9313 rack->r_ctl.rc_prr_sndcnt = 0;
9314 return;
9315 }
9316 /* Compute prr_sndcnt */
9317 if (SEQ_GT(tp->snd_una, th_ack)) {
9318 snd_una = tp->snd_una;
9319 } else {
9320 snd_una = th_ack;
9321 }
9322 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
9323 if (pipe > tp->snd_ssthresh) {
9324 long sndcnt;
9325
9326 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
9327 if (rack->r_ctl.rc_prr_recovery_fs > 0)
9328 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
9329 else {
9330 rack->r_ctl.rc_prr_sndcnt = 0;
9331 rack_log_to_prr(rack, 9, 0);
9332 sndcnt = 0;
9333 }
9334 sndcnt++;
9335 if (sndcnt > (long)rack->r_ctl.rc_prr_out)
9336 sndcnt -= rack->r_ctl.rc_prr_out;
9337 else
9338 sndcnt = 0;
9339 rack->r_ctl.rc_prr_sndcnt = sndcnt;
9340 rack_log_to_prr(rack, 10, 0);
9341 } else {
9342 uint32_t limit;
9343
9344 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
9345 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
9346 else
9347 limit = 0;
9348 if (changed > limit)
9349 limit = changed;
9350 limit += ctf_fixed_maxseg(tp);
9351 if (tp->snd_ssthresh > pipe) {
9352 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
9353 rack_log_to_prr(rack, 11, 0);
9354 } else {
9355 rack->r_ctl.rc_prr_sndcnt = min(0, limit);
9356 rack_log_to_prr(rack, 12, 0);
9357 }
9358 }
9359}
9360
9361static void
9362rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck)
9363{
9364 uint32_t changed;
9365 struct tcp_rack *rack;
9366 struct rack_sendmap *rsm;
9367 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
9368 register uint32_t th_ack;
9369 int32_t i, j, k, num_sack_blks = 0;
9370 uint32_t cts, acked, ack_point;
9371 int loop_start = 0, moved_two = 0;
9372 uint32_t tsused;
9373
9374
9376 if (tcp_get_flags(th) & TH_RST) {
9377 /* We don't log resets */
9378 return;
9379 }
9380 rack = (struct tcp_rack *)tp->t_fb_ptr;
9381 cts = tcp_get_usecs(NULL);
9382 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9383 changed = 0;
9384 th_ack = th->th_ack;
9385 if (rack->sack_attack_disable == 0)
9386 rack_do_decay(rack);
9387 if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
9388 /*
9389 * You only get credit for
9390 * MSS and greater (and you get extra
9391 * credit for larger cum-ack moves).
9392 */
9393 int ac;
9394
9395 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
9396 rack->r_ctl.ack_count += ac;
9397 counter_u64_add(rack_ack_total, ac);
9398 }
9399 if (rack->r_ctl.ack_count > 0xfff00000) {
9400 /*
9401 * reduce the number to keep us under
9402 * a uint32_t.
9403 */
9404 rack->r_ctl.ack_count /= 2;
9405 rack->r_ctl.sack_count /= 2;
9406 }
9407 if (SEQ_GT(th_ack, tp->snd_una)) {
9408 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
9409 tp->t_acktime = ticks;
9410 }
9411 if (rsm && SEQ_GT(th_ack, rsm->r_start))
9412 changed = th_ack - rsm->r_start;
9413 if (changed) {
9414 rack_process_to_cumack(tp, rack, th_ack, cts, to);
9415 }
9416 if ((to->to_flags & TOF_SACK) == 0) {
9417 /* We are done nothing left and no sack. */
9418 rack_handle_might_revert(tp, rack);
9419 /*
9420 * For cases where we struck a dup-ack
9421 * with no SACK, add to the changes so
9422 * PRR will work right.
9423 */
9424 if (dup_ack_struck && (changed == 0)) {
9425 changed += ctf_fixed_maxseg(rack->rc_tp);
9426 }
9427 goto out;
9428 }
9429 /* Sack block processing */
9430 if (SEQ_GT(th_ack, tp->snd_una))
9431 ack_point = th_ack;
9432 else
9433 ack_point = tp->snd_una;
9434 for (i = 0; i < to->to_nsacks; i++) {
9435 bcopy((to->to_sacks + i * TCPOLEN_SACK),
9436 &sack, sizeof(sack));
9437 sack.start = ntohl(sack.start);
9438 sack.end = ntohl(sack.end);
9439 if (SEQ_GT(sack.end, sack.start) &&
9440 SEQ_GT(sack.start, ack_point) &&
9441 SEQ_LT(sack.start, tp->snd_max) &&
9442 SEQ_GT(sack.end, ack_point) &&
9443 SEQ_LEQ(sack.end, tp->snd_max)) {
9444 sack_blocks[num_sack_blks] = sack;
9445 num_sack_blks++;
9446 } else if (SEQ_LEQ(sack.start, th_ack) &&
9447 SEQ_LEQ(sack.end, th_ack)) {
9448 int was_tlp;
9449
9450 was_tlp = rack_note_dsack(rack, sack.start, sack.end);
9451 /*
9452 * Its a D-SACK block.
9453 */
9454 tcp_record_dsack(tp, sack.start, sack.end, was_tlp);
9455 }
9456 }
9457 if (rack->rc_dsack_round_seen) {
9458 /* Is the dsack roound over? */
9459 if (SEQ_GEQ(th_ack, rack->r_ctl.dsack_round_end)) {
9460 /* Yes it is */
9461 rack->rc_dsack_round_seen = 0;
9462 rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
9463 }
9464 }
9465 /*
9466 * Sort the SACK blocks so we can update the rack scoreboard with
9467 * just one pass.
9468 */
9469 num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
9470 num_sack_blks, th->th_ack);
9471 ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
9472 if (num_sack_blks == 0) {
9473 /* Nothing to sack (DSACKs?) */
9474 goto out_with_totals;
9475 }
9476 if (num_sack_blks < 2) {
9477 /* Only one, we don't need to sort */
9478 goto do_sack_work;
9479 }
9480 /* Sort the sacks */
9481 for (i = 0; i < num_sack_blks; i++) {
9482 for (j = i + 1; j < num_sack_blks; j++) {
9483 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
9484 sack = sack_blocks[i];
9485 sack_blocks[i] = sack_blocks[j];
9486 sack_blocks[j] = sack;
9487 }
9488 }
9489 }
9490 /*
9491 * Now are any of the sack block ends the same (yes some
9492 * implementations send these)?
9493 */
9494again:
9495 if (num_sack_blks == 0)
9496 goto out_with_totals;
9497 if (num_sack_blks > 1) {
9498 for (i = 0; i < num_sack_blks; i++) {
9499 for (j = i + 1; j < num_sack_blks; j++) {
9500 if (sack_blocks[i].end == sack_blocks[j].end) {
9501 /*
9502 * Ok these two have the same end we
9503 * want the smallest end and then
9504 * throw away the larger and start
9505 * again.
9506 */
9507 if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
9508 /*
9509 * The second block covers
9510 * more area use that
9511 */
9512 sack_blocks[i].start = sack_blocks[j].start;
9513 }
9514 /*
9515 * Now collapse out the dup-sack and
9516 * lower the count
9517 */
9518 for (k = (j + 1); k < num_sack_blks; k++) {
9519 sack_blocks[j].start = sack_blocks[k].start;
9520 sack_blocks[j].end = sack_blocks[k].end;
9521 j++;
9522 }
9523 num_sack_blks--;
9524 goto again;
9525 }
9526 }
9527 }
9528 }
9529do_sack_work:
9530 /*
9531 * First lets look to see if
9532 * we have retransmitted and
9533 * can use the transmit next?
9534 */
9535 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9536 if (rsm &&
9537 SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
9538 SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
9539 /*
9540 * We probably did the FR and the next
9541 * SACK in continues as we would expect.
9542 */
9543 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
9544 if (acked) {
9545 rack->r_wanted_output = 1;
9546 changed += acked;
9547 }
9548 if (num_sack_blks == 1) {
9549 /*
9550 * This is what we would expect from
9551 * a normal implementation to happen
9552 * after we have retransmitted the FR,
9553 * i.e the sack-filter pushes down
9554 * to 1 block and the next to be retransmitted
9555 * is the sequence in the sack block (has more
9556 * are acked). Count this as ACK'd data to boost
9557 * up the chances of recovering any false positives.
9558 */
9559 rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
9560 counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
9561 counter_u64_add(rack_express_sack, 1);
9562 if (rack->r_ctl.ack_count > 0xfff00000) {
9563 /*
9564 * reduce the number to keep us under
9565 * a uint32_t.
9566 */
9567 rack->r_ctl.ack_count /= 2;
9568 rack->r_ctl.sack_count /= 2;
9569 }
9570 goto out_with_totals;
9571 } else {
9572 /*
9573 * Start the loop through the
9574 * rest of blocks, past the first block.
9575 */
9576 moved_two = 0;
9577 loop_start = 1;
9578 }
9579 }
9580 /* Its a sack of some sort */
9581 rack->r_ctl.sack_count++;
9582 if (rack->r_ctl.sack_count > 0xfff00000) {
9583 /*
9584 * reduce the number to keep us under
9585 * a uint32_t.
9586 */
9587 rack->r_ctl.ack_count /= 2;
9588 rack->r_ctl.sack_count /= 2;
9589 }
9590 counter_u64_add(rack_sack_total, 1);
9591 if (rack->sack_attack_disable) {
9592 /* An attacker disablement is in place */
9593 if (num_sack_blks > 1) {
9594 rack->r_ctl.sack_count += (num_sack_blks - 1);
9595 rack->r_ctl.sack_moved_extra++;
9596 counter_u64_add(rack_move_some, 1);
9597 if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
9598 rack->r_ctl.sack_moved_extra /= 2;
9599 rack->r_ctl.sack_noextra_move /= 2;
9600 }
9601 }
9602 goto out;
9603 }
9604 rsm = rack->r_ctl.rc_sacklast;
9605 for (i = loop_start; i < num_sack_blks; i++) {
9606 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
9607 if (acked) {
9608 rack->r_wanted_output = 1;
9609 changed += acked;
9610 }
9611 if (moved_two) {
9612 /*
9613 * If we did not get a SACK for at least a MSS and
9614 * had to move at all, or if we moved more than our
9615 * threshold, it counts against the "extra" move.
9616 */
9617 rack->r_ctl.sack_moved_extra += moved_two;
9618 counter_u64_add(rack_move_some, 1);
9619 } else {
9620 /*
9621 * else we did not have to move
9622 * any more than we would expect.
9623 */
9624 rack->r_ctl.sack_noextra_move++;
9625 counter_u64_add(rack_move_none, 1);
9626 }
9627 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
9628 /*
9629 * If the SACK was not a full MSS then
9630 * we add to sack_count the number of
9631 * MSS's (or possibly more than
9632 * a MSS if its a TSO send) we had to skip by.
9633 */
9634 rack->r_ctl.sack_count += moved_two;
9635 counter_u64_add(rack_sack_total, moved_two);
9636 }
9637 /*
9638 * Now we need to setup for the next
9639 * round. First we make sure we won't
9640 * exceed the size of our uint32_t on
9641 * the various counts, and then clear out
9642 * moved_two.
9643 */
9644 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
9645 (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
9646 rack->r_ctl.sack_moved_extra /= 2;
9647 rack->r_ctl.sack_noextra_move /= 2;
9648 }
9649 if (rack->r_ctl.sack_count > 0xfff00000) {
9650 rack->r_ctl.ack_count /= 2;
9651 rack->r_ctl.sack_count /= 2;
9652 }
9653 moved_two = 0;
9654 }
9655out_with_totals:
9656 if (num_sack_blks > 1) {
9657 /*
9658 * You get an extra stroke if
9659 * you have more than one sack-blk, this
9660 * could be where we are skipping forward
9661 * and the sack-filter is still working, or
9662 * it could be an attacker constantly
9663 * moving us.
9664 */
9665 rack->r_ctl.sack_moved_extra++;
9666 counter_u64_add(rack_move_some, 1);
9667 }
9668out:
9669#ifdef NETFLIX_EXP_DETECTION
9670 rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp));
9671#endif
9672 if (changed) {
9673 /* Something changed cancel the rack timer */
9674 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9675 }
9676 tsused = tcp_get_usecs(NULL);
9677 rsm = tcp_rack_output(tp, rack, tsused);
9678 if ((!IN_FASTRECOVERY(tp->t_flags)) &&
9679 rsm) {
9680 /* Enter recovery */
9681 entered_recovery = 1;
9683 /*
9684 * When we enter recovery we need to assure we send
9685 * one packet.
9686 */
9687 if (rack->rack_no_prr == 0) {
9689 rack_log_to_prr(rack, 8, 0);
9690 }
9691 rack->r_timer_override = 1;
9692 rack->r_early = 0;
9693 rack->r_ctl.rc_agg_early = 0;
9694 } else if (IN_FASTRECOVERY(tp->t_flags) &&
9695 rsm &&
9696 (rack->r_rr_config == 3)) {
9697 /*
9698 * Assure we can output and we get no
9699 * remembered pace time except the retransmit.
9700 */
9701 rack->r_timer_override = 1;
9702 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
9703 rack->r_ctl.rc_resend = rsm;
9704 }
9705 if (IN_FASTRECOVERY(tp->t_flags) &&
9706 (rack->rack_no_prr == 0) &&
9707 (entered_recovery == 0)) {
9708 rack_update_prr(tp, rack, changed, th_ack);
9709 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
9710 ((tcp_in_hpts(rack->rc_inp) == 0) &&
9711 ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
9712 /*
9713 * If you are pacing output you don't want
9714 * to override.
9715 */
9716 rack->r_early = 0;
9717 rack->r_ctl.rc_agg_early = 0;
9718 rack->r_timer_override = 1;
9719 }
9720 }
9721}
9722
9723static void
9725{
9726 struct rack_sendmap *rsm;
9727
9728 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9729 while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
9730 rsm = TAILQ_NEXT(rsm, r_tnext);
9731 }
9732 if (rsm && (rsm->r_dupack < 0xff)) {
9733 rsm->r_dupack++;
9734 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
9735 struct timeval tv;
9736 uint32_t cts;
9737 /*
9738 * Here we see if we need to retransmit. For
9739 * a SACK type connection if enough time has passed
9740 * we will get a return of the rsm. For a non-sack
9741 * connection we will get the rsm returned if the
9742 * dupack value is 3 or more.
9743 */
9744 cts = tcp_get_usecs(&tv);
9745 rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts);
9746 if (rack->r_ctl.rc_resend != NULL) {
9747 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) {
9749 rack->rc_tp->snd_una);
9750 }
9751 rack->r_wanted_output = 1;
9752 rack->r_timer_override = 1;
9753 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
9754 }
9755 } else {
9756 rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
9757 }
9758 }
9759}
9760
9761static void
9763 struct tcp_rack *rack,
9764 struct socket *so, int32_t acked)
9765{
9766 uint32_t segsiz, minseg;
9767
9768 segsiz = ctf_fixed_maxseg(tp);
9769 minseg = segsiz;
9770
9771 if (tp->snd_max == tp->snd_una) {
9772 /*
9773 * We are doing dynamic pacing and we are way
9774 * under. Basically everything got acked while
9775 * we were still waiting on the pacer to expire.
9776 *
9777 * This means we need to boost the b/w in
9778 * addition to any earlier boosting of
9779 * the multipler.
9780 */
9781 rack->rc_dragged_bottom = 1;
9783 /*
9784 * Lets use the segment bytes acked plus
9785 * the lowest RTT seen as the basis to
9786 * form a b/w estimate. This will be off
9787 * due to the fact that the true estimate
9788 * should be around 1/2 the time of the RTT
9789 * but we can settle for that.
9790 */
9791 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
9792 acked) {
9793 uint64_t bw, calc_bw, rtt;
9794
9795 rtt = rack->r_ctl.rack_rs.rs_us_rtt;
9796 if (rtt == 0) {
9797 /* no us sample is there a ms one? */
9798 if (rack->r_ctl.rack_rs.rs_rtt_lowest) {
9799 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
9800 } else {
9801 goto no_measurement;
9802 }
9803 }
9804 bw = acked;
9805 calc_bw = bw * 1000000;
9806 calc_bw /= rtt;
9807 if (rack->r_ctl.last_max_bw &&
9808 (rack->r_ctl.last_max_bw < calc_bw)) {
9809 /*
9810 * If we have a last calculated max bw
9811 * enforce it.
9812 */
9813 calc_bw = rack->r_ctl.last_max_bw;
9814 }
9815 /* now plop it in */
9816 if (rack->rc_gp_filled == 0) {
9817 if (calc_bw > ONE_POINT_TWO_MEG) {
9818 /*
9819 * If we have no measurement
9820 * don't let us set in more than
9821 * 1.2Mbps. If we are still too
9822 * low after pacing with this we
9823 * will hopefully have a max b/w
9824 * available to sanity check things.
9825 */
9826 calc_bw = ONE_POINT_TWO_MEG;
9827 }
9828 rack->r_ctl.rc_rtt_diff = 0;
9829 rack->r_ctl.gp_bw = calc_bw;
9830 rack->rc_gp_filled = 1;
9833 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9834 } else if (calc_bw > rack->r_ctl.gp_bw) {
9835 rack->r_ctl.rc_rtt_diff = 0;
9838 rack->r_ctl.gp_bw = calc_bw;
9839 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9840 } else
9841 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9842 if ((rack->gp_ready == 0) &&
9843 (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
9844 /* We have enough measurements now */
9845 rack->gp_ready = 1;
9846 rack_set_cc_pacing(rack);
9847 if (rack->defer_options)
9849 }
9850 /*
9851 * For acks over 1mss we do a extra boost to simulate
9852 * where we would get 2 acks (we want 110 for the mul).
9853 */
9854 if (acked > segsiz)
9855 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9856 } else {
9857 /*
9858 * zero rtt possibly?, settle for just an old increase.
9859 */
9860no_measurement:
9861 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9862 }
9863 } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
9864 (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
9865 minseg)) &&
9866 (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9867 (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9868 (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
9869 (segsiz * rack_req_segs))) {
9870 /*
9871 * We are doing dynamic GP pacing and
9872 * we have everything except 1MSS or less
9873 * bytes left out. We are still pacing away.
9874 * And there is data that could be sent, This
9875 * means we are inserting delayed ack time in
9876 * our measurements because we are pacing too slow.
9877 */
9879 rack->rc_dragged_bottom = 1;
9880 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9881 }
9882}
9883
9884
9885
9886static void
9887rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
9888{
9889 /*
9890 * The fast output path is enabled and we
9891 * have moved the cumack forward. Lets see if
9892 * we can expand forward the fast path length by
9893 * that amount. What we would ideally like to
9894 * do is increase the number of bytes in the
9895 * fast path block (left_to_send) by the
9896 * acked amount. However we have to gate that
9897 * by two factors:
9898 * 1) The amount outstanding and the rwnd of the peer
9899 * (i.e. we don't want to exceed the rwnd of the peer).
9900 * <and>
9901 * 2) The amount of data left in the socket buffer (i.e.
9902 * we can't send beyond what is in the buffer).
9903 *
9904 * Note that this does not take into account any increase
9905 * in the cwnd. We will only extend the fast path by
9906 * what was acked.
9907 */
9908 uint32_t new_total, gating_val;
9909
9910 new_total = acked_amount + rack->r_ctl.fsb.left_to_send;
9911 gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)),
9912 (tp->snd_wnd - (tp->snd_max - tp->snd_una)));
9913 if (new_total <= gating_val) {
9914 /* We can increase left_to_send by the acked amount */
9915 counter_u64_add(rack_extended_rfo, 1);
9916 rack->r_ctl.fsb.left_to_send = new_total;
9917 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))),
9918 ("rack:%p left_to_send:%u sbavail:%u out:%u",
9919 rack, rack->r_ctl.fsb.left_to_send,
9920 sbavail(&rack->rc_inp->inp_socket->so_snd),
9921 (tp->snd_max - tp->snd_una)));
9922
9923 }
9924}
9925
9926static void
9927rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
9928{
9929 /*
9930 * Here any sendmap entry that points to the
9931 * beginning mbuf must be adjusted to the correct
9932 * offset. This must be called with:
9933 * 1) The socket buffer locked
9934 * 2) snd_una adjusted to its new postion.
9935 *
9936 * Note that (2) implies rack_ack_received has also
9937 * been called.
9938 *
9939 * We grab the first mbuf in the socket buffer and
9940 * then go through the front of the sendmap, recalculating
9941 * the stored offset for any sendmap entry that has
9942 * that mbuf. We must use the sb functions to do this
9943 * since its possible an add was done has well as
9944 * the subtraction we may have just completed. This should
9945 * not be a penalty though, since we just referenced the sb
9946 * to go in and trim off the mbufs that we freed (of course
9947 * there will be a penalty for the sendmap references though).
9948 */
9949 struct mbuf *m;
9950 struct rack_sendmap *rsm;
9951
9952 SOCKBUF_LOCK_ASSERT(sb);
9953 m = sb->sb_mb;
9954 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9955 if ((rsm == NULL) || (m == NULL)) {
9956 /* Nothing outstanding */
9957 return;
9958 }
9959 while (rsm->m && (rsm->m == m)) {
9960 /* one to adjust */
9961#ifdef INVARIANTS
9962 struct mbuf *tm;
9963 uint32_t soff;
9964
9965 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff);
9966 if (rsm->orig_m_len != m->m_len) {
9968 }
9969 if (rsm->soff != soff) {
9970 /*
9971 * This is not a fatal error, we anticipate it
9972 * might happen (the else code), so we count it here
9973 * so that under invariant we can see that it really
9974 * does happen.
9975 */
9976 counter_u64_add(rack_adjust_map_bw, 1);
9977 }
9978 rsm->m = tm;
9979 rsm->soff = soff;
9980 if (tm)
9981 rsm->orig_m_len = rsm->m->m_len;
9982 else
9983 rsm->orig_m_len = 0;
9984#else
9985 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff);
9986 if (rsm->m)
9987 rsm->orig_m_len = rsm->m->m_len;
9988 else
9989 rsm->orig_m_len = 0;
9990#endif
9991 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
9992 rsm);
9993 if (rsm == NULL)
9994 break;
9995 }
9996}
9997
9998/*
9999 * Return value of 1, we do not need to call rack_process_data().
10000 * return value of 0, rack_process_data can be called.
10001 * For ret_val if its 0 the TCP is locked, if its non-zero
10002 * its unlocked and probably unsafe to touch the TCB.
10003 */
10004static int
10005rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10006 struct tcpcb *tp, struct tcpopt *to,
10007 uint32_t tiwin, int32_t tlen,
10008 int32_t * ofia, int32_t thflags, int32_t *ret_val)
10009{
10010 int32_t ourfinisacked = 0;
10011 int32_t nsegs, acked_amount;
10012 int32_t acked;
10013 struct mbuf *mfree;
10014 struct tcp_rack *rack;
10015 int32_t under_pacing = 0;
10016 int32_t recovery = 0;
10017
10018 rack = (struct tcp_rack *)tp->t_fb_ptr;
10019 if (SEQ_GT(th->th_ack, tp->snd_max)) {
10020 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val,
10021 &rack->r_ctl.challenge_ack_ts,
10022 &rack->r_ctl.challenge_ack_cnt);
10023 rack->r_wanted_output = 1;
10024 return (1);
10025 }
10026 if (rack->gp_ready &&
10028 under_pacing = 1;
10029 }
10030 if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
10031 int in_rec, dup_ack_struck = 0;
10032
10033 in_rec = IN_FASTRECOVERY(tp->t_flags);
10034 if (rack->rc_in_persist) {
10035 tp->t_rxtshift = 0;
10038 }
10039 if ((th->th_ack == tp->snd_una) &&
10040 (tiwin == tp->snd_wnd) &&
10041 ((to->to_flags & TOF_SACK) == 0)) {
10042 rack_strike_dupack(rack);
10043 dup_ack_struck = 1;
10044 }
10045 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck);
10046 }
10047 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10048 /*
10049 * Old ack, behind (or duplicate to) the last one rcv'd
10050 * Note: We mark reordering is occuring if its
10051 * less than and we have not closed our window.
10052 */
10053 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) {
10055 }
10056 return (0);
10057 }
10058 /*
10059 * If we reach this point, ACK is not a duplicate, i.e., it ACKs
10060 * something we sent.
10061 */
10062 if (tp->t_flags & TF_NEEDSYN) {
10063 /*
10064 * T/TCP: Connection was half-synchronized, and our SYN has
10065 * been ACK'd (so connection is now fully synchronized). Go
10066 * to non-starred state, increment snd_una for ACK of SYN,
10067 * and check if we can do window scaling.
10068 */
10069 tp->t_flags &= ~TF_NEEDSYN;
10070 tp->snd_una++;
10071 /* Do window scaling? */
10072 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
10074 tp->rcv_scale = tp->request_r_scale;
10075 /* Send window already scaled. */
10076 }
10077 }
10078 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10080
10081 acked = BYTES_THIS_ACK(tp, th);
10082 if (acked) {
10083 /*
10084 * Any time we move the cum-ack forward clear
10085 * keep-alive tied probe-not-answered. The
10086 * persists clears its own on entry.
10087 */
10088 rack->probe_not_answered = 0;
10089 }
10090 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10091 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10092 /*
10093 * If we just performed our first retransmit, and the ACK arrives
10094 * within our recovery window, then it was a mistake to do the
10095 * retransmit in the first place. Recover our original cwnd and
10096 * ssthresh, and proceed to transmit where we left off.
10097 */
10098 if ((tp->t_flags & TF_PREVVALID) &&
10099 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10100 tp->t_flags &= ~TF_PREVVALID;
10101 if (tp->t_rxtshift == 1 &&
10102 (int)(ticks - tp->t_badrxtwin) < 0)
10103 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
10104 }
10105 if (acked) {
10106 /* assure we are not backed off */
10107 tp->t_rxtshift = 0;
10110 rack->rc_tlp_in_progress = 0;
10111 rack->r_ctl.rc_tlp_cnt_out = 0;
10112 /*
10113 * If it is the RXT timer we want to
10114 * stop it, so we can restart a TLP.
10115 */
10116 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10117 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10118#ifdef NETFLIX_HTTP_LOGGING
10119 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10120#endif
10121 }
10122 /*
10123 * If we have a timestamp reply, update smoothed round trip time. If
10124 * no timestamp is present but transmit timer is running and timed
10125 * sequence number was acked, update smoothed round trip time. Since
10126 * we now have an rtt measurement, cancel the timer backoff (cf.,
10127 * Phil Karn's retransmit alg.). Recompute the initial retransmit
10128 * timer.
10129 *
10130 * Some boxes send broken timestamp replies during the SYN+ACK
10131 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10132 * and blow up the retransmit timer.
10133 */
10134 /*
10135 * If all outstanding data is acked, stop retransmit timer and
10136 * remember to restart (more output or persist). If there is more
10137 * data to be acked, restart retransmit timer, using current
10138 * (possibly backed-off) value.
10139 */
10140 if (acked == 0) {
10141 if (ofia)
10142 *ofia = ourfinisacked;
10143 return (0);
10144 }
10145 if (IN_RECOVERY(tp->t_flags)) {
10146 if (SEQ_LT(th->th_ack, tp->snd_recover) &&
10147 (SEQ_LT(th->th_ack, tp->snd_max))) {
10149 } else {
10150 rack_post_recovery(tp, th->th_ack);
10151 recovery = 1;
10152 }
10153 }
10154 /*
10155 * Let the congestion control algorithm update congestion control
10156 * related information. This typically means increasing the
10157 * congestion window.
10158 */
10159 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery);
10160 SOCKBUF_LOCK(&so->so_snd);
10161 acked_amount = min(acked, (int)sbavail(&so->so_snd));
10162 tp->snd_wnd -= acked_amount;
10163 mfree = sbcut_locked(&so->so_snd, acked_amount);
10164 if ((sbused(&so->so_snd) == 0) &&
10165 (acked > acked_amount) &&
10166 (tp->t_state >= TCPS_FIN_WAIT_1) &&
10167 (tp->t_flags & TF_SENTFIN)) {
10168 /*
10169 * We must be sure our fin
10170 * was sent and acked (we can be
10171 * in FIN_WAIT_1 without having
10172 * sent the fin).
10173 */
10174 ourfinisacked = 1;
10175 }
10176 tp->snd_una = th->th_ack;
10177 if (acked_amount && sbavail(&so->so_snd))
10178 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10179 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10180 /* NB: sowwakeup_locked() does an implicit unlock. */
10181 sowwakeup_locked(so);
10182 m_freem(mfree);
10183 if (SEQ_GT(tp->snd_una, tp->snd_recover))
10184 tp->snd_recover = tp->snd_una;
10185
10186 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
10187 tp->snd_nxt = tp->snd_una;
10188 }
10189 if (under_pacing &&
10190 (rack->use_fixed_rate == 0) &&
10191 (rack->in_probe_rtt == 0) &&
10192 rack->rc_gp_dyn_mul &&
10193 rack->rc_always_pace) {
10194 /* Check if we are dragging bottom */
10195 rack_check_bottom_drag(tp, rack, so, acked);
10196 }
10197 if (tp->snd_una == tp->snd_max) {
10198 /* Nothing left outstanding */
10199 tp->t_flags &= ~TF_PREVVALID;
10201 rack->r_ctl.retran_during_recovery = 0;
10202 rack->r_ctl.dsack_byte_cnt = 0;
10203 if (rack->r_ctl.rc_went_idle_time == 0)
10204 rack->r_ctl.rc_went_idle_time = 1;
10205 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
10206 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
10207 tp->t_acktime = 0;
10208 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10209 /* Set need output so persist might get set */
10210 rack->r_wanted_output = 1;
10212 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
10213 (sbavail(&so->so_snd) == 0) &&
10214 (tp->t_flags2 & TF2_DROP_AF_DATA)) {
10215 /*
10216 * The socket was gone and the
10217 * peer sent data (now or in the past), time to
10218 * reset him.
10219 */
10220 *ret_val = 1;
10221 /* tcp_close will kill the inp pre-log the Reset */
10223 tp = tcp_close(tp);
10224 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
10225 return (1);
10226 }
10227 }
10228 if (ofia)
10229 *ofia = ourfinisacked;
10230 return (0);
10231}
10232
10233static void
10235{
10236 /*
10237 * Now we must walk the
10238 * send map and divide the
10239 * ones left stranded. These
10240 * guys can't cause us to abort
10241 * the connection and are really
10242 * "unsent". However if a buggy
10243 * client actually did keep some
10244 * of the data i.e. collapsed the win
10245 * and refused to ack and then opened
10246 * the win and acked that data. We would
10247 * get into an ack war, the simplier
10248 * method then of just pretending we
10249 * did not send those segments something
10250 * won't work.
10251 */
10252 struct rack_sendmap *rsm, *nrsm, fe;
10253#ifdef INVARIANTS
10254 struct rack_sendmap *insret;
10255#endif
10256 tcp_seq max_seq;
10257
10258 max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
10259 memset(&fe, 0, sizeof(fe));
10260 fe.r_start = max_seq;
10261 /* Find the first seq past or at maxseq */
10262 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
10263 if (rsm == NULL) {
10264 /* Nothing to do strange */
10265 rack->rc_has_collapsed = 0;
10266 return;
10267 }
10268 /*
10269 * Now do we need to split at
10270 * the collapse point?
10271 */
10272 if (SEQ_GT(max_seq, rsm->r_start)) {
10274 if (nrsm == NULL) {
10275 /* We can't get a rsm, mark all? */
10276 nrsm = rsm;
10277 goto no_split;
10278 }
10279 /* Clone it */
10280 rack_clone_rsm(rack, nrsm, rsm, max_seq);
10281#ifndef INVARIANTS
10282 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10283#else
10284 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
10285 if (insret != NULL) {
10286 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
10287 nrsm, insret, rack, rsm);
10288 }
10289#endif
10290 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__);
10291 if (rsm->r_in_tmap) {
10292 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
10293 nrsm->r_in_tmap = 1;
10294 }
10295 /*
10296 * Set in the new RSM as the
10297 * collapsed starting point
10298 */
10299 rsm = nrsm;
10300 }
10301no_split:
10302 counter_u64_add(rack_collapsed_win, 1);
10303 RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
10305 }
10306 rack->rc_has_collapsed = 1;
10307}
10308
10309static void
10311{
10312 struct rack_sendmap *rsm;
10313
10314 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
10315 if (rsm->r_flags & RACK_RWND_COLLAPSED)
10316 rsm->r_flags &= ~RACK_RWND_COLLAPSED;
10317 else
10318 break;
10319 }
10320 rack->rc_has_collapsed = 0;
10321}
10322
10323static void
10324rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
10325 int32_t tlen, int32_t tfo_syn)
10326{
10327 if (DELAY_ACK(tp, tlen) || tfo_syn) {
10328 if (rack->rc_dack_mode &&
10329 (tlen > 500) &&
10330 (rack->rc_dack_toggle == 1)) {
10331 goto no_delayed_ack;
10332 }
10333 rack_timer_cancel(tp, rack,
10334 rack->r_ctl.rc_rcvtime, __LINE__);
10335 tp->t_flags |= TF_DELACK;
10336 } else {
10337no_delayed_ack:
10338 rack->r_wanted_output = 1;
10339 tp->t_flags |= TF_ACKNOW;
10340 if (rack->rc_dack_mode) {
10341 if (tp->t_flags & TF_DELACK)
10342 rack->rc_dack_toggle = 1;
10343 else
10344 rack->rc_dack_toggle = 0;
10345 }
10346 }
10347}
10348
10349static void
10351{
10352 /*
10353 * If fast output is in progress, lets validate that
10354 * the new window did not shrink on us and make it
10355 * so fast output should end.
10356 */
10357 if (rack->r_fast_output) {
10358 uint32_t out;
10359
10360 /*
10361 * Calculate what we will send if left as is
10362 * and compare that to our send window.
10363 */
10364 out = ctf_outstanding(tp);
10365 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) {
10366 /* ok we have an issue */
10367 if (out >= tp->snd_wnd) {
10368 /* Turn off fast output the window is met or collapsed */
10369 rack->r_fast_output = 0;
10370 } else {
10371 /* we have some room left */
10372 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out;
10373 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) {
10374 /* If not at least 1 full segment never mind */
10375 rack->r_fast_output = 0;
10376 }
10377 }
10378 }
10379 }
10380}
10381
10382
10383/*
10384 * Return value of 1, the TCB is unlocked and most
10385 * likely gone, return value of 0, the TCP is still
10386 * locked.
10387 */
10388static int
10389rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
10390 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
10391 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
10392{
10393 /*
10394 * Update window information. Don't look at window if no ACK: TAC's
10395 * send garbage on first SYN.
10396 */
10397 int32_t nsegs;
10398 int32_t tfo_syn;
10399 struct tcp_rack *rack;
10400
10401 rack = (struct tcp_rack *)tp->t_fb_ptr;
10403 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10404 if ((thflags & TH_ACK) &&
10405 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
10406 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
10407 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
10408 /* keep track of pure window updates */
10409 if (tlen == 0 &&
10410 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
10411 KMOD_TCPSTAT_INC(tcps_rcvwinupd);
10412 tp->snd_wnd = tiwin;
10414 tp->snd_wl1 = th->th_seq;
10415 tp->snd_wl2 = th->th_ack;
10416 if (tp->snd_wnd > tp->max_sndwnd)
10417 tp->max_sndwnd = tp->snd_wnd;
10418 rack->r_wanted_output = 1;
10419 } else if (thflags & TH_ACK) {
10420 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
10421 tp->snd_wnd = tiwin;
10423 tp->snd_wl1 = th->th_seq;
10424 tp->snd_wl2 = th->th_ack;
10425 }
10426 }
10427 if (tp->snd_wnd < ctf_outstanding(tp))
10428 /* The peer collapsed the window */
10430 else if (rack->rc_has_collapsed)
10432 /* Was persist timer active and now we have window space? */
10433 if ((rack->rc_in_persist != 0) &&
10434 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10435 rack->r_ctl.rc_pace_min_segs))) {
10436 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10437 tp->snd_nxt = tp->snd_max;
10438 /* Make sure we output to start the timer */
10439 rack->r_wanted_output = 1;
10440 }
10441 /* Do we enter persists? */
10442 if ((rack->rc_in_persist == 0) &&
10443 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10445 (tp->snd_max == tp->snd_una) &&
10446 sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10447 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10448 /*
10449 * Here the rwnd is less than
10450 * the pacing size, we are established,
10451 * nothing is outstanding, and there is
10452 * data to send. Enter persists.
10453 */
10454 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10455 }
10456 if (tp->t_flags2 & TF2_DROP_AF_DATA) {
10457 m_freem(m);
10458 return (0);
10459 }
10460 /*
10461 * don't process the URG bit, ignore them drag
10462 * along the up.
10463 */
10464 tp->rcv_up = tp->rcv_nxt;
10466
10467 /*
10468 * Process the segment text, merging it into the TCP sequencing
10469 * queue, and arranging for acknowledgment of receipt if necessary.
10470 * This process logically involves adjusting tp->rcv_wnd as data is
10471 * presented to the user (this happens in tcp_usrreq.c, case
10472 * PRU_RCVD). If a FIN has already been received on this connection
10473 * then we just ignore the text.
10474 */
10475 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
10476 IS_FASTOPEN(tp->t_flags));
10477 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
10478 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10479 tcp_seq save_start = th->th_seq;
10480 tcp_seq save_rnxt = tp->rcv_nxt;
10481 int save_tlen = tlen;
10482
10483 m_adj(m, drop_hdrlen); /* delayed header drop */
10484 /*
10485 * Insert segment which includes th into TCP reassembly
10486 * queue with control block tp. Set thflags to whether
10487 * reassembly now includes a segment with FIN. This handles
10488 * the common case inline (segment is the next to be
10489 * received on an established connection, and the queue is
10490 * empty), avoiding linkage into and removal from the queue
10491 * and repetition of various conversions. Set DELACK for
10492 * segments received in order, but ack immediately when
10493 * segments are out of order (so fast retransmit can work).
10494 */
10495 if (th->th_seq == tp->rcv_nxt &&
10496 SEGQ_EMPTY(tp) &&
10498 tfo_syn)) {
10499#ifdef NETFLIX_SB_LIMITS
10500 u_int mcnt, appended;
10501
10502 if (so->so_rcv.sb_shlim) {
10503 mcnt = m_memcnt(m);
10504 appended = 0;
10505 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10506 CFO_NOSLEEP, NULL) == false) {
10507 counter_u64_add(tcp_sb_shlim_fails, 1);
10508 m_freem(m);
10509 return (0);
10510 }
10511 }
10512#endif
10513 rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
10514 tp->rcv_nxt += tlen;
10515 if (tlen &&
10516 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10517 (tp->t_fbyte_in == 0)) {
10518 tp->t_fbyte_in = ticks;
10519 if (tp->t_fbyte_in == 0)
10520 tp->t_fbyte_in = 1;
10521 if (tp->t_fbyte_out && tp->t_fbyte_in)
10523 }
10524 thflags = tcp_get_flags(th) & TH_FIN;
10525 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10526 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10527 SOCKBUF_LOCK(&so->so_rcv);
10528 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10529 m_freem(m);
10530 } else
10531#ifdef NETFLIX_SB_LIMITS
10532 appended =
10533#endif
10534 sbappendstream_locked(&so->so_rcv, m, 0);
10535
10536 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10537 /* NB: sorwakeup_locked() does an implicit unlock. */
10538 sorwakeup_locked(so);
10539#ifdef NETFLIX_SB_LIMITS
10540 if (so->so_rcv.sb_shlim && appended != mcnt)
10541 counter_fo_release(so->so_rcv.sb_shlim,
10542 mcnt - appended);
10543#endif
10544 } else {
10545 /*
10546 * XXX: Due to the header drop above "th" is
10547 * theoretically invalid by now. Fortunately
10548 * m_adj() doesn't actually frees any mbufs when
10549 * trimming from the head.
10550 */
10551 tcp_seq temp = save_start;
10552
10553 thflags = tcp_reass(tp, th, &temp, &tlen, m);
10554 tp->t_flags |= TF_ACKNOW;
10555 if (tp->t_flags & TF_WAKESOR) {
10556 tp->t_flags &= ~TF_WAKESOR;
10557 /* NB: sorwakeup_locked() does an implicit unlock. */
10558 sorwakeup_locked(so);
10559 }
10560 }
10561 if ((tp->t_flags & TF_SACK_PERMIT) &&
10562 (save_tlen > 0) &&
10564 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
10565 /*
10566 * DSACK actually handled in the fastpath
10567 * above.
10568 */
10569 RACK_OPTS_INC(tcp_sack_path_1);
10570 tcp_update_sack_list(tp, save_start,
10571 save_start + save_tlen);
10572 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
10573 if ((tp->rcv_numsacks >= 1) &&
10574 (tp->sackblks[0].end == save_start)) {
10575 /*
10576 * Partial overlap, recorded at todrop
10577 * above.
10578 */
10579 RACK_OPTS_INC(tcp_sack_path_2a);
10581 tp->sackblks[0].start,
10582 tp->sackblks[0].end);
10583 } else {
10584 RACK_OPTS_INC(tcp_sack_path_2b);
10585 tcp_update_dsack_list(tp, save_start,
10586 save_start + save_tlen);
10587 }
10588 } else if (tlen >= save_tlen) {
10589 /* Update of sackblks. */
10590 RACK_OPTS_INC(tcp_sack_path_3);
10591 tcp_update_dsack_list(tp, save_start,
10592 save_start + save_tlen);
10593 } else if (tlen > 0) {
10594 RACK_OPTS_INC(tcp_sack_path_4);
10595 tcp_update_dsack_list(tp, save_start,
10596 save_start + tlen);
10597 }
10598 }
10599 } else {
10600 m_freem(m);
10601 thflags &= ~TH_FIN;
10602 }
10603
10604 /*
10605 * If FIN is received ACK the FIN and let the user know that the
10606 * connection is closing.
10607 */
10608 if (thflags & TH_FIN) {
10609 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10610 /* The socket upcall is handled by socantrcvmore. */
10611 socantrcvmore(so);
10612 /*
10613 * If connection is half-synchronized (ie NEEDSYN
10614 * flag on) then delay ACK, so it may be piggybacked
10615 * when SYN is sent. Otherwise, since we received a
10616 * FIN then no more input can be expected, send ACK
10617 * now.
10618 */
10619 if (tp->t_flags & TF_NEEDSYN) {
10620 rack_timer_cancel(tp, rack,
10621 rack->r_ctl.rc_rcvtime, __LINE__);
10622 tp->t_flags |= TF_DELACK;
10623 } else {
10624 tp->t_flags |= TF_ACKNOW;
10625 }
10626 tp->rcv_nxt++;
10627 }
10628 switch (tp->t_state) {
10629 /*
10630 * In SYN_RECEIVED and ESTABLISHED STATES enter the
10631 * CLOSE_WAIT state.
10632 */
10633 case TCPS_SYN_RECEIVED:
10634 tp->t_starttime = ticks;
10635 /* FALLTHROUGH */
10636 case TCPS_ESTABLISHED:
10637 rack_timer_cancel(tp, rack,
10638 rack->r_ctl.rc_rcvtime, __LINE__);
10640 break;
10641
10642 /*
10643 * If still in FIN_WAIT_1 STATE FIN has not been
10644 * acked so enter the CLOSING state.
10645 */
10646 case TCPS_FIN_WAIT_1:
10647 rack_timer_cancel(tp, rack,
10648 rack->r_ctl.rc_rcvtime, __LINE__);
10650 break;
10651
10652 /*
10653 * In FIN_WAIT_2 state enter the TIME_WAIT state,
10654 * starting the time-wait timer, turning off the
10655 * other standard timers.
10656 */
10657 case TCPS_FIN_WAIT_2:
10658 rack_timer_cancel(tp, rack,
10659 rack->r_ctl.rc_rcvtime, __LINE__);
10660 tcp_twstart(tp);
10661 return (1);
10662 }
10663 }
10664 /*
10665 * Return any desired output.
10666 */
10667 if ((tp->t_flags & TF_ACKNOW) ||
10668 (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
10669 rack->r_wanted_output = 1;
10670 }
10672 return (0);
10673}
10674
10675/*
10676 * Here nothing is really faster, its just that we
10677 * have broken out the fast-data path also just like
10678 * the fast-ack.
10679 */
10680static int
10681rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
10682 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10683 uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
10684{
10685 int32_t nsegs;
10686 int32_t newsize = 0; /* automatic sockbuf scaling */
10687 struct tcp_rack *rack;
10688#ifdef NETFLIX_SB_LIMITS
10689 u_int mcnt, appended;
10690#endif
10691#ifdef TCPDEBUG
10692 /*
10693 * The size of tcp_saveipgen must be the size of the max ip header,
10694 * now IPv6.
10695 */
10696 u_char tcp_saveipgen[IP6_HDR_LEN];
10697 struct tcphdr tcp_savetcp;
10698 short ostate = 0;
10699
10700#endif
10701 /*
10702 * If last ACK falls within this segment's sequence numbers, record
10703 * the timestamp. NOTE that the test is modified according to the
10704 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10705 */
10706 if (__predict_false(th->th_seq != tp->rcv_nxt)) {
10707 return (0);
10708 }
10709 if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10710 return (0);
10711 }
10712 if (tiwin && tiwin != tp->snd_wnd) {
10713 return (0);
10714 }
10715 if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
10716 return (0);
10717 }
10718 if (__predict_false((to->to_flags & TOF_TS) &&
10719 (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
10720 return (0);
10721 }
10722 if (__predict_false((th->th_ack != tp->snd_una))) {
10723 return (0);
10724 }
10725 if (__predict_false(tlen > sbspace(&so->so_rcv))) {
10726 return (0);
10727 }
10728 if ((to->to_flags & TOF_TS) != 0 &&
10729 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10731 tp->ts_recent = to->to_tsval;
10732 }
10733 rack = (struct tcp_rack *)tp->t_fb_ptr;
10734 /*
10735 * This is a pure, in-sequence data packet with nothing on the
10736 * reassembly queue and we have enough buffer space to take it.
10737 */
10738 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10739
10740#ifdef NETFLIX_SB_LIMITS
10741 if (so->so_rcv.sb_shlim) {
10742 mcnt = m_memcnt(m);
10743 appended = 0;
10744 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10745 CFO_NOSLEEP, NULL) == false) {
10746 counter_u64_add(tcp_sb_shlim_fails, 1);
10747 m_freem(m);
10748 return (1);
10749 }
10750 }
10751#endif
10752 /* Clean receiver SACK report if present */
10753 if (tp->rcv_numsacks)
10755 KMOD_TCPSTAT_INC(tcps_preddat);
10756 tp->rcv_nxt += tlen;
10757 if (tlen &&
10758 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10759 (tp->t_fbyte_in == 0)) {
10760 tp->t_fbyte_in = ticks;
10761 if (tp->t_fbyte_in == 0)
10762 tp->t_fbyte_in = 1;
10763 if (tp->t_fbyte_out && tp->t_fbyte_in)
10765 }
10766 /*
10767 * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
10768 */
10769 tp->snd_wl1 = th->th_seq;
10770 /*
10771 * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
10772 */
10773 tp->rcv_up = tp->rcv_nxt;
10774 KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10775 KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10776#ifdef TCPDEBUG
10777 if (so->so_options & SO_DEBUG)
10778 tcp_trace(TA_INPUT, ostate, tp,
10779 (void *)tcp_saveipgen, &tcp_savetcp, 0);
10780#endif
10781 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
10782
10783 /* Add data to socket buffer. */
10784 SOCKBUF_LOCK(&so->so_rcv);
10785 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10786 m_freem(m);
10787 } else {
10788 /*
10789 * Set new socket buffer size. Give up when limit is
10790 * reached.
10791 */
10792 if (newsize)
10793 if (!sbreserve_locked(&so->so_rcv,
10794 newsize, so, NULL))
10795 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
10796 m_adj(m, drop_hdrlen); /* delayed header drop */
10797#ifdef NETFLIX_SB_LIMITS
10798 appended =
10799#endif
10800 sbappendstream_locked(&so->so_rcv, m, 0);
10801 ctf_calc_rwin(so, tp);
10802 }
10803 rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10804 /* NB: sorwakeup_locked() does an implicit unlock. */
10805 sorwakeup_locked(so);
10806#ifdef NETFLIX_SB_LIMITS
10807 if (so->so_rcv.sb_shlim && mcnt != appended)
10808 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
10809#endif
10810 rack_handle_delayed_ack(tp, rack, tlen, 0);
10811 if (tp->snd_una == tp->snd_max)
10813 return (1);
10814}
10815
10816/*
10817 * This subfunction is used to try to highly optimize the
10818 * fast path. We again allow window updates that are
10819 * in sequence to remain in the fast-path. We also add
10820 * in the __predict's to attempt to help the compiler.
10821 * Note that if we return a 0, then we can *not* process
10822 * it and the caller should push the packet into the
10823 * slow-path.
10824 */
10825static int
10826rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10827 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10828 uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
10829{
10830 int32_t acked;
10831 int32_t nsegs;
10832#ifdef TCPDEBUG
10833 /*
10834 * The size of tcp_saveipgen must be the size of the max ip header,
10835 * now IPv6.
10836 */
10837 u_char tcp_saveipgen[IP6_HDR_LEN];
10838 struct tcphdr tcp_savetcp;
10839 short ostate = 0;
10840#endif
10841 int32_t under_pacing = 0;
10842 struct tcp_rack *rack;
10843
10844 if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10845 /* Old ack, behind (or duplicate to) the last one rcv'd */
10846 return (0);
10847 }
10848 if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
10849 /* Above what we have sent? */
10850 return (0);
10851 }
10852 if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10853 /* We are retransmitting */
10854 return (0);
10855 }
10856 if (__predict_false(tiwin == 0)) {
10857 /* zero window */
10858 return (0);
10859 }
10860 if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
10861 /* We need a SYN or a FIN, unlikely.. */
10862 return (0);
10863 }
10864 if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
10865 /* Timestamp is behind .. old ack with seq wrap? */
10866 return (0);
10867 }
10868 if (__predict_false(IN_RECOVERY(tp->t_flags))) {
10869 /* Still recovering */
10870 return (0);
10871 }
10872 rack = (struct tcp_rack *)tp->t_fb_ptr;
10873 if (rack->r_ctl.rc_sacked) {
10874 /* We have sack holes on our scoreboard */
10875 return (0);
10876 }
10877 /* Ok if we reach here, we can process a fast-ack */
10878 if (rack->gp_ready &&
10880 under_pacing = 1;
10881 }
10882 nsegs = max(1, m->m_pkthdr.lro_nsegs);
10883 rack_log_ack(tp, to, th, 0, 0);
10884 /* Did the window get updated? */
10885 if (tiwin != tp->snd_wnd) {
10886 tp->snd_wnd = tiwin;
10888 tp->snd_wl1 = th->th_seq;
10889 if (tp->snd_wnd > tp->max_sndwnd)
10890 tp->max_sndwnd = tp->snd_wnd;
10891 }
10892 /* Do we exit persists? */
10893 if ((rack->rc_in_persist != 0) &&
10894 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10895 rack->r_ctl.rc_pace_min_segs))) {
10896 rack_exit_persist(tp, rack, cts);
10897 }
10898 /* Do we enter persists? */
10899 if ((rack->rc_in_persist == 0) &&
10900 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10902 (tp->snd_max == tp->snd_una) &&
10903 sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10904 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10905 /*
10906 * Here the rwnd is less than
10907 * the pacing size, we are established,
10908 * nothing is outstanding, and there is
10909 * data to send. Enter persists.
10910 */
10911 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10912 }
10913 /*
10914 * If last ACK falls within this segment's sequence numbers, record
10915 * the timestamp. NOTE that the test is modified according to the
10916 * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10917 */
10918 if ((to->to_flags & TOF_TS) != 0 &&
10919 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10921 tp->ts_recent = to->to_tsval;
10922 }
10923 /*
10924 * This is a pure ack for outstanding data.
10925 */
10926 KMOD_TCPSTAT_INC(tcps_predack);
10927
10928 /*
10929 * "bad retransmit" recovery.
10930 */
10931 if ((tp->t_flags & TF_PREVVALID) &&
10932 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10933 tp->t_flags &= ~TF_PREVVALID;
10934 if (tp->t_rxtshift == 1 &&
10935 (int)(ticks - tp->t_badrxtwin) < 0)
10936 rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
10937 }
10938 /*
10939 * Recalculate the transmit timer / rtt.
10940 *
10941 * Some boxes send broken timestamp replies during the SYN+ACK
10942 * phase, ignore timestamps of 0 or we could calculate a huge RTT
10943 * and blow up the retransmit timer.
10944 */
10945 acked = BYTES_THIS_ACK(tp, th);
10946
10947#ifdef TCP_HHOOK
10948 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
10949 hhook_run_tcp_est_in(tp, th, to);
10950#endif
10951 KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10952 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10953 if (acked) {
10954 struct mbuf *mfree;
10955
10956 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0);
10957 SOCKBUF_LOCK(&so->so_snd);
10958 mfree = sbcut_locked(&so->so_snd, acked);
10959 tp->snd_una = th->th_ack;
10960 /* Note we want to hold the sb lock through the sendmap adjust */
10961 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10962 /* Wake up the socket if we have room to write more */
10963 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10964 sowwakeup_locked(so);
10965 m_freem(mfree);
10966 tp->t_rxtshift = 0;
10969 rack->rc_tlp_in_progress = 0;
10970 rack->r_ctl.rc_tlp_cnt_out = 0;
10971 /*
10972 * If it is the RXT timer we want to
10973 * stop it, so we can restart a TLP.
10974 */
10975 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10976 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10977#ifdef NETFLIX_HTTP_LOGGING
10978 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10979#endif
10980 }
10981 /*
10982 * Let the congestion control algorithm update congestion control
10983 * related information. This typically means increasing the
10984 * congestion window.
10985 */
10986 if (tp->snd_wnd < ctf_outstanding(tp)) {
10987 /* The peer collapsed the window */
10989 } else if (rack->rc_has_collapsed)
10991
10992 /*
10993 * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
10994 */
10995 tp->snd_wl2 = th->th_ack;
10996 tp->t_dupacks = 0;
10997 m_freem(m);
10998 /* ND6_HINT(tp); *//* Some progress has been made. */
10999
11000 /*
11001 * If all outstanding data are acked, stop retransmit timer,
11002 * otherwise restart timer using current (possibly backed-off)
11003 * value. If process is waiting for space, wakeup/selwakeup/signal.
11004 * If data are ready to send, let tcp_output decide between more
11005 * output or persist.
11006 */
11007#ifdef TCPDEBUG
11008 if (so->so_options & SO_DEBUG)
11009 tcp_trace(TA_INPUT, ostate, tp,
11010 (void *)tcp_saveipgen,
11011 &tcp_savetcp, 0);
11012#endif
11013 if (under_pacing &&
11014 (rack->use_fixed_rate == 0) &&
11015 (rack->in_probe_rtt == 0) &&
11016 rack->rc_gp_dyn_mul &&
11017 rack->rc_always_pace) {
11018 /* Check if we are dragging bottom */
11019 rack_check_bottom_drag(tp, rack, so, acked);
11020 }
11021 if (tp->snd_una == tp->snd_max) {
11022 tp->t_flags &= ~TF_PREVVALID;
11023 rack->r_ctl.retran_during_recovery = 0;
11024 rack->r_ctl.dsack_byte_cnt = 0;
11026 if (rack->r_ctl.rc_went_idle_time == 0)
11027 rack->r_ctl.rc_went_idle_time = 1;
11028 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
11029 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
11030 tp->t_acktime = 0;
11031 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
11032 }
11033 if (acked && rack->r_fast_output)
11034 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked);
11035 if (sbavail(&so->so_snd)) {
11036 rack->r_wanted_output = 1;
11037 }
11038 return (1);
11039}
11040
11041/*
11042 * Return value of 1, the TCB is unlocked and most
11043 * likely gone, return value of 0, the TCP is still
11044 * locked.
11045 */
11046static int
11047rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
11048 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11049 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11050{
11051 int32_t ret_val = 0;
11052 int32_t todrop;
11053 int32_t ourfinisacked = 0;
11054 struct tcp_rack *rack;
11055
11056 ctf_calc_rwin(so, tp);
11057 /*
11058 * If the state is SYN_SENT: if seg contains an ACK, but not for our
11059 * SYN, drop the input. if seg contains a RST, then drop the
11060 * connection. if seg does not contain SYN, then drop it. Otherwise
11061 * this is an acceptable SYN segment initialize tp->rcv_nxt and
11062 * tp->irs if seg contains ack then advance tp->snd_una if seg
11063 * contains an ECE and ECN support is enabled, the stream is ECN
11064 * capable. if SYN has been acked change to ESTABLISHED else
11065 * SYN_RCVD state arrange for segment to be acked (eventually)
11066 * continue processing rest of data/controls.
11067 */
11068 if ((thflags & TH_ACK) &&
11069 (SEQ_LEQ(th->th_ack, tp->iss) ||
11070 SEQ_GT(th->th_ack, tp->snd_max))) {
11073 return (1);
11074 }
11075 if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
11076 TCP_PROBE5(connect__refused, NULL, tp,
11077 mtod(m, const char *), tp, th);
11078 tp = tcp_drop(tp, ECONNREFUSED);
11079 ctf_do_drop(m, tp);
11080 return (1);
11081 }
11082 if (thflags & TH_RST) {
11083 ctf_do_drop(m, tp);
11084 return (1);
11085 }
11086 if (!(thflags & TH_SYN)) {
11087 ctf_do_drop(m, tp);
11088 return (1);
11089 }
11090 tp->irs = th->th_seq;
11091 tcp_rcvseqinit(tp);
11092 rack = (struct tcp_rack *)tp->t_fb_ptr;
11093 if (thflags & TH_ACK) {
11094 int tfo_partial = 0;
11095
11096 KMOD_TCPSTAT_INC(tcps_connects);
11097 soisconnected(so);
11098#ifdef MAC
11099 mac_socketpeer_set_from_mbuf(m, so);
11100#endif
11101 /* Do window scaling on this connection? */
11102 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11104 tp->rcv_scale = tp->request_r_scale;
11105 }
11106 tp->rcv_adv += min(tp->rcv_wnd,
11107 TCP_MAXWIN << tp->rcv_scale);
11108 /*
11109 * If not all the data that was sent in the TFO SYN
11110 * has been acked, resend the remainder right away.
11111 */
11112 if (IS_FASTOPEN(tp->t_flags) &&
11113 (tp->snd_una != tp->snd_max)) {
11114 tp->snd_nxt = th->th_ack;
11115 tfo_partial = 1;
11116 }
11117 /*
11118 * If there's data, delay ACK; if there's also a FIN ACKNOW
11119 * will be turned on later.
11120 */
11121 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
11122 rack_timer_cancel(tp, rack,
11123 rack->r_ctl.rc_rcvtime, __LINE__);
11124 tp->t_flags |= TF_DELACK;
11125 } else {
11126 rack->r_wanted_output = 1;
11127 tp->t_flags |= TF_ACKNOW;
11128 rack->rc_dack_toggle = 0;
11129 }
11130
11131 tcp_ecn_input_syn_sent(tp, thflags, iptos);
11132
11133 if (SEQ_GT(th->th_ack, tp->snd_una)) {
11134 /*
11135 * We advance snd_una for the
11136 * fast open case. If th_ack is
11137 * acknowledging data beyond
11138 * snd_una we can't just call
11139 * ack-processing since the
11140 * data stream in our send-map
11141 * will start at snd_una + 1 (one
11142 * beyond the SYN). If its just
11143 * equal we don't need to do that
11144 * and there is no send_map.
11145 */
11146 tp->snd_una++;
11147 }
11148 /*
11149 * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
11150 * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
11151 */
11152 tp->t_starttime = ticks;
11153 if (tp->t_flags & TF_NEEDFIN) {
11155 tp->t_flags &= ~TF_NEEDFIN;
11156 thflags &= ~TH_SYN;
11157 } else {
11159 TCP_PROBE5(connect__established, NULL, tp,
11160 mtod(m, const char *), tp, th);
11162 }
11163 } else {
11164 /*
11165 * Received initial SYN in SYN-SENT[*] state => simultaneous
11166 * open. If segment contains CC option and there is a
11167 * cached CC, apply TAO test. If it succeeds, connection is *
11168 * half-synchronized. Otherwise, do 3-way handshake:
11169 * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
11170 * there was no CC option, clear cached CC value.
11171 */
11172 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
11174 }
11176 /*
11177 * Advance th->th_seq to correspond to first data byte. If data,
11178 * trim to stay within window, dropping FIN if necessary.
11179 */
11180 th->th_seq++;
11181 if (tlen > tp->rcv_wnd) {
11182 todrop = tlen - tp->rcv_wnd;
11183 m_adj(m, -todrop);
11184 tlen = tp->rcv_wnd;
11185 thflags &= ~TH_FIN;
11186 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
11187 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
11188 }
11189 tp->snd_wl1 = th->th_seq - 1;
11190 tp->rcv_up = th->th_seq;
11191 /*
11192 * Client side of transaction: already sent SYN and data. If the
11193 * remote host used T/TCP to validate the SYN, our data will be
11194 * ACK'd; if so, enter normal data segment processing in the middle
11195 * of step 5, ack processing. Otherwise, goto step 6.
11196 */
11197 if (thflags & TH_ACK) {
11198 /* For syn-sent we need to possibly update the rtt */
11199 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11200 uint32_t t, mcts;
11201
11202 mcts = tcp_ts_getticks();
11203 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11204 if (!tp->t_rttlow || tp->t_rttlow > t)
11205 tp->t_rttlow = t;
11206 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4);
11207 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11209 }
11210 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
11211 return (ret_val);
11212 /* We may have changed to FIN_WAIT_1 above */
11213 if (tp->t_state == TCPS_FIN_WAIT_1) {
11214 /*
11215 * In FIN_WAIT_1 STATE in addition to the processing
11216 * for the ESTABLISHED state if our FIN is now
11217 * acknowledged then enter FIN_WAIT_2.
11218 */
11219 if (ourfinisacked) {
11220 /*
11221 * If we can't receive any more data, then
11222 * closing user can proceed. Starting the
11223 * timer is contrary to the specification,
11224 * but if we don't get a FIN we'll hang
11225 * forever.
11226 *
11227 * XXXjl: we should release the tp also, and
11228 * use a compressed state.
11229 */
11230 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11231 soisdisconnected(so);
11235 TP_MAXIDLE(tp)));
11236 }
11238 }
11239 }
11240 }
11241 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11242 tiwin, thflags, nxt_pkt));
11243}
11244
11245/*
11246 * Return value of 1, the TCB is unlocked and most
11247 * likely gone, return value of 0, the TCP is still
11248 * locked.
11249 */
11250static int
11251rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
11252 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11253 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11254{
11255 struct tcp_rack *rack;
11256 int32_t ret_val = 0;
11257 int32_t ourfinisacked = 0;
11258
11259 ctf_calc_rwin(so, tp);
11260 if ((thflags & TH_ACK) &&
11261 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
11262 SEQ_GT(th->th_ack, tp->snd_max))) {
11265 return (1);
11266 }
11267 rack = (struct tcp_rack *)tp->t_fb_ptr;
11268 if (IS_FASTOPEN(tp->t_flags)) {
11269 /*
11270 * When a TFO connection is in SYN_RECEIVED, the
11271 * only valid packets are the initial SYN, a
11272 * retransmit/copy of the initial SYN (possibly with
11273 * a subset of the original data), a valid ACK, a
11274 * FIN, or a RST.
11275 */
11276 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
11279 return (1);
11280 } else if (thflags & TH_SYN) {
11281 /* non-initial SYN is ignored */
11282 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
11283 (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
11284 (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
11285 ctf_do_drop(m, NULL);
11286 return (0);
11287 }
11288 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
11289 ctf_do_drop(m, NULL);
11290 return (0);
11291 }
11292 }
11293
11294 if ((thflags & TH_RST) ||
11295 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11296 return (__ctf_process_rst(m, th, so, tp,
11297 &rack->r_ctl.challenge_ack_ts,
11298 &rack->r_ctl.challenge_ack_cnt));
11299 /*
11300 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11301 * it's less than ts_recent, drop it.
11302 */
11303 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11304 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11305 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11306 return (ret_val);
11307 }
11308 /*
11309 * In the SYN-RECEIVED state, validate that the packet belongs to
11310 * this connection before trimming the data to fit the receive
11311 * window. Check the sequence number versus IRS since we know the
11312 * sequence numbers haven't wrapped. This is a partial fix for the
11313 * "LAND" DoS attack.
11314 */
11315 if (SEQ_LT(th->th_seq, tp->irs)) {
11318 return (1);
11319 }
11320 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11321 &rack->r_ctl.challenge_ack_ts,
11322 &rack->r_ctl.challenge_ack_cnt)) {
11323 return (ret_val);
11324 }
11325 /*
11326 * If last ACK falls within this segment's sequence numbers, record
11327 * its timestamp. NOTE: 1) That the test incorporates suggestions
11328 * from the latest proposal of the tcplw@cray.com list (Braden
11329 * 1993/04/26). 2) That updating only on newer timestamps interferes
11330 * with our earlier PAWS tests, so this check should be solely
11331 * predicated on the sequence space of this segment. 3) That we
11332 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11333 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11334 * SEG.Len, This modified check allows us to overcome RFC1323's
11335 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11336 * p.869. In such cases, we can still calculate the RTT correctly
11337 * when RCV.NXT == Last.ACK.Sent.
11338 */
11339 if ((to->to_flags & TOF_TS) != 0 &&
11340 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11341 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11342 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11344 tp->ts_recent = to->to_tsval;
11345 }
11346 tp->snd_wnd = tiwin;
11348 /*
11349 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11350 * is on (half-synchronized state), then queue data for later
11351 * processing; else drop segment and return.
11352 */
11353 if ((thflags & TH_ACK) == 0) {
11354 if (IS_FASTOPEN(tp->t_flags)) {
11356 }
11357 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11358 tiwin, thflags, nxt_pkt));
11359 }
11360 KMOD_TCPSTAT_INC(tcps_connects);
11361 soisconnected(so);
11362 /* Do window scaling? */
11363 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11365 tp->rcv_scale = tp->request_r_scale;
11366 }
11367 /*
11368 * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* ->
11369 * FIN-WAIT-1
11370 */
11371 tp->t_starttime = ticks;
11372 if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
11374 tp->t_tfo_pending = NULL;
11375 }
11376 if (tp->t_flags & TF_NEEDFIN) {
11378 tp->t_flags &= ~TF_NEEDFIN;
11379 } else {
11381 TCP_PROBE5(accept__established, NULL, tp,
11382 mtod(m, const char *), tp, th);
11383 /*
11384 * TFO connections call cc_conn_init() during SYN
11385 * processing. Calling it again here for such connections
11386 * is not harmless as it would undo the snd_cwnd reduction
11387 * that occurs when a TFO SYN|ACK is retransmitted.
11388 */
11389 if (!IS_FASTOPEN(tp->t_flags))
11391 }
11392 /*
11393 * Account for the ACK of our SYN prior to
11394 * regular ACK processing below, except for
11395 * simultaneous SYN, which is handled later.
11396 */
11397 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
11398 tp->snd_una++;
11399 /*
11400 * If segment contains data or ACK, will call tcp_reass() later; if
11401 * not, do so now to pass queued data to user.
11402 */
11403 if (tlen == 0 && (thflags & TH_FIN) == 0) {
11404 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
11405 (struct mbuf *)0);
11406 if (tp->t_flags & TF_WAKESOR) {
11407 tp->t_flags &= ~TF_WAKESOR;
11408 /* NB: sorwakeup_locked() does an implicit unlock. */
11409 sorwakeup_locked(so);
11410 }
11411 }
11412 tp->snd_wl1 = th->th_seq - 1;
11413 /* For syn-recv we need to possibly update the rtt */
11414 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11415 uint32_t t, mcts;
11416
11417 mcts = tcp_ts_getticks();
11418 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11419 if (!tp->t_rttlow || tp->t_rttlow > t)
11420 tp->t_rttlow = t;
11421 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5);
11422 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11424 }
11425 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11426 return (ret_val);
11427 }
11428 if (tp->t_state == TCPS_FIN_WAIT_1) {
11429 /* We could have went to FIN_WAIT_1 (or EST) above */
11430 /*
11431 * In FIN_WAIT_1 STATE in addition to the processing for the
11432 * ESTABLISHED state if our FIN is now acknowledged then
11433 * enter FIN_WAIT_2.
11434 */
11435 if (ourfinisacked) {
11436 /*
11437 * If we can't receive any more data, then closing
11438 * user can proceed. Starting the timer is contrary
11439 * to the specification, but if we don't get a FIN
11440 * we'll hang forever.
11441 *
11442 * XXXjl: we should release the tp also, and use a
11443 * compressed state.
11444 */
11445 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11446 soisdisconnected(so);
11450 TP_MAXIDLE(tp)));
11451 }
11453 }
11454 }
11455 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11456 tiwin, thflags, nxt_pkt));
11457}
11458
11459/*
11460 * Return value of 1, the TCB is unlocked and most
11461 * likely gone, return value of 0, the TCP is still
11462 * locked.
11463 */
11464static int
11465rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
11466 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11467 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11468{
11469 int32_t ret_val = 0;
11470 struct tcp_rack *rack;
11471
11472 /*
11473 * Header prediction: check for the two common cases of a
11474 * uni-directional data xfer. If the packet has no control flags,
11475 * is in-sequence, the window didn't change and we're not
11476 * retransmitting, it's a candidate. If the length is zero and the
11477 * ack moved forward, we're the sender side of the xfer. Just free
11478 * the data acked & wake any higher level process that was blocked
11479 * waiting for space. If the length is non-zero and the ack didn't
11480 * move, we're the receiver side. If we're getting packets in-order
11481 * (the reassembly queue is empty), add the data toc The socket
11482 * buffer and note that we need a delayed ack. Make sure that the
11483 * hidden state-flags are also off. Since we check for
11484 * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
11485 */
11486 rack = (struct tcp_rack *)tp->t_fb_ptr;
11487 if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
11488 __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
11489 __predict_true(SEGQ_EMPTY(tp)) &&
11490 __predict_true(th->th_seq == tp->rcv_nxt)) {
11491 if (tlen == 0) {
11492 if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
11493 tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
11494 return (0);
11495 }
11496 } else {
11497 if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
11498 tiwin, nxt_pkt, iptos)) {
11499 return (0);
11500 }
11501 }
11502 }
11503 ctf_calc_rwin(so, tp);
11504
11505 if ((thflags & TH_RST) ||
11506 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11507 return (__ctf_process_rst(m, th, so, tp,
11508 &rack->r_ctl.challenge_ack_ts,
11509 &rack->r_ctl.challenge_ack_cnt));
11510
11511 /*
11512 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11513 * synchronized state.
11514 */
11515 if (thflags & TH_SYN) {
11516 ctf_challenge_ack(m, th, tp, &ret_val);
11517 return (ret_val);
11518 }
11519 /*
11520 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11521 * it's less than ts_recent, drop it.
11522 */
11523 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11524 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11525 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11526 return (ret_val);
11527 }
11528 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11529 &rack->r_ctl.challenge_ack_ts,
11530 &rack->r_ctl.challenge_ack_cnt)) {
11531 return (ret_val);
11532 }
11533 /*
11534 * If last ACK falls within this segment's sequence numbers, record
11535 * its timestamp. NOTE: 1) That the test incorporates suggestions
11536 * from the latest proposal of the tcplw@cray.com list (Braden
11537 * 1993/04/26). 2) That updating only on newer timestamps interferes
11538 * with our earlier PAWS tests, so this check should be solely
11539 * predicated on the sequence space of this segment. 3) That we
11540 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11541 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11542 * SEG.Len, This modified check allows us to overcome RFC1323's
11543 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11544 * p.869. In such cases, we can still calculate the RTT correctly
11545 * when RCV.NXT == Last.ACK.Sent.
11546 */
11547 if ((to->to_flags & TOF_TS) != 0 &&
11548 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11549 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11550 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11552 tp->ts_recent = to->to_tsval;
11553 }
11554 /*
11555 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11556 * is on (half-synchronized state), then queue data for later
11557 * processing; else drop segment and return.
11558 */
11559 if ((thflags & TH_ACK) == 0) {
11560 if (tp->t_flags & TF_NEEDSYN) {
11561 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11562 tiwin, thflags, nxt_pkt));
11563
11564 } else if (tp->t_flags & TF_ACKNOW) {
11565 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11566 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11567 return (ret_val);
11568 } else {
11569 ctf_do_drop(m, NULL);
11570 return (0);
11571 }
11572 }
11573 /*
11574 * Ack processing.
11575 */
11576 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11577 return (ret_val);
11578 }
11579 if (sbavail(&so->so_snd)) {
11580 if (ctf_progress_timeout_check(tp, true)) {
11581 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
11583 return (1);
11584 }
11585 }
11586 /* State changes only happen in rack_process_data() */
11587 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11588 tiwin, thflags, nxt_pkt));
11589}
11590
11591/*
11592 * Return value of 1, the TCB is unlocked and most
11593 * likely gone, return value of 0, the TCP is still
11594 * locked.
11595 */
11596static int
11597rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
11598 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11599 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11600{
11601 int32_t ret_val = 0;
11602 struct tcp_rack *rack;
11603
11604 rack = (struct tcp_rack *)tp->t_fb_ptr;
11605 ctf_calc_rwin(so, tp);
11606 if ((thflags & TH_RST) ||
11607 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11608 return (__ctf_process_rst(m, th, so, tp,
11609 &rack->r_ctl.challenge_ack_ts,
11610 &rack->r_ctl.challenge_ack_cnt));
11611 /*
11612 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11613 * synchronized state.
11614 */
11615 if (thflags & TH_SYN) {
11616 ctf_challenge_ack(m, th, tp, &ret_val);
11617 return (ret_val);
11618 }
11619 /*
11620 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11621 * it's less than ts_recent, drop it.
11622 */
11623 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11624 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11625 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11626 return (ret_val);
11627 }
11628 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11629 &rack->r_ctl.challenge_ack_ts,
11630 &rack->r_ctl.challenge_ack_cnt)) {
11631 return (ret_val);
11632 }
11633 /*
11634 * If last ACK falls within this segment's sequence numbers, record
11635 * its timestamp. NOTE: 1) That the test incorporates suggestions
11636 * from the latest proposal of the tcplw@cray.com list (Braden
11637 * 1993/04/26). 2) That updating only on newer timestamps interferes
11638 * with our earlier PAWS tests, so this check should be solely
11639 * predicated on the sequence space of this segment. 3) That we
11640 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11641 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11642 * SEG.Len, This modified check allows us to overcome RFC1323's
11643 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11644 * p.869. In such cases, we can still calculate the RTT correctly
11645 * when RCV.NXT == Last.ACK.Sent.
11646 */
11647 if ((to->to_flags & TOF_TS) != 0 &&
11648 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11649 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11650 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11652 tp->ts_recent = to->to_tsval;
11653 }
11654 /*
11655 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11656 * is on (half-synchronized state), then queue data for later
11657 * processing; else drop segment and return.
11658 */
11659 if ((thflags & TH_ACK) == 0) {
11660 if (tp->t_flags & TF_NEEDSYN) {
11661 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11662 tiwin, thflags, nxt_pkt));
11663
11664 } else if (tp->t_flags & TF_ACKNOW) {
11665 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11666 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11667 return (ret_val);
11668 } else {
11669 ctf_do_drop(m, NULL);
11670 return (0);
11671 }
11672 }
11673 /*
11674 * Ack processing.
11675 */
11676 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11677 return (ret_val);
11678 }
11679 if (sbavail(&so->so_snd)) {
11680 if (ctf_progress_timeout_check(tp, true)) {
11682 tp, tick, PROGRESS_DROP, __LINE__);
11684 return (1);
11685 }
11686 }
11687 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11688 tiwin, thflags, nxt_pkt));
11689}
11690
11691static int
11693 struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
11694{
11695 struct tcp_rack *rack;
11696
11697 rack = (struct tcp_rack *)tp->t_fb_ptr;
11698 if (rack->rc_allow_data_af_clo == 0) {
11699 close_now:
11701 /* tcp_close will kill the inp pre-log the Reset */
11703 tp = tcp_close(tp);
11704 KMOD_TCPSTAT_INC(tcps_rcvafterclose);
11705 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
11706 return (1);
11707 }
11708 if (sbavail(&so->so_snd) == 0)
11709 goto close_now;
11710 /* Ok we allow data that is ignored and a followup reset */
11712 tp->rcv_nxt = th->th_seq + *tlen;
11714 rack->r_wanted_output = 1;
11715 *tlen = 0;
11716 return (0);
11717}
11718
11719/*
11720 * Return value of 1, the TCB is unlocked and most
11721 * likely gone, return value of 0, the TCP is still
11722 * locked.
11723 */
11724static int
11725rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
11726 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11727 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11728{
11729 int32_t ret_val = 0;
11730 int32_t ourfinisacked = 0;
11731 struct tcp_rack *rack;
11732
11733 rack = (struct tcp_rack *)tp->t_fb_ptr;
11734 ctf_calc_rwin(so, tp);
11735
11736 if ((thflags & TH_RST) ||
11737 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11738 return (__ctf_process_rst(m, th, so, tp,
11739 &rack->r_ctl.challenge_ack_ts,
11740 &rack->r_ctl.challenge_ack_cnt));
11741 /*
11742 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11743 * synchronized state.
11744 */
11745 if (thflags & TH_SYN) {
11746 ctf_challenge_ack(m, th, tp, &ret_val);
11747 return (ret_val);
11748 }
11749 /*
11750 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11751 * it's less than ts_recent, drop it.
11752 */
11753 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11754 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11755 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11756 return (ret_val);
11757 }
11758 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11759 &rack->r_ctl.challenge_ack_ts,
11760 &rack->r_ctl.challenge_ack_cnt)) {
11761 return (ret_val);
11762 }
11763 /*
11764 * If new data are received on a connection after the user processes
11765 * are gone, then RST the other end.
11766 */
11767 if ((so->so_state & SS_NOFDREF) && tlen) {
11768 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11769 return (1);
11770 }
11771 /*
11772 * If last ACK falls within this segment's sequence numbers, record
11773 * its timestamp. NOTE: 1) That the test incorporates suggestions
11774 * from the latest proposal of the tcplw@cray.com list (Braden
11775 * 1993/04/26). 2) That updating only on newer timestamps interferes
11776 * with our earlier PAWS tests, so this check should be solely
11777 * predicated on the sequence space of this segment. 3) That we
11778 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11779 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11780 * SEG.Len, This modified check allows us to overcome RFC1323's
11781 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11782 * p.869. In such cases, we can still calculate the RTT correctly
11783 * when RCV.NXT == Last.ACK.Sent.
11784 */
11785 if ((to->to_flags & TOF_TS) != 0 &&
11786 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11787 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11788 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11790 tp->ts_recent = to->to_tsval;
11791 }
11792 /*
11793 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11794 * is on (half-synchronized state), then queue data for later
11795 * processing; else drop segment and return.
11796 */
11797 if ((thflags & TH_ACK) == 0) {
11798 if (tp->t_flags & TF_NEEDSYN) {
11799 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11800 tiwin, thflags, nxt_pkt));
11801 } else if (tp->t_flags & TF_ACKNOW) {
11802 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11803 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11804 return (ret_val);
11805 } else {
11806 ctf_do_drop(m, NULL);
11807 return (0);
11808 }
11809 }
11810 /*
11811 * Ack processing.
11812 */
11813 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11814 return (ret_val);
11815 }
11816 if (ourfinisacked) {
11817 /*
11818 * If we can't receive any more data, then closing user can
11819 * proceed. Starting the timer is contrary to the
11820 * specification, but if we don't get a FIN we'll hang
11821 * forever.
11822 *
11823 * XXXjl: we should release the tp also, and use a
11824 * compressed state.
11825 */
11826 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11827 soisdisconnected(so);
11831 TP_MAXIDLE(tp)));
11832 }
11834 }
11835 if (sbavail(&so->so_snd)) {
11836 if (ctf_progress_timeout_check(tp, true)) {
11838 tp, tick, PROGRESS_DROP, __LINE__);
11840 return (1);
11841 }
11842 }
11843 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11844 tiwin, thflags, nxt_pkt));
11845}
11846
11847/*
11848 * Return value of 1, the TCB is unlocked and most
11849 * likely gone, return value of 0, the TCP is still
11850 * locked.
11851 */
11852static int
11853rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
11854 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11855 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11856{
11857 int32_t ret_val = 0;
11858 int32_t ourfinisacked = 0;
11859 struct tcp_rack *rack;
11860
11861 rack = (struct tcp_rack *)tp->t_fb_ptr;
11862 ctf_calc_rwin(so, tp);
11863
11864 if ((thflags & TH_RST) ||
11865 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11866 return (__ctf_process_rst(m, th, so, tp,
11867 &rack->r_ctl.challenge_ack_ts,
11868 &rack->r_ctl.challenge_ack_cnt));
11869 /*
11870 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11871 * synchronized state.
11872 */
11873 if (thflags & TH_SYN) {
11874 ctf_challenge_ack(m, th, tp, &ret_val);
11875 return (ret_val);
11876 }
11877 /*
11878 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11879 * it's less than ts_recent, drop it.
11880 */
11881 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11882 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11883 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11884 return (ret_val);
11885 }
11886 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11887 &rack->r_ctl.challenge_ack_ts,
11888 &rack->r_ctl.challenge_ack_cnt)) {
11889 return (ret_val);
11890 }
11891 /*
11892 * If new data are received on a connection after the user processes
11893 * are gone, then RST the other end.
11894 */
11895 if ((so->so_state & SS_NOFDREF) && tlen) {
11896 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11897 return (1);
11898 }
11899 /*
11900 * If last ACK falls within this segment's sequence numbers, record
11901 * its timestamp. NOTE: 1) That the test incorporates suggestions
11902 * from the latest proposal of the tcplw@cray.com list (Braden
11903 * 1993/04/26). 2) That updating only on newer timestamps interferes
11904 * with our earlier PAWS tests, so this check should be solely
11905 * predicated on the sequence space of this segment. 3) That we
11906 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11907 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11908 * SEG.Len, This modified check allows us to overcome RFC1323's
11909 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11910 * p.869. In such cases, we can still calculate the RTT correctly
11911 * when RCV.NXT == Last.ACK.Sent.
11912 */
11913 if ((to->to_flags & TOF_TS) != 0 &&
11914 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11915 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11916 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11918 tp->ts_recent = to->to_tsval;
11919 }
11920 /*
11921 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
11922 * is on (half-synchronized state), then queue data for later
11923 * processing; else drop segment and return.
11924 */
11925 if ((thflags & TH_ACK) == 0) {
11926 if (tp->t_flags & TF_NEEDSYN) {
11927 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11928 tiwin, thflags, nxt_pkt));
11929 } else if (tp->t_flags & TF_ACKNOW) {
11930 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11931 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11932 return (ret_val);
11933 } else {
11934 ctf_do_drop(m, NULL);
11935 return (0);
11936 }
11937 }
11938 /*
11939 * Ack processing.
11940 */
11941 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11942 return (ret_val);
11943 }
11944 if (ourfinisacked) {
11945 tcp_twstart(tp);
11946 m_freem(m);
11947 return (1);
11948 }
11949 if (sbavail(&so->so_snd)) {
11950 if (ctf_progress_timeout_check(tp, true)) {
11952 tp, tick, PROGRESS_DROP, __LINE__);
11954 return (1);
11955 }
11956 }
11957 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11958 tiwin, thflags, nxt_pkt));
11959}
11960
11961/*
11962 * Return value of 1, the TCB is unlocked and most
11963 * likely gone, return value of 0, the TCP is still
11964 * locked.
11965 */
11966static int
11967rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
11968 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11969 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11970{
11971 int32_t ret_val = 0;
11972 int32_t ourfinisacked = 0;
11973 struct tcp_rack *rack;
11974
11975 rack = (struct tcp_rack *)tp->t_fb_ptr;
11976 ctf_calc_rwin(so, tp);
11977
11978 if ((thflags & TH_RST) ||
11979 (tp->t_fin_is_rst && (thflags & TH_FIN)))
11980 return (__ctf_process_rst(m, th, so, tp,
11981 &rack->r_ctl.challenge_ack_ts,
11982 &rack->r_ctl.challenge_ack_cnt));
11983 /*
11984 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11985 * synchronized state.
11986 */
11987 if (thflags & TH_SYN) {
11988 ctf_challenge_ack(m, th, tp, &ret_val);
11989 return (ret_val);
11990 }
11991 /*
11992 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11993 * it's less than ts_recent, drop it.
11994 */
11995 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11996 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11997 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11998 return (ret_val);
11999 }
12000 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12001 &rack->r_ctl.challenge_ack_ts,
12002 &rack->r_ctl.challenge_ack_cnt)) {
12003 return (ret_val);
12004 }
12005 /*
12006 * If new data are received on a connection after the user processes
12007 * are gone, then RST the other end.
12008 */
12009 if ((so->so_state & SS_NOFDREF) && tlen) {
12010 if (rack_check_data_after_close(m, tp, &tlen, th, so))
12011 return (1);
12012 }
12013 /*
12014 * If last ACK falls within this segment's sequence numbers, record
12015 * its timestamp. NOTE: 1) That the test incorporates suggestions
12016 * from the latest proposal of the tcplw@cray.com list (Braden
12017 * 1993/04/26). 2) That updating only on newer timestamps interferes
12018 * with our earlier PAWS tests, so this check should be solely
12019 * predicated on the sequence space of this segment. 3) That we
12020 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12021 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12022 * SEG.Len, This modified check allows us to overcome RFC1323's
12023 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12024 * p.869. In such cases, we can still calculate the RTT correctly
12025 * when RCV.NXT == Last.ACK.Sent.
12026 */
12027 if ((to->to_flags & TOF_TS) != 0 &&
12028 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12029 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12030 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12032 tp->ts_recent = to->to_tsval;
12033 }
12034 /*
12035 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
12036 * is on (half-synchronized state), then queue data for later
12037 * processing; else drop segment and return.
12038 */
12039 if ((thflags & TH_ACK) == 0) {
12040 if (tp->t_flags & TF_NEEDSYN) {
12041 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12042 tiwin, thflags, nxt_pkt));
12043 } else if (tp->t_flags & TF_ACKNOW) {
12044 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12045 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12046 return (ret_val);
12047 } else {
12048 ctf_do_drop(m, NULL);
12049 return (0);
12050 }
12051 }
12052 /*
12053 * case TCPS_LAST_ACK: Ack processing.
12054 */
12055 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12056 return (ret_val);
12057 }
12058 if (ourfinisacked) {
12059 tp = tcp_close(tp);
12060 ctf_do_drop(m, tp);
12061 return (1);
12062 }
12063 if (sbavail(&so->so_snd)) {
12064 if (ctf_progress_timeout_check(tp, true)) {
12066 tp, tick, PROGRESS_DROP, __LINE__);
12068 return (1);
12069 }
12070 }
12071 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12072 tiwin, thflags, nxt_pkt));
12073}
12074
12075/*
12076 * Return value of 1, the TCB is unlocked and most
12077 * likely gone, return value of 0, the TCP is still
12078 * locked.
12079 */
12080static int
12081rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
12082 struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
12083 uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
12084{
12085 int32_t ret_val = 0;
12086 int32_t ourfinisacked = 0;
12087 struct tcp_rack *rack;
12088
12089 rack = (struct tcp_rack *)tp->t_fb_ptr;
12090 ctf_calc_rwin(so, tp);
12091
12092 /* Reset receive buffer auto scaling when not in bulk receive mode. */
12093 if ((thflags & TH_RST) ||
12094 (tp->t_fin_is_rst && (thflags & TH_FIN)))
12095 return (__ctf_process_rst(m, th, so, tp,
12096 &rack->r_ctl.challenge_ack_ts,
12097 &rack->r_ctl.challenge_ack_cnt));
12098 /*
12099 * RFC5961 Section 4.2 Send challenge ACK for any SYN in
12100 * synchronized state.
12101 */
12102 if (thflags & TH_SYN) {
12103 ctf_challenge_ack(m, th, tp, &ret_val);
12104 return (ret_val);
12105 }
12106 /*
12107 * RFC 1323 PAWS: If we have a timestamp reply on this segment and
12108 * it's less than ts_recent, drop it.
12109 */
12110 if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
12111 TSTMP_LT(to->to_tsval, tp->ts_recent)) {
12112 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
12113 return (ret_val);
12114 }
12115 if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
12116 &rack->r_ctl.challenge_ack_ts,
12117 &rack->r_ctl.challenge_ack_cnt)) {
12118 return (ret_val);
12119 }
12120 /*
12121 * If new data are received on a connection after the user processes
12122 * are gone, then RST the other end.
12123 */
12124 if ((so->so_state & SS_NOFDREF) &&
12125 tlen) {
12126 if (rack_check_data_after_close(m, tp, &tlen, th, so))
12127 return (1);
12128 }
12129 /*
12130 * If last ACK falls within this segment's sequence numbers, record
12131 * its timestamp. NOTE: 1) That the test incorporates suggestions
12132 * from the latest proposal of the tcplw@cray.com list (Braden
12133 * 1993/04/26). 2) That updating only on newer timestamps interferes
12134 * with our earlier PAWS tests, so this check should be solely
12135 * predicated on the sequence space of this segment. 3) That we
12136 * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
12137 * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
12138 * SEG.Len, This modified check allows us to overcome RFC1323's
12139 * limitations as described in Stevens TCP/IP Illustrated Vol. 2
12140 * p.869. In such cases, we can still calculate the RTT correctly
12141 * when RCV.NXT == Last.ACK.Sent.
12142 */
12143 if ((to->to_flags & TOF_TS) != 0 &&
12144 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
12145 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
12146 ((thflags & (TH_SYN | TH_FIN)) != 0))) {
12148 tp->ts_recent = to->to_tsval;
12149 }
12150 /*
12151 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
12152 * is on (half-synchronized state), then queue data for later
12153 * processing; else drop segment and return.
12154 */
12155 if ((thflags & TH_ACK) == 0) {
12156 if (tp->t_flags & TF_NEEDSYN) {
12157 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12158 tiwin, thflags, nxt_pkt));
12159 } else if (tp->t_flags & TF_ACKNOW) {
12160 ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
12161 ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
12162 return (ret_val);
12163 } else {
12164 ctf_do_drop(m, NULL);
12165 return (0);
12166 }
12167 }
12168 /*
12169 * Ack processing.
12170 */
12171 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
12172 return (ret_val);
12173 }
12174 if (sbavail(&so->so_snd)) {
12175 if (ctf_progress_timeout_check(tp, true)) {
12177 tp, tick, PROGRESS_DROP, __LINE__);
12179 return (1);
12180 }
12181 }
12182 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
12183 tiwin, thflags, nxt_pkt));
12184}
12185
12186static void inline
12188{
12190 rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
12191 rack->r_ctl.rack_rs.rs_rtt_tot = 0;
12192}
12193
12194static void
12195rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
12196{
12197 uint64_t bw_est, rate_wanted;
12198 int chged = 0;
12199 uint32_t user_max, orig_min, orig_max;
12200
12201 orig_min = rack->r_ctl.rc_pace_min_segs;
12202 orig_max = rack->r_ctl.rc_pace_max_segs;
12203 user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
12204 if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
12205 chged = 1;
12207 if (rack->use_fixed_rate || rack->rc_force_max_seg) {
12208 if (user_max != rack->r_ctl.rc_pace_max_segs)
12209 chged = 1;
12210 }
12211 if (rack->rc_force_max_seg) {
12212 rack->r_ctl.rc_pace_max_segs = user_max;
12213 } else if (rack->use_fixed_rate) {
12214 bw_est = rack_get_bw(rack);
12215 if ((rack->r_ctl.crte == NULL) ||
12216 (bw_est != rack->r_ctl.crte->rate)) {
12217 rack->r_ctl.rc_pace_max_segs = user_max;
12218 } else {
12219 /* We are pacing right at the hardware rate */
12220 uint32_t segsiz;
12221
12222 segsiz = min(ctf_fixed_maxseg(tp),
12223 rack->r_ctl.rc_pace_min_segs);
12225 tp, bw_est, segsiz, 0,
12226 rack->r_ctl.crte, NULL);
12227 }
12228 } else if (rack->rc_always_pace) {
12229 if (rack->r_ctl.gp_bw ||
12230#ifdef NETFLIX_PEAKRATE
12231 rack->rc_tp->t_maxpeakrate ||
12232#endif
12233 rack->r_ctl.init_rate) {
12234 /* We have a rate of some sort set */
12235 uint32_t orig;
12236
12237 bw_est = rack_get_bw(rack);
12238 orig = rack->r_ctl.rc_pace_max_segs;
12239 if (fill_override)
12240 rate_wanted = *fill_override;
12241 else
12242 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL);
12243 if (rate_wanted) {
12244 /* We have something */
12246 rate_wanted,
12247 ctf_fixed_maxseg(rack->rc_tp));
12248 } else
12250 if (orig != rack->r_ctl.rc_pace_max_segs)
12251 chged = 1;
12252 } else if ((rack->r_ctl.gp_bw == 0) &&
12253 (rack->r_ctl.rc_pace_max_segs == 0)) {
12254 /*
12255 * If we have nothing limit us to bursting
12256 * out IW sized pieces.
12257 */
12258 chged = 1;
12260 }
12261 }
12263 chged = 1;
12265 }
12266 if (chged)
12267 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2);
12268}
12269
12270
12271static void
12272rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
12273{
12274#ifdef INET6
12275 struct ip6_hdr *ip6 = NULL;
12276#endif
12277#ifdef INET
12278 struct ip *ip = NULL;
12279#endif
12280 struct udphdr *udp = NULL;
12281
12282 /* Ok lets fill in the fast block, it can only be used with no IP options! */
12283#ifdef INET6
12284 if (rack->r_is_v6) {
12285 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
12286 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
12287 if (tp->t_port) {
12288 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12289 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
12290 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12291 udp->uh_dport = tp->t_port;
12292 rack->r_ctl.fsb.udp = udp;
12293 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12294 } else
12295 {
12296 rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1);
12297 rack->r_ctl.fsb.udp = NULL;
12298 }
12300 tp->t_port,
12301 ip6, rack->r_ctl.fsb.th);
12302 } else
12303#endif /* INET6 */
12304 {
12305 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr);
12306 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
12307 if (tp->t_port) {
12308 rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
12309 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
12310 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
12311 udp->uh_dport = tp->t_port;
12312 rack->r_ctl.fsb.udp = udp;
12313 rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
12314 } else
12315 {
12316 rack->r_ctl.fsb.udp = NULL;
12317 rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1);
12318 }
12320 tp->t_port,
12321 ip, rack->r_ctl.fsb.th);
12322 }
12323 rack->r_fsb_inited = 1;
12324}
12325
12326static int
12327rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
12328{
12329 /*
12330 * Allocate the larger of spaces V6 if available else just
12331 * V4 and include udphdr (overbook)
12332 */
12333#ifdef INET6
12334 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr);
12335#else
12336 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr);
12337#endif
12338 rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len,
12339 M_TCPFSB, M_NOWAIT|M_ZERO);
12340 if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) {
12341 return (ENOMEM);
12342 }
12343 rack->r_fsb_inited = 0;
12344 return (0);
12345}
12346
12347static int
12348rack_init(struct tcpcb *tp)
12349{
12350 struct tcp_rack *rack = NULL;
12351#ifdef INVARIANTS
12352 struct rack_sendmap *insret;
12353#endif
12354 uint32_t iwin, snt, us_cts;
12355 int err;
12356
12357 tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
12358 if (tp->t_fb_ptr == NULL) {
12359 /*
12360 * We need to allocate memory but cant. The INP and INP_INFO
12361 * locks and they are recusive (happens during setup. So a
12362 * scheme to drop the locks fails :(
12363 *
12364 */
12365 return (ENOMEM);
12366 }
12367 memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
12368
12369 rack = (struct tcp_rack *)tp->t_fb_ptr;
12370 RB_INIT(&rack->r_ctl.rc_mtree);
12371 TAILQ_INIT(&rack->r_ctl.rc_free);
12372 TAILQ_INIT(&rack->r_ctl.rc_tmap);
12373 rack->rc_tp = tp;
12374 rack->rc_inp = tp->t_inpcb;
12375 /* Set the flag */
12376 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
12377 /* Probably not needed but lets be sure */
12379 /*
12380 * Save off the default values, socket options will poke
12381 * at these if pacing is not on or we have not yet
12382 * reached where pacing is on (gp_ready/fixed enabled).
12383 * When they get set into the CC module (when gp_ready
12384 * is enabled or we enable fixed) then we will set these
12385 * values into the CC and place in here the old values
12386 * so we have a restoral. Then we will set the flag
12387 * rc_pacing_cc_set. That way whenever we turn off pacing
12388 * or switch off this stack, we will know to go restore
12389 * the saved values.
12390 */
12393 /* We want abe like behavior as well */
12398 rack->r_ctl.roundends = tp->snd_max;
12399 if (use_rack_rr)
12400 rack->use_rack_rr = 1;
12402 tp->t_delayed_ack = 1;
12403 else
12404 tp->t_delayed_ack = 0;
12405#ifdef TCP_ACCOUNTING
12406 if (rack_tcp_accounting) {
12407 tp->t_flags2 |= TF2_TCP_ACCOUNTING;
12408 }
12409#endif
12411 rack->rack_enable_scwnd = 1;
12413 rack->rc_force_max_seg = 0;
12415 rack->rc_dack_mode = 1;
12416 TAILQ_INIT(&rack->r_ctl.opt_list);
12420 rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
12421 rack->r_ctl.rc_highest_us_rtt = 0;
12423 rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop);
12425 rack->r_use_cmp_ack = 1;
12426 if (rack_disable_prr)
12427 rack->rack_no_prr = 1;
12429 rack->rc_gp_no_rec_chg = 1;
12431 rack->rc_always_pace = 1;
12432 if (rack->use_fixed_rate || rack->gp_ready)
12433 rack_set_cc_pacing(rack);
12434 } else
12435 rack->rc_always_pace = 0;
12437 rack->r_mbuf_queue = 1;
12438 else
12439 rack->r_mbuf_queue = 0;
12440 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
12442 else
12443 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12444 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12446 rack->r_limit_scw = 1;
12447 else
12448 rack->r_limit_scw = 0;
12449 rack->rc_labc = V_tcp_abc_l_var;
12450 rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
12451 rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12455 rack->r_ctl.rc_min_to = rack_min_to;
12456 microuptime(&rack->r_ctl.act_rcv_time);
12460 if (rack_hw_up_only)
12461 rack->r_up_only = 1;
12462 if (rack_do_dyn_mul) {
12463 /* When dynamic adjustment is on CA needs to start at 100% */
12464 rack->rc_gp_dyn_mul = 1;
12465 if (rack_do_dyn_mul >= 100)
12467 } else
12472 setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
12474 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
12475 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12476 rack->r_ctl.rc_time_of_last_probertt = us_cts;
12479 if (rack_dsack_std_based & 0x1) {
12480 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
12481 rack->rc_rack_tmr_std_based = 1;
12482 }
12483 if (rack_dsack_std_based & 0x2) {
12484 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */
12485 rack->rc_rack_use_dsack = 1;
12486 }
12487 /* We require at least one measurement, even if the sysctl is 0 */
12490 else
12491 rack->r_ctl.req_measurements = 1;
12493 rack->rack_hdw_pace_ena = 1;
12495 rack->r_rack_hw_rate_caps = 1;
12496 /* Do we force on detection? */
12497#ifdef NETFLIX_EXP_DETECTION
12498 if (tcp_force_detection)
12499 rack->do_detection = 1;
12500 else
12501#endif
12502 rack->do_detection = 0;
12504 rack->rack_rec_nonrxt_use_cr = 1;
12505 err = rack_init_fsb(tp, rack);
12506 if (err) {
12507 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12508 tp->t_fb_ptr = NULL;
12509 return (err);
12510 }
12511 if (tp->snd_una != tp->snd_max) {
12512 /* Create a send map for the current outstanding data */
12513 struct rack_sendmap *rsm;
12514
12515 rsm = rack_alloc(rack);
12516 if (rsm == NULL) {
12517 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12518 tp->t_fb_ptr = NULL;
12519 return (ENOMEM);
12520 }
12521 rsm->r_no_rtt_allowed = 1;
12523 rsm->r_rtr_cnt = 1;
12524 rsm->r_rtr_bytes = 0;
12525 if (tp->t_flags & TF_SENTFIN) {
12526 rsm->r_end = tp->snd_max - 1;
12527 rsm->r_flags |= RACK_HAS_FIN;
12528 } else {
12529 rsm->r_end = tp->snd_max;
12530 }
12531 if (tp->snd_una == tp->iss) {
12532 /* The data space is one beyond snd_una */
12533 rsm->r_flags |= RACK_HAS_SYN;
12534 rsm->r_start = tp->iss;
12535 rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una);
12536 } else
12537 rsm->r_start = tp->snd_una;
12538 rsm->r_dupack = 0;
12539 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) {
12540 rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff);
12541 if (rsm->m)
12542 rsm->orig_m_len = rsm->m->m_len;
12543 else
12544 rsm->orig_m_len = 0;
12545 } else {
12546 /*
12547 * This can happen if we have a stand-alone FIN or
12548 * SYN.
12549 */
12550 rsm->m = NULL;
12551 rsm->orig_m_len = 0;
12552 rsm->soff = 0;
12553 }
12554#ifndef INVARIANTS
12555 (void)RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12556#else
12557 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12558 if (insret != NULL) {
12559 panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
12560 insret, rack, rsm);
12561 }
12562#endif
12563 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
12564 rsm->r_in_tmap = 1;
12565 }
12566 /*
12567 * Timers in Rack are kept in microseconds so lets
12568 * convert any initial incoming variables
12569 * from ticks into usecs. Note that we
12570 * also change the values of t_srtt and t_rttvar, if
12571 * they are non-zero. They are kept with a 5
12572 * bit decimal so we have to carefully convert
12573 * these to get the full precision.
12574 */
12576 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
12577 if (rack_do_hystart) {
12579 if (rack_do_hystart > 1)
12581 if (rack_do_hystart > 2)
12583 }
12584 if (rack_def_profile)
12586 /* Cancel the GP measurement in progress */
12587 tp->t_flags &= ~TF_GPUTINPROG;
12588 if (SEQ_GT(tp->snd_max, tp->iss))
12589 snt = tp->snd_max - tp->iss;
12590 else
12591 snt = 0;
12592 iwin = rc_init_window(rack);
12593 if (snt < iwin) {
12594 /* We are not past the initial window
12595 * so we need to make sure cwnd is
12596 * correct.
12597 */
12598 if (tp->snd_cwnd < iwin)
12599 tp->snd_cwnd = iwin;
12600 /*
12601 * If we are within the initial window
12602 * we want ssthresh to be unlimited. Setting
12603 * it to the rwnd (which the default stack does
12604 * and older racks) is not really a good idea
12605 * since we want to be in SS and grow both the
12606 * cwnd and the rwnd (via dynamic rwnd growth). If
12607 * we set it to the rwnd then as the peer grows its
12608 * rwnd we will be stuck in CA and never hit SS.
12609 *
12610 * Its far better to raise it up high (this takes the
12611 * risk that there as been a loss already, probably
12612 * we should have an indicator in all stacks of loss
12613 * but we don't), but considering the normal use this
12614 * is a risk worth taking. The consequences of not
12615 * hitting SS are far worse than going one more time
12616 * into it early on (before we have sent even a IW).
12617 * It is highly unlikely that we will have had a loss
12618 * before getting the IW out.
12619 */
12620 tp->snd_ssthresh = 0xffffffff;
12621 }
12623 /* Lets setup the fsb block */
12624 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12625 rack_log_rtt_shrinks(rack, us_cts, tp->t_rxtcur,
12626 __LINE__, RACK_RTTS_INIT);
12627 return (0);
12628}
12629
12630static int
12632{
12633 if ((tp->t_state == TCPS_CLOSED) ||
12634 (tp->t_state == TCPS_LISTEN)) {
12635 /* Sure no problem though it may not stick */
12636 return (0);
12637 }
12638 if ((tp->t_state == TCPS_SYN_SENT) ||
12639 (tp->t_state == TCPS_SYN_RECEIVED)) {
12640 /*
12641 * We really don't know if you support sack,
12642 * you have to get to ESTAB or beyond to tell.
12643 */
12644 return (EAGAIN);
12645 }
12646 if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
12647 /*
12648 * Rack will only send a FIN after all data is acknowledged.
12649 * So in this case we have more data outstanding. We can't
12650 * switch stacks until either all data and only the FIN
12651 * is left (in which case rack_init() now knows how
12652 * to deal with that) <or> all is acknowledged and we
12653 * are only left with incoming data, though why you
12654 * would want to switch to rack after all data is acknowledged
12655 * I have no idea (rrs)!
12656 */
12657 return (EAGAIN);
12658 }
12660 return (0);
12661 }
12662 /*
12663 * If we reach here we don't do SACK on this connection so we can
12664 * never do rack.
12665 */
12666 return (EINVAL);
12667}
12668
12669
12670static void
12671rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
12672{
12673 if (tp->t_fb_ptr) {
12674 struct tcp_rack *rack;
12675 struct rack_sendmap *rsm, *nrsm;
12676#ifdef INVARIANTS
12677 struct rack_sendmap *rm;
12678#endif
12679
12680 rack = (struct tcp_rack *)tp->t_fb_ptr;
12681 if (tp->t_in_pkt) {
12682 /*
12683 * It is unsafe to process the packets since a
12684 * reset may be lurking in them (its rare but it
12685 * can occur). If we were to find a RST, then we
12686 * would end up dropping the connection and the
12687 * INP lock, so when we return the caller (tcp_usrreq)
12688 * will blow up when it trys to unlock the inp.
12689 */
12690 struct mbuf *save, *m;
12691
12692 m = tp->t_in_pkt;
12693 tp->t_in_pkt = NULL;
12694 tp->t_tail_pkt = NULL;
12695 while (m) {
12696 save = m->m_nextpkt;
12697 m->m_nextpkt = NULL;
12698 m_freem(m);
12699 m = save;
12700 }
12701 }
12702 tp->t_flags &= ~TF_FORCEDATA;
12703#ifdef NETFLIX_SHARED_CWND
12704 if (rack->r_ctl.rc_scw) {
12705 uint32_t limit;
12706
12707 if (rack->r_limit_scw)
12708 limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
12709 else
12710 limit = 0;
12711 tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
12712 rack->r_ctl.rc_scw_index,
12713 limit);
12714 rack->r_ctl.rc_scw = NULL;
12715 }
12716#endif
12717 if (rack->r_ctl.fsb.tcp_ip_hdr) {
12718 free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB);
12719 rack->r_ctl.fsb.tcp_ip_hdr = NULL;
12720 rack->r_ctl.fsb.th = NULL;
12721 }
12722 /* Convert back to ticks, with */
12723 if (tp->t_srtt > 1) {
12724 uint32_t val, frac;
12725
12726 val = USEC_2_TICKS(tp->t_srtt);
12727 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12728 tp->t_srtt = val << TCP_RTT_SHIFT;
12729 /*
12730 * frac is the fractional part here is left
12731 * over from converting to hz and shifting.
12732 * We need to convert this to the 5 bit
12733 * remainder.
12734 */
12735 if (frac) {
12736 if (hz == 1000) {
12737 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12738 } else {
12739 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12740 }
12741 tp->t_srtt += frac;
12742 }
12743 }
12744 if (tp->t_rttvar) {
12745 uint32_t val, frac;
12746
12747 val = USEC_2_TICKS(tp->t_rttvar);
12748 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12749 tp->t_rttvar = val << TCP_RTTVAR_SHIFT;
12750 /*
12751 * frac is the fractional part here is left
12752 * over from converting to hz and shifting.
12753 * We need to convert this to the 5 bit
12754 * remainder.
12755 */
12756 if (frac) {
12757 if (hz == 1000) {
12758 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12759 } else {
12760 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12761 }
12762 tp->t_rttvar += frac;
12763 }
12764 }
12765 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur);
12766 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
12767 if (rack->rc_always_pace) {
12769 rack_undo_cc_pacing(rack);
12770 rack->rc_always_pace = 0;
12771 }
12772 /* Clean up any options if they were not applied */
12773 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) {
12774 struct deferred_opt_list *dol;
12775
12776 dol = TAILQ_FIRST(&rack->r_ctl.opt_list);
12777 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
12778 free(dol, M_TCPDO);
12779 }
12780 /* rack does not use force data but other stacks may clear it */
12781 if (rack->r_ctl.crte != NULL) {
12782 tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
12783 rack->rack_hdrw_pacing = 0;
12784 rack->r_ctl.crte = NULL;
12785 }
12786#ifdef TCP_BLACKBOX
12787 tcp_log_flowend(tp);
12788#endif
12789 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
12790#ifndef INVARIANTS
12791 (void)RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12792#else
12793 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12794 if (rm != rsm) {
12795 panic("At fini, rack:%p rsm:%p rm:%p",
12796 rack, rsm, rm);
12797 }
12798#endif
12799 uma_zfree(rack_zone, rsm);
12800 }
12801 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12802 while (rsm) {
12803 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
12804 uma_zfree(rack_zone, rsm);
12805 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12806 }
12807 rack->rc_free_cnt = 0;
12808 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12809 tp->t_fb_ptr = NULL;
12810 }
12811 if (tp->t_inpcb) {
12812 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12813 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
12814 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
12815 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP;
12816 /* Cancel the GP measurement in progress */
12817 tp->t_flags &= ~TF_GPUTINPROG;
12818 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS;
12819 }
12820 /* Make sure snd_nxt is correctly set */
12821 tp->snd_nxt = tp->snd_max;
12822}
12823
12824static void
12825rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
12826{
12827 if ((rack->r_state == TCPS_CLOSED) && (tp->t_state != TCPS_CLOSED)) {
12828 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
12829 }
12830 switch (tp->t_state) {
12831 case TCPS_SYN_SENT:
12832 rack->r_state = TCPS_SYN_SENT;
12834 break;
12835 case TCPS_SYN_RECEIVED:
12836 rack->r_state = TCPS_SYN_RECEIVED;
12838 break;
12839 case TCPS_ESTABLISHED:
12840 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12841 rack->r_state = TCPS_ESTABLISHED;
12843 break;
12844 case TCPS_CLOSE_WAIT:
12845 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12846 rack->r_state = TCPS_CLOSE_WAIT;
12848 break;
12849 case TCPS_FIN_WAIT_1:
12850 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12851 rack->r_state = TCPS_FIN_WAIT_1;
12853 break;
12854 case TCPS_CLOSING:
12855 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12856 rack->r_state = TCPS_CLOSING;
12858 break;
12859 case TCPS_LAST_ACK:
12860 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12861 rack->r_state = TCPS_LAST_ACK;
12863 break;
12864 case TCPS_FIN_WAIT_2:
12865 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12866 rack->r_state = TCPS_FIN_WAIT_2;
12868 break;
12869 case TCPS_LISTEN:
12870 case TCPS_CLOSED:
12871 case TCPS_TIME_WAIT:
12872 default:
12873 break;
12874 };
12875 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
12877
12878}
12879
12880static void
12881rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
12882{
12883 /*
12884 * We received an ack, and then did not
12885 * call send or were bounced out due to the
12886 * hpts was running. Now a timer is up as well, is
12887 * it the right timer?
12888 */
12889 struct rack_sendmap *rsm;
12890 int tmr_up;
12891
12892 tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
12893 if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
12894 return;
12895 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
12896 if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
12897 (tmr_up == PACE_TMR_RXT)) {
12898 /* Should be an RXT */
12899 return;
12900 }
12901 if (rsm == NULL) {
12902 /* Nothing outstanding? */
12903 if (tp->t_flags & TF_DELACK) {
12904 if (tmr_up == PACE_TMR_DELACK)
12905 /* We are supposed to have delayed ack up and we do */
12906 return;
12907 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
12908 /*
12909 * if we hit enobufs then we would expect the possiblity
12910 * of nothing outstanding and the RXT up (and the hptsi timer).
12911 */
12912 return;
12913 } else if (((V_tcp_always_keepalive ||
12914 rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
12915 (tp->t_state <= TCPS_CLOSING)) &&
12916 (tmr_up == PACE_TMR_KEEP) &&
12917 (tp->snd_max == tp->snd_una)) {
12918 /* We should have keep alive up and we do */
12919 return;
12920 }
12921 }
12922 if (SEQ_GT(tp->snd_max, tp->snd_una) &&
12923 ((tmr_up == PACE_TMR_TLP) ||
12924 (tmr_up == PACE_TMR_RACK) ||
12925 (tmr_up == PACE_TMR_RXT))) {
12926 /*
12927 * Either a Rack, TLP or RXT is fine if we
12928 * have outstanding data.
12929 */
12930 return;
12931 } else if (tmr_up == PACE_TMR_DELACK) {
12932 /*
12933 * If the delayed ack was going to go off
12934 * before the rtx/tlp/rack timer were going to
12935 * expire, then that would be the timer in control.
12936 * Note we don't check the time here trusting the
12937 * code is correct.
12938 */
12939 return;
12940 }
12941 /*
12942 * Ok the timer originally started is not what we want now.
12943 * We will force the hpts to be stopped if any, and restart
12944 * with the slot set to what was in the saved slot.
12945 */
12946 if (tcp_in_hpts(rack->rc_inp)) {
12947 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
12948 uint32_t us_cts;
12949
12950 us_cts = tcp_get_usecs(NULL);
12951 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12952 rack->r_early = 1;
12953 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
12954 }
12955 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
12956 }
12958 }
12959 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
12960 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12961}
12962
12963
12964static void
12965rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
12966{
12967 if ((SEQ_LT(tp->snd_wl1, seq) ||
12968 (tp->snd_wl1 == seq && (SEQ_LT(tp->snd_wl2, ack) ||
12969 (tp->snd_wl2 == ack && tiwin > tp->snd_wnd))))) {
12970 /* keep track of pure window updates */
12971 if ((tp->snd_wl2 == ack) && (tiwin > tp->snd_wnd))
12972 KMOD_TCPSTAT_INC(tcps_rcvwinupd);
12973 tp->snd_wnd = tiwin;
12975 tp->snd_wl1 = seq;
12976 tp->snd_wl2 = ack;
12977 if (tp->snd_wnd > tp->max_sndwnd)
12978 tp->max_sndwnd = tp->snd_wnd;
12979 rack->r_wanted_output = 1;
12980 } else if ((tp->snd_wl2 == ack) && (tiwin < tp->snd_wnd)) {
12981 tp->snd_wnd = tiwin;
12983 tp->snd_wl1 = seq;
12984 tp->snd_wl2 = ack;
12985 } else {
12986 /* Not a valid win update */
12987 return;
12988 }
12989 if (tp->snd_wnd > tp->max_sndwnd)
12990 tp->max_sndwnd = tp->snd_wnd;
12991 if (tp->snd_wnd < (tp->snd_max - high_seq)) {
12992 /* The peer collapsed the window */
12994 } else if (rack->rc_has_collapsed)
12996 /* Do we exit persists? */
12997 if ((rack->rc_in_persist != 0) &&
12998 (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
12999 rack->r_ctl.rc_pace_min_segs))) {
13000 rack_exit_persist(tp, rack, cts);
13001 }
13002 /* Do we enter persists? */
13003 if ((rack->rc_in_persist == 0) &&
13004 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
13006 (tp->snd_max == tp->snd_una) &&
13007 sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
13008 (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
13009 /*
13010 * Here the rwnd is less than
13011 * the pacing size, we are established,
13012 * nothing is outstanding, and there is
13013 * data to send. Enter persists.
13014 */
13015 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
13016 }
13017}
13018
13019static void
13020rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
13021{
13022
13023 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
13024 union tcp_log_stackspecific log;
13025 struct timeval ltv;
13026 char tcp_hdr_buf[60];
13027 struct tcphdr *th;
13028 struct timespec ts;
13029 uint32_t orig_snd_una;
13030 uint8_t xx = 0;
13031
13032#ifdef NETFLIX_HTTP_LOGGING
13033 struct http_sendfile_track *http_req;
13034
13035 if (SEQ_GT(ae->ack, tp->snd_una)) {
13036 http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1));
13037 } else {
13038 http_req = tcp_http_find_req_for_seq(tp, ae->ack);
13039 }
13040#endif
13041 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13042 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
13043 if (rack->rack_no_prr == 0)
13044 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13045 else
13046 log.u_bbr.flex1 = 0;
13047 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
13048 log.u_bbr.use_lt_bw <<= 1;
13049 log.u_bbr.use_lt_bw |= rack->r_might_revert;
13051 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
13052 log.u_bbr.pkts_out = tp->t_maxseg;
13053 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
13054 log.u_bbr.flex7 = 1;
13055 log.u_bbr.lost = ae->flags;
13056 log.u_bbr.cwnd_gain = ackval;
13057 log.u_bbr.pacing_gain = 0x2;
13058 if (ae->flags & TSTMP_HDWR) {
13059 /* Record the hardware timestamp if present */
13060 log.u_bbr.flex3 = M_TSTMP;
13061 ts.tv_sec = ae->timestamp / 1000000000;
13062 ts.tv_nsec = ae->timestamp % 1000000000;
13063 ltv.tv_sec = ts.tv_sec;
13064 ltv.tv_usec = ts.tv_nsec / 1000;
13065 log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
13066 } else if (ae->flags & TSTMP_LRO) {
13067 /* Record the LRO the arrival timestamp */
13068 log.u_bbr.flex3 = M_TSTMP_LRO;
13069 ts.tv_sec = ae->timestamp / 1000000000;
13070 ts.tv_nsec = ae->timestamp % 1000000000;
13071 ltv.tv_sec = ts.tv_sec;
13072 ltv.tv_usec = ts.tv_nsec / 1000;
13073 log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
13074 }
13075 log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
13076 /* Log the rcv time */
13077 log.u_bbr.delRate = ae->timestamp;
13078#ifdef NETFLIX_HTTP_LOGGING
13079 log.u_bbr.applimited = tp->t_http_closed;
13080 log.u_bbr.applimited <<= 8;
13081 log.u_bbr.applimited |= tp->t_http_open;
13082 log.u_bbr.applimited <<= 8;
13083 log.u_bbr.applimited |= tp->t_http_req;
13084 if (http_req) {
13085 /* Copy out any client req info */
13086 /* seconds */
13087 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
13088 /* useconds */
13089 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
13090 log.u_bbr.rttProp = http_req->timestamp;
13091 log.u_bbr.cur_del_rate = http_req->start;
13092 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
13093 log.u_bbr.flex8 |= 1;
13094 } else {
13095 log.u_bbr.flex8 |= 2;
13096 log.u_bbr.bw_inuse = http_req->end;
13097 }
13098 log.u_bbr.flex6 = http_req->start_seq;
13099 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
13100 log.u_bbr.flex8 |= 4;
13101 log.u_bbr.epoch = http_req->end_seq;
13102 }
13103 }
13104#endif
13105 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf));
13106 th = (struct tcphdr *)tcp_hdr_buf;
13107 th->th_seq = ae->seq;
13108 th->th_ack = ae->ack;
13109 th->th_win = ae->win;
13110 /* Now fill in the ports */
13111 th->th_sport = tp->t_inpcb->inp_fport;
13112 th->th_dport = tp->t_inpcb->inp_lport;
13113 tcp_set_flags(th, ae->flags);
13114 /* Now do we have a timestamp option? */
13115 if (ae->flags & HAS_TSTMP) {
13116 u_char *cp;
13117 uint32_t val;
13118
13119 th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2);
13120 cp = (u_char *)(th + 1);
13121 *cp = TCPOPT_NOP;
13122 cp++;
13123 *cp = TCPOPT_NOP;
13124 cp++;
13125 *cp = TCPOPT_TIMESTAMP;
13126 cp++;
13127 *cp = TCPOLEN_TIMESTAMP;
13128 cp++;
13129 val = htonl(ae->ts_value);
13130 bcopy((char *)&val,
13131 (char *)cp, sizeof(uint32_t));
13132 val = htonl(ae->ts_echo);
13133 bcopy((char *)&val,
13134 (char *)(cp + 4), sizeof(uint32_t));
13135 } else
13136 th->th_off = (sizeof(struct tcphdr) >> 2);
13137
13138 /*
13139 * For sane logging we need to play a little trick.
13140 * If the ack were fully processed we would have moved
13141 * snd_una to high_seq, but since compressed acks are
13142 * processed in two phases, at this point (logging) snd_una
13143 * won't be advanced. So we would see multiple acks showing
13144 * the advancement. We can prevent that by "pretending" that
13145 * snd_una was advanced and then un-advancing it so that the
13146 * logging code has the right value for tlb_snd_una.
13147 */
13148 if (tp->snd_una != high_seq) {
13149 orig_snd_una = tp->snd_una;
13150 tp->snd_una = high_seq;
13151 xx = 1;
13152 } else
13153 xx = 0;
13154 TCP_LOG_EVENTP(tp, th,
13155 &tp->t_inpcb->inp_socket->so_rcv,
13156 &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0,
13157 0, &log, true, &ltv);
13158 if (xx) {
13159 tp->snd_una = orig_snd_una;
13160 }
13161 }
13162
13163}
13164
13165static void
13167{
13168 uint32_t us_rtt;
13169 /*
13170 * A persist or keep-alive was forced out, update our
13171 * min rtt time. Note now worry about lost responses.
13172 * When a subsequent keep-alive or persist times out
13173 * and forced_ack is still on, then the last probe
13174 * was not responded to. In such cases we have a
13175 * sysctl that controls the behavior. Either we apply
13176 * the rtt but with reduced confidence (0). Or we just
13177 * plain don't apply the rtt estimate. Having data flow
13178 * will clear the probe_not_answered flag i.e. cum-ack
13179 * move forward <or> exiting and reentering persists.
13180 */
13181
13182 rack->forced_ack = 0;
13183 rack->rc_tp->t_rxtshift = 0;
13184 if ((rack->rc_in_persist &&
13185 (tiwin == rack->rc_tp->snd_wnd)) ||
13186 (rack->rc_in_persist == 0)) {
13187 /*
13188 * In persists only apply the RTT update if this is
13189 * a response to our window probe. And that
13190 * means the rwnd sent must match the current
13191 * snd_wnd. If it does not, then we got a
13192 * window update ack instead. For keepalive
13193 * we allow the answer no matter what the window.
13194 *
13195 * Note that if the probe_not_answered is set then
13196 * the forced_ack_ts is the oldest one i.e. the first
13197 * probe sent that might have been lost. This assures
13198 * us that if we do calculate an RTT it is longer not
13199 * some short thing.
13200 */
13201 if (rack->rc_in_persist)
13202 counter_u64_add(rack_persists_acks, 1);
13203 us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
13204 if (us_rtt == 0)
13205 us_rtt = 1;
13206 if (rack->probe_not_answered == 0) {
13207 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13208 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 3, NULL, 1);
13209 } else {
13210 /* We have a retransmitted probe here too */
13212 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13213 tcp_rack_xmit_timer(rack, us_rtt, 0, us_rtt, 0, NULL, 1);
13214 }
13215 }
13216 }
13217}
13218
13219static int
13220rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
13221{
13222 /*
13223 * Handle a "special" compressed ack mbuf. Each incoming
13224 * ack has only four possible dispositions:
13225 *
13226 * A) It moves the cum-ack forward
13227 * B) It is behind the cum-ack.
13228 * C) It is a window-update ack.
13229 * D) It is a dup-ack.
13230 *
13231 * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES
13232 * in the incoming mbuf. We also need to still pay attention
13233 * to nxt_pkt since there may be another packet after this
13234 * one.
13235 */
13236#ifdef TCP_ACCOUNTING
13237 uint64_t ts_val;
13238 uint64_t rdstc;
13239#endif
13240 int segsiz;
13241 struct timespec ts;
13242 struct tcp_rack *rack;
13243 struct tcp_ackent *ae;
13244 uint32_t tiwin, ms_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack;
13245 int cnt, i, did_out, ourfinisacked = 0;
13246 struct tcpopt to_holder, *to = NULL;
13247#ifdef TCP_ACCOUNTING
13248 int win_up_req = 0;
13249#endif
13250 int nsegs = 0;
13251 int under_pacing = 1;
13252 int recovery = 0;
13253#ifdef TCP_ACCOUNTING
13254 sched_pin();
13255#endif
13256 rack = (struct tcp_rack *)tp->t_fb_ptr;
13257 if (rack->gp_ready &&
13259 under_pacing = 0;
13260 else
13261 under_pacing = 1;
13262
13263 if (rack->r_state != tp->t_state)
13264 rack_set_state(tp, rack);
13265 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13266 (tp->t_flags & TF_GPUTINPROG)) {
13267 /*
13268 * We have a goodput in progress
13269 * and we have entered a late state.
13270 * Do we have enough data in the sb
13271 * to handle the GPUT request?
13272 */
13273 uint32_t bytes;
13274
13275 bytes = tp->gput_ack - tp->gput_seq;
13276 if (SEQ_GT(tp->gput_seq, tp->snd_una))
13277 bytes += tp->gput_seq - tp->snd_una;
13278 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
13279 /*
13280 * There are not enough bytes in the socket
13281 * buffer that have been sent to cover this
13282 * measurement. Cancel it.
13283 */
13284 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
13285 rack->r_ctl.rc_gp_srtt /*flex1*/,
13286 tp->gput_seq,
13287 0, 0, 18, __LINE__, NULL, 0);
13288 tp->t_flags &= ~TF_GPUTINPROG;
13289 }
13290 }
13291 to = &to_holder;
13292 to->to_flags = 0;
13293 KASSERT((m->m_len >= sizeof(struct tcp_ackent)),
13294 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len));
13295 cnt = m->m_len / sizeof(struct tcp_ackent);
13296 counter_u64_add(rack_multi_single_eq, cnt);
13297 high_seq = tp->snd_una;
13298 the_win = tp->snd_wnd;
13299 win_seq = tp->snd_wl1;
13300 win_upd_ack = tp->snd_wl2;
13301 cts = tcp_tv_to_usectick(tv);
13302 ms_cts = tcp_tv_to_mssectick(tv);
13303 rack->r_ctl.rc_rcvtime = cts;
13304 segsiz = ctf_fixed_maxseg(tp);
13305 if ((rack->rc_gp_dyn_mul) &&
13306 (rack->use_fixed_rate == 0) &&
13307 (rack->rc_always_pace)) {
13308 /* Check in on probertt */
13309 rack_check_probe_rtt(rack, cts);
13310 }
13311 for (i = 0; i < cnt; i++) {
13312#ifdef TCP_ACCOUNTING
13313 ts_val = get_cyclecount();
13314#endif
13316 ae = ((mtod(m, struct tcp_ackent *)) + i);
13317 /* Setup the window */
13318 tiwin = ae->win << tp->snd_scale;
13319 if (tiwin > rack->r_ctl.rc_high_rwnd)
13320 rack->r_ctl.rc_high_rwnd = tiwin;
13321 /* figure out the type of ack */
13322 if (SEQ_LT(ae->ack, high_seq)) {
13323 /* Case B*/
13324 ae->ack_val_set = ACK_BEHIND;
13325 } else if (SEQ_GT(ae->ack, high_seq)) {
13326 /* Case A */
13327 ae->ack_val_set = ACK_CUMACK;
13328 } else if ((tiwin == the_win) && (rack->rc_in_persist == 0)){
13329 /* Case D */
13330 ae->ack_val_set = ACK_DUPACK;
13331 } else {
13332 /* Case C */
13333 ae->ack_val_set = ACK_RWND;
13334 }
13335 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq);
13336 /* Validate timestamp */
13337 if (ae->flags & HAS_TSTMP) {
13338 /* Setup for a timestamp */
13339 to->to_flags = TOF_TS;
13340 ae->ts_echo -= tp->ts_offset;
13341 to->to_tsecr = ae->ts_echo;
13342 to->to_tsval = ae->ts_value;
13343 /*
13344 * If echoed timestamp is later than the current time, fall back to
13345 * non RFC1323 RTT calculation. Normalize timestamp if syncookies
13346 * were used when this connection was established.
13347 */
13348 if (TSTMP_GT(ae->ts_echo, ms_cts))
13349 to->to_tsecr = 0;
13350 if (tp->ts_recent &&
13351 TSTMP_LT(ae->ts_value, tp->ts_recent)) {
13352 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) {
13353#ifdef TCP_ACCOUNTING
13354 rdstc = get_cyclecount();
13355 if (rdstc > ts_val) {
13356 counter_u64_add(tcp_proc_time[ae->ack_val_set] ,
13357 (rdstc - ts_val));
13358 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13359 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13360 }
13361 }
13362#endif
13363 continue;
13364 }
13365 }
13366 if (SEQ_LEQ(ae->seq, tp->last_ack_sent) &&
13367 SEQ_LEQ(tp->last_ack_sent, ae->seq)) {
13369 tp->ts_recent = ae->ts_value;
13370 }
13371 } else {
13372 /* Setup for a no options */
13373 to->to_flags = 0;
13374 }
13375 /* Update the rcv time and perform idle reduction possibly */
13376 if (tp->t_idle_reduce &&
13377 (tp->snd_max == tp->snd_una) &&
13378 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13379 counter_u64_add(rack_input_idle_reduces, 1);
13380 rack_cc_after_idle(rack, tp);
13381 }
13382 tp->t_rcvtime = ticks;
13383 /* Now what about ECN? */
13384 if (tcp_ecn_input_segment(tp, ae->flags, ae->codepoint))
13385 rack_cong_signal(tp, CC_ECN, ae->ack);
13386#ifdef TCP_ACCOUNTING
13387 /* Count for the specific type of ack in */
13388 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1);
13389 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13390 tp->tcp_cnt_counters[ae->ack_val_set]++;
13391 }
13392#endif
13393 /*
13394 * Note how we could move up these in the determination
13395 * above, but we don't so that way the timestamp checks (and ECN)
13396 * is done first before we do any processing on the ACK.
13397 * The non-compressed path through the code has this
13398 * weakness (noted by @jtl) that it actually does some
13399 * processing before verifying the timestamp information.
13400 * We don't take that path here which is why we set
13401 * the ack_val_set first, do the timestamp and ecn
13402 * processing, and then look at what we have setup.
13403 */
13404 if (ae->ack_val_set == ACK_BEHIND) {
13405 /*
13406 * Case B flag reordering, if window is not closed
13407 * or it could be a keep-alive or persists
13408 */
13409 if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) {
13411 }
13412 } else if (ae->ack_val_set == ACK_DUPACK) {
13413 /* Case D */
13414 rack_strike_dupack(rack);
13415 } else if (ae->ack_val_set == ACK_RWND) {
13416 /* Case C */
13417 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13418 ts.tv_sec = ae->timestamp / 1000000000;
13419 ts.tv_nsec = ae->timestamp % 1000000000;
13420 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13421 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13422 } else {
13423 rack->r_ctl.act_rcv_time = *tv;
13424 }
13425 if (rack->forced_ack) {
13426 rack_handle_probe_response(rack, tiwin,
13428 }
13429#ifdef TCP_ACCOUNTING
13430 win_up_req = 1;
13431#endif
13432 win_upd_ack = ae->ack;
13433 win_seq = ae->seq;
13434 the_win = tiwin;
13435 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13436 } else {
13437 /* Case A */
13438 if (SEQ_GT(ae->ack, tp->snd_max)) {
13439 /*
13440 * We just send an ack since the incoming
13441 * ack is beyond the largest seq we sent.
13442 */
13443 if ((tp->t_flags & TF_ACKNOW) == 0) {
13445 if (tp->t_flags && TF_ACKNOW)
13446 rack->r_wanted_output = 1;
13447 }
13448 } else {
13449 nsegs++;
13450 /* If the window changed setup to update */
13451 if (tiwin != tp->snd_wnd) {
13452 win_upd_ack = ae->ack;
13453 win_seq = ae->seq;
13454 the_win = tiwin;
13455 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13456 }
13457#ifdef TCP_ACCOUNTING
13458 /* Account for the acks */
13459 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13460 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz);
13461 }
13462 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN],
13463 (((ae->ack - high_seq) + segsiz - 1) / segsiz));
13464#endif
13465 high_seq = ae->ack;
13467 union tcp_log_stackspecific log;
13468 struct timeval tv;
13469
13470 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13471 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
13472 log.u_bbr.flex1 = high_seq;
13473 log.u_bbr.flex2 = rack->r_ctl.roundends;
13474 log.u_bbr.flex3 = rack->r_ctl.current_round;
13475 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
13476 log.u_bbr.flex8 = 8;
13477 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
13478 0, &log, false, NULL, NULL, 0, &tv);
13479 }
13480 /*
13481 * The draft (v3) calls for us to use SEQ_GEQ, but that
13482 * causes issues when we are just going app limited. Lets
13483 * instead use SEQ_GT <or> where its equal but more data
13484 * is outstanding.
13485 */
13486 if ((SEQ_GT(high_seq, rack->r_ctl.roundends)) ||
13487 ((high_seq == rack->r_ctl.roundends) &&
13488 SEQ_GT(tp->snd_max, tp->snd_una))) {
13489 rack->r_ctl.current_round++;
13490 rack->r_ctl.roundends = tp->snd_max;
13491 if (CC_ALGO(tp)->newround != NULL) {
13492 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round);
13493 }
13494 }
13495 /* Setup our act_rcv_time */
13496 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13497 ts.tv_sec = ae->timestamp / 1000000000;
13498 ts.tv_nsec = ae->timestamp % 1000000000;
13499 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13500 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13501 } else {
13502 rack->r_ctl.act_rcv_time = *tv;
13503 }
13504 rack_process_to_cumack(tp, rack, ae->ack, cts, to);
13505 if (rack->rc_dsack_round_seen) {
13506 /* Is the dsack round over? */
13507 if (SEQ_GEQ(ae->ack, rack->r_ctl.dsack_round_end)) {
13508 /* Yes it is */
13509 rack->rc_dsack_round_seen = 0;
13510 rack_log_dsack_event(rack, 3, __LINE__, 0, 0);
13511 }
13512 }
13513 }
13514 }
13515 /* And lets be sure to commit the rtt measurements for this ack */
13517#ifdef TCP_ACCOUNTING
13518 rdstc = get_cyclecount();
13519 if (rdstc > ts_val) {
13520 counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val));
13521 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13522 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13523 if (ae->ack_val_set == ACK_CUMACK)
13524 tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val);
13525 }
13526 }
13527#endif
13528 }
13529#ifdef TCP_ACCOUNTING
13530 ts_val = get_cyclecount();
13531#endif
13532 acked_amount = acked = (high_seq - tp->snd_una);
13533 if (acked) {
13534 /*
13535 * Clear the probe not answered flag
13536 * since cum-ack moved forward.
13537 */
13538 rack->probe_not_answered = 0;
13539 if (rack->sack_attack_disable == 0)
13540 rack_do_decay(rack);
13541 if (acked >= segsiz) {
13542 /*
13543 * You only get credit for
13544 * MSS and greater (and you get extra
13545 * credit for larger cum-ack moves).
13546 */
13547 int ac;
13548
13549 ac = acked / segsiz;
13550 rack->r_ctl.ack_count += ac;
13551 counter_u64_add(rack_ack_total, ac);
13552 }
13553 if (rack->r_ctl.ack_count > 0xfff00000) {
13554 /*
13555 * reduce the number to keep us under
13556 * a uint32_t.
13557 */
13558 rack->r_ctl.ack_count /= 2;
13559 rack->r_ctl.sack_count /= 2;
13560 }
13561 if (tp->t_flags & TF_NEEDSYN) {
13562 /*
13563 * T/TCP: Connection was half-synchronized, and our SYN has
13564 * been ACK'd (so connection is now fully synchronized). Go
13565 * to non-starred state, increment snd_una for ACK of SYN,
13566 * and check if we can do window scaling.
13567 */
13568 tp->t_flags &= ~TF_NEEDSYN;
13569 tp->snd_una++;
13570 acked_amount = acked = (high_seq - tp->snd_una);
13571 }
13572 if (acked > sbavail(&so->so_snd))
13573 acked_amount = sbavail(&so->so_snd);
13574#ifdef NETFLIX_EXP_DETECTION
13575 /*
13576 * We only care on a cum-ack move if we are in a sack-disabled
13577 * state. We have already added in to the ack_count, and we never
13578 * would disable on a cum-ack move, so we only care to do the
13579 * detection if it may "undo" it, i.e. we were in disabled already.
13580 */
13581 if (rack->sack_attack_disable)
13582 rack_do_detection(tp, rack, acked_amount, segsiz);
13583#endif
13584 if (IN_FASTRECOVERY(tp->t_flags) &&
13585 (rack->rack_no_prr == 0))
13586 rack_update_prr(tp, rack, acked_amount, high_seq);
13587 if (IN_RECOVERY(tp->t_flags)) {
13588 if (SEQ_LT(high_seq, tp->snd_recover) &&
13589 (SEQ_LT(high_seq, tp->snd_max))) {
13591 } else {
13592 rack_post_recovery(tp, high_seq);
13593 recovery = 1;
13594 }
13595 }
13596 /* Handle the rack-log-ack part (sendmap) */
13597 if ((sbused(&so->so_snd) == 0) &&
13598 (acked > acked_amount) &&
13599 (tp->t_state >= TCPS_FIN_WAIT_1) &&
13600 (tp->t_flags & TF_SENTFIN)) {
13601 /*
13602 * We must be sure our fin
13603 * was sent and acked (we can be
13604 * in FIN_WAIT_1 without having
13605 * sent the fin).
13606 */
13607 ourfinisacked = 1;
13608 /*
13609 * Lets make sure snd_una is updated
13610 * since most likely acked_amount = 0 (it
13611 * should be).
13612 */
13613 tp->snd_una = high_seq;
13614 }
13615 /* Did we make a RTO error? */
13616 if ((tp->t_flags & TF_PREVVALID) &&
13617 ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
13618 tp->t_flags &= ~TF_PREVVALID;
13619 if (tp->t_rxtshift == 1 &&
13620 (int)(ticks - tp->t_badrxtwin) < 0)
13621 rack_cong_signal(tp, CC_RTO_ERR, high_seq);
13622 }
13623 /* Handle the data in the socket buffer */
13624 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1);
13625 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
13626 if (acked_amount > 0) {
13627 struct mbuf *mfree;
13628
13629 rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery);
13630 SOCKBUF_LOCK(&so->so_snd);
13631 mfree = sbcut_locked(&so->so_snd, acked_amount);
13632 tp->snd_una = high_seq;
13633 /* Note we want to hold the sb lock through the sendmap adjust */
13634 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
13635 /* Wake up the socket if we have room to write more */
13636 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
13637 sowwakeup_locked(so);
13638 m_freem(mfree);
13639 }
13640 /* update progress */
13641 tp->t_acktime = ticks;
13642 rack_log_progress_event(rack, tp, tp->t_acktime,
13643 PROGRESS_UPDATE, __LINE__);
13644 /* Clear out shifts and such */
13645 tp->t_rxtshift = 0;
13648 rack->rc_tlp_in_progress = 0;
13649 rack->r_ctl.rc_tlp_cnt_out = 0;
13650 /* Send recover and snd_nxt must be dragged along */
13651 if (SEQ_GT(tp->snd_una, tp->snd_recover))
13652 tp->snd_recover = tp->snd_una;
13653 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
13654 tp->snd_nxt = tp->snd_una;
13655 /*
13656 * If the RXT timer is running we want to
13657 * stop it, so we can restart a TLP (or new RXT).
13658 */
13659 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
13660 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13661#ifdef NETFLIX_HTTP_LOGGING
13662 tcp_http_check_for_comp(rack->rc_tp, high_seq);
13663#endif
13664 tp->snd_wl2 = high_seq;
13665 tp->t_dupacks = 0;
13666 if (under_pacing &&
13667 (rack->use_fixed_rate == 0) &&
13668 (rack->in_probe_rtt == 0) &&
13669 rack->rc_gp_dyn_mul &&
13670 rack->rc_always_pace) {
13671 /* Check if we are dragging bottom */
13672 rack_check_bottom_drag(tp, rack, so, acked);
13673 }
13674 if (tp->snd_una == tp->snd_max) {
13675 tp->t_flags &= ~TF_PREVVALID;
13676 rack->r_ctl.retran_during_recovery = 0;
13677 rack->r_ctl.dsack_byte_cnt = 0;
13679 if (rack->r_ctl.rc_went_idle_time == 0)
13680 rack->r_ctl.rc_went_idle_time = 1;
13681 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
13682 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
13683 tp->t_acktime = 0;
13684 /* Set so we might enter persists... */
13685 rack->r_wanted_output = 1;
13686 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13688 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13689 (sbavail(&so->so_snd) == 0) &&
13690 (tp->t_flags2 & TF2_DROP_AF_DATA)) {
13691 /*
13692 * The socket was gone and the
13693 * peer sent data (not now in the past), time to
13694 * reset him.
13695 */
13696 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13697 /* tcp_close will kill the inp pre-log the Reset */
13699#ifdef TCP_ACCOUNTING
13700 rdstc = get_cyclecount();
13701 if (rdstc > ts_val) {
13702 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13703 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13704 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13705 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13706 }
13707 }
13708#endif
13709 m_freem(m);
13710 tp = tcp_close(tp);
13711 if (tp == NULL) {
13712#ifdef TCP_ACCOUNTING
13713 sched_unpin();
13714#endif
13715 return (1);
13716 }
13717 /*
13718 * We would normally do drop-with-reset which would
13719 * send back a reset. We can't since we don't have
13720 * all the needed bits. Instead lets arrange for
13721 * a call to tcp_output(). That way since we
13722 * are in the closed state we will generate a reset.
13723 *
13724 * Note if tcp_accounting is on we don't unpin since
13725 * we do that after the goto label.
13726 */
13727 goto send_out_a_rst;
13728 }
13729 if ((sbused(&so->so_snd) == 0) &&
13730 (tp->t_state >= TCPS_FIN_WAIT_1) &&
13731 (tp->t_flags & TF_SENTFIN)) {
13732 /*
13733 * If we can't receive any more data, then closing user can
13734 * proceed. Starting the timer is contrary to the
13735 * specification, but if we don't get a FIN we'll hang
13736 * forever.
13737 *
13738 */
13739 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13740 soisdisconnected(so);
13744 TP_MAXIDLE(tp)));
13745 }
13746 if (ourfinisacked == 0) {
13747 /*
13748 * We don't change to fin-wait-2 if we have our fin acked
13749 * which means we are probably in TCPS_CLOSING.
13750 */
13752 }
13753 }
13754 }
13755 /* Wake up the socket if we have room to write more */
13756 if (sbavail(&so->so_snd)) {
13757 rack->r_wanted_output = 1;
13758 if (ctf_progress_timeout_check(tp, true)) {
13760 tp, tick, PROGRESS_DROP, __LINE__);
13761 /*
13762 * We cheat here and don't send a RST, we should send one
13763 * when the pacer drops the connection.
13764 */
13765#ifdef TCP_ACCOUNTING
13766 rdstc = get_cyclecount();
13767 if (rdstc > ts_val) {
13768 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13769 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13770 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13771 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13772 }
13773 }
13774 sched_unpin();
13775#endif
13776 (void)tcp_drop(tp, ETIMEDOUT);
13777 m_freem(m);
13778 return (1);
13779 }
13780 }
13781 if (ourfinisacked) {
13782 switch(tp->t_state) {
13783 case TCPS_CLOSING:
13784#ifdef TCP_ACCOUNTING
13785 rdstc = get_cyclecount();
13786 if (rdstc > ts_val) {
13787 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13788 (rdstc - ts_val));
13789 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13790 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13791 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13792 }
13793 }
13794 sched_unpin();
13795#endif
13796 tcp_twstart(tp);
13797 m_freem(m);
13798 return (1);
13799 break;
13800 case TCPS_LAST_ACK:
13801#ifdef TCP_ACCOUNTING
13802 rdstc = get_cyclecount();
13803 if (rdstc > ts_val) {
13804 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13805 (rdstc - ts_val));
13806 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13807 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13808 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13809 }
13810 }
13811 sched_unpin();
13812#endif
13813 tp = tcp_close(tp);
13814 ctf_do_drop(m, tp);
13815 return (1);
13816 break;
13817 case TCPS_FIN_WAIT_1:
13818#ifdef TCP_ACCOUNTING
13819 rdstc = get_cyclecount();
13820 if (rdstc > ts_val) {
13821 counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13822 (rdstc - ts_val));
13823 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13824 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13825 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13826 }
13827 }
13828#endif
13829 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13830 soisdisconnected(so);
13834 TP_MAXIDLE(tp)));
13835 }
13837 break;
13838 default:
13839 break;
13840 }
13841 }
13842 if (rack->r_fast_output) {
13843 /*
13844 * We re doing fast output.. can we expand that?
13845 */
13846 rack_gain_for_fastoutput(rack, tp, so, acked_amount);
13847 }
13848#ifdef TCP_ACCOUNTING
13849 rdstc = get_cyclecount();
13850 if (rdstc > ts_val) {
13851 counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13852 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13853 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13854 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13855 }
13856 }
13857
13858 } else if (win_up_req) {
13859 rdstc = get_cyclecount();
13860 if (rdstc > ts_val) {
13861 counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val));
13862 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13863 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val);
13864 }
13865 }
13866#endif
13867 }
13868 /* Now is there a next packet, if so we are done */
13869 m_freem(m);
13870 did_out = 0;
13871 if (nxt_pkt) {
13872#ifdef TCP_ACCOUNTING
13873 sched_unpin();
13874#endif
13875 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs);
13876 return (0);
13877 }
13878 rack_handle_might_revert(tp, rack);
13879 ctf_calc_rwin(so, tp);
13880 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13881 send_out_a_rst:
13882 if (tcp_output(tp) < 0) {
13883#ifdef TCP_ACCOUNTING
13884 sched_unpin();
13885#endif
13886 return (1);
13887 }
13888 did_out = 1;
13889 }
13890 rack_free_trim(rack);
13891#ifdef TCP_ACCOUNTING
13892 sched_unpin();
13893#endif
13894 rack_timer_audit(tp, rack, &so->so_snd);
13895 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs);
13896 return (0);
13897}
13898
13899
13900static int
13901rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
13902 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
13903 int32_t nxt_pkt, struct timeval *tv)
13904{
13905#ifdef TCP_ACCOUNTING
13906 uint64_t ts_val;
13907#endif
13908 int32_t thflags, retval, did_out = 0;
13909 int32_t way_out = 0;
13910 /*
13911 * cts - is the current time from tv (caller gets ts) in microseconds.
13912 * ms_cts - is the current time from tv in milliseconds.
13913 * us_cts - is the time that LRO or hardware actually got the packet in microseconds.
13914 */
13915 uint32_t cts, us_cts, ms_cts;
13916 uint32_t tiwin, high_seq;
13917 struct timespec ts;
13918 struct tcpopt to;
13919 struct tcp_rack *rack;
13920 struct rack_sendmap *rsm;
13921 int32_t prev_state = 0;
13922#ifdef TCP_ACCOUNTING
13923 int ack_val_set = 0xf;
13924#endif
13925 int nsegs;
13926 /*
13927 * tv passed from common code is from either M_TSTMP_LRO or
13928 * tcp_get_usecs() if no LRO m_pkthdr timestamp is present.
13929 */
13930 rack = (struct tcp_rack *)tp->t_fb_ptr;
13931 if (m->m_flags & M_ACKCMP) {
13932 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv));
13933 }
13934 if (m->m_flags & M_ACKCMP) {
13935 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp);
13936 }
13937 cts = tcp_tv_to_usectick(tv);
13938 ms_cts = tcp_tv_to_mssectick(tv);
13939 nsegs = m->m_pkthdr.lro_nsegs;
13940 counter_u64_add(rack_proc_non_comp_ack, 1);
13941 thflags = tcp_get_flags(th);
13942#ifdef TCP_ACCOUNTING
13943 sched_pin();
13944 if (thflags & TH_ACK)
13945 ts_val = get_cyclecount();
13946#endif
13947 if ((m->m_flags & M_TSTMP) ||
13948 (m->m_flags & M_TSTMP_LRO)) {
13949 mbuf_tstmp2timespec(m, &ts);
13950 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13951 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13952 } else
13953 rack->r_ctl.act_rcv_time = *tv;
13954 kern_prefetch(rack, &prev_state);
13955 prev_state = 0;
13956 /*
13957 * Unscale the window into a 32-bit value. For the SYN_SENT state
13958 * the scale is zero.
13959 */
13960 tiwin = th->th_win << tp->snd_scale;
13961#ifdef TCP_ACCOUNTING
13962 if (thflags & TH_ACK) {
13963 /*
13964 * We have a tradeoff here. We can either do what we are
13965 * doing i.e. pinning to this CPU and then doing the accounting
13966 * <or> we could do a critical enter, setup the rdtsc and cpu
13967 * as in below, and then validate we are on the same CPU on
13968 * exit. I have choosen to not do the critical enter since
13969 * that often will gain you a context switch, and instead lock
13970 * us (line above this if) to the same CPU with sched_pin(). This
13971 * means we may be context switched out for a higher priority
13972 * interupt but we won't be moved to another CPU.
13973 *
13974 * If this occurs (which it won't very often since we most likely
13975 * are running this code in interupt context and only a higher
13976 * priority will bump us ... clock?) we will falsely add in
13977 * to the time the interupt processing time plus the ack processing
13978 * time. This is ok since its a rare event.
13979 */
13980 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin,
13981 ctf_fixed_maxseg(tp));
13982 }
13983#endif
13984 /*
13985 * Parse options on any incoming segment.
13986 */
13987 memset(&to, 0, sizeof(to));
13988 tcp_dooptions(&to, (u_char *)(th + 1),
13989 (th->th_off << 2) - sizeof(struct tcphdr),
13990 (thflags & TH_SYN) ? TO_SYN : 0);
13991 NET_EPOCH_ASSERT();
13993 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
13994 __func__));
13995 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
13996 __func__));
13997 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13998 (tp->t_flags & TF_GPUTINPROG)) {
13999 /*
14000 * We have a goodput in progress
14001 * and we have entered a late state.
14002 * Do we have enough data in the sb
14003 * to handle the GPUT request?
14004 */
14005 uint32_t bytes;
14006
14007 bytes = tp->gput_ack - tp->gput_seq;
14008 if (SEQ_GT(tp->gput_seq, tp->snd_una))
14009 bytes += tp->gput_seq - tp->snd_una;
14010 if (bytes > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
14011 /*
14012 * There are not enough bytes in the socket
14013 * buffer that have been sent to cover this
14014 * measurement. Cancel it.
14015 */
14016 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
14017 rack->r_ctl.rc_gp_srtt /*flex1*/,
14018 tp->gput_seq,
14019 0, 0, 18, __LINE__, NULL, 0);
14020 tp->t_flags &= ~TF_GPUTINPROG;
14021 }
14022 }
14023 high_seq = th->th_ack;
14024 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
14025 union tcp_log_stackspecific log;
14026 struct timeval ltv;
14027#ifdef NETFLIX_HTTP_LOGGING
14028 struct http_sendfile_track *http_req;
14029
14030 if (SEQ_GT(th->th_ack, tp->snd_una)) {
14031 http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
14032 } else {
14033 http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
14034 }
14035#endif
14036 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14037 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
14038 if (rack->rack_no_prr == 0)
14039 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
14040 else
14041 log.u_bbr.flex1 = 0;
14042 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
14043 log.u_bbr.use_lt_bw <<= 1;
14044 log.u_bbr.use_lt_bw |= rack->r_might_revert;
14046 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14047 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
14048 log.u_bbr.flex3 = m->m_flags;
14049 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
14050 log.u_bbr.lost = thflags;
14051 log.u_bbr.pacing_gain = 0x1;
14052#ifdef TCP_ACCOUNTING
14053 log.u_bbr.cwnd_gain = ack_val_set;
14054#endif
14055 log.u_bbr.flex7 = 2;
14056 if (m->m_flags & M_TSTMP) {
14057 /* Record the hardware timestamp if present */
14058 mbuf_tstmp2timespec(m, &ts);
14059 ltv.tv_sec = ts.tv_sec;
14060 ltv.tv_usec = ts.tv_nsec / 1000;
14061 log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
14062 } else if (m->m_flags & M_TSTMP_LRO) {
14063 /* Record the LRO the arrival timestamp */
14064 mbuf_tstmp2timespec(m, &ts);
14065 ltv.tv_sec = ts.tv_sec;
14066 ltv.tv_usec = ts.tv_nsec / 1000;
14067 log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
14068 }
14069 log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
14070 /* Log the rcv time */
14071 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
14072#ifdef NETFLIX_HTTP_LOGGING
14073 log.u_bbr.applimited = tp->t_http_closed;
14074 log.u_bbr.applimited <<= 8;
14075 log.u_bbr.applimited |= tp->t_http_open;
14076 log.u_bbr.applimited <<= 8;
14077 log.u_bbr.applimited |= tp->t_http_req;
14078 if (http_req) {
14079 /* Copy out any client req info */
14080 /* seconds */
14081 log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
14082 /* useconds */
14083 log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
14084 log.u_bbr.rttProp = http_req->timestamp;
14085 log.u_bbr.cur_del_rate = http_req->start;
14086 if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
14087 log.u_bbr.flex8 |= 1;
14088 } else {
14089 log.u_bbr.flex8 |= 2;
14090 log.u_bbr.bw_inuse = http_req->end;
14091 }
14092 log.u_bbr.flex6 = http_req->start_seq;
14093 if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
14094 log.u_bbr.flex8 |= 4;
14095 log.u_bbr.epoch = http_req->end_seq;
14096 }
14097 }
14098#endif
14099 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
14100 tlen, &log, true, &ltv);
14101 }
14102 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
14103 way_out = 4;
14104 retval = 0;
14105 m_freem(m);
14106 goto done_with_input;
14107 }
14108 /*
14109 * If a segment with the ACK-bit set arrives in the SYN-SENT state
14110 * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
14111 */
14112 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
14113 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
14116#ifdef TCP_ACCOUNTING
14117 sched_unpin();
14118#endif
14119 return (1);
14120 }
14121 /*
14122 * If timestamps were negotiated during SYN/ACK and a
14123 * segment without a timestamp is received, silently drop
14124 * the segment, unless it is a RST segment or missing timestamps are
14125 * tolerated.
14126 * See section 3.2 of RFC 7323.
14127 */
14128 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
14129 ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
14130 way_out = 5;
14131 retval = 0;
14132 m_freem(m);
14133 goto done_with_input;
14134 }
14135
14136 /*
14137 * Segment received on connection. Reset idle time and keep-alive
14138 * timer. XXX: This should be done after segment validation to
14139 * ignore broken/spoofed segs.
14140 */
14141 if (tp->t_idle_reduce &&
14142 (tp->snd_max == tp->snd_una) &&
14143 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
14144 counter_u64_add(rack_input_idle_reduces, 1);
14145 rack_cc_after_idle(rack, tp);
14146 }
14147 tp->t_rcvtime = ticks;
14148#ifdef STATS
14149 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
14150#endif
14151 if (tiwin > rack->r_ctl.rc_high_rwnd)
14152 rack->r_ctl.rc_high_rwnd = tiwin;
14153 /*
14154 * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
14155 * this to occur after we've validated the segment.
14156 */
14157 if (tcp_ecn_input_segment(tp, thflags, iptos))
14158 rack_cong_signal(tp, CC_ECN, th->th_ack);
14159
14160 /*
14161 * If echoed timestamp is later than the current time, fall back to
14162 * non RFC1323 RTT calculation. Normalize timestamp if syncookies
14163 * were used when this connection was established.
14164 */
14165 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
14166 to.to_tsecr -= tp->ts_offset;
14167 if (TSTMP_GT(to.to_tsecr, ms_cts))
14168 to.to_tsecr = 0;
14169 }
14170
14171 /*
14172 * If its the first time in we need to take care of options and
14173 * verify we can do SACK for rack!
14174 */
14175 if (rack->r_state == 0) {
14176 /* Should be init'd by rack_init() */
14177 KASSERT(rack->rc_inp != NULL,
14178 ("%s: rack->rc_inp unexpectedly NULL", __func__));
14179 if (rack->rc_inp == NULL) {
14180 rack->rc_inp = tp->t_inpcb;
14181 }
14182
14183 /*
14184 * Process options only when we get SYN/ACK back. The SYN
14185 * case for incoming connections is handled in tcp_syncache.
14186 * According to RFC1323 the window field in a SYN (i.e., a
14187 * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
14188 * this is traditional behavior, may need to be cleaned up.
14189 */
14190 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
14191 /* Handle parallel SYN for ECN */
14192 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
14193 if ((to.to_flags & TOF_SCALE) &&
14194 (tp->t_flags & TF_REQ_SCALE)) {
14195 tp->t_flags |= TF_RCVD_SCALE;
14196 tp->snd_scale = to.to_wscale;
14197 } else
14198 tp->t_flags &= ~TF_REQ_SCALE;
14199 /*
14200 * Initial send window. It will be updated with the
14201 * next incoming segment to the scaled value.
14202 */
14203 tp->snd_wnd = th->th_win;
14205 if ((to.to_flags & TOF_TS) &&
14206 (tp->t_flags & TF_REQ_TSTMP)) {
14207 tp->t_flags |= TF_RCVD_TSTMP;
14208 tp->ts_recent = to.to_tsval;
14209 tp->ts_recent_age = cts;
14210 } else
14211 tp->t_flags &= ~TF_REQ_TSTMP;
14212 if (to.to_flags & TOF_MSS) {
14213 tcp_mss(tp, to.to_mss);
14214 }
14215 if ((tp->t_flags & TF_SACK_PERMIT) &&
14216 (to.to_flags & TOF_SACKPERM) == 0)
14217 tp->t_flags &= ~TF_SACK_PERMIT;
14218 if (IS_FASTOPEN(tp->t_flags)) {
14219 if (to.to_flags & TOF_FASTOPEN) {
14220 uint16_t mss;
14221
14222 if (to.to_flags & TOF_MSS)
14223 mss = to.to_mss;
14224 else
14225 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
14226 mss = TCP6_MSS;
14227 else
14228 mss = TCP_MSS;
14230 to.to_tfo_len, to.to_tfo_cookie);
14231 } else
14233 }
14234 }
14235 /*
14236 * At this point we are at the initial call. Here we decide
14237 * if we are doing RACK or not. We do this by seeing if
14238 * TF_SACK_PERMIT is set and the sack-not-required is clear.
14239 * The code now does do dup-ack counting so if you don't
14240 * switch back you won't get rack & TLP, but you will still
14241 * get this stack.
14242 */
14243
14244 if ((rack_sack_not_required == 0) &&
14245 ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
14247 (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
14248 tlen, iptos);
14249#ifdef TCP_ACCOUNTING
14250 sched_unpin();
14251#endif
14252 return (1);
14253 }
14254 tcp_set_hpts(tp->t_inpcb);
14255 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
14256 }
14257 if (thflags & TH_FIN)
14259 us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
14260 if ((rack->rc_gp_dyn_mul) &&
14261 (rack->use_fixed_rate == 0) &&
14262 (rack->rc_always_pace)) {
14263 /* Check in on probertt */
14264 rack_check_probe_rtt(rack, us_cts);
14265 }
14267 if ((rack->forced_ack) &&
14268 ((tcp_get_flags(th) & TH_RST) == 0)) {
14269 rack_handle_probe_response(rack, tiwin, us_cts);
14270 }
14271 /*
14272 * This is the one exception case where we set the rack state
14273 * always. All other times (timers etc) we must have a rack-state
14274 * set (so we assure we have done the checks above for SACK).
14275 */
14276 rack->r_ctl.rc_rcvtime = cts;
14277 if (rack->r_state != tp->t_state)
14278 rack_set_state(tp, rack);
14279 if (SEQ_GT(th->th_ack, tp->snd_una) &&
14280 (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
14281 kern_prefetch(rsm, &prev_state);
14282 prev_state = rack->r_state;
14283 retval = (*rack->r_substate) (m, th, so,
14284 tp, &to, drop_hdrlen,
14285 tlen, tiwin, thflags, nxt_pkt, iptos);
14286#ifdef INVARIANTS
14287 if ((retval == 0) &&
14288 (tp->t_inpcb == NULL)) {
14289 panic("retval:%d tp:%p t_inpcb:NULL state:%d",
14290 retval, tp, prev_state);
14291 }
14292#endif
14293 if (retval == 0) {
14294 /*
14295 * If retval is 1 the tcb is unlocked and most likely the tp
14296 * is gone.
14297 */
14299 if ((rack->rc_gp_dyn_mul) &&
14300 (rack->rc_always_pace) &&
14301 (rack->use_fixed_rate == 0) &&
14302 rack->in_probe_rtt &&
14303 (rack->r_ctl.rc_time_probertt_starts == 0)) {
14304 /*
14305 * If we are going for target, lets recheck before
14306 * we output.
14307 */
14308 rack_check_probe_rtt(rack, us_cts);
14309 }
14310 if (rack->set_pacing_done_a_iw == 0) {
14311 /* How much has been acked? */
14312 if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
14313 /* We have enough to set in the pacing segment size */
14314 rack->set_pacing_done_a_iw = 1;
14315 rack_set_pace_segments(tp, rack, __LINE__, NULL);
14316 }
14317 }
14319#ifdef TCP_ACCOUNTING
14320 /*
14321 * If we set the ack_val_se to what ack processing we are doing
14322 * we also want to track how many cycles we burned. Note
14323 * the bits after tcp_output we let be "free". This is because
14324 * we are also tracking the tcp_output times as well. Note the
14325 * use of 0xf here since we only have 11 counter (0 - 0xa) and
14326 * 0xf cannot be returned and is what we initialize it too to
14327 * indicate we are not doing the tabulations.
14328 */
14329 if (ack_val_set != 0xf) {
14330 uint64_t crtsc;
14331
14332 crtsc = get_cyclecount();
14333 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14334 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
14335 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val);
14336 }
14337 }
14338#endif
14339 if (nxt_pkt == 0) {
14340 if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
14341do_output_now:
14342 if (tcp_output(tp) < 0)
14343 return (1);
14344 did_out = 1;
14345 }
14346 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
14347 rack_free_trim(rack);
14348 }
14349 /* Update any rounds needed */
14351 union tcp_log_stackspecific log;
14352 struct timeval tv;
14353
14354 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14355 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14356 log.u_bbr.flex1 = high_seq;
14357 log.u_bbr.flex2 = rack->r_ctl.roundends;
14358 log.u_bbr.flex3 = rack->r_ctl.current_round;
14359 log.u_bbr.rttProp = (uint64_t)CC_ALGO(tp)->newround;
14360 log.u_bbr.flex8 = 9;
14361 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
14362 0, &log, false, NULL, NULL, 0, &tv);
14363 }
14364 /*
14365 * The draft (v3) calls for us to use SEQ_GEQ, but that
14366 * causes issues when we are just going app limited. Lets
14367 * instead use SEQ_GT <or> where its equal but more data
14368 * is outstanding.
14369 */
14370 if ((SEQ_GT(tp->snd_una, rack->r_ctl.roundends)) ||
14371 ((tp->snd_una == rack->r_ctl.roundends) && SEQ_GT(tp->snd_max, tp->snd_una))) {
14372 rack->r_ctl.current_round++;
14373 rack->r_ctl.roundends = tp->snd_max;
14374 if (CC_ALGO(tp)->newround != NULL) {
14375 CC_ALGO(tp)->newround(tp->ccv, rack->r_ctl.current_round);
14376 }
14377 }
14378 if ((nxt_pkt == 0) &&
14379 ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
14380 (SEQ_GT(tp->snd_max, tp->snd_una) ||
14381 (tp->t_flags & TF_DELACK) ||
14382 ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
14383 (tp->t_state <= TCPS_CLOSING)))) {
14384 /* We could not send (probably in the hpts but stopped the timer earlier)? */
14385 if ((tp->snd_max == tp->snd_una) &&
14386 ((tp->t_flags & TF_DELACK) == 0) &&
14387 (tcp_in_hpts(rack->rc_inp)) &&
14389 /* keep alive not needed if we are hptsi output yet */
14390 ;
14391 } else {
14392 int late = 0;
14393 if (tcp_in_hpts(rack->rc_inp)) {
14394 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
14395 us_cts = tcp_get_usecs(NULL);
14396 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
14397 rack->r_early = 1;
14398 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
14399 } else
14400 late = 1;
14401 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
14402 }
14404 }
14405 if (late && (did_out == 0)) {
14406 /*
14407 * We are late in the sending
14408 * and we did not call the output
14409 * (this probably should not happen).
14410 */
14411 goto do_output_now;
14412 }
14413 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
14414 }
14415 way_out = 1;
14416 } else if (nxt_pkt == 0) {
14417 /* Do we have the correct timer running? */
14418 rack_timer_audit(tp, rack, &so->so_snd);
14419 way_out = 2;
14420 }
14421 done_with_input:
14422 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs));
14423 if (did_out)
14424 rack->r_wanted_output = 0;
14425#ifdef INVARIANTS
14426 if (tp->t_inpcb == NULL) {
14427 panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
14428 did_out,
14429 retval, tp, prev_state);
14430 }
14431#endif
14432#ifdef TCP_ACCOUNTING
14433 } else {
14434 /*
14435 * Track the time (see above).
14436 */
14437 if (ack_val_set != 0xf) {
14438 uint64_t crtsc;
14439
14440 crtsc = get_cyclecount();
14441 counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
14442 /*
14443 * Note we *DO NOT* increment the per-tcb counters since
14444 * in the else the TP may be gone!!
14445 */
14446 }
14447#endif
14448 }
14449#ifdef TCP_ACCOUNTING
14450 sched_unpin();
14451#endif
14452 return (retval);
14453}
14454
14455void
14456rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
14457 struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
14458{
14459 struct timeval tv;
14460
14461 /* First lets see if we have old packets */
14462 if (tp->t_in_pkt) {
14463 if (ctf_do_queued_segments(so, tp, 1)) {
14464 m_freem(m);
14465 return;
14466 }
14467 }
14468 if (m->m_flags & M_TSTMP_LRO) {
14469 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
14470 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
14471 } else {
14472 /* Should not be should we kassert instead? */
14473 tcp_get_usecs(&tv);
14474 }
14475 if (rack_do_segment_nounlock(m, th, so, tp,
14476 drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
14477 INP_WUNLOCK(tp->t_inpcb);
14478 }
14479}
14480
14481struct rack_sendmap *
14482tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
14483{
14484 struct rack_sendmap *rsm = NULL;
14485 int32_t idx;
14486 uint32_t srtt = 0, thresh = 0, ts_low = 0;
14487
14488 /* Return the next guy to be re-transmitted */
14489 if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
14490 return (NULL);
14491 }
14492 if (tp->t_flags & TF_SENTFIN) {
14493 /* retran the end FIN? */
14494 return (NULL);
14495 }
14496 /* ok lets look at this one */
14497 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
14498 if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
14499 goto check_it;
14500 }
14501 rsm = rack_find_lowest_rsm(rack);
14502 if (rsm == NULL) {
14503 return (NULL);
14504 }
14505check_it:
14506 if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) &&
14507 (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
14508 /*
14509 * No sack so we automatically do the 3 strikes and
14510 * retransmit (no rack timer would be started).
14511 */
14512
14513 return (rsm);
14514 }
14515 if (rsm->r_flags & RACK_ACKED) {
14516 return (NULL);
14517 }
14518 if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
14519 (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
14520 /* Its not yet ready */
14521 return (NULL);
14522 }
14523 srtt = rack_grab_rtt(tp, rack);
14524 idx = rsm->r_rtr_cnt - 1;
14525 ts_low = (uint32_t)rsm->r_tim_lastsent[idx];
14526 thresh = rack_calc_thresh_rack(rack, srtt, tsused);
14527 if ((tsused == ts_low) ||
14528 (TSTMP_LT(tsused, ts_low))) {
14529 /* No time since sending */
14530 return (NULL);
14531 }
14532 if ((tsused - ts_low) < thresh) {
14533 /* It has not been long enough yet */
14534 return (NULL);
14535 }
14536 if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
14537 ((rsm->r_flags & RACK_SACK_PASSED) &&
14538 (rack->sack_attack_disable == 0))) {
14539 /*
14540 * We have passed the dup-ack threshold <or>
14541 * a SACK has indicated this is missing.
14542 * Note that if you are a declared attacker
14543 * it is only the dup-ack threshold that
14544 * will cause retransmits.
14545 */
14546 /* log retransmit reason */
14547 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
14548 rack->r_fast_output = 0;
14549 return (rsm);
14550 }
14551 return (NULL);
14552}
14553
14554static void
14556 uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
14557 int line, struct rack_sendmap *rsm, uint8_t quality)
14558{
14559 if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
14560 union tcp_log_stackspecific log;
14561 struct timeval tv;
14562
14563 memset(&log, 0, sizeof(log));
14564 log.u_bbr.flex1 = slot;
14565 log.u_bbr.flex2 = len;
14566 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
14567 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
14568 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
14569 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
14571 log.u_bbr.use_lt_bw <<= 1;
14572 log.u_bbr.use_lt_bw |= rack->r_late;
14573 log.u_bbr.use_lt_bw <<= 1;
14574 log.u_bbr.use_lt_bw |= rack->r_early;
14575 log.u_bbr.use_lt_bw <<= 1;
14577 log.u_bbr.use_lt_bw <<= 1;
14578 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
14579 log.u_bbr.use_lt_bw <<= 1;
14581 log.u_bbr.use_lt_bw <<= 1;
14582 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
14583 log.u_bbr.use_lt_bw <<= 1;
14584 log.u_bbr.use_lt_bw |= rack->gp_ready;
14585 log.u_bbr.pkt_epoch = line;
14586 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed;
14587 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early;
14589 log.u_bbr.bw_inuse = bw_est;
14590 log.u_bbr.delRate = bw;
14591 if (rack->r_ctl.gp_bw == 0)
14592 log.u_bbr.cur_del_rate = 0;
14593 else
14594 log.u_bbr.cur_del_rate = rack_get_bw(rack);
14595 log.u_bbr.rttProp = len_time;
14596 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
14598 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
14599 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
14600 /* We are in slow start */
14601 log.u_bbr.flex7 = 1;
14602 } else {
14603 /* we are on congestion avoidance */
14604 log.u_bbr.flex7 = 0;
14605 }
14606 log.u_bbr.flex8 = method;
14607 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14608 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14609 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
14610 log.u_bbr.cwnd_gain <<= 1;
14611 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
14612 log.u_bbr.cwnd_gain <<= 1;
14613 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
14614 log.u_bbr.bbr_substate = quality;
14615 TCP_LOG_EVENTP(rack->rc_tp, NULL,
14616 &rack->rc_inp->inp_socket->so_rcv,
14617 &rack->rc_inp->inp_socket->so_snd,
14619 0, &log, false, &tv);
14620 }
14621}
14622
14623static uint32_t
14624rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
14625{
14626 uint32_t new_tso, user_max;
14627
14628 user_max = rack->rc_user_set_max_segs * mss;
14629 if (rack->rc_force_max_seg) {
14630 return (user_max);
14631 }
14632 if (rack->use_fixed_rate &&
14633 ((rack->r_ctl.crte == NULL) ||
14634 (bw != rack->r_ctl.crte->rate))) {
14635 /* Use the user mss since we are not exactly matched */
14636 return (user_max);
14637 }
14638 new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
14639 if (new_tso > user_max)
14640 new_tso = user_max;
14641 return (new_tso);
14642}
14643
14644static int32_t
14645pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
14646{
14647 uint64_t lentim, fill_bw;
14648
14649 /* Lets first see if we are full, if so continue with normal rate */
14650 rack->r_via_fill_cw = 0;
14651 if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
14652 return (slot);
14653 if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
14654 return (slot);
14655 if (rack->r_ctl.rc_last_us_rtt == 0)
14656 return (slot);
14657 if (rack->rc_pace_fill_if_rttin_range &&
14658 (rack->r_ctl.rc_last_us_rtt >=
14659 (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
14660 /* The rtt is huge, N * smallest, lets not fill */
14661 return (slot);
14662 }
14663 /*
14664 * first lets calculate the b/w based on the last us-rtt
14665 * and the sndwnd.
14666 */
14667 fill_bw = rack->r_ctl.cwnd_to_use;
14668 /* Take the rwnd if its smaller */
14669 if (fill_bw > rack->rc_tp->snd_wnd)
14670 fill_bw = rack->rc_tp->snd_wnd;
14671 if (rack->r_fill_less_agg) {
14672 /*
14673 * Now take away the inflight (this will reduce our
14674 * aggressiveness and yeah, if we get that much out in 1RTT
14675 * we will have had acks come back and still be behind).
14676 */
14677 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14678 }
14679 /* Now lets make it into a b/w */
14680 fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
14681 fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
14682 /* We are below the min b/w */
14683 if (non_paced)
14684 *rate_wanted = fill_bw;
14685 if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted))
14686 return (slot);
14687 if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap))
14688 fill_bw = rack->r_ctl.bw_rate_cap;
14689 rack->r_via_fill_cw = 1;
14690 if (rack->r_rack_hw_rate_caps &&
14691 (rack->r_ctl.crte != NULL)) {
14692 uint64_t high_rate;
14693
14694 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
14695 if (fill_bw > high_rate) {
14696 /* We are capping bw at the highest rate table entry */
14697 if (*rate_wanted > high_rate) {
14698 /* The original rate was also capped */
14699 rack->r_via_fill_cw = 0;
14700 }
14702 fill_bw, high_rate, __LINE__,
14703 0, 3);
14704 fill_bw = high_rate;
14705 if (capped)
14706 *capped = 1;
14707 }
14708 } else if ((rack->r_ctl.crte == NULL) &&
14709 (rack->rack_hdrw_pacing == 0) &&
14710 (rack->rack_hdw_pace_ena) &&
14711 rack->r_rack_hw_rate_caps &&
14712 (rack->rack_attempt_hdwr_pace == 0) &&
14713 (rack->rc_inp->inp_route.ro_nh != NULL) &&
14714 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14715 /*
14716 * Ok we may have a first attempt that is greater than our top rate
14717 * lets check.
14718 */
14719 uint64_t high_rate;
14720
14721 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
14722 if (high_rate) {
14723 if (fill_bw > high_rate) {
14724 fill_bw = high_rate;
14725 if (capped)
14726 *capped = 1;
14727 }
14728 }
14729 }
14730 /*
14731 * Ok fill_bw holds our mythical b/w to fill the cwnd
14732 * in a rtt, what does that time wise equate too?
14733 */
14734 lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
14735 lentim /= fill_bw;
14736 *rate_wanted = fill_bw;
14737 if (non_paced || (lentim < slot)) {
14738 rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
14739 0, lentim, 12, __LINE__, NULL, 0);
14740 return ((int32_t)lentim);
14741 } else
14742 return (slot);
14743}
14744
14745static int32_t
14746rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
14747{
14748 uint64_t srtt;
14749 int32_t slot = 0;
14750 int can_start_hw_pacing = 1;
14751 int err;
14752
14753 if (rack->rc_always_pace == 0) {
14754 /*
14755 * We use the most optimistic possible cwnd/srtt for
14756 * sending calculations. This will make our
14757 * calculation anticipate getting more through
14758 * quicker then possible. But thats ok we don't want
14759 * the peer to have a gap in data sending.
14760 */
14761 uint64_t cwnd, tr_perms = 0;
14762 int32_t reduce = 0;
14763
14764 old_method:
14765 /*
14766 * We keep no precise pacing with the old method
14767 * instead we use the pacer to mitigate bursts.
14768 */
14769 if (rack->r_ctl.rc_rack_min_rtt)
14770 srtt = rack->r_ctl.rc_rack_min_rtt;
14771 else
14772 srtt = max(tp->t_srtt, 1);
14773 if (rack->r_ctl.rc_rack_largest_cwnd)
14774 cwnd = rack->r_ctl.rc_rack_largest_cwnd;
14775 else
14776 cwnd = rack->r_ctl.cwnd_to_use;
14777 /* Inflate cwnd by 1000 so srtt of usecs is in ms */
14778 tr_perms = (cwnd * 1000) / srtt;
14779 if (tr_perms == 0) {
14780 tr_perms = ctf_fixed_maxseg(tp);
14781 }
14782 /*
14783 * Calculate how long this will take to drain, if
14784 * the calculation comes out to zero, thats ok we
14785 * will use send_a_lot to possibly spin around for
14786 * more increasing tot_len_this_send to the point
14787 * that its going to require a pace, or we hit the
14788 * cwnd. Which in that case we are just waiting for
14789 * a ACK.
14790 */
14791 slot = len / tr_perms;
14792 /* Now do we reduce the time so we don't run dry? */
14793 if (slot && rack_slot_reduction) {
14794 reduce = (slot / rack_slot_reduction);
14795 if (reduce < slot) {
14796 slot -= reduce;
14797 } else
14798 slot = 0;
14799 }
14800 slot *= HPTS_USEC_IN_MSEC;
14801 if (rack->rc_pace_to_cwnd) {
14802 uint64_t rate_wanted = 0;
14803
14804 slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1);
14805 rack->rc_ack_can_sendout_data = 1;
14806 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL, 0);
14807 } else
14808 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL, 0);
14809 } else {
14810 uint64_t bw_est, res, lentim, rate_wanted;
14811 uint32_t orig_val, segs, oh;
14812 int capped = 0;
14813 int prev_fill;
14814
14815 if ((rack->r_rr_config == 1) && rsm) {
14816 return (rack->r_ctl.rc_min_to);
14817 }
14818 if (rack->use_fixed_rate) {
14819 rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
14820 } else if ((rack->r_ctl.init_rate == 0) &&
14821#ifdef NETFLIX_PEAKRATE
14822 (rack->rc_tp->t_maxpeakrate == 0) &&
14823#endif
14824 (rack->r_ctl.gp_bw == 0)) {
14825 /* no way to yet do an estimate */
14826 bw_est = rate_wanted = 0;
14827 } else {
14828 bw_est = rack_get_bw(rack);
14829 rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped);
14830 }
14831 if ((bw_est == 0) || (rate_wanted == 0) ||
14832 ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) {
14833 /*
14834 * No way yet to make a b/w estimate or
14835 * our raise is set incorrectly.
14836 */
14837 goto old_method;
14838 }
14839 /* We need to account for all the overheads */
14840 segs = (len + segsiz - 1) / segsiz;
14841 /*
14842 * We need the diff between 1514 bytes (e-mtu with e-hdr)
14843 * and how much data we put in each packet. Yes this
14844 * means we may be off if we are larger than 1500 bytes
14845 * or smaller. But this just makes us more conservative.
14846 */
14847 if (rack_hw_rate_min &&
14848 (bw_est < rack_hw_rate_min))
14849 can_start_hw_pacing = 0;
14850 if (ETHERNET_SEGMENT_SIZE > segsiz)
14851 oh = ETHERNET_SEGMENT_SIZE - segsiz;
14852 else
14853 oh = 0;
14854 segs *= oh;
14855 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC;
14856 res = lentim / rate_wanted;
14857 slot = (uint32_t)res;
14858 orig_val = rack->r_ctl.rc_pace_max_segs;
14859 if (rack->r_ctl.crte == NULL) {
14860 /*
14861 * Only do this if we are not hardware pacing
14862 * since if we are doing hw-pacing below we will
14863 * set make a call after setting up or changing
14864 * the rate.
14865 */
14866 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
14867 } else if (rack->rc_inp->inp_snd_tag == NULL) {
14868 /*
14869 * We lost our rate somehow, this can happen
14870 * if the interface changed underneath us.
14871 */
14872 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14873 rack->r_ctl.crte = NULL;
14874 /* Lets re-allow attempting to setup pacing */
14875 rack->rack_hdrw_pacing = 0;
14876 rack->rack_attempt_hdwr_pace = 0;
14878 rate_wanted, bw_est, __LINE__,
14879 0, 6);
14880 }
14881 /* Did we change the TSO size, if so log it */
14882 if (rack->r_ctl.rc_pace_max_segs != orig_val)
14883 rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL, 0);
14884 prev_fill = rack->r_via_fill_cw;
14885 if ((rack->rc_pace_to_cwnd) &&
14886 (capped == 0) &&
14887 (rack->use_fixed_rate == 0) &&
14888 (rack->in_probe_rtt == 0) &&
14889 (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) {
14890 /*
14891 * We want to pace at our rate *or* faster to
14892 * fill the cwnd to the max if its not full.
14893 */
14894 slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0);
14895 }
14896 if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
14897 (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14898 if ((rack->rack_hdw_pace_ena) &&
14899 (can_start_hw_pacing > 0) &&
14900 (rack->rack_hdrw_pacing == 0) &&
14901 (rack->rack_attempt_hdwr_pace == 0)) {
14902 /*
14903 * Lets attempt to turn on hardware pacing
14904 * if we can.
14905 */
14906 rack->rack_attempt_hdwr_pace = 1;
14907 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
14908 rack->rc_inp->inp_route.ro_nh->nh_ifp,
14909 rate_wanted,
14911 &err, &rack->r_ctl.crte_prev_rate);
14912 if (rack->r_ctl.crte) {
14913 rack->rack_hdrw_pacing = 1;
14914 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz,
14915 0, rack->r_ctl.crte,
14916 NULL);
14918 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14919 err, 0);
14920 rack->r_ctl.last_hw_bw_req = rate_wanted;
14921 } else {
14922 counter_u64_add(rack_hw_pace_init_fail, 1);
14923 }
14924 } else if (rack->rack_hdrw_pacing &&
14925 (rack->r_ctl.last_hw_bw_req != rate_wanted)) {
14926 /* Do we need to adjust our rate? */
14927 const struct tcp_hwrate_limit_table *nrte;
14928
14929 if (rack->r_up_only &&
14930 (rate_wanted < rack->r_ctl.crte->rate)) {
14946 if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0)))
14947 goto done_w_hdwr;
14948 }
14949 if ((rate_wanted > rack->r_ctl.crte->rate) ||
14950 (rate_wanted <= rack->r_ctl.crte_prev_rate)) {
14951 if (rack_hw_rate_to_low &&
14952 (bw_est < rack_hw_rate_to_low)) {
14953 /*
14954 * The pacing rate is too low for hardware, but
14955 * do allow hardware pacing to be restarted.
14956 */
14958 bw_est, rack->r_ctl.crte->rate, __LINE__,
14959 0, 5);
14960 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14961 rack->r_ctl.crte = NULL;
14962 rack->rack_attempt_hdwr_pace = 0;
14963 rack->rack_hdrw_pacing = 0;
14964 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14965 goto done_w_hdwr;
14966 }
14967 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
14968 rack->rc_tp,
14969 rack->rc_inp->inp_route.ro_nh->nh_ifp,
14970 rate_wanted,
14972 &err, &rack->r_ctl.crte_prev_rate);
14973 if (nrte == NULL) {
14974 /* Lost the rate */
14975 rack->rack_hdrw_pacing = 0;
14976 rack->r_ctl.crte = NULL;
14978 rate_wanted, 0, __LINE__,
14979 err, 1);
14980 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14981 counter_u64_add(rack_hw_pace_lost, 1);
14982 } else if (nrte != rack->r_ctl.crte) {
14983 rack->r_ctl.crte = nrte;
14984 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted,
14985 segsiz, 0,
14986 rack->r_ctl.crte,
14987 NULL);
14989 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14990 err, 2);
14991 rack->r_ctl.last_hw_bw_req = rate_wanted;
14992 }
14993 } else {
14994 /* We just need to adjust the segment size */
14995 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14997 rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14998 0, 4);
14999 rack->r_ctl.last_hw_bw_req = rate_wanted;
15000 }
15001 }
15002 }
15003 if ((rack->r_ctl.crte != NULL) &&
15004 (rack->r_ctl.crte->rate == rate_wanted)) {
15005 /*
15006 * We need to add a extra if the rates
15007 * are exactly matched. The idea is
15008 * we want the software to make sure the
15009 * queue is empty before adding more, this
15010 * gives us N MSS extra pace times where
15011 * N is our sysctl
15012 */
15014 }
15015done_w_hdwr:
15017 (rack->use_fixed_rate == 0) &&
15018#ifdef NETFLIX_PEAKRATE
15019 (rack->rc_tp->t_maxpeakrate == 0) &&
15020#endif
15021 (rack->rack_hdrw_pacing == 0)) {
15022 /*
15023 * Sanity check, we do not allow the pacing delay
15024 * to be longer than the SRTT of the path. If it is
15025 * a slow path, then adding a packet should increase
15026 * the RTT and compensate for this i.e. the srtt will
15027 * be greater so the allowed pacing time will be greater.
15028 *
15029 * Note this restriction is not for where a peak rate
15030 * is set, we are doing fixed pacing or hardware pacing.
15031 */
15032 if (rack->rc_tp->t_srtt)
15033 srtt = rack->rc_tp->t_srtt;
15034 else
15035 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */
15036 if (srtt < (uint64_t)slot) {
15037 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL, 0);
15038 slot = srtt;
15039 }
15040 }
15041 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm, 0);
15042 }
15043 if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) {
15044 /*
15045 * If this rate is seeing enobufs when it
15046 * goes to send then either the nic is out
15047 * of gas or we are mis-estimating the time
15048 * somehow and not letting the queue empty
15049 * completely. Lets add to the pacing time.
15050 */
15051 int hw_boost_delay;
15052
15053 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult;
15054 if (hw_boost_delay > rack_enobuf_hw_max)
15055 hw_boost_delay = rack_enobuf_hw_max;
15056 else if (hw_boost_delay < rack_enobuf_hw_min)
15057 hw_boost_delay = rack_enobuf_hw_min;
15058 slot += hw_boost_delay;
15059 }
15060 return (slot);
15061}
15062
15063static void
15065 tcp_seq startseq, uint32_t sb_offset)
15066{
15067 struct rack_sendmap *my_rsm = NULL;
15068 struct rack_sendmap fe;
15069
15070 if (tp->t_state < TCPS_ESTABLISHED) {
15071 /*
15072 * We don't start any measurements if we are
15073 * not at least established.
15074 */
15075 return;
15076 }
15077 if (tp->t_state >= TCPS_FIN_WAIT_1) {
15078 /*
15079 * We will get no more data into the SB
15080 * this means we need to have the data available
15081 * before we start a measurement.
15082 */
15083
15084 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) <
15085 max(rc_init_window(rack),
15086 (MIN_GP_WIN * ctf_fixed_maxseg(tp)))) {
15087 /* Nope not enough data */
15088 return;
15089 }
15090 }
15091 tp->t_flags |= TF_GPUTINPROG;
15092 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
15093 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
15094 tp->gput_seq = startseq;
15095 rack->app_limited_needs_set = 0;
15096 if (rack->in_probe_rtt)
15097 rack->measure_saw_probe_rtt = 1;
15098 else if ((rack->measure_saw_probe_rtt) &&
15100 rack->measure_saw_probe_rtt = 0;
15101 if (rack->rc_gp_filled)
15103 else {
15104 /* Special case initial measurement */
15105 struct timeval tv;
15106
15107 tp->gput_ts = tcp_get_usecs(&tv);
15109 }
15110 /*
15111 * We take a guess out into the future,
15112 * if we have no measurement and no
15113 * initial rate, we measure the first
15114 * initial-windows worth of data to
15115 * speed up getting some GP measurement and
15116 * thus start pacing.
15117 */
15118 if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
15119 rack->app_limited_needs_set = 1;
15120 tp->gput_ack = startseq + max(rc_init_window(rack),
15123 tp->gput_seq,
15124 tp->gput_ack,
15125 0,
15126 tp->gput_ts,
15128 9,
15129 __LINE__, NULL, 0);
15130 return;
15131 }
15132 if (sb_offset) {
15133 /*
15134 * We are out somewhere in the sb
15135 * can we use the already outstanding data?
15136 */
15137 if (rack->r_ctl.rc_app_limited_cnt == 0) {
15138 /*
15139 * Yes first one is good and in this case
15140 * the tp->gput_ts is correctly set based on
15141 * the last ack that arrived (no need to
15142 * set things up when an ack comes in).
15143 */
15144 my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
15145 if ((my_rsm == NULL) ||
15146 (my_rsm->r_rtr_cnt != 1)) {
15147 /* retransmission? */
15148 goto use_latest;
15149 }
15150 } else {
15151 if (rack->r_ctl.rc_first_appl == NULL) {
15152 /*
15153 * If rc_first_appl is NULL
15154 * then the cnt should be 0.
15155 * This is probably an error, maybe
15156 * a KASSERT would be approprate.
15157 */
15158 goto use_latest;
15159 }
15160 /*
15161 * If we have a marker pointer to the last one that is
15162 * app limited we can use that, but we need to set
15163 * things up so that when it gets ack'ed we record
15164 * the ack time (if its not already acked).
15165 */
15166 rack->app_limited_needs_set = 1;
15167 /*
15168 * We want to get to the rsm that is either
15169 * next with space i.e. over 1 MSS or the one
15170 * after that (after the app-limited).
15171 */
15172 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15173 rack->r_ctl.rc_first_appl);
15174 if (my_rsm) {
15175 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
15176 /* Have to use the next one */
15177 my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
15178 my_rsm);
15179 else {
15180 /* Use after the first MSS of it is acked */
15181 tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
15182 goto start_set;
15183 }
15184 }
15185 if ((my_rsm == NULL) ||
15186 (my_rsm->r_rtr_cnt != 1)) {
15187 /*
15188 * Either its a retransmit or
15189 * the last is the app-limited one.
15190 */
15191 goto use_latest;
15192 }
15193 }
15194 tp->gput_seq = my_rsm->r_start;
15195start_set:
15196 if (my_rsm->r_flags & RACK_ACKED) {
15197 /*
15198 * This one has been acked use the arrival ack time
15199 */
15200 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15201 rack->app_limited_needs_set = 0;
15202 }
15203 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15204 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
15206 tp->gput_seq,
15207 tp->gput_ack,
15208 (uint64_t)my_rsm,
15209 tp->gput_ts,
15211 9,
15212 __LINE__, NULL, 0);
15213 return;
15214 }
15215
15216use_latest:
15217 /*
15218 * We don't know how long we may have been
15219 * idle or if this is the first-send. Lets
15220 * setup the flag so we will trim off
15221 * the first ack'd data so we get a true
15222 * measurement.
15223 */
15224 rack->app_limited_needs_set = 1;
15225 tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
15226 /* Find this guy so we can pull the send time */
15227 fe.r_start = startseq;
15228 my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
15229 if (my_rsm) {
15230 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
15231 if (my_rsm->r_flags & RACK_ACKED) {
15232 /*
15233 * Unlikely since its probably what was
15234 * just transmitted (but I am paranoid).
15235 */
15236 tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
15237 rack->app_limited_needs_set = 0;
15238 }
15239 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
15240 /* This also is unlikely */
15241 tp->gput_seq = my_rsm->r_start;
15242 }
15243 } else {
15244 /*
15245 * TSNH unless we have some send-map limit,
15246 * and even at that it should not be hitting
15247 * that limit (we should have stopped sending).
15248 */
15249 struct timeval tv;
15250
15251 microuptime(&tv);
15253 }
15255 tp->gput_seq,
15256 tp->gput_ack,
15257 (uint64_t)my_rsm,
15258 tp->gput_ts,
15260 9, __LINE__, NULL, 0);
15261}
15262
15263static inline uint32_t
15264rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use,
15265 uint32_t avail, int32_t sb_offset)
15266{
15267 uint32_t len;
15268 uint32_t sendwin;
15269
15270 if (tp->snd_wnd > cwnd_to_use)
15271 sendwin = cwnd_to_use;
15272 else
15273 sendwin = tp->snd_wnd;
15274 if (ctf_outstanding(tp) >= tp->snd_wnd) {
15275 /* We never want to go over our peers rcv-window */
15276 len = 0;
15277 } else {
15278 uint32_t flight;
15279
15280 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
15281 if (flight >= sendwin) {
15282 /*
15283 * We have in flight what we are allowed by cwnd (if
15284 * it was rwnd blocking it would have hit above out
15285 * >= tp->snd_wnd).
15286 */
15287 return (0);
15288 }
15289 len = sendwin - flight;
15290 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
15291 /* We would send too much (beyond the rwnd) */
15292 len = tp->snd_wnd - ctf_outstanding(tp);
15293 }
15294 if ((len + sb_offset) > avail) {
15295 /*
15296 * We don't have that much in the SB, how much is
15297 * there?
15298 */
15299 len = avail - sb_offset;
15300 }
15301 }
15302 return (len);
15303}
15304
15305static void
15306rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags,
15307 unsigned ipoptlen, int32_t orig_len, int32_t len, int error,
15308 int rsm_is_null, int optlen, int line, uint16_t mode)
15309{
15310 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15311 union tcp_log_stackspecific log;
15312 struct timeval tv;
15313
15314 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15315 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15316 log.u_bbr.flex1 = error;
15317 log.u_bbr.flex2 = flags;
15318 log.u_bbr.flex3 = rsm_is_null;
15319 log.u_bbr.flex4 = ipoptlen;
15320 log.u_bbr.flex5 = tp->rcv_numsacks;
15321 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15322 log.u_bbr.flex7 = optlen;
15323 log.u_bbr.flex8 = rack->r_fsb_inited;
15324 log.u_bbr.applimited = rack->r_fast_output;
15325 log.u_bbr.bw_inuse = rack_get_bw(rack);
15326 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15327 log.u_bbr.cwnd_gain = mode;
15328 log.u_bbr.pkts_out = orig_len;
15329 log.u_bbr.lt_epoch = len;
15330 log.u_bbr.delivered = line;
15331 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
15332 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15333 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0,
15334 len, &log, false, NULL, NULL, 0, &tv);
15335 }
15336}
15337
15338
15339static struct mbuf *
15340rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen,
15341 struct rack_fast_send_blk *fsb,
15342 int32_t seglimit, int32_t segsize, int hw_tls)
15343{
15344#ifdef KERN_TLS
15345 struct ktls_session *tls, *ntls;
15346#ifdef INVARIANTS
15347 struct mbuf *start;
15348#endif
15349#endif
15350 struct mbuf *m, *n, **np, *smb;
15351 struct mbuf *top;
15352 int32_t off, soff;
15353 int32_t len = *plen;
15354 int32_t fragsize;
15355 int32_t len_cp = 0;
15356 uint32_t mlen, frags;
15357
15358 soff = off = the_off;
15359 smb = m = the_m;
15360 np = &top;
15361 top = NULL;
15362#ifdef KERN_TLS
15363 if (hw_tls && (m->m_flags & M_EXTPG))
15364 tls = m->m_epg_tls;
15365 else
15366 tls = NULL;
15367#ifdef INVARIANTS
15368 start = m;
15369#endif
15370#endif
15371 while (len > 0) {
15372 if (m == NULL) {
15373 *plen = len_cp;
15374 break;
15375 }
15376#ifdef KERN_TLS
15377 if (hw_tls) {
15378 if (m->m_flags & M_EXTPG)
15379 ntls = m->m_epg_tls;
15380 else
15381 ntls = NULL;
15382
15383 /*
15384 * Avoid mixing TLS records with handshake
15385 * data or TLS records from different
15386 * sessions.
15387 */
15388 if (tls != ntls) {
15389 MPASS(m != start);
15390 *plen = len_cp;
15391 break;
15392 }
15393 }
15394#endif
15395 mlen = min(len, m->m_len - off);
15396 if (seglimit) {
15397 /*
15398 * For M_EXTPG mbufs, add 3 segments
15399 * + 1 in case we are crossing page boundaries
15400 * + 2 in case the TLS hdr/trailer are used
15401 * It is cheaper to just add the segments
15402 * than it is to take the cache miss to look
15403 * at the mbuf ext_pgs state in detail.
15404 */
15405 if (m->m_flags & M_EXTPG) {
15406 fragsize = min(segsize, PAGE_SIZE);
15407 frags = 3;
15408 } else {
15409 fragsize = segsize;
15410 frags = 0;
15411 }
15412
15413 /* Break if we really can't fit anymore. */
15414 if ((frags + 1) >= seglimit) {
15415 *plen = len_cp;
15416 break;
15417 }
15418
15419 /*
15420 * Reduce size if you can't copy the whole
15421 * mbuf. If we can't copy the whole mbuf, also
15422 * adjust len so the loop will end after this
15423 * mbuf.
15424 */
15425 if ((frags + howmany(mlen, fragsize)) >= seglimit) {
15426 mlen = (seglimit - frags - 1) * fragsize;
15427 len = mlen;
15428 *plen = len_cp + len;
15429 }
15430 frags += howmany(mlen, fragsize);
15431 if (frags == 0)
15432 frags++;
15433 seglimit -= frags;
15434 KASSERT(seglimit > 0,
15435 ("%s: seglimit went too low", __func__));
15436 }
15437 n = m_get(M_NOWAIT, m->m_type);
15438 *np = n;
15439 if (n == NULL)
15440 goto nospace;
15441 n->m_len = mlen;
15442 soff += mlen;
15443 len_cp += n->m_len;
15444 if (m->m_flags & (M_EXT|M_EXTPG)) {
15445 n->m_data = m->m_data + off;
15446 mb_dupcl(n, m);
15447 } else {
15448 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
15449 (u_int)n->m_len);
15450 }
15451 len -= n->m_len;
15452 off = 0;
15453 m = m->m_next;
15454 np = &n->m_next;
15455 if (len || (soff == smb->m_len)) {
15456 /*
15457 * We have more so we move forward or
15458 * we have consumed the entire mbuf and
15459 * len has fell to 0.
15460 */
15461 soff = 0;
15462 smb = m;
15463 }
15464
15465 }
15466 if (fsb != NULL) {
15467 fsb->m = smb;
15468 fsb->off = soff;
15469 if (smb) {
15470 /*
15471 * Save off the size of the mbuf. We do
15472 * this so that we can recognize when it
15473 * has been trimmed by sbcut() as acks
15474 * come in.
15475 */
15476 fsb->o_m_len = smb->m_len;
15477 } else {
15478 /*
15479 * This is the case where the next mbuf went to NULL. This
15480 * means with this copy we have sent everything in the sb.
15481 * In theory we could clear the fast_output flag, but lets
15482 * not since its possible that we could get more added
15483 * and acks that call the extend function which would let
15484 * us send more.
15485 */
15486 fsb->o_m_len = 0;
15487 }
15488 }
15489 return (top);
15490nospace:
15491 if (top)
15492 m_freem(top);
15493 return (NULL);
15494
15495}
15496
15497/*
15498 * This is a copy of m_copym(), taking the TSO segment size/limit
15499 * constraints into account, and advancing the sndptr as it goes.
15500 */
15501static struct mbuf *
15502rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen,
15503 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
15504{
15505 struct mbuf *m, *n;
15506 int32_t soff;
15507
15508 soff = rack->r_ctl.fsb.off;
15509 m = rack->r_ctl.fsb.m;
15510 if (rack->r_ctl.fsb.o_m_len > m->m_len) {
15511 /*
15512 * The mbuf had the front of it chopped off by an ack
15513 * we need to adjust the soff/off by that difference.
15514 */
15515 uint32_t delta;
15516
15517 delta = rack->r_ctl.fsb.o_m_len - m->m_len;
15518 soff -= delta;
15519 } else if (rack->r_ctl.fsb.o_m_len < m->m_len) {
15520 /*
15521 * The mbuf was expanded probably by
15522 * a m_compress. Just update o_m_len.
15523 */
15524 rack->r_ctl.fsb.o_m_len = m->m_len;
15525 }
15526 KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff));
15527 KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen));
15528 KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?",
15529 __FUNCTION__,
15530 rack, *plen, m, m->m_len));
15531 /* Save off the right location before we copy and advance */
15532 *s_soff = soff;
15533 *s_mb = rack->r_ctl.fsb.m;
15534 n = rack_fo_base_copym(m, soff, plen,
15535 &rack->r_ctl.fsb,
15536 seglimit, segsize, rack->r_ctl.fsb.hw_tls);
15537 return (n);
15538}
15539
15540static int
15541rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm,
15542 uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp)
15543{
15544 /*
15545 * Enter the fast retransmit path. We are given that a sched_pin is
15546 * in place (if accounting is compliled in) and the cycle count taken
15547 * at the entry is in the ts_val. The concept her is that the rsm
15548 * now holds the mbuf offsets and such so we can directly transmit
15549 * without a lot of overhead, the len field is already set for
15550 * us to prohibit us from sending too much (usually its 1MSS).
15551 */
15552 struct ip *ip = NULL;
15553 struct udphdr *udp = NULL;
15554 struct tcphdr *th = NULL;
15555 struct mbuf *m = NULL;
15556 struct inpcb *inp;
15557 uint8_t *cpto;
15558 struct tcp_log_buffer *lgb;
15559#ifdef TCP_ACCOUNTING
15560 uint64_t crtsc;
15561 int cnt_thru = 1;
15562#endif
15563 struct tcpopt to;
15564 u_char opt[TCP_MAXOLEN];
15565 uint32_t hdrlen, optlen;
15566 int32_t slot, segsiz, max_val, tso = 0, error, ulen = 0;
15567 uint16_t flags;
15568 uint32_t if_hw_tsomaxsegcount = 0, startseq;
15569 uint32_t if_hw_tsomaxsegsize;
15570
15571#ifdef INET6
15572 struct ip6_hdr *ip6 = NULL;
15573
15574 if (rack->r_is_v6) {
15575 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15576 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15577 } else
15578#endif /* INET6 */
15579 {
15580 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15581 hdrlen = sizeof(struct tcpiphdr);
15582 }
15583 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15584 goto failed;
15585 }
15586 if (doing_tlp) {
15587 /* Its a TLP add the flag, it may already be there but be sure */
15588 rsm->r_flags |= RACK_TLP;
15589 } else {
15590 /* If it was a TLP it is not not on this retransmit */
15591 rsm->r_flags &= ~RACK_TLP;
15592 }
15593 startseq = rsm->r_start;
15594 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15595 inp = rack->rc_inp;
15596 to.to_flags = 0;
15597 flags = tcp_outflags[tp->t_state];
15598 if (flags & (TH_SYN|TH_RST)) {
15599 goto failed;
15600 }
15601 if (rsm->r_flags & RACK_HAS_FIN) {
15602 /* We can't send a FIN here */
15603 goto failed;
15604 }
15605 if (flags & TH_FIN) {
15606 /* We never send a FIN */
15607 flags &= ~TH_FIN;
15608 }
15609 if (tp->t_flags & TF_RCVD_TSTMP) {
15610 to.to_tsval = ms_cts + tp->ts_offset;
15611 to.to_tsecr = tp->ts_recent;
15612 to.to_flags = TOF_TS;
15613 }
15614 optlen = tcp_addoptions(&to, opt);
15615 hdrlen += optlen;
15616 udp = rack->r_ctl.fsb.udp;
15617 if (udp)
15618 hdrlen += sizeof(struct udphdr);
15619 if (rack->r_ctl.rc_pace_max_segs)
15620 max_val = rack->r_ctl.rc_pace_max_segs;
15621 else if (rack->rc_user_set_max_segs)
15622 max_val = rack->rc_user_set_max_segs * segsiz;
15623 else
15624 max_val = len;
15625 if ((tp->t_flags & TF_TSO) &&
15626 V_tcp_do_tso &&
15627 (len > segsiz) &&
15628 (tp->t_port == 0))
15629 tso = 1;
15630#ifdef INET6
15631 if (MHLEN < hdrlen + max_linkhdr)
15632 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15633 else
15634#endif
15635 m = m_gethdr(M_NOWAIT, MT_DATA);
15636 if (m == NULL)
15637 goto failed;
15638 m->m_data += max_linkhdr;
15639 m->m_len = hdrlen;
15640 th = rack->r_ctl.fsb.th;
15641 /* Establish the len to send */
15642 if (len > max_val)
15643 len = max_val;
15644 if ((tso) && (len + optlen > tp->t_maxseg)) {
15645 uint32_t if_hw_tsomax;
15646 int32_t max_len;
15647
15648 /* extract TSO information */
15649 if_hw_tsomax = tp->t_tsomax;
15650 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15651 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15652 /*
15653 * Check if we should limit by maximum payload
15654 * length:
15655 */
15656 if (if_hw_tsomax != 0) {
15657 /* compute maximum TSO length */
15658 max_len = (if_hw_tsomax - hdrlen -
15659 max_linkhdr);
15660 if (max_len <= 0) {
15661 goto failed;
15662 } else if (len > max_len) {
15663 len = max_len;
15664 }
15665 }
15666 if (len <= segsiz) {
15667 /*
15668 * In case there are too many small fragments don't
15669 * use TSO:
15670 */
15671 tso = 0;
15672 }
15673 } else {
15674 tso = 0;
15675 }
15676 if ((tso == 0) && (len > segsiz))
15677 len = segsiz;
15678 if ((len == 0) ||
15679 (len <= MHLEN - hdrlen - max_linkhdr)) {
15680 goto failed;
15681 }
15682 th->th_seq = htonl(rsm->r_start);
15683 th->th_ack = htonl(tp->rcv_nxt);
15684 /*
15685 * The PUSH bit should only be applied
15686 * if the full retransmission is made. If
15687 * we are sending less than this is the
15688 * left hand edge and should not have
15689 * the PUSH bit.
15690 */
15691 if ((rsm->r_flags & RACK_HAD_PUSH) &&
15692 (len == (rsm->r_end - rsm->r_start)))
15693 flags |= TH_PUSH;
15694 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15695 if (th->th_win == 0) {
15696 tp->t_sndzerowin++;
15697 tp->t_flags |= TF_RXWIN0SENT;
15698 } else
15699 tp->t_flags &= ~TF_RXWIN0SENT;
15700 if (rsm->r_flags & RACK_TLP) {
15701 /*
15702 * TLP should not count in retran count, but
15703 * in its own bin
15704 */
15705 counter_u64_add(rack_tlp_retran, 1);
15706 counter_u64_add(rack_tlp_retran_bytes, len);
15707 } else {
15708 tp->t_sndrexmitpack++;
15709 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
15710 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
15711 }
15712#ifdef STATS
15713 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
15714 len);
15715#endif
15716 if (rsm->m == NULL)
15717 goto failed;
15718 if (rsm->orig_m_len != rsm->m->m_len) {
15719 /* Fix up the orig_m_len and possibly the mbuf offset */
15721 }
15722 m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, rsm->r_hw_tls);
15723 if (len <= segsiz) {
15724 /*
15725 * Must have ran out of mbufs for the copy
15726 * shorten it to no longer need tso. Lets
15727 * not put on sendalot since we are low on
15728 * mbufs.
15729 */
15730 tso = 0;
15731 }
15732 if ((m->m_next == NULL) || (len <= 0)){
15733 goto failed;
15734 }
15735 if (udp) {
15736 if (rack->r_is_v6)
15737 ulen = hdrlen + len - sizeof(struct ip6_hdr);
15738 else
15739 ulen = hdrlen + len - sizeof(struct ip);
15740 udp->uh_ulen = htons(ulen);
15741 }
15742 m->m_pkthdr.rcvif = (struct ifnet *)0;
15743 if (TCPS_HAVERCVDSYN(tp->t_state) &&
15744 (tp->t_flags2 & TF2_ECN_PERMIT)) {
15745 int ect = tcp_ecn_output_established(tp, &flags, len, true);
15746 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
15747 (tp->t_flags2 & TF2_ECN_SND_ECE))
15748 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
15749#ifdef INET6
15750 if (rack->r_is_v6) {
15751 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
15752 ip6->ip6_flow |= htonl(ect << 20);
15753 }
15754 else
15755#endif
15756 {
15757 ip->ip_tos &= ~IPTOS_ECN_MASK;
15758 ip->ip_tos |= ect;
15759 }
15760 }
15761 tcp_set_flags(th, flags);
15762 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
15763#ifdef INET6
15764 if (rack->r_is_v6) {
15765 if (tp->t_port) {
15766 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15767 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15768 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15769 th->th_sum = htons(0);
15770 UDPSTAT_INC(udps_opackets);
15771 } else {
15772 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15773 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15774 th->th_sum = in6_cksum_pseudo(ip6,
15775 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15776 0);
15777 }
15778 }
15779#endif
15780#if defined(INET6) && defined(INET)
15781 else
15782#endif
15783#ifdef INET
15784 {
15785 if (tp->t_port) {
15786 m->m_pkthdr.csum_flags = CSUM_UDP;
15787 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15788 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15789 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15790 th->th_sum = htons(0);
15791 UDPSTAT_INC(udps_opackets);
15792 } else {
15793 m->m_pkthdr.csum_flags = CSUM_TCP;
15794 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15795 th->th_sum = in_pseudo(ip->ip_src.s_addr,
15796 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15797 IPPROTO_TCP + len + optlen));
15798 }
15799 /* IP version must be set here for ipv4/ipv6 checking later */
15800 KASSERT(ip->ip_v == IPVERSION,
15801 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
15802 }
15803#endif
15804 if (tso) {
15805 KASSERT(len > tp->t_maxseg - optlen,
15806 ("%s: len <= tso_segsz tp:%p", __func__, tp));
15807 m->m_pkthdr.csum_flags |= CSUM_TSO;
15808 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15809 }
15810#ifdef INET6
15811 if (rack->r_is_v6) {
15812 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15813 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15816 else
15817 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15818 }
15819#endif
15820#if defined(INET) && defined(INET6)
15821 else
15822#endif
15823#ifdef INET
15824 {
15825 ip->ip_len = htons(m->m_pkthdr.len);
15826 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15829 if (tp->t_port == 0 || len < V_tcp_minmss) {
15830 ip->ip_off |= htons(IP_DF);
15831 }
15832 } else {
15833 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15834 }
15835 }
15836#endif
15837 /* Time to copy in our header */
15838 cpto = mtod(m, uint8_t *);
15839 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15840 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15841 if (optlen) {
15842 bcopy(opt, th + 1, optlen);
15843 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15844 } else {
15845 th->th_off = sizeof(struct tcphdr) >> 2;
15846 }
15847 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15848 union tcp_log_stackspecific log;
15849
15850 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15851 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
15852 if (rack->rack_no_prr)
15853 log.u_bbr.flex1 = 0;
15854 else
15855 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15856 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15857 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15858 log.u_bbr.flex4 = max_val;
15859 log.u_bbr.flex5 = 0;
15860 /* Save off the early/late values */
15861 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15863 log.u_bbr.bw_inuse = rack_get_bw(rack);
15864 if (doing_tlp == 0)
15865 log.u_bbr.flex8 = 1;
15866 else
15867 log.u_bbr.flex8 = 2;
15868 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15869 log.u_bbr.flex7 = 55;
15870 log.u_bbr.pkts_out = tp->t_maxseg;
15871 log.u_bbr.timeStamp = cts;
15872 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15873 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15874 log.u_bbr.delivered = 0;
15875 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15876 len, &log, false, NULL, NULL, 0, tv);
15877 } else
15878 lgb = NULL;
15879#ifdef INET6
15880 if (rack->r_is_v6) {
15881 error = ip6_output(m, NULL,
15882 &inp->inp_route6,
15883 0, NULL, NULL, inp);
15884 }
15885#endif
15886#if defined(INET) && defined(INET6)
15887 else
15888#endif
15889#ifdef INET
15890 {
15891 error = ip_output(m, NULL,
15892 &inp->inp_route,
15893 0, 0, inp);
15894 }
15895#endif
15896 m = NULL;
15897 if (lgb) {
15898 lgb->tlb_errno = error;
15899 lgb = NULL;
15900 }
15901 if (error) {
15902 goto failed;
15903 }
15904 rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv),
15905 rsm, RACK_SENT_FP, rsm->m, rsm->soff, rsm->r_hw_tls);
15906 if (doing_tlp && (rack->fast_rsm_hack == 0)) {
15907 rack->rc_tlp_in_progress = 1;
15908 rack->r_ctl.rc_tlp_cnt_out++;
15909 }
15910 if (error == 0) {
15911 tcp_account_for_send(tp, len, 1, doing_tlp, rsm->r_hw_tls);
15912 if (doing_tlp) {
15915 rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
15916 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
15917 }
15918 }
15919 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15920 rack->forced_ack = 0; /* If we send something zap the FA flag */
15921 if (IN_FASTRECOVERY(tp->t_flags) && rsm)
15922 rack->r_ctl.retran_during_recovery += len;
15923 {
15924 int idx;
15925
15926 idx = (len / segsiz) + 3;
15927 if (idx >= TCP_MSS_ACCT_ATIMER)
15928 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15929 else
15930 counter_u64_add(rack_out_size[idx], 1);
15931 }
15932 if (tp->t_rtttime == 0) {
15933 tp->t_rtttime = ticks;
15934 tp->t_rtseq = startseq;
15935 KMOD_TCPSTAT_INC(tcps_segstimed);
15936 }
15937 counter_u64_add(rack_fto_rsm_send, 1);
15938 if (error && (error == ENOBUFS)) {
15939 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
15940 if (rack->rc_enobuf < 0x7f)
15941 rack->rc_enobuf++;
15942 if (slot < (10 * HPTS_USEC_IN_MSEC))
15943 slot = 10 * HPTS_USEC_IN_MSEC;
15944 } else
15945 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz);
15946 if ((slot == 0) ||
15947 (rack->rc_always_pace == 0) ||
15948 (rack->r_rr_config == 1)) {
15949 /*
15950 * We have no pacing set or we
15951 * are using old-style rack or
15952 * we are overriden to use the old 1ms pacing.
15953 */
15954 slot = rack->r_ctl.rc_min_to;
15955 }
15956 rack_start_hpts_timer(rack, tp, cts, slot, len, 0);
15957 if (rack->r_must_retran) {
15958 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
15959 if ((SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) ||
15960 ((rsm->r_flags & RACK_MUST_RXT) == 0)) {
15961 /*
15962 * We have retransmitted all we need. If
15963 * RACK_MUST_RXT is not set then we need to
15964 * not retransmit this guy.
15965 */
15966 rack->r_must_retran = 0;
15967 rack->r_ctl.rc_out_at_rto = 0;
15968 if ((rsm->r_flags & RACK_MUST_RXT) == 0) {
15969 /* Not one we should rxt */
15970 goto failed;
15971 } else {
15972 /* Clear the flag */
15973 rsm->r_flags &= ~RACK_MUST_RXT;
15974 }
15975 } else {
15976 /* Remove the flag */
15977 rsm->r_flags &= ~RACK_MUST_RXT;
15978 }
15979 }
15980#ifdef TCP_ACCOUNTING
15981 crtsc = get_cyclecount();
15982 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15983 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
15984 }
15985 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
15986 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15987 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
15988 }
15989 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
15990 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15991 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz);
15992 }
15993 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz));
15994 sched_unpin();
15995#endif
15996 return (0);
15997failed:
15998 if (m)
15999 m_free(m);
16000 return (-1);
16001}
16002
16003static void
16005{
16006 /*
16007 * Automatic sizing of send socket buffer. Often the send buffer
16008 * size is not optimally adjusted to the actual network conditions
16009 * at hand (delay bandwidth product). Setting the buffer size too
16010 * small limits throughput on links with high bandwidth and high
16011 * delay (eg. trans-continental/oceanic links). Setting the
16012 * buffer size too big consumes too much real kernel memory,
16013 * especially with many connections on busy servers.
16014 *
16015 * The criteria to step up the send buffer one notch are:
16016 * 1. receive window of remote host is larger than send buffer
16017 * (with a fudge factor of 5/4th);
16018 * 2. send buffer is filled to 7/8th with data (so we actually
16019 * have data to make use of it);
16020 * 3. send buffer fill has not hit maximal automatic size;
16021 * 4. our send window (slow start and cogestion controlled) is
16022 * larger than sent but unacknowledged data in send buffer.
16023 *
16024 * Note that the rack version moves things much faster since
16025 * we want to avoid hitting cache lines in the rack_fast_output()
16026 * path so this is called much less often and thus moves
16027 * the SB forward by a percentage.
16028 */
16029 struct socket *so;
16030 struct tcpcb *tp;
16031 uint32_t sendwin, scaleup;
16032
16033 tp = rack->rc_tp;
16034 so = rack->rc_inp->inp_socket;
16035 sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd);
16036 if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) {
16037 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat &&
16038 sbused(&so->so_snd) >=
16039 (so->so_snd.sb_hiwat / 8 * 7) &&
16040 sbused(&so->so_snd) < V_tcp_autosndbuf_max &&
16041 sendwin >= (sbused(&so->so_snd) -
16042 (tp->snd_nxt - tp->snd_una))) {
16044 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100;
16045 else
16046 scaleup = V_tcp_autosndbuf_inc;
16047 if (scaleup < V_tcp_autosndbuf_inc)
16048 scaleup = V_tcp_autosndbuf_inc;
16049 scaleup += so->so_snd.sb_hiwat;
16050 if (scaleup > V_tcp_autosndbuf_max)
16051 scaleup = V_tcp_autosndbuf_max;
16052 if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread))
16053 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
16054 }
16055 }
16056}
16057
16058static int
16059rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val,
16060 uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
16061{
16062 /*
16063 * Enter to do fast output. We are given that the sched_pin is
16064 * in place (if accounting is compiled in) and the cycle count taken
16065 * at entry is in place in ts_val. The idea here is that
16066 * we know how many more bytes needs to be sent (presumably either
16067 * during pacing or to fill the cwnd and that was greater than
16068 * the max-burst). We have how much to send and all the info we
16069 * need to just send.
16070 */
16071 struct ip *ip = NULL;
16072 struct udphdr *udp = NULL;
16073 struct tcphdr *th = NULL;
16074 struct mbuf *m, *s_mb;
16075 struct inpcb *inp;
16076 uint8_t *cpto;
16077 struct tcp_log_buffer *lgb;
16078#ifdef TCP_ACCOUNTING
16079 uint64_t crtsc;
16080#endif
16081 struct tcpopt to;
16082 u_char opt[TCP_MAXOLEN];
16083 uint32_t hdrlen, optlen;
16084 int cnt_thru = 1;
16085 int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, ulen = 0;
16086 uint16_t flags;
16087 uint32_t s_soff;
16088 uint32_t if_hw_tsomaxsegcount = 0, startseq;
16089 uint32_t if_hw_tsomaxsegsize;
16090 uint16_t add_flag = RACK_SENT_FP;
16091#ifdef INET6
16092 struct ip6_hdr *ip6 = NULL;
16093
16094 if (rack->r_is_v6) {
16095 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
16096 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
16097 } else
16098#endif /* INET6 */
16099 {
16100 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
16101 hdrlen = sizeof(struct tcpiphdr);
16102 }
16103 if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
16104 m = NULL;
16105 goto failed;
16106 }
16107 startseq = tp->snd_max;
16108 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16109 inp = rack->rc_inp;
16110 len = rack->r_ctl.fsb.left_to_send;
16111 to.to_flags = 0;
16112 flags = rack->r_ctl.fsb.tcp_flags;
16113 if (tp->t_flags & TF_RCVD_TSTMP) {
16114 to.to_tsval = ms_cts + tp->ts_offset;
16115 to.to_tsecr = tp->ts_recent;
16116 to.to_flags = TOF_TS;
16117 }
16118 optlen = tcp_addoptions(&to, opt);
16119 hdrlen += optlen;
16120 udp = rack->r_ctl.fsb.udp;
16121 if (udp)
16122 hdrlen += sizeof(struct udphdr);
16123 if (rack->r_ctl.rc_pace_max_segs)
16124 max_val = rack->r_ctl.rc_pace_max_segs;
16125 else if (rack->rc_user_set_max_segs)
16126 max_val = rack->rc_user_set_max_segs * segsiz;
16127 else
16128 max_val = len;
16129 if ((tp->t_flags & TF_TSO) &&
16130 V_tcp_do_tso &&
16131 (len > segsiz) &&
16132 (tp->t_port == 0))
16133 tso = 1;
16134again:
16135#ifdef INET6
16136 if (MHLEN < hdrlen + max_linkhdr)
16137 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
16138 else
16139#endif
16140 m = m_gethdr(M_NOWAIT, MT_DATA);
16141 if (m == NULL)
16142 goto failed;
16143 m->m_data += max_linkhdr;
16144 m->m_len = hdrlen;
16145 th = rack->r_ctl.fsb.th;
16146 /* Establish the len to send */
16147 if (len > max_val)
16148 len = max_val;
16149 if ((tso) && (len + optlen > tp->t_maxseg)) {
16150 uint32_t if_hw_tsomax;
16151 int32_t max_len;
16152
16153 /* extract TSO information */
16154 if_hw_tsomax = tp->t_tsomax;
16155 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
16156 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
16157 /*
16158 * Check if we should limit by maximum payload
16159 * length:
16160 */
16161 if (if_hw_tsomax != 0) {
16162 /* compute maximum TSO length */
16163 max_len = (if_hw_tsomax - hdrlen -
16164 max_linkhdr);
16165 if (max_len <= 0) {
16166 goto failed;
16167 } else if (len > max_len) {
16168 len = max_len;
16169 }
16170 }
16171 if (len <= segsiz) {
16172 /*
16173 * In case there are too many small fragments don't
16174 * use TSO:
16175 */
16176 tso = 0;
16177 }
16178 } else {
16179 tso = 0;
16180 }
16181 if ((tso == 0) && (len > segsiz))
16182 len = segsiz;
16183 if ((len == 0) ||
16184 (len <= MHLEN - hdrlen - max_linkhdr)) {
16185 goto failed;
16186 }
16187 sb_offset = tp->snd_max - tp->snd_una;
16188 th->th_seq = htonl(tp->snd_max);
16189 th->th_ack = htonl(tp->rcv_nxt);
16190 th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
16191 if (th->th_win == 0) {
16192 tp->t_sndzerowin++;
16193 tp->t_flags |= TF_RXWIN0SENT;
16194 } else
16195 tp->t_flags &= ~TF_RXWIN0SENT;
16196 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */
16197 KMOD_TCPSTAT_INC(tcps_sndpack);
16198 KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
16199#ifdef STATS
16200 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
16201 len);
16202#endif
16203 if (rack->r_ctl.fsb.m == NULL)
16204 goto failed;
16205
16206 /* s_mb and s_soff are saved for rack_log_output */
16207 m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize,
16208 &s_mb, &s_soff);
16209 if (len <= segsiz) {
16210 /*
16211 * Must have ran out of mbufs for the copy
16212 * shorten it to no longer need tso. Lets
16213 * not put on sendalot since we are low on
16214 * mbufs.
16215 */
16216 tso = 0;
16217 }
16218 if (rack->r_ctl.fsb.rfo_apply_push &&
16219 (len == rack->r_ctl.fsb.left_to_send)) {
16220 flags |= TH_PUSH;
16221 add_flag |= RACK_HAD_PUSH;
16222 }
16223 if ((m->m_next == NULL) || (len <= 0)){
16224 goto failed;
16225 }
16226 if (udp) {
16227 if (rack->r_is_v6)
16228 ulen = hdrlen + len - sizeof(struct ip6_hdr);
16229 else
16230 ulen = hdrlen + len - sizeof(struct ip);
16231 udp->uh_ulen = htons(ulen);
16232 }
16233 m->m_pkthdr.rcvif = (struct ifnet *)0;
16234 if (TCPS_HAVERCVDSYN(tp->t_state) &&
16235 (tp->t_flags2 & TF2_ECN_PERMIT)) {
16236 int ect = tcp_ecn_output_established(tp, &flags, len, false);
16237 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
16238 (tp->t_flags2 & TF2_ECN_SND_ECE))
16239 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
16240#ifdef INET6
16241 if (rack->r_is_v6) {
16242 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
16243 ip6->ip6_flow |= htonl(ect << 20);
16244 }
16245 else
16246#endif
16247 {
16248 ip->ip_tos &= ~IPTOS_ECN_MASK;
16249 ip->ip_tos |= ect;
16250 }
16251 }
16252 tcp_set_flags(th, flags);
16253 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
16254#ifdef INET6
16255 if (rack->r_is_v6) {
16256 if (tp->t_port) {
16257 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
16258 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16259 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
16260 th->th_sum = htons(0);
16261 UDPSTAT_INC(udps_opackets);
16262 } else {
16263 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
16264 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16265 th->th_sum = in6_cksum_pseudo(ip6,
16266 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
16267 0);
16268 }
16269 }
16270#endif
16271#if defined(INET6) && defined(INET)
16272 else
16273#endif
16274#ifdef INET
16275 {
16276 if (tp->t_port) {
16277 m->m_pkthdr.csum_flags = CSUM_UDP;
16278 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
16279 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
16280 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
16281 th->th_sum = htons(0);
16282 UDPSTAT_INC(udps_opackets);
16283 } else {
16284 m->m_pkthdr.csum_flags = CSUM_TCP;
16285 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
16286 th->th_sum = in_pseudo(ip->ip_src.s_addr,
16287 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
16288 IPPROTO_TCP + len + optlen));
16289 }
16290 /* IP version must be set here for ipv4/ipv6 checking later */
16291 KASSERT(ip->ip_v == IPVERSION,
16292 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
16293 }
16294#endif
16295 if (tso) {
16296 KASSERT(len > tp->t_maxseg - optlen,
16297 ("%s: len <= tso_segsz tp:%p", __func__, tp));
16298 m->m_pkthdr.csum_flags |= CSUM_TSO;
16299 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
16300 }
16301#ifdef INET6
16302 if (rack->r_is_v6) {
16303 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
16304 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
16307 else
16308 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16309 }
16310#endif
16311#if defined(INET) && defined(INET6)
16312 else
16313#endif
16314#ifdef INET
16315 {
16316 ip->ip_len = htons(m->m_pkthdr.len);
16317 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
16320 if (tp->t_port == 0 || len < V_tcp_minmss) {
16321 ip->ip_off |= htons(IP_DF);
16322 }
16323 } else {
16324 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
16325 }
16326 }
16327#endif
16328 /* Time to copy in our header */
16329 cpto = mtod(m, uint8_t *);
16330 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
16331 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
16332 if (optlen) {
16333 bcopy(opt, th + 1, optlen);
16334 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
16335 } else {
16336 th->th_off = sizeof(struct tcphdr) >> 2;
16337 }
16338 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
16339 union tcp_log_stackspecific log;
16340
16341 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
16342 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
16343 if (rack->rack_no_prr)
16344 log.u_bbr.flex1 = 0;
16345 else
16346 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
16347 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
16348 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
16349 log.u_bbr.flex4 = max_val;
16350 log.u_bbr.flex5 = 0;
16351 /* Save off the early/late values */
16352 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
16354 log.u_bbr.bw_inuse = rack_get_bw(rack);
16355 log.u_bbr.flex8 = 0;
16356 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
16357 log.u_bbr.flex7 = 44;
16358 log.u_bbr.pkts_out = tp->t_maxseg;
16359 log.u_bbr.timeStamp = cts;
16360 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
16361 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
16362 log.u_bbr.delivered = 0;
16363 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
16364 len, &log, false, NULL, NULL, 0, tv);
16365 } else
16366 lgb = NULL;
16367#ifdef INET6
16368 if (rack->r_is_v6) {
16369 error = ip6_output(m, NULL,
16370 &inp->inp_route6,
16371 0, NULL, NULL, inp);
16372 }
16373#endif
16374#if defined(INET) && defined(INET6)
16375 else
16376#endif
16377#ifdef INET
16378 {
16379 error = ip_output(m, NULL,
16380 &inp->inp_route,
16381 0, 0, inp);
16382 }
16383#endif
16384 if (lgb) {
16385 lgb->tlb_errno = error;
16386 lgb = NULL;
16387 }
16388 if (error) {
16389 *send_err = error;
16390 m = NULL;
16391 goto failed;
16392 }
16393 rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv),
16394 NULL, add_flag, s_mb, s_soff, rack->r_ctl.fsb.hw_tls);
16395 m = NULL;
16396 if (tp->snd_una == tp->snd_max) {
16397 rack->r_ctl.rc_tlp_rxt_last_time = cts;
16398 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
16399 tp->t_acktime = ticks;
16400 }
16401 if (error == 0)
16402 tcp_account_for_send(tp, len, 0, 0, rack->r_ctl.fsb.hw_tls);
16403
16404 rack->forced_ack = 0; /* If we send something zap the FA flag */
16405 tot_len += len;
16406 if ((tp->t_flags & TF_GPUTINPROG) == 0)
16407 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset);
16408 tp->snd_max += len;
16409 tp->snd_nxt = tp->snd_max;
16410 {
16411 int idx;
16412
16413 idx = (len / segsiz) + 3;
16414 if (idx >= TCP_MSS_ACCT_ATIMER)
16415 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
16416 else
16417 counter_u64_add(rack_out_size[idx], 1);
16418 }
16419 if (len <= rack->r_ctl.fsb.left_to_send)
16420 rack->r_ctl.fsb.left_to_send -= len;
16421 else
16422 rack->r_ctl.fsb.left_to_send = 0;
16423 if (rack->r_ctl.fsb.left_to_send < segsiz) {
16424 rack->r_fast_output = 0;
16425 rack->r_ctl.fsb.left_to_send = 0;
16426 /* At the end of fast_output scale up the sb */
16427 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd);
16429 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd);
16430 }
16431 if (tp->t_rtttime == 0) {
16432 tp->t_rtttime = ticks;
16433 tp->t_rtseq = startseq;
16434 KMOD_TCPSTAT_INC(tcps_segstimed);
16435 }
16436 if ((rack->r_ctl.fsb.left_to_send >= segsiz) &&
16437 (max_val > len) &&
16438 (tso == 0)) {
16439 max_val -= len;
16440 len = segsiz;
16441 th = rack->r_ctl.fsb.th;
16442 cnt_thru++;
16443 goto again;
16444 }
16445 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
16446 counter_u64_add(rack_fto_send, 1);
16447 slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz);
16448 rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0);
16449#ifdef TCP_ACCOUNTING
16450 crtsc = get_cyclecount();
16451 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16452 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
16453 }
16454 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
16455 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16456 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
16457 }
16458 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
16459 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16460 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz);
16461 }
16462 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz));
16463 sched_unpin();
16464#endif
16465 return (0);
16466failed:
16467 if (m)
16468 m_free(m);
16469 rack->r_fast_output = 0;
16470 return (-1);
16471}
16472
16473static int
16475{
16476 struct socket *so;
16477 uint32_t recwin;
16478 uint32_t sb_offset, s_moff = 0;
16479 int32_t len, error = 0;
16480 uint16_t flags;
16481 struct mbuf *m, *s_mb = NULL;
16482 struct mbuf *mb;
16483 uint32_t if_hw_tsomaxsegcount = 0;
16484 uint32_t if_hw_tsomaxsegsize;
16485 int32_t segsiz, minseg;
16486 long tot_len_this_send = 0;
16487#ifdef INET
16488 struct ip *ip = NULL;
16489#endif
16490#ifdef TCPDEBUG
16491 struct ipovly *ipov = NULL;
16492#endif
16493 struct udphdr *udp = NULL;
16494 struct tcp_rack *rack;
16495 struct tcphdr *th;
16496 uint8_t pass = 0;
16497 uint8_t mark = 0;
16498 uint8_t wanted_cookie = 0;
16499 u_char opt[TCP_MAXOLEN];
16500 unsigned ipoptlen, optlen, hdrlen, ulen=0;
16501 uint32_t rack_seq;
16502
16503#if defined(IPSEC) || defined(IPSEC_SUPPORT)
16504 unsigned ipsec_optlen = 0;
16505
16506#endif
16507 int32_t idle, sendalot;
16508 int32_t sub_from_prr = 0;
16509 volatile int32_t sack_rxmit;
16510 struct rack_sendmap *rsm = NULL;
16511 int32_t tso, mtu;
16512 struct tcpopt to;
16513 int32_t slot = 0;
16514 int32_t sup_rack = 0;
16515 uint32_t cts, ms_cts, delayed, early;
16516 uint16_t add_flag = RACK_SENT_SP;
16517 /* The doing_tlp flag will be set by the actual rack_timeout_tlp() */
16518 uint8_t hpts_calling, doing_tlp = 0;
16519 uint32_t cwnd_to_use, pace_max_seg;
16520 int32_t do_a_prefetch = 0;
16521 int32_t prefetch_rsm = 0;
16522 int32_t orig_len = 0;
16523 struct timeval tv;
16524 int32_t prefetch_so_done = 0;
16525 struct tcp_log_buffer *lgb;
16526 struct inpcb *inp;
16527 struct sockbuf *sb;
16528 uint64_t ts_val = 0;
16529#ifdef TCP_ACCOUNTING
16530 uint64_t crtsc;
16531#endif
16532#ifdef INET6
16533 struct ip6_hdr *ip6 = NULL;
16534 int32_t isipv6;
16535#endif
16536 uint8_t filled_all = 0;
16537 bool hw_tls = false;
16538
16539 /* setup and take the cache hits here */
16540 rack = (struct tcp_rack *)tp->t_fb_ptr;
16541#ifdef TCP_ACCOUNTING
16542 sched_pin();
16543 ts_val = get_cyclecount();
16544#endif
16545 hpts_calling = rack->rc_inp->inp_hpts_calls;
16546 NET_EPOCH_ASSERT();
16547 INP_WLOCK_ASSERT(rack->rc_inp);
16548#ifdef TCP_OFFLOAD
16549 if (tp->t_flags & TF_TOE) {
16550#ifdef TCP_ACCOUNTING
16551 sched_unpin();
16552#endif
16553 return (tcp_offload_output(tp));
16554 }
16555#endif
16556 /*
16557 * For TFO connections in SYN_RECEIVED, only allow the initial
16558 * SYN|ACK and those sent by the retransmit timer.
16559 */
16560 if (IS_FASTOPEN(tp->t_flags) &&
16561 (tp->t_state == TCPS_SYN_RECEIVED) &&
16562 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */
16563 (rack->r_ctl.rc_resend == NULL)) { /* not a retransmit */
16564#ifdef TCP_ACCOUNTING
16565 sched_unpin();
16566#endif
16567 return (0);
16568 }
16569#ifdef INET6
16570 if (rack->r_state) {
16571 /* Use the cache line loaded if possible */
16572 isipv6 = rack->r_is_v6;
16573 } else {
16574 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0;
16575 }
16576#endif
16577 early = 0;
16578 cts = tcp_get_usecs(&tv);
16579 ms_cts = tcp_tv_to_mssectick(&tv);
16580 if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
16581 tcp_in_hpts(rack->rc_inp)) {
16582 /*
16583 * We are on the hpts for some timer but not hptsi output.
16584 * Remove from the hpts unconditionally.
16585 */
16586 rack_timer_cancel(tp, rack, cts, __LINE__);
16587 }
16588 /* Are we pacing and late? */
16589 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16590 TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
16591 /* We are delayed */
16592 delayed = cts - rack->r_ctl.rc_last_output_to;
16593 } else {
16594 delayed = 0;
16595 }
16596 /* Do the timers, which may override the pacer */
16597 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
16598 int retval;
16599
16600 retval = rack_process_timers(tp, rack, cts, hpts_calling,
16601 &doing_tlp);
16602 if (retval != 0) {
16603 counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
16604#ifdef TCP_ACCOUNTING
16605 sched_unpin();
16606#endif
16607 /*
16608 * If timers want tcp_drop(), then pass error out,
16609 * otherwise suppress it.
16610 */
16611 return (retval < 0 ? retval : 0);
16612 }
16613 }
16614 if (rack->rc_in_persist) {
16615 if (tcp_in_hpts(rack->rc_inp) == 0) {
16616 /* Timer is not running */
16617 rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16618 }
16619#ifdef TCP_ACCOUNTING
16620 sched_unpin();
16621#endif
16622 return (0);
16623 }
16624 if ((rack->r_timer_override) ||
16625 (rack->rc_ack_can_sendout_data) ||
16626 (delayed) ||
16627 (tp->t_state < TCPS_ESTABLISHED)) {
16628 rack->rc_ack_can_sendout_data = 0;
16629 if (tcp_in_hpts(rack->rc_inp))
16630 tcp_hpts_remove(rack->rc_inp);
16631 } else if (tcp_in_hpts(rack->rc_inp)) {
16632 /*
16633 * On the hpts you can't pass even if ACKNOW is on, we will
16634 * when the hpts fires.
16635 */
16636#ifdef TCP_ACCOUNTING
16637 crtsc = get_cyclecount();
16638 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16639 tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val);
16640 }
16641 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val));
16642 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16643 tp->tcp_cnt_counters[SND_BLOCKED]++;
16644 }
16645 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1);
16646 sched_unpin();
16647#endif
16648 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
16649 return (0);
16650 }
16651 rack->rc_inp->inp_hpts_calls = 0;
16652 /* Finish out both pacing early and late accounting */
16653 if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16654 TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) {
16655 early = rack->r_ctl.rc_last_output_to - cts;
16656 } else
16657 early = 0;
16658 if (delayed) {
16659 rack->r_ctl.rc_agg_delayed += delayed;
16660 rack->r_late = 1;
16661 } else if (early) {
16662 rack->r_ctl.rc_agg_early += early;
16663 rack->r_early = 1;
16664 }
16665 /* Now that early/late accounting is done turn off the flag */
16666 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
16667 rack->r_wanted_output = 0;
16668 rack->r_timer_override = 0;
16669 if ((tp->t_state != rack->r_state) &&
16671 rack_set_state(tp, rack);
16672 }
16673 if ((rack->r_fast_output) &&
16674 (doing_tlp == 0) &&
16675 (tp->rcv_numsacks == 0)) {
16676 int ret;
16677
16678 error = 0;
16679 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
16680 if (ret >= 0)
16681 return(ret);
16682 else if (error) {
16683 inp = rack->rc_inp;
16684 so = inp->inp_socket;
16685 sb = &so->so_snd;
16686 goto nomore;
16687 }
16688 }
16689 inp = rack->rc_inp;
16690 /*
16691 * For TFO connections in SYN_SENT or SYN_RECEIVED,
16692 * only allow the initial SYN or SYN|ACK and those sent
16693 * by the retransmit timer.
16694 */
16695 if (IS_FASTOPEN(tp->t_flags) &&
16696 ((tp->t_state == TCPS_SYN_RECEIVED) ||
16697 (tp->t_state == TCPS_SYN_SENT)) &&
16698 SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
16699 (tp->t_rxtshift == 0)) { /* not a retransmit */
16700 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16701 so = inp->inp_socket;
16702 sb = &so->so_snd;
16703 goto just_return_nolock;
16704 }
16705 /*
16706 * Determine length of data that should be transmitted, and flags
16707 * that will be used. If there is some data or critical controls
16708 * (SYN, RST) to send, then transmit; otherwise, investigate
16709 * further.
16710 */
16711 idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
16712 if (tp->t_idle_reduce) {
16713 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
16714 rack_cc_after_idle(rack, tp);
16715 }
16716 tp->t_flags &= ~TF_LASTIDLE;
16717 if (idle) {
16718 if (tp->t_flags & TF_MORETOCOME) {
16719 tp->t_flags |= TF_LASTIDLE;
16720 idle = 0;
16721 }
16722 }
16723 if ((tp->snd_una == tp->snd_max) &&
16724 rack->r_ctl.rc_went_idle_time &&
16725 TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) {
16726 idle = cts - rack->r_ctl.rc_went_idle_time;
16727 if (idle > rack_min_probertt_hold) {
16728 /* Count as a probe rtt */
16729 if (rack->in_probe_rtt == 0) {
16730 rack->r_ctl.rc_lower_rtt_us_cts = cts;
16734 } else {
16735 rack_exit_probertt(rack, cts);
16736 }
16737 }
16738 idle = 0;
16739 }
16740 if (rack_use_fsb && (rack->r_fsb_inited == 0) && (rack->r_state != TCPS_CLOSED))
16741 rack_init_fsb_block(tp, rack);
16742again:
16743 /*
16744 * If we've recently taken a timeout, snd_max will be greater than
16745 * snd_nxt. There may be SACK information that allows us to avoid
16746 * resending already delivered data. Adjust snd_nxt accordingly.
16747 */
16748 sendalot = 0;
16749 cts = tcp_get_usecs(&tv);
16750 ms_cts = tcp_tv_to_mssectick(&tv);
16751 tso = 0;
16752 mtu = 0;
16753 segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16754 minseg = segsiz;
16755 if (rack->r_ctl.rc_pace_max_segs == 0)
16756 pace_max_seg = rack->rc_user_set_max_segs * segsiz;
16757 else
16758 pace_max_seg = rack->r_ctl.rc_pace_max_segs;
16759 sb_offset = tp->snd_max - tp->snd_una;
16760 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16761 flags = tcp_outflags[tp->t_state];
16762 while (rack->rc_free_cnt < rack_free_cache) {
16763 rsm = rack_alloc(rack);
16764 if (rsm == NULL) {
16765 if (inp->inp_hpts_calls)
16766 /* Retry in a ms */
16767 slot = (1 * HPTS_USEC_IN_MSEC);
16768 so = inp->inp_socket;
16769 sb = &so->so_snd;
16770 goto just_return_nolock;
16771 }
16772 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
16773 rack->rc_free_cnt++;
16774 rsm = NULL;
16775 }
16776 if (inp->inp_hpts_calls)
16777 inp->inp_hpts_calls = 0;
16778 sack_rxmit = 0;
16779 len = 0;
16780 rsm = NULL;
16781 if (flags & TH_RST) {
16782 SOCKBUF_LOCK(&inp->inp_socket->so_snd);
16783 so = inp->inp_socket;
16784 sb = &so->so_snd;
16785 goto send;
16786 }
16787 if (rack->r_ctl.rc_resend) {
16788 /* Retransmit timer */
16789 rsm = rack->r_ctl.rc_resend;
16790 rack->r_ctl.rc_resend = NULL;
16791 len = rsm->r_end - rsm->r_start;
16792 sack_rxmit = 1;
16793 sendalot = 0;
16794 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16795 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16796 __func__, __LINE__,
16797 rsm->r_start, tp->snd_una, tp, rack, rsm));
16798 sb_offset = rsm->r_start - tp->snd_una;
16799 if (len >= segsiz)
16800 len = segsiz;
16801 } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) {
16802 /* We have a retransmit that takes precedence */
16803 if ((!IN_FASTRECOVERY(tp->t_flags)) &&
16804 ((tp->t_flags & TF_WASFRECOVERY) == 0)) {
16805 /* Enter recovery if not induced by a time-out */
16807 }
16808#ifdef INVARIANTS
16809 if (SEQ_LT(rsm->r_start, tp->snd_una)) {
16810 panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
16811 tp, rack, rsm, rsm->r_start, tp->snd_una);
16812 }
16813#endif
16814 len = rsm->r_end - rsm->r_start;
16815 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16816 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16817 __func__, __LINE__,
16818 rsm->r_start, tp->snd_una, tp, rack, rsm));
16819 sb_offset = rsm->r_start - tp->snd_una;
16820 sendalot = 0;
16821 if (len >= segsiz)
16822 len = segsiz;
16823 if (len > 0) {
16824 sack_rxmit = 1;
16825 KMOD_TCPSTAT_INC(tcps_sack_rexmits);
16826 KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
16827 min(len, segsiz));
16828 }
16829 } else if (rack->r_ctl.rc_tlpsend) {
16830 /* Tail loss probe */
16831 long cwin;
16832 long tlen;
16833
16834 /*
16835 * Check if we can do a TLP with a RACK'd packet
16836 * this can happen if we are not doing the rack
16837 * cheat and we skipped to a TLP and it
16838 * went off.
16839 */
16840 rsm = rack->r_ctl.rc_tlpsend;
16841 /* We are doing a TLP make sure the flag is preent */
16842 rsm->r_flags |= RACK_TLP;
16843 rack->r_ctl.rc_tlpsend = NULL;
16844 sack_rxmit = 1;
16845 tlen = rsm->r_end - rsm->r_start;
16846 if (tlen > segsiz)
16847 tlen = segsiz;
16848 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16849 ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16850 __func__, __LINE__,
16851 rsm->r_start, tp->snd_una, tp, rack, rsm));
16852 sb_offset = rsm->r_start - tp->snd_una;
16853 cwin = min(tp->snd_wnd, tlen);
16854 len = cwin;
16855 }
16856 if (rack->r_must_retran &&
16857 (doing_tlp == 0) &&
16858 (rsm == NULL)) {
16859 /*
16860 * Non-Sack and we had a RTO or Sack/non-Sack and a
16861 * MTU change, we need to retransmit until we reach
16862 * the former snd_max (rack->r_ctl.rc_snd_max_at_rto).
16863 */
16864 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
16865 int sendwin, flight;
16866
16867 sendwin = min(tp->snd_wnd, tp->snd_cwnd);
16868 flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto);
16869 if (flight >= sendwin) {
16870 so = inp->inp_socket;
16871 sb = &so->so_snd;
16872 goto just_return_nolock;
16873 }
16874 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
16875 if (rsm == NULL) {
16876 /* TSNH */
16877 rack->r_must_retran = 0;
16878 rack->r_ctl.rc_out_at_rto = 0;
16879 rack->r_must_retran = 0;
16880 so = inp->inp_socket;
16881 sb = &so->so_snd;
16882 goto just_return_nolock;
16883 }
16884 if ((rsm->r_flags & RACK_MUST_RXT) == 0) {
16885 /* It does not have the flag, we are done */
16886 rack->r_must_retran = 0;
16887 rack->r_ctl.rc_out_at_rto = 0;
16888 } else {
16889 sack_rxmit = 1;
16890 len = rsm->r_end - rsm->r_start;
16891 sendalot = 0;
16892 sb_offset = rsm->r_start - tp->snd_una;
16893 if (len >= segsiz)
16894 len = segsiz;
16895 /*
16896 * Delay removing the flag RACK_MUST_RXT so
16897 * that the fastpath for retransmit will
16898 * work with this rsm.
16899 */
16900
16901 }
16902 } else {
16903 /* We must be done if there is nothing outstanding */
16904 rack->r_must_retran = 0;
16905 rack->r_ctl.rc_out_at_rto = 0;
16906 }
16907 }
16908 /*
16909 * Enforce a connection sendmap count limit if set
16910 * as long as we are not retransmiting.
16911 */
16912 if ((rsm == NULL) &&
16913 (rack->do_detection == 0) &&
16916 counter_u64_add(rack_to_alloc_limited, 1);
16917 if (!rack->alloc_limit_reported) {
16918 rack->alloc_limit_reported = 1;
16919 counter_u64_add(rack_alloc_limited_conns, 1);
16920 }
16921 so = inp->inp_socket;
16922 sb = &so->so_snd;
16923 goto just_return_nolock;
16924 }
16925 if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
16926 /* we are retransmitting the fin */
16927 len--;
16928 if (len) {
16929 /*
16930 * When retransmitting data do *not* include the
16931 * FIN. This could happen from a TLP probe.
16932 */
16933 flags &= ~TH_FIN;
16934 }
16935 }
16936 if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo &&
16937 ((rsm->r_flags & RACK_HAS_FIN) == 0)) {
16938 int ret;
16939
16940 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len, doing_tlp);
16941 if (ret == 0)
16942 return (0);
16943 }
16944 if (rsm && (rsm->r_flags & RACK_MUST_RXT)) {
16945 /*
16946 * Clear the flag in prep for the send
16947 * note that if we can't get an mbuf
16948 * and fail, we won't retransmit this
16949 * rsm but that should be ok (its rare).
16950 */
16951 rsm->r_flags &= ~RACK_MUST_RXT;
16952 }
16953 so = inp->inp_socket;
16954 sb = &so->so_snd;
16955 if (do_a_prefetch == 0) {
16956 kern_prefetch(sb, &do_a_prefetch);
16957 do_a_prefetch = 1;
16958 }
16959#ifdef NETFLIX_SHARED_CWND
16960 if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
16961 rack->rack_enable_scwnd) {
16962 /* We are doing cwnd sharing */
16963 if (rack->gp_ready &&
16964 (rack->rack_attempted_scwnd == 0) &&
16965 (rack->r_ctl.rc_scw == NULL) &&
16966 tp->t_lib) {
16967 /* The pcbid is in, lets make an attempt */
16968 counter_u64_add(rack_try_scwnd, 1);
16969 rack->rack_attempted_scwnd = 1;
16970 rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
16971 &rack->r_ctl.rc_scw_index,
16972 segsiz);
16973 }
16974 if (rack->r_ctl.rc_scw &&
16975 (rack->rack_scwnd_is_idle == 1) &&
16976 sbavail(&so->so_snd)) {
16977 /* we are no longer out of data */
16978 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
16979 rack->rack_scwnd_is_idle = 0;
16980 }
16981 if (rack->r_ctl.rc_scw) {
16982 /* First lets update and get the cwnd */
16983 rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
16984 rack->r_ctl.rc_scw_index,
16985 tp->snd_cwnd, tp->snd_wnd, segsiz);
16986 }
16987 }
16988#endif
16989 /*
16990 * Get standard flags, and add SYN or FIN if requested by 'hidden'
16991 * state flags.
16992 */
16993 if (tp->t_flags & TF_NEEDFIN)
16994 flags |= TH_FIN;
16995 if (tp->t_flags & TF_NEEDSYN)
16996 flags |= TH_SYN;
16997 if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
16998 void *end_rsm;
16999 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
17000 if (end_rsm)
17001 kern_prefetch(end_rsm, &prefetch_rsm);
17002 prefetch_rsm = 1;
17003 }
17004 SOCKBUF_LOCK(sb);
17005 /*
17006 * If snd_nxt == snd_max and we have transmitted a FIN, the
17007 * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
17008 * negative length. This can also occur when TCP opens up its
17009 * congestion window while receiving additional duplicate acks after
17010 * fast-retransmit because TCP will reset snd_nxt to snd_max after
17011 * the fast-retransmit.
17012 *
17013 * In the normal retransmit-FIN-only case, however, snd_nxt will be
17014 * set to snd_una, the sb_offset will be 0, and the length may wind
17015 * up 0.
17016 *
17017 * If sack_rxmit is true we are retransmitting from the scoreboard
17018 * in which case len is already set.
17019 */
17020 if ((sack_rxmit == 0) &&
17022 uint32_t avail;
17023
17024 avail = sbavail(sb);
17025 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
17026 sb_offset = tp->snd_nxt - tp->snd_una;
17027 else
17028 sb_offset = 0;
17029 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
17030 if (rack->r_ctl.rc_tlp_new_data) {
17031 /* TLP is forcing out new data */
17032 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
17033 rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
17034 }
17035 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) {
17036 if (tp->snd_wnd > sb_offset)
17037 len = tp->snd_wnd - sb_offset;
17038 else
17039 len = 0;
17040 } else {
17041 len = rack->r_ctl.rc_tlp_new_data;
17042 }
17043 rack->r_ctl.rc_tlp_new_data = 0;
17044 } else {
17045 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
17046 }
17047 if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
17048 /*
17049 * For prr=off, we need to send only 1 MSS
17050 * at a time. We do this because another sack could
17051 * be arriving that causes us to send retransmits and
17052 * we don't want to be on a long pace due to a larger send
17053 * that keeps us from sending out the retransmit.
17054 */
17055 len = segsiz;
17056 }
17057 } else {
17058 uint32_t outstanding;
17059 /*
17060 * We are inside of a Fast recovery episode, this
17061 * is caused by a SACK or 3 dup acks. At this point
17062 * we have sent all the retransmissions and we rely
17063 * on PRR to dictate what we will send in the form of
17064 * new data.
17065 */
17066
17067 outstanding = tp->snd_max - tp->snd_una;
17068 if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
17069 if (tp->snd_wnd > outstanding) {
17070 len = tp->snd_wnd - outstanding;
17071 /* Check to see if we have the data */
17072 if ((sb_offset + len) > avail) {
17073 /* It does not all fit */
17074 if (avail > sb_offset)
17075 len = avail - sb_offset;
17076 else
17077 len = 0;
17078 }
17079 } else {
17080 len = 0;
17081 }
17082 } else if (avail > sb_offset) {
17083 len = avail - sb_offset;
17084 } else {
17085 len = 0;
17086 }
17087 if (len > 0) {
17088 if (len > rack->r_ctl.rc_prr_sndcnt) {
17089 len = rack->r_ctl.rc_prr_sndcnt;
17090 }
17091 if (len > 0) {
17092 sub_from_prr = 1;
17093 }
17094 }
17095 if (len > segsiz) {
17096 /*
17097 * We should never send more than a MSS when
17098 * retransmitting or sending new data in prr
17099 * mode unless the override flag is on. Most
17100 * likely the PRR algorithm is not going to
17101 * let us send a lot as well :-)
17102 */
17103 if (rack->r_ctl.rc_prr_sendalot == 0) {
17104 len = segsiz;
17105 }
17106 } else if (len < segsiz) {
17107 /*
17108 * Do we send any? The idea here is if the
17109 * send empty's the socket buffer we want to
17110 * do it. However if not then lets just wait
17111 * for our prr_sndcnt to get bigger.
17112 */
17113 long leftinsb;
17114
17115 leftinsb = sbavail(sb) - sb_offset;
17116 if (leftinsb > len) {
17117 /* This send does not empty the sb */
17118 len = 0;
17119 }
17120 }
17121 }
17122 } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
17123 /*
17124 * If you have not established
17125 * and are not doing FAST OPEN
17126 * no data please.
17127 */
17128 if ((sack_rxmit == 0) &&
17129 (!IS_FASTOPEN(tp->t_flags))){
17130 len = 0;
17131 sb_offset = 0;
17132 }
17133 }
17134 if (prefetch_so_done == 0) {
17135 kern_prefetch(so, &prefetch_so_done);
17136 prefetch_so_done = 1;
17137 }
17138 /*
17139 * Lop off SYN bit if it has already been sent. However, if this is
17140 * SYN-SENT state and if segment contains data and if we don't know
17141 * that foreign host supports TAO, suppress sending segment.
17142 */
17143 if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
17144 ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
17145 /*
17146 * When sending additional segments following a TFO SYN|ACK,
17147 * do not include the SYN bit.
17148 */
17149 if (IS_FASTOPEN(tp->t_flags) &&
17150 (tp->t_state == TCPS_SYN_RECEIVED))
17151 flags &= ~TH_SYN;
17152 }
17153 /*
17154 * Be careful not to send data and/or FIN on SYN segments. This
17155 * measure is needed to prevent interoperability problems with not
17156 * fully conformant TCP implementations.
17157 */
17158 if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
17159 len = 0;
17160 flags &= ~TH_FIN;
17161 }
17162 /*
17163 * On TFO sockets, ensure no data is sent in the following cases:
17164 *
17165 * - When retransmitting SYN|ACK on a passively-created socket
17166 *
17167 * - When retransmitting SYN on an actively created socket
17168 *
17169 * - When sending a zero-length cookie (cookie request) on an
17170 * actively created socket
17171 *
17172 * - When the socket is in the CLOSED state (RST is being sent)
17173 */
17174 if (IS_FASTOPEN(tp->t_flags) &&
17175 (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
17176 ((tp->t_state == TCPS_SYN_SENT) &&
17177 (tp->t_tfo_client_cookie_len == 0)) ||
17178 (flags & TH_RST))) {
17179 sack_rxmit = 0;
17180 len = 0;
17181 }
17182 /* Without fast-open there should never be data sent on a SYN */
17183 if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
17184 tp->snd_nxt = tp->iss;
17185 len = 0;
17186 }
17187 if ((len > segsiz) && (tcp_dsack_block_exists(tp))) {
17188 /* We only send 1 MSS if we have a DSACK block */
17189 add_flag |= RACK_SENT_W_DSACK;
17190 len = segsiz;
17191 }
17192 orig_len = len;
17193 if (len <= 0) {
17194 /*
17195 * If FIN has been sent but not acked, but we haven't been
17196 * called to retransmit, len will be < 0. Otherwise, window
17197 * shrank after we sent into it. If window shrank to 0,
17198 * cancel pending retransmit, pull snd_nxt back to (closed)
17199 * window, and set the persist timer if it isn't already
17200 * going. If the window didn't close completely, just wait
17201 * for an ACK.
17202 *
17203 * We also do a general check here to ensure that we will
17204 * set the persist timer when we have data to send, but a
17205 * 0-byte window. This makes sure the persist timer is set
17206 * even if the packet hits one of the "goto send" lines
17207 * below.
17208 */
17209 len = 0;
17210 if ((tp->snd_wnd == 0) &&
17212 (tp->snd_una == tp->snd_max) &&
17213 (sb_offset < (int)sbavail(sb))) {
17214 rack_enter_persist(tp, rack, cts);
17215 }
17216 } else if ((rsm == NULL) &&
17217 (doing_tlp == 0) &&
17218 (len < pace_max_seg)) {
17219 /*
17220 * We are not sending a maximum sized segment for
17221 * some reason. Should we not send anything (think
17222 * sws or persists)?
17223 */
17224 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17226 (len < minseg) &&
17227 (len < (int)(sbavail(sb) - sb_offset))) {
17228 /*
17229 * Here the rwnd is less than
17230 * the minimum pacing size, this is not a retransmit,
17231 * we are established and
17232 * the send is not the last in the socket buffer
17233 * we send nothing, and we may enter persists
17234 * if nothing is outstanding.
17235 */
17236 len = 0;
17237 if (tp->snd_max == tp->snd_una) {
17238 /*
17239 * Nothing out we can
17240 * go into persists.
17241 */
17242 rack_enter_persist(tp, rack, cts);
17243 }
17244 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
17245 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17246 (len < (int)(sbavail(sb) - sb_offset)) &&
17247 (len < minseg)) {
17248 /*
17249 * Here we are not retransmitting, and
17250 * the cwnd is not so small that we could
17251 * not send at least a min size (rxt timer
17252 * not having gone off), We have 2 segments or
17253 * more already in flight, its not the tail end
17254 * of the socket buffer and the cwnd is blocking
17255 * us from sending out a minimum pacing segment size.
17256 * Lets not send anything.
17257 */
17258 len = 0;
17259 } else if (((tp->snd_wnd - ctf_outstanding(tp)) <
17260 min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
17261 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
17262 (len < (int)(sbavail(sb) - sb_offset)) &&
17264 /*
17265 * Here we have a send window but we have
17266 * filled it up and we can't send another pacing segment.
17267 * We also have in flight more than 2 segments
17268 * and we are not completing the sb i.e. we allow
17269 * the last bytes of the sb to go out even if
17270 * its not a full pacing segment.
17271 */
17272 len = 0;
17273 } else if ((rack->r_ctl.crte != NULL) &&
17274 (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) &&
17275 (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) &&
17276 (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) &&
17277 (len < (int)(sbavail(sb) - sb_offset))) {
17278 /*
17279 * Here we are doing hardware pacing, this is not a TLP,
17280 * we are not sending a pace max segment size, there is rwnd
17281 * room to send at least N pace_max_seg, the cwnd is greater
17282 * than or equal to a full pacing segments plus 4 mss and we have 2 or
17283 * more segments in flight and its not the tail of the socket buffer.
17284 *
17285 * We don't want to send instead we need to get more ack's in to
17286 * allow us to send a full pacing segment. Normally, if we are pacing
17287 * about the right speed, we should have finished our pacing
17288 * send as most of the acks have come back if we are at the
17289 * right rate. This is a bit fuzzy since return path delay
17290 * can delay the acks, which is why we want to make sure we
17291 * have cwnd space to have a bit more than a max pace segments in flight.
17292 *
17293 * If we have not gotten our acks back we are pacing at too high a
17294 * rate delaying will not hurt and will bring our GP estimate down by
17295 * injecting the delay. If we don't do this we will send
17296 * 2 MSS out in response to the acks being clocked in which
17297 * defeats the point of hw-pacing (i.e. to help us get
17298 * larger TSO's out).
17299 */
17300 len = 0;
17301
17302 }
17303
17304 }
17305 /* len will be >= 0 after this point. */
17306 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
17308 /*
17309 * Decide if we can use TCP Segmentation Offloading (if supported by
17310 * hardware).
17311 *
17312 * TSO may only be used if we are in a pure bulk sending state. The
17313 * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
17314 * options prevent using TSO. With TSO the TCP header is the same
17315 * (except for the sequence number) for all generated packets. This
17316 * makes it impossible to transmit any options which vary per
17317 * generated segment or packet.
17318 *
17319 * IPv4 handling has a clear separation of ip options and ip header
17320 * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
17321 * the right thing below to provide length of just ip options and thus
17322 * checking for ipoptlen is enough to decide if ip options are present.
17323 */
17324 ipoptlen = 0;
17325#if defined(IPSEC) || defined(IPSEC_SUPPORT)
17326 /*
17327 * Pre-calculate here as we save another lookup into the darknesses
17328 * of IPsec that way and can actually decide if TSO is ok.
17329 */
17330#ifdef INET6
17331 if (isipv6 && IPSEC_ENABLED(ipv6))
17332 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
17333#ifdef INET
17334 else
17335#endif
17336#endif /* INET6 */
17337#ifdef INET
17338 if (IPSEC_ENABLED(ipv4))
17339 ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
17340#endif /* INET */
17341#endif
17342
17343#if defined(IPSEC) || defined(IPSEC_SUPPORT)
17344 ipoptlen += ipsec_optlen;
17345#endif
17346 if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
17347 (tp->t_port == 0) &&
17348 ((tp->t_flags & TF_SIGNATURE) == 0) &&
17349 tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
17350 ipoptlen == 0)
17351 tso = 1;
17352 {
17353 uint32_t outstanding;
17354
17355 outstanding = tp->snd_max - tp->snd_una;
17356 if (tp->t_flags & TF_SENTFIN) {
17357 /*
17358 * If we sent a fin, snd_max is 1 higher than
17359 * snd_una
17360 */
17361 outstanding--;
17362 }
17363 if (sack_rxmit) {
17364 if ((rsm->r_flags & RACK_HAS_FIN) == 0)
17365 flags &= ~TH_FIN;
17366 } else {
17367 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
17368 sbused(sb)))
17369 flags &= ~TH_FIN;
17370 }
17371 }
17372 recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
17373 (long)TCP_MAXWIN << tp->rcv_scale);
17374
17375 /*
17376 * Sender silly window avoidance. We transmit under the following
17377 * conditions when len is non-zero:
17378 *
17379 * - We have a full segment (or more with TSO) - This is the last
17380 * buffer in a write()/send() and we are either idle or running
17381 * NODELAY - we've timed out (e.g. persist timer) - we have more
17382 * then 1/2 the maximum send window's worth of data (receiver may be
17383 * limited the window size) - we need to retransmit
17384 */
17385 if (len) {
17386 if (len >= segsiz) {
17387 goto send;
17388 }
17389 /*
17390 * NOTE! on localhost connections an 'ack' from the remote
17391 * end may occur synchronously with the output and cause us
17392 * to flush a buffer queued with moretocome. XXX
17393 *
17394 */
17395 if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */
17396 (idle || (tp->t_flags & TF_NODELAY)) &&
17397 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17398 (tp->t_flags & TF_NOPUSH) == 0) {
17399 pass = 2;
17400 goto send;
17401 }
17402 if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */
17403 pass = 22;
17404 goto send;
17405 }
17406 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
17407 pass = 4;
17408 goto send;
17409 }
17410 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */
17411 pass = 5;
17412 goto send;
17413 }
17414 if (sack_rxmit) {
17415 pass = 6;
17416 goto send;
17417 }
17418 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
17419 (ctf_outstanding(tp) < (segsiz * 2))) {
17420 /*
17421 * We have less than two MSS outstanding (delayed ack)
17422 * and our rwnd will not let us send a full sized
17423 * MSS. Lets go ahead and let this small segment
17424 * out because we want to try to have at least two
17425 * packets inflight to not be caught by delayed ack.
17426 */
17427 pass = 12;
17428 goto send;
17429 }
17430 }
17431 /*
17432 * Sending of standalone window updates.
17433 *
17434 * Window updates are important when we close our window due to a
17435 * full socket buffer and are opening it again after the application
17436 * reads data from it. Once the window has opened again and the
17437 * remote end starts to send again the ACK clock takes over and
17438 * provides the most current window information.
17439 *
17440 * We must avoid the silly window syndrome whereas every read from
17441 * the receive buffer, no matter how small, causes a window update
17442 * to be sent. We also should avoid sending a flurry of window
17443 * updates when the socket buffer had queued a lot of data and the
17444 * application is doing small reads.
17445 *
17446 * Prevent a flurry of pointless window updates by only sending an
17447 * update when we can increase the advertized window by more than
17448 * 1/4th of the socket buffer capacity. When the buffer is getting
17449 * full or is very small be more aggressive and send an update
17450 * whenever we can increase by two mss sized segments. In all other
17451 * situations the ACK's to new incoming data will carry further
17452 * window increases.
17453 *
17454 * Don't send an independent window update if a delayed ACK is
17455 * pending (it will get piggy-backed on it) or the remote side
17456 * already has done a half-close and won't send more data. Skip
17457 * this if the connection is in T/TCP half-open state.
17458 */
17459 if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
17460 !(tp->t_flags & TF_DELACK) &&
17461 !TCPS_HAVERCVDFIN(tp->t_state)) {
17462 /*
17463 * "adv" is the amount we could increase the window, taking
17464 * into account that we are limited by TCP_MAXWIN <<
17465 * tp->rcv_scale.
17466 */
17467 int32_t adv;
17468 int oldwin;
17469
17470 adv = recwin;
17471 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
17472 oldwin = (tp->rcv_adv - tp->rcv_nxt);
17473 if (adv > oldwin)
17474 adv -= oldwin;
17475 else {
17476 /* We can't increase the window */
17477 adv = 0;
17478 }
17479 } else
17480 oldwin = 0;
17481
17482 /*
17483 * If the new window size ends up being the same as or less
17484 * than the old size when it is scaled, then don't force
17485 * a window update.
17486 */
17487 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
17488 goto dontupdate;
17489
17490 if (adv >= (int32_t)(2 * segsiz) &&
17491 (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
17492 recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
17493 so->so_rcv.sb_hiwat <= 8 * segsiz)) {
17494 pass = 7;
17495 goto send;
17496 }
17497 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
17498 pass = 23;
17499 goto send;
17500 }
17501 }
17502dontupdate:
17503
17504 /*
17505 * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW
17506 * is also a catch-all for the retransmit timer timeout case.
17507 */
17508 if (tp->t_flags & TF_ACKNOW) {
17509 pass = 8;
17510 goto send;
17511 }
17512 if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
17513 pass = 9;
17514 goto send;
17515 }
17516 /*
17517 * If our state indicates that FIN should be sent and we have not
17518 * yet done so, then we need to send.
17519 */
17520 if ((flags & TH_FIN) &&
17521 (tp->snd_nxt == tp->snd_una)) {
17522 pass = 11;
17523 goto send;
17524 }
17525 /*
17526 * No reason to send a segment, just return.
17527 */
17528just_return:
17529 SOCKBUF_UNLOCK(sb);
17530just_return_nolock:
17531 {
17532 int app_limited = CTF_JR_SENT_DATA;
17533
17534 if (tot_len_this_send > 0) {
17535 /* Make sure snd_nxt is up to max */
17536 rack->r_ctl.fsb.recwin = recwin;
17537 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
17538 if ((error == 0) &&
17539 rack_use_rfo &&
17540 ((flags & (TH_SYN|TH_FIN)) == 0) &&
17541 (ipoptlen == 0) &&
17542 (tp->snd_nxt == tp->snd_max) &&
17543 (tp->rcv_numsacks == 0) &&
17544 rack->r_fsb_inited &&
17546 (rack->r_must_retran == 0) &&
17547 ((tp->t_flags & TF_NEEDFIN) == 0) &&
17548 (len > 0) && (orig_len > 0) &&
17549 (orig_len > len) &&
17550 ((orig_len - len) >= segsiz) &&
17551 ((optlen == 0) ||
17552 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
17553 /* We can send at least one more MSS using our fsb */
17554
17555 rack->r_fast_output = 1;
17556 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
17557 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
17558 rack->r_ctl.fsb.tcp_flags = flags;
17559 rack->r_ctl.fsb.left_to_send = orig_len - len;
17560 if (hw_tls)
17561 rack->r_ctl.fsb.hw_tls = 1;
17562 else
17563 rack->r_ctl.fsb.hw_tls = 0;
17564 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
17565 ("rack:%p left_to_send:%u sbavail:%u out:%u",
17566 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
17567 (tp->snd_max - tp->snd_una)));
17568 if (rack->r_ctl.fsb.left_to_send < segsiz)
17569 rack->r_fast_output = 0;
17570 else {
17571 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
17572 rack->r_ctl.fsb.rfo_apply_push = 1;
17573 else
17574 rack->r_ctl.fsb.rfo_apply_push = 0;
17575 }
17576 } else
17577 rack->r_fast_output = 0;
17578
17579
17580 rack_log_fsb(rack, tp, so, flags,
17581 ipoptlen, orig_len, len, 0,
17582 1, optlen, __LINE__, 1);
17583 if (SEQ_GT(tp->snd_max, tp->snd_nxt))
17584 tp->snd_nxt = tp->snd_max;
17585 } else {
17586 int end_window = 0;
17587 uint32_t seq = tp->gput_ack;
17588
17589 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17590 if (rsm) {
17591 /*
17592 * Mark the last sent that we just-returned (hinting
17593 * that delayed ack may play a role in any rtt measurement).
17594 */
17595 rsm->r_just_ret = 1;
17596 }
17597 counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
17598 rack->r_ctl.rc_agg_delayed = 0;
17599 rack->r_early = 0;
17600 rack->r_late = 0;
17601 rack->r_ctl.rc_agg_early = 0;
17602 if ((ctf_outstanding(tp) +
17603 min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
17604 minseg)) >= tp->snd_wnd) {
17605 /* We are limited by the rwnd */
17606 app_limited = CTF_JR_RWND_LIMITED;
17607 if (IN_FASTRECOVERY(tp->t_flags))
17608 rack->r_ctl.rc_prr_sndcnt = 0;
17609 } else if (ctf_outstanding(tp) >= sbavail(sb)) {
17610 /* We are limited by whats available -- app limited */
17611 app_limited = CTF_JR_APP_LIMITED;
17612 if (IN_FASTRECOVERY(tp->t_flags))
17613 rack->r_ctl.rc_prr_sndcnt = 0;
17614 } else if ((idle == 0) &&
17615 ((tp->t_flags & TF_NODELAY) == 0) &&
17616 ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17617 (len < segsiz)) {
17618 /*
17619 * No delay is not on and the
17620 * user is sending less than 1MSS. This
17621 * brings out SWS avoidance so we
17622 * don't send. Another app-limited case.
17623 */
17624 app_limited = CTF_JR_APP_LIMITED;
17625 } else if (tp->t_flags & TF_NOPUSH) {
17626 /*
17627 * The user has requested no push of
17628 * the last segment and we are
17629 * at the last segment. Another app
17630 * limited case.
17631 */
17632 app_limited = CTF_JR_APP_LIMITED;
17633 } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
17634 /* Its the cwnd */
17635 app_limited = CTF_JR_CWND_LIMITED;
17636 } else if (IN_FASTRECOVERY(tp->t_flags) &&
17637 (rack->rack_no_prr == 0) &&
17638 (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
17639 app_limited = CTF_JR_PRR;
17640 } else {
17641 /* Now why here are we not sending? */
17642#ifdef NOW
17643#ifdef INVARIANTS
17644 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
17645#endif
17646#endif
17647 app_limited = CTF_JR_ASSESSING;
17648 }
17649 /*
17650 * App limited in some fashion, for our pacing GP
17651 * measurements we don't want any gap (even cwnd).
17652 * Close down the measurement window.
17653 */
17655 ((app_limited == CTF_JR_CWND_LIMITED) ||
17656 (app_limited == CTF_JR_PRR))) {
17657 /*
17658 * The reason we are not sending is
17659 * the cwnd (or prr). We have been configured
17660 * to end the measurement window in
17661 * this case.
17662 */
17663 end_window = 1;
17664 } else if (rack_rwnd_block_ends_measure &&
17665 (app_limited == CTF_JR_RWND_LIMITED)) {
17666 /*
17667 * We are rwnd limited and have been
17668 * configured to end the measurement
17669 * window in this case.
17670 */
17671 end_window = 1;
17672 } else if (app_limited == CTF_JR_APP_LIMITED) {
17673 /*
17674 * A true application limited period, we have
17675 * ran out of data.
17676 */
17677 end_window = 1;
17678 } else if (app_limited == CTF_JR_ASSESSING) {
17679 /*
17680 * In the assessing case we hit the end of
17681 * the if/else and had no known reason
17682 * This will panic us under invariants..
17683 *
17684 * If we get this out in logs we need to
17685 * investagate which reason we missed.
17686 */
17687 end_window = 1;
17688 }
17689 if (end_window) {
17690 uint8_t log = 0;
17691
17692 /* Adjust the Gput measurement */
17693 if ((tp->t_flags & TF_GPUTINPROG) &&
17694 SEQ_GT(tp->gput_ack, tp->snd_max)) {
17695 tp->gput_ack = tp->snd_max;
17696 if ((tp->gput_ack - tp->gput_seq) < (MIN_GP_WIN * segsiz)) {
17697 /*
17698 * There is not enough to measure.
17699 */
17700 tp->t_flags &= ~TF_GPUTINPROG;
17701 rack_log_pacing_delay_calc(rack, (tp->gput_ack - tp->gput_seq) /*flex2*/,
17702 rack->r_ctl.rc_gp_srtt /*flex1*/,
17703 tp->gput_seq,
17704 0, 0, 18, __LINE__, NULL, 0);
17705 } else
17706 log = 1;
17707 }
17708 /* Mark the last packet has app limited */
17709 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17710 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
17711 if (rack->r_ctl.rc_app_limited_cnt == 0)
17712 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
17713 else {
17714 /*
17715 * Go out to the end app limited and mark
17716 * this new one as next and move the end_appl up
17717 * to this guy.
17718 */
17719 if (rack->r_ctl.rc_end_appl)
17720 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
17721 rack->r_ctl.rc_end_appl = rsm;
17722 }
17723 rsm->r_flags |= RACK_APP_LIMITED;
17724 rack->r_ctl.rc_app_limited_cnt++;
17725 }
17726 if (log)
17728 rack->r_ctl.rc_app_limited_cnt, seq,
17729 tp->gput_ack, 0, 0, 4, __LINE__, NULL, 0);
17730 }
17731 }
17732 /* Check if we need to go into persists or not */
17733 if ((tp->snd_max == tp->snd_una) &&
17735 sbavail(sb) &&
17736 (sbavail(sb) > tp->snd_wnd) &&
17737 (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
17738 /* Yes lets make sure to move to persist before timer-start */
17739 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
17740 }
17741 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
17742 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
17743 }
17744#ifdef NETFLIX_SHARED_CWND
17745 if ((sbavail(sb) == 0) &&
17746 rack->r_ctl.rc_scw) {
17747 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17748 rack->rack_scwnd_is_idle = 1;
17749 }
17750#endif
17751#ifdef TCP_ACCOUNTING
17752 if (tot_len_this_send > 0) {
17753 crtsc = get_cyclecount();
17754 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17755 tp->tcp_cnt_counters[SND_OUT_DATA]++;
17756 }
17757 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
17758 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17759 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
17760 }
17761 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
17762 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17763 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz);
17764 }
17765 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz));
17766 } else {
17767 crtsc = get_cyclecount();
17768 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17769 tp->tcp_cnt_counters[SND_LIMITED]++;
17770 }
17771 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1);
17772 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17773 tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val);
17774 }
17775 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val));
17776 }
17777 sched_unpin();
17778#endif
17779 return (0);
17780
17781send:
17782 if (rsm || sack_rxmit)
17783 counter_u64_add(rack_nfto_resend, 1);
17784 else
17785 counter_u64_add(rack_non_fto_send, 1);
17786 if ((flags & TH_FIN) &&
17787 sbavail(sb)) {
17788 /*
17789 * We do not transmit a FIN
17790 * with data outstanding. We
17791 * need to make it so all data
17792 * is acked first.
17793 */
17794 flags &= ~TH_FIN;
17795 }
17796 /* Enforce stack imposed max seg size if we have one */
17797 if (rack->r_ctl.rc_pace_max_segs &&
17798 (len > rack->r_ctl.rc_pace_max_segs)) {
17799 mark = 1;
17800 len = rack->r_ctl.rc_pace_max_segs;
17801 }
17802 SOCKBUF_LOCK_ASSERT(sb);
17803 if (len > 0) {
17804 if (len >= segsiz)
17806 else
17807 tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
17808 }
17809 /*
17810 * Before ESTABLISHED, force sending of initial options unless TCP
17811 * set not to do any options. NOTE: we assume that the IP/TCP header
17812 * plus TCP options always fit in a single mbuf, leaving room for a
17813 * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
17814 * + optlen <= MCLBYTES
17815 */
17816 optlen = 0;
17817#ifdef INET6
17818 if (isipv6)
17819 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
17820 else
17821#endif
17822 hdrlen = sizeof(struct tcpiphdr);
17823
17824 /*
17825 * Compute options for segment. We only have to care about SYN and
17826 * established connection segments. Options for SYN-ACK segments
17827 * are handled in TCP syncache.
17828 */
17829 to.to_flags = 0;
17830 if ((tp->t_flags & TF_NOOPT) == 0) {
17831 /* Maximum segment size. */
17832 if (flags & TH_SYN) {
17833 tp->snd_nxt = tp->iss;
17834 to.to_mss = tcp_mssopt(&inp->inp_inc);
17835 if (tp->t_port)
17837 to.to_flags |= TOF_MSS;
17838
17839 /*
17840 * On SYN or SYN|ACK transmits on TFO connections,
17841 * only include the TFO option if it is not a
17842 * retransmit, as the presence of the TFO option may
17843 * have caused the original SYN or SYN|ACK to have
17844 * been dropped by a middlebox.
17845 */
17846 if (IS_FASTOPEN(tp->t_flags) &&
17847 (tp->t_rxtshift == 0)) {
17848 if (tp->t_state == TCPS_SYN_RECEIVED) {
17850 to.to_tfo_cookie =
17851 (u_int8_t *)&tp->t_tfo_cookie.server;
17852 to.to_flags |= TOF_FASTOPEN;
17853 wanted_cookie = 1;
17854 } else if (tp->t_state == TCPS_SYN_SENT) {
17855 to.to_tfo_len =
17857 to.to_tfo_cookie =
17858 tp->t_tfo_cookie.client;
17859 to.to_flags |= TOF_FASTOPEN;
17860 wanted_cookie = 1;
17861 /*
17862 * If we wind up having more data to
17863 * send with the SYN than can fit in
17864 * one segment, don't send any more
17865 * until the SYN|ACK comes back from
17866 * the other end.
17867 */
17868 sendalot = 0;
17869 }
17870 }
17871 }
17872 /* Window scaling. */
17873 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
17874 to.to_wscale = tp->request_r_scale;
17875 to.to_flags |= TOF_SCALE;
17876 }
17877 /* Timestamps. */
17878 if ((tp->t_flags & TF_RCVD_TSTMP) ||
17879 ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
17880 to.to_tsval = ms_cts + tp->ts_offset;
17881 to.to_tsecr = tp->ts_recent;
17882 to.to_flags |= TOF_TS;
17883 }
17884 /* Set receive buffer autosizing timestamp. */
17885 if (tp->rfbuf_ts == 0 &&
17886 (so->so_rcv.sb_flags & SB_AUTOSIZE))
17887 tp->rfbuf_ts = tcp_ts_getticks();
17888 /* Selective ACK's. */
17889 if (tp->t_flags & TF_SACK_PERMIT) {
17890 if (flags & TH_SYN)
17891 to.to_flags |= TOF_SACKPERM;
17892 else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17893 tp->rcv_numsacks > 0) {
17894 to.to_flags |= TOF_SACK;
17895 to.to_nsacks = tp->rcv_numsacks;
17896 to.to_sacks = (u_char *)tp->sackblks;
17897 }
17898 }
17899#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
17900 /* TCP-MD5 (RFC2385). */
17901 if (tp->t_flags & TF_SIGNATURE)
17902 to.to_flags |= TOF_SIGNATURE;
17903#endif /* TCP_SIGNATURE */
17904
17905 /* Processing the options. */
17906 hdrlen += optlen = tcp_addoptions(&to, opt);
17907 /*
17908 * If we wanted a TFO option to be added, but it was unable
17909 * to fit, ensure no data is sent.
17910 */
17911 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
17912 !(to.to_flags & TOF_FASTOPEN))
17913 len = 0;
17914 }
17915 if (tp->t_port) {
17916 if (V_tcp_udp_tunneling_port == 0) {
17917 /* The port was removed?? */
17918 SOCKBUF_UNLOCK(&so->so_snd);
17919#ifdef TCP_ACCOUNTING
17920 crtsc = get_cyclecount();
17921 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17922 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
17923 }
17924 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
17925 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17926 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
17927 }
17928 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
17929 sched_unpin();
17930#endif
17931 return (EHOSTUNREACH);
17932 }
17933 hdrlen += sizeof(struct udphdr);
17934 }
17935#ifdef INET6
17936 if (isipv6)
17937 ipoptlen = ip6_optlen(tp->t_inpcb);
17938 else
17939#endif
17940 if (tp->t_inpcb->inp_options)
17941 ipoptlen = tp->t_inpcb->inp_options->m_len -
17942 offsetof(struct ipoption, ipopt_list);
17943 else
17944 ipoptlen = 0;
17945#if defined(IPSEC) || defined(IPSEC_SUPPORT)
17946 ipoptlen += ipsec_optlen;
17947#endif
17948
17949 /*
17950 * Adjust data length if insertion of options will bump the packet
17951 * length beyond the t_maxseg length. Clear the FIN bit because we
17952 * cut off the tail of the segment.
17953 */
17954 if (len + optlen + ipoptlen > tp->t_maxseg) {
17955 if (tso) {
17956 uint32_t if_hw_tsomax;
17957 uint32_t moff;
17958 int32_t max_len;
17959
17960 /* extract TSO information */
17961 if_hw_tsomax = tp->t_tsomax;
17962 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
17963 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
17964 KASSERT(ipoptlen == 0,
17965 ("%s: TSO can't do IP options", __func__));
17966
17967 /*
17968 * Check if we should limit by maximum payload
17969 * length:
17970 */
17971 if (if_hw_tsomax != 0) {
17972 /* compute maximum TSO length */
17973 max_len = (if_hw_tsomax - hdrlen -
17974 max_linkhdr);
17975 if (max_len <= 0) {
17976 len = 0;
17977 } else if (len > max_len) {
17978 sendalot = 1;
17979 len = max_len;
17980 mark = 2;
17981 }
17982 }
17983 /*
17984 * Prevent the last segment from being fractional
17985 * unless the send sockbuf can be emptied:
17986 */
17987 max_len = (tp->t_maxseg - optlen);
17988 if ((sb_offset + len) < sbavail(sb)) {
17989 moff = len % (u_int)max_len;
17990 if (moff != 0) {
17991 mark = 3;
17992 len -= moff;
17993 }
17994 }
17995 /*
17996 * In case there are too many small fragments don't
17997 * use TSO:
17998 */
17999 if (len <= segsiz) {
18000 mark = 4;
18001 tso = 0;
18002 }
18003 /*
18004 * Send the FIN in a separate segment after the bulk
18005 * sending is done. We don't trust the TSO
18006 * implementations to clear the FIN flag on all but
18007 * the last segment.
18008 */
18009 if (tp->t_flags & TF_NEEDFIN) {
18010 sendalot = 4;
18011 }
18012 } else {
18013 mark = 5;
18014 if (optlen + ipoptlen >= tp->t_maxseg) {
18015 /*
18016 * Since we don't have enough space to put
18017 * the IP header chain and the TCP header in
18018 * one packet as required by RFC 7112, don't
18019 * send it. Also ensure that at least one
18020 * byte of the payload can be put into the
18021 * TCP segment.
18022 */
18023 SOCKBUF_UNLOCK(&so->so_snd);
18024 error = EMSGSIZE;
18025 sack_rxmit = 0;
18026 goto out;
18027 }
18028 len = tp->t_maxseg - optlen - ipoptlen;
18029 sendalot = 5;
18030 }
18031 } else {
18032 tso = 0;
18033 mark = 6;
18034 }
18035 KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
18036 ("%s: len > IP_MAXPACKET", __func__));
18037#ifdef DIAGNOSTIC
18038#ifdef INET6
18039 if (max_linkhdr + hdrlen > MCLBYTES)
18040#else
18041 if (max_linkhdr + hdrlen > MHLEN)
18042#endif
18043 panic("tcphdr too big");
18044#endif
18045
18046 /*
18047 * This KASSERT is here to catch edge cases at a well defined place.
18048 * Before, those had triggered (random) panic conditions further
18049 * down.
18050 */
18051 KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
18052 if ((len == 0) &&
18053 (flags & TH_FIN) &&
18054 (sbused(sb))) {
18055 /*
18056 * We have outstanding data, don't send a fin by itself!.
18057 */
18058 goto just_return;
18059 }
18060 /*
18061 * Grab a header mbuf, attaching a copy of data to be transmitted,
18062 * and initialize the header from the template for sends on this
18063 * connection.
18064 */
18065 hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0;
18066 if (len) {
18067 uint32_t max_val;
18068 uint32_t moff;
18069
18070 if (rack->r_ctl.rc_pace_max_segs)
18071 max_val = rack->r_ctl.rc_pace_max_segs;
18072 else if (rack->rc_user_set_max_segs)
18073 max_val = rack->rc_user_set_max_segs * segsiz;
18074 else
18075 max_val = len;
18076 /*
18077 * We allow a limit on sending with hptsi.
18078 */
18079 if (len > max_val) {
18080 mark = 7;
18081 len = max_val;
18082 }
18083#ifdef INET6
18084 if (MHLEN < hdrlen + max_linkhdr)
18085 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
18086 else
18087#endif
18088 m = m_gethdr(M_NOWAIT, MT_DATA);
18089
18090 if (m == NULL) {
18091 SOCKBUF_UNLOCK(sb);
18092 error = ENOBUFS;
18093 sack_rxmit = 0;
18094 goto out;
18095 }
18096 m->m_data += max_linkhdr;
18097 m->m_len = hdrlen;
18098
18099 /*
18100 * Start the m_copy functions from the closest mbuf to the
18101 * sb_offset in the socket buffer chain.
18102 */
18103 mb = sbsndptr_noadv(sb, sb_offset, &moff);
18104 s_mb = mb;
18105 s_moff = moff;
18106 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
18107 m_copydata(mb, moff, (int)len,
18108 mtod(m, caddr_t)+hdrlen);
18109 if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18110 sbsndptr_adv(sb, mb, len);
18111 m->m_len += len;
18112 } else {
18113 struct sockbuf *msb;
18114
18115 if (SEQ_LT(tp->snd_nxt, tp->snd_max))
18116 msb = NULL;
18117 else
18118 msb = sb;
18119 m->m_next = tcp_m_copym(
18120 mb, moff, &len,
18121 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
18122 ((rsm == NULL) ? hw_tls : 0)
18123#ifdef NETFLIX_COPY_ARGS
18124 , &filled_all
18125#endif
18126 );
18127 if (len <= (tp->t_maxseg - optlen)) {
18128 /*
18129 * Must have ran out of mbufs for the copy
18130 * shorten it to no longer need tso. Lets
18131 * not put on sendalot since we are low on
18132 * mbufs.
18133 */
18134 tso = 0;
18135 }
18136 if (m->m_next == NULL) {
18137 SOCKBUF_UNLOCK(sb);
18138 (void)m_free(m);
18139 error = ENOBUFS;
18140 sack_rxmit = 0;
18141 goto out;
18142 }
18143 }
18144 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
18145 if (rsm && (rsm->r_flags & RACK_TLP)) {
18146 /*
18147 * TLP should not count in retran count, but
18148 * in its own bin
18149 */
18150 counter_u64_add(rack_tlp_retran, 1);
18151 counter_u64_add(rack_tlp_retran_bytes, len);
18152 } else {
18153 tp->t_sndrexmitpack++;
18154 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
18155 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
18156 }
18157#ifdef STATS
18158 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
18159 len);
18160#endif
18161 } else {
18162 KMOD_TCPSTAT_INC(tcps_sndpack);
18163 KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
18164#ifdef STATS
18165 stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
18166 len);
18167#endif
18168 }
18169 /*
18170 * If we're sending everything we've got, set PUSH. (This
18171 * will keep happy those implementations which only give
18172 * data to the user when a buffer fills or a PUSH comes in.)
18173 */
18174 if (sb_offset + len == sbused(sb) &&
18175 sbused(sb) &&
18176 !(flags & TH_SYN)) {
18177 flags |= TH_PUSH;
18178 add_flag |= RACK_HAD_PUSH;
18179 }
18180
18181 SOCKBUF_UNLOCK(sb);
18182 } else {
18183 SOCKBUF_UNLOCK(sb);
18184 if (tp->t_flags & TF_ACKNOW)
18185 KMOD_TCPSTAT_INC(tcps_sndacks);
18186 else if (flags & (TH_SYN | TH_FIN | TH_RST))
18187 KMOD_TCPSTAT_INC(tcps_sndctrl);
18188 else
18189 KMOD_TCPSTAT_INC(tcps_sndwinup);
18190
18191 m = m_gethdr(M_NOWAIT, MT_DATA);
18192 if (m == NULL) {
18193 error = ENOBUFS;
18194 sack_rxmit = 0;
18195 goto out;
18196 }
18197#ifdef INET6
18198 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
18199 MHLEN >= hdrlen) {
18200 M_ALIGN(m, hdrlen);
18201 } else
18202#endif
18203 m->m_data += max_linkhdr;
18204 m->m_len = hdrlen;
18205 }
18206 SOCKBUF_UNLOCK_ASSERT(sb);
18207 m->m_pkthdr.rcvif = (struct ifnet *)0;
18208#ifdef MAC
18209 mac_inpcb_create_mbuf(inp, m);
18210#endif
18211 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18212#ifdef INET6
18213 if (isipv6)
18214 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
18215 else
18216#endif /* INET6 */
18217 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
18218 th = rack->r_ctl.fsb.th;
18219 udp = rack->r_ctl.fsb.udp;
18220 if (udp) {
18221#ifdef INET6
18222 if (isipv6)
18223 ulen = hdrlen + len - sizeof(struct ip6_hdr);
18224 else
18225#endif /* INET6 */
18226 ulen = hdrlen + len - sizeof(struct ip);
18227 udp->uh_ulen = htons(ulen);
18228 }
18229 } else {
18230#ifdef INET6
18231 if (isipv6) {
18232 ip6 = mtod(m, struct ip6_hdr *);
18233 if (tp->t_port) {
18234 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
18235 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18236 udp->uh_dport = tp->t_port;
18237 ulen = hdrlen + len - sizeof(struct ip6_hdr);
18238 udp->uh_ulen = htons(ulen);
18239 th = (struct tcphdr *)(udp + 1);
18240 } else
18241 th = (struct tcphdr *)(ip6 + 1);
18242 tcpip_fillheaders(inp, tp->t_port, ip6, th);
18243 } else
18244#endif /* INET6 */
18245 {
18246 ip = mtod(m, struct ip *);
18247#ifdef TCPDEBUG
18248 ipov = (struct ipovly *)ip;
18249#endif
18250 if (tp->t_port) {
18251 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
18252 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
18253 udp->uh_dport = tp->t_port;
18254 ulen = hdrlen + len - sizeof(struct ip);
18255 udp->uh_ulen = htons(ulen);
18256 th = (struct tcphdr *)(udp + 1);
18257 } else
18258 th = (struct tcphdr *)(ip + 1);
18259 tcpip_fillheaders(inp, tp->t_port, ip, th);
18260 }
18261 }
18262 /*
18263 * Fill in fields, remembering maximum advertised window for use in
18264 * delaying messages about window sizes. If resending a FIN, be sure
18265 * not to use a new sequence number.
18266 */
18267 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
18268 tp->snd_nxt == tp->snd_max)
18269 tp->snd_nxt--;
18270 /*
18271 * If we are starting a connection, send ECN setup SYN packet. If we
18272 * are on a retransmit, we may resend those bits a number of times
18273 * as per RFC 3168.
18274 */
18275 if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn) {
18276 flags |= tcp_ecn_output_syn_sent(tp);
18277 }
18278 /* Also handle parallel SYN for ECN */
18279 if (TCPS_HAVERCVDSYN(tp->t_state) &&
18280 (tp->t_flags2 & TF2_ECN_PERMIT)) {
18281 int ect = tcp_ecn_output_established(tp, &flags, len, sack_rxmit);
18282 if ((tp->t_state == TCPS_SYN_RECEIVED) &&
18283 (tp->t_flags2 & TF2_ECN_SND_ECE))
18284 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
18285#ifdef INET6
18286 if (isipv6) {
18287 ip6->ip6_flow &= ~htonl(IPTOS_ECN_MASK << 20);
18288 ip6->ip6_flow |= htonl(ect << 20);
18289 }
18290 else
18291#endif
18292 {
18293 ip->ip_tos &= ~IPTOS_ECN_MASK;
18294 ip->ip_tos |= ect;
18295 }
18296 }
18297 /*
18298 * If we are doing retransmissions, then snd_nxt will not reflect
18299 * the first unsent octet. For ACK only packets, we do not want the
18300 * sequence number of the retransmitted packet, we want the sequence
18301 * number of the next unsent octet. So, if there is no data (and no
18302 * SYN or FIN), use snd_max instead of snd_nxt when filling in
18303 * ti_seq. But if we are in persist state, snd_max might reflect
18304 * one byte beyond the right edge of the window, so use snd_nxt in
18305 * that case, since we know we aren't doing a retransmission.
18306 * (retransmit and persist are mutually exclusive...)
18307 */
18308 if (sack_rxmit == 0) {
18309 if (len || (flags & (TH_SYN | TH_FIN))) {
18310 th->th_seq = htonl(tp->snd_nxt);
18311 rack_seq = tp->snd_nxt;
18312 } else {
18313 th->th_seq = htonl(tp->snd_max);
18314 rack_seq = tp->snd_max;
18315 }
18316 } else {
18317 th->th_seq = htonl(rsm->r_start);
18318 rack_seq = rsm->r_start;
18319 }
18320 th->th_ack = htonl(tp->rcv_nxt);
18321 tcp_set_flags(th, flags);
18322 /*
18323 * Calculate receive window. Don't shrink window, but avoid silly
18324 * window syndrome.
18325 * If a RST segment is sent, advertise a window of zero.
18326 */
18327 if (flags & TH_RST) {
18328 recwin = 0;
18329 } else {
18330 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
18331 recwin < (long)segsiz) {
18332 recwin = 0;
18333 }
18334 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
18335 recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
18336 recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
18337 }
18338
18339 /*
18340 * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
18341 * <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is
18342 * handled in syncache.
18343 */
18344 if (flags & TH_SYN)
18345 th->th_win = htons((u_short)
18346 (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
18347 else {
18348 /* Avoid shrinking window with window scaling. */
18349 recwin = roundup2(recwin, 1 << tp->rcv_scale);
18350 th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
18351 }
18352 /*
18353 * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
18354 * window. This may cause the remote transmitter to stall. This
18355 * flag tells soreceive() to disable delayed acknowledgements when
18356 * draining the buffer. This can occur if the receiver is
18357 * attempting to read more data than can be buffered prior to
18358 * transmitting on the connection.
18359 */
18360 if (th->th_win == 0) {
18361 tp->t_sndzerowin++;
18362 tp->t_flags |= TF_RXWIN0SENT;
18363 } else
18364 tp->t_flags &= ~TF_RXWIN0SENT;
18365 tp->snd_up = tp->snd_una; /* drag it along, its deprecated */
18366 /* Now are we using fsb?, if so copy the template data to the mbuf */
18367 if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
18368 uint8_t *cpto;
18369
18370 cpto = mtod(m, uint8_t *);
18371 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
18372 /*
18373 * We have just copied in:
18374 * IP/IP6
18375 * <optional udphdr>
18376 * tcphdr (no options)
18377 *
18378 * We need to grab the correct pointers into the mbuf
18379 * for both the tcp header, and possibly the udp header (if tunneling).
18380 * We do this by using the offset in the copy buffer and adding it
18381 * to the mbuf base pointer (cpto).
18382 */
18383#ifdef INET6
18384 if (isipv6)
18385 ip6 = mtod(m, struct ip6_hdr *);
18386 else
18387#endif /* INET6 */
18388 ip = mtod(m, struct ip *);
18389 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
18390 /* If we have a udp header lets set it into the mbuf as well */
18391 if (udp)
18392 udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr));
18393 }
18394#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
18395 if (to.to_flags & TOF_SIGNATURE) {
18396 /*
18397 * Calculate MD5 signature and put it into the place
18398 * determined before.
18399 * NOTE: since TCP options buffer doesn't point into
18400 * mbuf's data, calculate offset and use it.
18401 */
18402 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
18403 (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
18404 /*
18405 * Do not send segment if the calculation of MD5
18406 * digest has failed.
18407 */
18408 goto out;
18409 }
18410 }
18411#endif
18412 if (optlen) {
18413 bcopy(opt, th + 1, optlen);
18414 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
18415 }
18416 /*
18417 * Put TCP length in extended header, and then checksum extended
18418 * header and data.
18419 */
18420 m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
18421#ifdef INET6
18422 if (isipv6) {
18423 /*
18424 * ip6_plen is not need to be filled now, and will be filled
18425 * in ip6_output.
18426 */
18427 if (tp->t_port) {
18428 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
18429 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18430 udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
18431 th->th_sum = htons(0);
18432 UDPSTAT_INC(udps_opackets);
18433 } else {
18434 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
18435 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18436 th->th_sum = in6_cksum_pseudo(ip6,
18437 sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
18438 0);
18439 }
18440 }
18441#endif
18442#if defined(INET6) && defined(INET)
18443 else
18444#endif
18445#ifdef INET
18446 {
18447 if (tp->t_port) {
18448 m->m_pkthdr.csum_flags = CSUM_UDP;
18449 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
18450 udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
18451 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
18452 th->th_sum = htons(0);
18453 UDPSTAT_INC(udps_opackets);
18454 } else {
18455 m->m_pkthdr.csum_flags = CSUM_TCP;
18456 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
18457 th->th_sum = in_pseudo(ip->ip_src.s_addr,
18458 ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
18459 IPPROTO_TCP + len + optlen));
18460 }
18461 /* IP version must be set here for ipv4/ipv6 checking later */
18462 KASSERT(ip->ip_v == IPVERSION,
18463 ("%s: IP version incorrect: %d", __func__, ip->ip_v));
18464 }
18465#endif
18466 /*
18467 * Enable TSO and specify the size of the segments. The TCP pseudo
18468 * header checksum is always provided. XXX: Fixme: This is currently
18469 * not the case for IPv6.
18470 */
18471 if (tso) {
18472 KASSERT(len > tp->t_maxseg - optlen,
18473 ("%s: len <= tso_segsz", __func__));
18474 m->m_pkthdr.csum_flags |= CSUM_TSO;
18475 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
18476 }
18477 KASSERT(len + hdrlen == m_length(m, NULL),
18478 ("%s: mbuf chain different than expected: %d + %u != %u",
18479 __func__, len, hdrlen, m_length(m, NULL)));
18480
18481#ifdef TCP_HHOOK
18482 /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
18483 hhook_run_tcp_est_out(tp, th, &to, len, tso);
18484#endif
18485 /* We're getting ready to send; log now. */
18486 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
18487 union tcp_log_stackspecific log;
18488
18489 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
18490 log.u_bbr.inhpts = tcp_in_hpts(rack->rc_inp);
18491 if (rack->rack_no_prr)
18492 log.u_bbr.flex1 = 0;
18493 else
18494 log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
18495 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
18496 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
18497 log.u_bbr.flex4 = orig_len;
18498 if (filled_all)
18499 log.u_bbr.flex5 = 0x80000000;
18500 else
18501 log.u_bbr.flex5 = 0;
18502 /* Save off the early/late values */
18503 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
18505 log.u_bbr.bw_inuse = rack_get_bw(rack);
18506 if (rsm || sack_rxmit) {
18507 if (doing_tlp)
18508 log.u_bbr.flex8 = 2;
18509 else
18510 log.u_bbr.flex8 = 1;
18511 } else {
18512 if (doing_tlp)
18513 log.u_bbr.flex8 = 3;
18514 else
18515 log.u_bbr.flex8 = 0;
18516 }
18517 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
18518 log.u_bbr.flex7 = mark;
18519 log.u_bbr.flex7 <<= 8;
18520 log.u_bbr.flex7 |= pass;
18521 log.u_bbr.pkts_out = tp->t_maxseg;
18522 log.u_bbr.timeStamp = cts;
18523 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
18524 log.u_bbr.lt_epoch = cwnd_to_use;
18525 log.u_bbr.delivered = sendalot;
18526 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
18527 len, &log, false, NULL, NULL, 0, &tv);
18528 } else
18529 lgb = NULL;
18530
18531 /*
18532 * Fill in IP length and desired time to live and send to IP level.
18533 * There should be a better way to handle ttl and tos; we could keep
18534 * them in the template, but need a way to checksum without them.
18535 */
18536 /*
18537 * m->m_pkthdr.len should have been set before cksum calcuration,
18538 * because in6_cksum() need it.
18539 */
18540#ifdef INET6
18541 if (isipv6) {
18542 /*
18543 * we separately set hoplimit for every segment, since the
18544 * user might want to change the value via setsockopt. Also,
18545 * desired default hop limit might be changed via Neighbor
18546 * Discovery.
18547 */
18548 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL);
18549
18550 /*
18551 * Set the packet size here for the benefit of DTrace
18552 * probes. ip6_output() will set it properly; it's supposed
18553 * to include the option header lengths as well.
18554 */
18555 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
18556
18559 else
18560 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18561
18562 if (tp->t_state == TCPS_SYN_SENT)
18563 TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
18564
18565 TCP_PROBE5(send, NULL, tp, ip6, tp, th);
18566 /* TODO: IPv6 IP6TOS_ECT bit on */
18567 error = ip6_output(m,
18568#if defined(IPSEC) || defined(IPSEC_SUPPORT)
18569 inp->in6p_outputopts,
18570#else
18571 NULL,
18572#endif
18573 &inp->inp_route6,
18574 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
18575 NULL, NULL, inp);
18576
18577 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
18578 mtu = inp->inp_route6.ro_nh->nh_mtu;
18579 }
18580#endif /* INET6 */
18581#if defined(INET) && defined(INET6)
18582 else
18583#endif
18584#ifdef INET
18585 {
18586 ip->ip_len = htons(m->m_pkthdr.len);
18587#ifdef INET6
18588 if (inp->inp_vflag & INP_IPV6PROTO)
18589 ip->ip_ttl = in6_selecthlim(inp, NULL);
18590#endif /* INET6 */
18591 rack->r_ctl.fsb.hoplimit = ip->ip_ttl;
18592 /*
18593 * If we do path MTU discovery, then we set DF on every
18594 * packet. This might not be the best thing to do according
18595 * to RFC3390 Section 2. However the tcp hostcache migitates
18596 * the problem so it affects only the first tcp connection
18597 * with a host.
18598 *
18599 * NB: Don't set DF on small MTU/MSS to have a safe
18600 * fallback.
18601 */
18604 if (tp->t_port == 0 || len < V_tcp_minmss) {
18605 ip->ip_off |= htons(IP_DF);
18606 }
18607 } else {
18608 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18609 }
18610
18611 if (tp->t_state == TCPS_SYN_SENT)
18612 TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
18613
18614 TCP_PROBE5(send, NULL, tp, ip, tp, th);
18615
18616 error = ip_output(m,
18617#if defined(IPSEC) || defined(IPSEC_SUPPORT)
18618 inp->inp_options,
18619#else
18620 NULL,
18621#endif
18622 &inp->inp_route,
18623 ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
18624 inp);
18625 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
18626 mtu = inp->inp_route.ro_nh->nh_mtu;
18627 }
18628#endif /* INET */
18629
18630out:
18631 if (lgb) {
18632 lgb->tlb_errno = error;
18633 lgb = NULL;
18634 }
18635 /*
18636 * In transmit state, time the transmission and arrange for the
18637 * retransmit. In persist state, just set snd_max.
18638 */
18639 if (error == 0) {
18640 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp, hw_tls);
18641 if (rsm && doing_tlp) {
18644 rack->r_ctl.last_sent_tlp_seq = rsm->r_start;
18645 rack->r_ctl.last_sent_tlp_len = rsm->r_end - rsm->r_start;
18646 }
18647 rack->forced_ack = 0; /* If we send something zap the FA flag */
18648 if (rsm && (doing_tlp == 0)) {
18649 /* Set we retransmitted */
18650 rack->rc_gp_saw_rec = 1;
18651 } else {
18652 if (cwnd_to_use > tp->snd_ssthresh) {
18653 /* Set we sent in CA */
18654 rack->rc_gp_saw_ca = 1;
18655 } else {
18656 /* Set we sent in SS */
18657 rack->rc_gp_saw_ss = 1;
18658 }
18659 }
18660 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18661 (tp->t_flags & TF_SACK_PERMIT) &&
18662 tp->rcv_numsacks > 0)
18664 tot_len_this_send += len;
18665 if (len == 0)
18666 counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
18667 else if (len == 1) {
18668 counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
18669 } else if (len > 1) {
18670 int idx;
18671
18672 idx = (len / segsiz) + 3;
18673 if (idx >= TCP_MSS_ACCT_ATIMER)
18674 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
18675 else
18676 counter_u64_add(rack_out_size[idx], 1);
18677 }
18678 }
18679 if ((rack->rack_no_prr == 0) &&
18680 sub_from_prr &&
18681 (error == 0)) {
18682 if (rack->r_ctl.rc_prr_sndcnt >= len)
18683 rack->r_ctl.rc_prr_sndcnt -= len;
18684 else
18685 rack->r_ctl.rc_prr_sndcnt = 0;
18686 }
18687 sub_from_prr = 0;
18688 if (doing_tlp) {
18689 /* Make sure the TLP is added */
18690 add_flag |= RACK_TLP;
18691 } else if (rsm) {
18692 /* If its a resend without TLP then it must not have the flag */
18693 rsm->r_flags &= ~RACK_TLP;
18694 }
18695 rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error,
18696 rack_to_usec_ts(&tv),
18697 rsm, add_flag, s_mb, s_moff, hw_tls);
18698
18699
18700 if ((error == 0) &&
18701 (len > 0) &&
18702 (tp->snd_una == tp->snd_max))
18703 rack->r_ctl.rc_tlp_rxt_last_time = cts;
18704 {
18705 tcp_seq startseq = tp->snd_nxt;
18706
18707 /* Track our lost count */
18708 if (rsm && (doing_tlp == 0))
18709 rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
18710 /*
18711 * Advance snd_nxt over sequence space of this segment.
18712 */
18713 if (error)
18714 /* We don't log or do anything with errors */
18715 goto nomore;
18716 if (doing_tlp == 0) {
18717 if (rsm == NULL) {
18718 /*
18719 * Not a retransmission of some
18720 * sort, new data is going out so
18721 * clear our TLP count and flag.
18722 */
18723 rack->rc_tlp_in_progress = 0;
18724 rack->r_ctl.rc_tlp_cnt_out = 0;
18725 }
18726 } else {
18727 /*
18728 * We have just sent a TLP, mark that it is true
18729 * and make sure our in progress is set so we
18730 * continue to check the count.
18731 */
18732 rack->rc_tlp_in_progress = 1;
18733 rack->r_ctl.rc_tlp_cnt_out++;
18734 }
18735 if (flags & (TH_SYN | TH_FIN)) {
18736 if (flags & TH_SYN)
18737 tp->snd_nxt++;
18738 if (flags & TH_FIN) {
18739 tp->snd_nxt++;
18740 tp->t_flags |= TF_SENTFIN;
18741 }
18742 }
18743 /* In the ENOBUFS case we do *not* update snd_max */
18744 if (sack_rxmit)
18745 goto nomore;
18746
18747 tp->snd_nxt += len;
18748 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
18749 if (tp->snd_una == tp->snd_max) {
18750 /*
18751 * Update the time we just added data since
18752 * none was outstanding.
18753 */
18754 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
18755 tp->t_acktime = ticks;
18756 }
18757 tp->snd_max = tp->snd_nxt;
18758 /*
18759 * Time this transmission if not a retransmission and
18760 * not currently timing anything.
18761 * This is only relevant in case of switching back to
18762 * the base stack.
18763 */
18764 if (tp->t_rtttime == 0) {
18765 tp->t_rtttime = ticks;
18766 tp->t_rtseq = startseq;
18767 KMOD_TCPSTAT_INC(tcps_segstimed);
18768 }
18769 if (len &&
18770 ((tp->t_flags & TF_GPUTINPROG) == 0))
18771 rack_start_gp_measurement(tp, rack, startseq, sb_offset);
18772 }
18773 /*
18774 * If we are doing FO we need to update the mbuf position and subtract
18775 * this happens when the peer sends us duplicate information and
18776 * we thus want to send a DSACK.
18777 *
18778 * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO
18779 * turned off? If not then we are going to echo multiple DSACK blocks
18780 * out (with the TSO), which we should not be doing.
18781 */
18782 if (rack->r_fast_output && len) {
18783 if (rack->r_ctl.fsb.left_to_send > len)
18784 rack->r_ctl.fsb.left_to_send -= len;
18785 else
18786 rack->r_ctl.fsb.left_to_send = 0;
18787 if (rack->r_ctl.fsb.left_to_send < segsiz)
18788 rack->r_fast_output = 0;
18789 if (rack->r_fast_output) {
18790 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18791 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18792 }
18793 }
18794 }
18795nomore:
18796 if (error) {
18797 rack->r_ctl.rc_agg_delayed = 0;
18798 rack->r_early = 0;
18799 rack->r_late = 0;
18800 rack->r_ctl.rc_agg_early = 0;
18801 SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */
18802 /*
18803 * Failures do not advance the seq counter above. For the
18804 * case of ENOBUFS we will fall out and retry in 1ms with
18805 * the hpts. Everything else will just have to retransmit
18806 * with the timer.
18807 *
18808 * In any case, we do not want to loop around for another
18809 * send without a good reason.
18810 */
18811 sendalot = 0;
18812 switch (error) {
18813 case EPERM:
18814 tp->t_softerror = error;
18815#ifdef TCP_ACCOUNTING
18816 crtsc = get_cyclecount();
18817 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18818 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18819 }
18820 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18821 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18822 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18823 }
18824 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18825 sched_unpin();
18826#endif
18827 return (error);
18828 case ENOBUFS:
18829 /*
18830 * Pace us right away to retry in a some
18831 * time
18832 */
18833 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
18834 if (rack->rc_enobuf < 0x7f)
18835 rack->rc_enobuf++;
18836 if (slot < (10 * HPTS_USEC_IN_MSEC))
18837 slot = 10 * HPTS_USEC_IN_MSEC;
18838 if (rack->r_ctl.crte != NULL) {
18839 counter_u64_add(rack_saw_enobuf_hw, 1);
18841 }
18842 counter_u64_add(rack_saw_enobuf, 1);
18843 goto enobufs;
18844 case EMSGSIZE:
18845 /*
18846 * For some reason the interface we used initially
18847 * to send segments changed to another or lowered
18848 * its MTU. If TSO was active we either got an
18849 * interface without TSO capabilits or TSO was
18850 * turned off. If we obtained mtu from ip_output()
18851 * then update it and try again.
18852 */
18853 if (tso)
18854 tp->t_flags &= ~TF_TSO;
18855 if (mtu != 0) {
18856 tcp_mss_update(tp, -1, mtu, NULL, NULL);
18857 goto again;
18858 }
18859 slot = 10 * HPTS_USEC_IN_MSEC;
18860 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18861#ifdef TCP_ACCOUNTING
18862 crtsc = get_cyclecount();
18863 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18864 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18865 }
18866 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18867 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18868 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18869 }
18870 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18871 sched_unpin();
18872#endif
18873 return (error);
18874 case ENETUNREACH:
18875 counter_u64_add(rack_saw_enetunreach, 1);
18876 case EHOSTDOWN:
18877 case EHOSTUNREACH:
18878 case ENETDOWN:
18879 if (TCPS_HAVERCVDSYN(tp->t_state)) {
18880 tp->t_softerror = error;
18881 }
18882 /* FALLTHROUGH */
18883 default:
18884 slot = 10 * HPTS_USEC_IN_MSEC;
18885 rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18886#ifdef TCP_ACCOUNTING
18887 crtsc = get_cyclecount();
18888 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18889 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18890 }
18891 counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18892 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18893 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18894 }
18895 counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18896 sched_unpin();
18897#endif
18898 return (error);
18899 }
18900 } else {
18901 rack->rc_enobuf = 0;
18902 if (IN_FASTRECOVERY(tp->t_flags) && rsm)
18903 rack->r_ctl.retran_during_recovery += len;
18904 }
18905 KMOD_TCPSTAT_INC(tcps_sndtotal);
18906
18907 /*
18908 * Data sent (as far as we can tell). If this advertises a larger
18909 * window than any other segment, then remember the size of the
18910 * advertised window. Any pending ACK has now been sent.
18911 */
18912 if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
18913 tp->rcv_adv = tp->rcv_nxt + recwin;
18914
18915 tp->last_ack_sent = tp->rcv_nxt;
18916 tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
18917enobufs:
18918 if (sendalot) {
18919 /* Do we need to turn off sendalot? */
18920 if (rack->r_ctl.rc_pace_max_segs &&
18921 (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
18922 /* We hit our max. */
18923 sendalot = 0;
18924 } else if ((rack->rc_user_set_max_segs) &&
18925 (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
18926 /* We hit the user defined max */
18927 sendalot = 0;
18928 }
18929 }
18930 if ((error == 0) && (flags & TH_FIN))
18932 if (flags & TH_RST) {
18933 /*
18934 * We don't send again after sending a RST.
18935 */
18936 slot = 0;
18937 sendalot = 0;
18938 if (error == 0)
18940 } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
18941 /*
18942 * Get our pacing rate, if an error
18943 * occurred in sending (ENOBUF) we would
18944 * hit the else if with slot preset. Other
18945 * errors return.
18946 */
18947 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
18948 }
18949 if (rsm &&
18950 (rsm->r_flags & RACK_HAS_SYN) == 0 &&
18951 rack->use_rack_rr) {
18952 /* Its a retransmit and we use the rack cheat? */
18953 if ((slot == 0) ||
18954 (rack->rc_always_pace == 0) ||
18955 (rack->r_rr_config == 1)) {
18956 /*
18957 * We have no pacing set or we
18958 * are using old-style rack or
18959 * we are overriden to use the old 1ms pacing.
18960 */
18961 slot = rack->r_ctl.rc_min_to;
18962 }
18963 }
18964 /* We have sent clear the flag */
18965 rack->r_ent_rec_ns = 0;
18966 if (rack->r_must_retran) {
18967 if (rsm) {
18968 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
18969 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
18970 /*
18971 * We have retransmitted all.
18972 */
18973 rack->r_must_retran = 0;
18974 rack->r_ctl.rc_out_at_rto = 0;
18975 }
18976 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18977 /*
18978 * Sending new data will also kill
18979 * the loop.
18980 */
18981 rack->r_must_retran = 0;
18982 rack->r_ctl.rc_out_at_rto = 0;
18983 }
18984 }
18985 rack->r_ctl.fsb.recwin = recwin;
18986 if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) &&
18987 SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18988 /*
18989 * We hit an RTO and now have past snd_max at the RTO
18990 * clear all the WAS flags.
18991 */
18993 }
18994 if (slot) {
18995 /* set the rack tcb into the slot N */
18996 if ((error == 0) &&
18997 rack_use_rfo &&
18998 ((flags & (TH_SYN|TH_FIN)) == 0) &&
18999 (rsm == NULL) &&
19000 (tp->snd_nxt == tp->snd_max) &&
19001 (ipoptlen == 0) &&
19002 (tp->rcv_numsacks == 0) &&
19003 rack->r_fsb_inited &&
19005 (rack->r_must_retran == 0) &&
19006 ((tp->t_flags & TF_NEEDFIN) == 0) &&
19007 (len > 0) && (orig_len > 0) &&
19008 (orig_len > len) &&
19009 ((orig_len - len) >= segsiz) &&
19010 ((optlen == 0) ||
19011 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19012 /* We can send at least one more MSS using our fsb */
19013
19014 rack->r_fast_output = 1;
19015 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19016 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19017 rack->r_ctl.fsb.tcp_flags = flags;
19018 rack->r_ctl.fsb.left_to_send = orig_len - len;
19019 if (hw_tls)
19020 rack->r_ctl.fsb.hw_tls = 1;
19021 else
19022 rack->r_ctl.fsb.hw_tls = 0;
19023 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19024 ("rack:%p left_to_send:%u sbavail:%u out:%u",
19025 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19026 (tp->snd_max - tp->snd_una)));
19027 if (rack->r_ctl.fsb.left_to_send < segsiz)
19028 rack->r_fast_output = 0;
19029 else {
19030 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19031 rack->r_ctl.fsb.rfo_apply_push = 1;
19032 else
19033 rack->r_ctl.fsb.rfo_apply_push = 0;
19034 }
19035 } else
19036 rack->r_fast_output = 0;
19037 rack_log_fsb(rack, tp, so, flags,
19038 ipoptlen, orig_len, len, error,
19039 (rsm == NULL), optlen, __LINE__, 2);
19040 } else if (sendalot) {
19041 int ret;
19042
19043 sack_rxmit = 0;
19044 if ((error == 0) &&
19045 rack_use_rfo &&
19046 ((flags & (TH_SYN|TH_FIN)) == 0) &&
19047 (rsm == NULL) &&
19048 (ipoptlen == 0) &&
19049 (tp->rcv_numsacks == 0) &&
19050 (tp->snd_nxt == tp->snd_max) &&
19051 (rack->r_must_retran == 0) &&
19052 rack->r_fsb_inited &&
19054 ((tp->t_flags & TF_NEEDFIN) == 0) &&
19055 (len > 0) && (orig_len > 0) &&
19056 (orig_len > len) &&
19057 ((orig_len - len) >= segsiz) &&
19058 ((optlen == 0) ||
19059 ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
19060 /* we can use fast_output for more */
19061
19062 rack->r_fast_output = 1;
19063 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
19064 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
19065 rack->r_ctl.fsb.tcp_flags = flags;
19066 rack->r_ctl.fsb.left_to_send = orig_len - len;
19067 if (hw_tls)
19068 rack->r_ctl.fsb.hw_tls = 1;
19069 else
19070 rack->r_ctl.fsb.hw_tls = 0;
19071 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
19072 ("rack:%p left_to_send:%u sbavail:%u out:%u",
19073 rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
19074 (tp->snd_max - tp->snd_una)));
19075 if (rack->r_ctl.fsb.left_to_send < segsiz) {
19076 rack->r_fast_output = 0;
19077 }
19078 if (rack->r_fast_output) {
19079 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
19080 rack->r_ctl.fsb.rfo_apply_push = 1;
19081 else
19082 rack->r_ctl.fsb.rfo_apply_push = 0;
19083 rack_log_fsb(rack, tp, so, flags,
19084 ipoptlen, orig_len, len, error,
19085 (rsm == NULL), optlen, __LINE__, 3);
19086 error = 0;
19087 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
19088 if (ret >= 0)
19089 return (ret);
19090 else if (error)
19091 goto nomore;
19092
19093 }
19094 }
19095 goto again;
19096 }
19097 /* Assure when we leave that snd_nxt will point to top */
19098 if (SEQ_GT(tp->snd_max, tp->snd_nxt))
19099 tp->snd_nxt = tp->snd_max;
19100 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
19101#ifdef TCP_ACCOUNTING
19102 crtsc = get_cyclecount() - ts_val;
19103 if (tot_len_this_send) {
19104 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19105 tp->tcp_cnt_counters[SND_OUT_DATA]++;
19106 }
19107 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
19108 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19109 tp->tcp_proc_time[SND_OUT_DATA] += crtsc;
19110 }
19111 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc);
19112 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19113 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz);
19114 }
19115 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz));
19116 } else {
19117 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19118 tp->tcp_cnt_counters[SND_OUT_ACK]++;
19119 }
19120 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1);
19121 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
19122 tp->tcp_proc_time[SND_OUT_ACK] += crtsc;
19123 }
19124 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc);
19125 }
19126 sched_unpin();
19127#endif
19128 if (error == ENOBUFS)
19129 error = 0;
19130 return (error);
19131}
19132
19133static void
19135{
19136 uint32_t orig_val;
19137
19138 orig_val = rack->r_ctl.rc_pace_max_segs;
19139 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
19140 if (orig_val != rack->r_ctl.rc_pace_max_segs)
19141 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL, 0);
19142}
19143
19144static void
19146{
19147 /*
19148 * The MSS may have changed
19149 */
19150 struct tcp_rack *rack;
19151 struct rack_sendmap *rsm;
19152
19153 rack = (struct tcp_rack *)tp->t_fb_ptr;
19154 if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) {
19155 /*
19156 * The MTU has changed we need to resend everything
19157 * since all we have sent is lost. We first fix
19158 * up the mtu though.
19159 */
19160 rack_set_pace_segments(tp, rack, __LINE__, NULL);
19161 /* We treat this like a full retransmit timeout without the cwnd adjustment */
19162 rack_remxt_tmr(tp);
19163 rack->r_fast_output = 0;
19165 rack->r_ctl.rc_sacked);
19166 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
19167 rack->r_must_retran = 1;
19168 /* Mark all inflight to needing to be rxt'd */
19169 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
19170 rsm->r_flags |= RACK_MUST_RXT;
19171 }
19172 }
19174 /* We don't use snd_nxt to retransmit */
19175 tp->snd_nxt = tp->snd_max;
19176}
19177
19178static int
19179rack_set_profile(struct tcp_rack *rack, int prof)
19180{
19181 int err = EINVAL;
19182 if (prof == 1) {
19183 /* pace_always=1 */
19184 if (rack->rc_always_pace == 0) {
19185 if (tcp_can_enable_pacing() == 0)
19186 return (EBUSY);
19187 }
19188 rack->rc_always_pace = 1;
19189 if (rack->use_fixed_rate || rack->gp_ready)
19190 rack_set_cc_pacing(rack);
19192 rack->rack_attempt_hdwr_pace = 0;
19193 /* cmpack=1 */
19195 rack->r_use_cmp_ack = 1;
19196 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19197 rack->r_use_cmp_ack)
19199 /* scwnd=1 */
19200 rack->rack_enable_scwnd = 1;
19201 /* dynamic=100 */
19202 rack->rc_gp_dyn_mul = 1;
19203 /* gp_inc_ca */
19204 rack->r_ctl.rack_per_of_gp_ca = 100;
19205 /* rrr_conf=3 */
19206 rack->r_rr_config = 3;
19207 /* npush=2 */
19208 rack->r_ctl.rc_no_push_at_mrtt = 2;
19209 /* fillcw=1 */
19210 rack->rc_pace_to_cwnd = 1;
19212 rack->rtt_limit_mul = 0;
19213 /* noprr=1 */
19214 rack->rack_no_prr = 1;
19215 /* lscwnd=1 */
19216 rack->r_limit_scw = 1;
19217 /* gp_inc_rec */
19218 rack->r_ctl.rack_per_of_gp_rec = 90;
19219 err = 0;
19220
19221 } else if (prof == 3) {
19222 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */
19223 /* pace_always=1 */
19224 if (rack->rc_always_pace == 0) {
19225 if (tcp_can_enable_pacing() == 0)
19226 return (EBUSY);
19227 }
19228 rack->rc_always_pace = 1;
19229 if (rack->use_fixed_rate || rack->gp_ready)
19230 rack_set_cc_pacing(rack);
19232 rack->rack_attempt_hdwr_pace = 0;
19233 /* cmpack=1 */
19235 rack->r_use_cmp_ack = 1;
19236 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
19237 rack->r_use_cmp_ack)
19239 /* scwnd=1 */
19240 rack->rack_enable_scwnd = 1;
19241 /* dynamic=100 */
19242 rack->rc_gp_dyn_mul = 1;
19243 /* gp_inc_ca */
19244 rack->r_ctl.rack_per_of_gp_ca = 100;
19245 /* rrr_conf=3 */
19246 rack->r_rr_config = 3;
19247 /* npush=2 */
19248 rack->r_ctl.rc_no_push_at_mrtt = 2;
19249 /* fillcw=2 */
19250 rack->rc_pace_to_cwnd = 1;
19251 rack->r_fill_less_agg = 1;
19253 rack->rtt_limit_mul = 0;
19254 /* noprr=1 */
19255 rack->rack_no_prr = 1;
19256 /* lscwnd=1 */
19257 rack->r_limit_scw = 1;
19258 /* gp_inc_rec */
19259 rack->r_ctl.rack_per_of_gp_rec = 90;
19260 err = 0;
19261
19262
19263 } else if (prof == 2) {
19264 /* cmpack=1 */
19265 if (rack->rc_always_pace == 0) {
19266 if (tcp_can_enable_pacing() == 0)
19267 return (EBUSY);
19268 }
19269 rack->rc_always_pace = 1;
19270 if (rack->use_fixed_rate || rack->gp_ready)
19271 rack_set_cc_pacing(rack);
19272 rack->r_use_cmp_ack = 1;
19275 /* pace_always=1 */
19277 /* scwnd=1 */
19278 rack->rack_enable_scwnd = 1;
19279 /* dynamic=100 */
19280 rack->rc_gp_dyn_mul = 1;
19281 rack->r_ctl.rack_per_of_gp_ca = 100;
19282 /* rrr_conf=3 */
19283 rack->r_rr_config = 3;
19284 /* npush=2 */
19285 rack->r_ctl.rc_no_push_at_mrtt = 2;
19286 /* fillcw=1 */
19287 rack->rc_pace_to_cwnd = 1;
19289 rack->rtt_limit_mul = 0;
19290 /* noprr=1 */
19291 rack->rack_no_prr = 1;
19292 /* lscwnd=0 */
19293 rack->r_limit_scw = 0;
19294 err = 0;
19295 } else if (prof == 0) {
19296 /* This changes things back to the default settings */
19297 err = 0;
19298 if (rack->rc_always_pace) {
19300 rack_undo_cc_pacing(rack);
19301 rack->rc_always_pace = 0;
19302 }
19304 rack->rc_always_pace = 1;
19305 if (rack->use_fixed_rate || rack->gp_ready)
19306 rack_set_cc_pacing(rack);
19307 } else
19308 rack->rc_always_pace = 0;
19309 if (rack_dsack_std_based & 0x1) {
19310 /* Basically this means all rack timers are at least (srtt + 1/4 srtt) */
19311 rack->rc_rack_tmr_std_based = 1;
19312 }
19313 if (rack_dsack_std_based & 0x2) {
19314 /* Basically this means rack timers are extended based on dsack by up to (2 * srtt) */
19315 rack->rc_rack_use_dsack = 1;
19316 }
19318 rack->r_use_cmp_ack = 1;
19319 else
19320 rack->r_use_cmp_ack = 0;
19321 if (rack_disable_prr)
19322 rack->rack_no_prr = 1;
19323 else
19324 rack->rack_no_prr = 0;
19326 rack->rc_gp_no_rec_chg = 1;
19327 else
19328 rack->rc_gp_no_rec_chg = 0;
19330 rack->r_mbuf_queue = 1;
19334 } else {
19335 rack->r_mbuf_queue = 0;
19336 rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19337 }
19339 rack->rack_enable_scwnd = 1;
19340 else
19341 rack->rack_enable_scwnd = 0;
19342 if (rack_do_dyn_mul) {
19343 /* When dynamic adjustment is on CA needs to start at 100% */
19344 rack->rc_gp_dyn_mul = 1;
19345 if (rack_do_dyn_mul >= 100)
19347 } else {
19349 rack->rc_gp_dyn_mul = 0;
19350 }
19351 rack->r_rr_config = 0;
19352 rack->r_ctl.rc_no_push_at_mrtt = 0;
19353 rack->rc_pace_to_cwnd = 0;
19355 rack->rtt_limit_mul = 0;
19356
19358 rack->rack_hdw_pace_ena = 1;
19359 else
19360 rack->rack_hdw_pace_ena = 0;
19361 if (rack_disable_prr)
19362 rack->rack_no_prr = 1;
19363 else
19364 rack->rack_no_prr = 0;
19366 rack->r_limit_scw = 1;
19367 else
19368 rack->r_limit_scw = 0;
19369 err = 0;
19370 }
19371 return (err);
19372}
19373
19374static int
19375rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
19376{
19377 struct deferred_opt_list *dol;
19378
19379 dol = malloc(sizeof(struct deferred_opt_list),
19380 M_TCPFSB, M_NOWAIT|M_ZERO);
19381 if (dol == NULL) {
19382 /*
19383 * No space yikes -- fail out..
19384 */
19385 return (0);
19386 }
19387 dol->optname = sopt_name;
19388 dol->optval = loptval;
19389 TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next);
19390 return (1);
19391}
19392
19393static int
19394rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name,
19395 uint32_t optval, uint64_t loptval)
19396{
19397 struct epoch_tracker et;
19398 struct sockopt sopt;
19399 struct cc_newreno_opts opt;
19400 uint64_t val;
19401 int error = 0;
19402 uint16_t ca, ss;
19403
19404 switch (sopt_name) {
19405
19406 case TCP_RACK_DSACK_OPT:
19407 RACK_OPTS_INC(tcp_rack_dsack_opt);
19408 if (optval & 0x1) {
19409 rack->rc_rack_tmr_std_based = 1;
19410 } else {
19411 rack->rc_rack_tmr_std_based = 0;
19412 }
19413 if (optval & 0x2) {
19414 rack->rc_rack_use_dsack = 1;
19415 } else {
19416 rack->rc_rack_use_dsack = 0;
19417 }
19418 rack_log_dsack_event(rack, 5, __LINE__, 0, 0);
19419 break;
19420 case TCP_RACK_PACING_BETA:
19421 RACK_OPTS_INC(tcp_rack_beta);
19422 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
19423 /* This only works for newreno. */
19424 error = EINVAL;
19425 break;
19426 }
19427 if (rack->rc_pacing_cc_set) {
19428 /*
19429 * Set them into the real CC module
19430 * whats in the rack pcb is the old values
19431 * to be used on restoral/
19432 */
19433 sopt.sopt_dir = SOPT_SET;
19434 opt.name = CC_NEWRENO_BETA;
19435 opt.val = optval;
19436 if (CC_ALGO(tp)->ctl_output != NULL)
19437 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
19438 else {
19439 error = ENOENT;
19440 break;
19441 }
19442 } else {
19443 /*
19444 * Not pacing yet so set it into our local
19445 * rack pcb storage.
19446 */
19447 rack->r_ctl.rc_saved_beta.beta = optval;
19448 }
19449 break;
19450 case TCP_RACK_TIMER_SLOP:
19451 RACK_OPTS_INC(tcp_rack_timer_slop);
19452 rack->r_ctl.timer_slop = optval;
19453 if (rack->rc_tp->t_srtt) {
19454 /*
19455 * If we have an SRTT lets update t_rxtcur
19456 * to have the new slop.
19457 */
19460 rack->r_ctl.timer_slop);
19461 }
19462 break;
19463 case TCP_RACK_PACING_BETA_ECN:
19464 RACK_OPTS_INC(tcp_rack_beta_ecn);
19465 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
19466 /* This only works for newreno. */
19467 error = EINVAL;
19468 break;
19469 }
19470 if (rack->rc_pacing_cc_set) {
19471 /*
19472 * Set them into the real CC module
19473 * whats in the rack pcb is the old values
19474 * to be used on restoral/
19475 */
19476 sopt.sopt_dir = SOPT_SET;
19478 opt.val = optval;
19479 if (CC_ALGO(tp)->ctl_output != NULL)
19480 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
19481 else
19482 error = ENOENT;
19483 } else {
19484 /*
19485 * Not pacing yet so set it into our local
19486 * rack pcb storage.
19487 */
19488 rack->r_ctl.rc_saved_beta.beta_ecn = optval;
19490 }
19491 break;
19492 case TCP_DEFER_OPTIONS:
19493 RACK_OPTS_INC(tcp_defer_opt);
19494 if (optval) {
19495 if (rack->gp_ready) {
19496 /* Too late */
19497 error = EINVAL;
19498 break;
19499 }
19500 rack->defer_options = 1;
19501 } else
19502 rack->defer_options = 0;
19503 break;
19504 case TCP_RACK_MEASURE_CNT:
19505 RACK_OPTS_INC(tcp_rack_measure_cnt);
19506 if (optval && (optval <= 0xff)) {
19507 rack->r_ctl.req_measurements = optval;
19508 } else
19509 error = EINVAL;
19510 break;
19511 case TCP_REC_ABC_VAL:
19512 RACK_OPTS_INC(tcp_rec_abc_val);
19513 if (optval > 0)
19514 rack->r_use_labc_for_rec = 1;
19515 else
19516 rack->r_use_labc_for_rec = 0;
19517 break;
19518 case TCP_RACK_ABC_VAL:
19519 RACK_OPTS_INC(tcp_rack_abc_val);
19520 if ((optval > 0) && (optval < 255))
19521 rack->rc_labc = optval;
19522 else
19523 error = EINVAL;
19524 break;
19525 case TCP_HDWR_UP_ONLY:
19526 RACK_OPTS_INC(tcp_pacing_up_only);
19527 if (optval)
19528 rack->r_up_only = 1;
19529 else
19530 rack->r_up_only = 0;
19531 break;
19532 case TCP_PACING_RATE_CAP:
19533 RACK_OPTS_INC(tcp_pacing_rate_cap);
19534 rack->r_ctl.bw_rate_cap = loptval;
19535 break;
19536 case TCP_RACK_PROFILE:
19537 RACK_OPTS_INC(tcp_profile);
19538 error = rack_set_profile(rack, optval);
19539 break;
19540 case TCP_USE_CMP_ACKS:
19541 RACK_OPTS_INC(tcp_use_cmp_acks);
19542 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) {
19543 /* You can't turn it off once its on! */
19544 error = EINVAL;
19545 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) {
19546 rack->r_use_cmp_ack = 1;
19547 rack->r_mbuf_queue = 1;
19549 }
19550 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
19552 break;
19553 case TCP_SHARED_CWND_TIME_LIMIT:
19554 RACK_OPTS_INC(tcp_lscwnd);
19555 if (optval)
19556 rack->r_limit_scw = 1;
19557 else
19558 rack->r_limit_scw = 0;
19559 break;
19560 case TCP_RACK_PACE_TO_FILL:
19561 RACK_OPTS_INC(tcp_fillcw);
19562 if (optval == 0)
19563 rack->rc_pace_to_cwnd = 0;
19564 else {
19565 rack->rc_pace_to_cwnd = 1;
19566 if (optval > 1)
19567 rack->r_fill_less_agg = 1;
19568 }
19569 if ((optval >= rack_gp_rtt_maxmul) &&
19571 (optval < 0xf)) {
19573 rack->rtt_limit_mul = optval;
19574 } else {
19576 rack->rtt_limit_mul = 0;
19577 }
19578 break;
19579 case TCP_RACK_NO_PUSH_AT_MAX:
19580 RACK_OPTS_INC(tcp_npush);
19581 if (optval == 0)
19582 rack->r_ctl.rc_no_push_at_mrtt = 0;
19583 else if (optval < 0xff)
19584 rack->r_ctl.rc_no_push_at_mrtt = optval;
19585 else
19586 error = EINVAL;
19587 break;
19588 case TCP_SHARED_CWND_ENABLE:
19589 RACK_OPTS_INC(tcp_rack_scwnd);
19590 if (optval == 0)
19591 rack->rack_enable_scwnd = 0;
19592 else
19593 rack->rack_enable_scwnd = 1;
19594 break;
19595 case TCP_RACK_MBUF_QUEUE:
19596 /* Now do we use the LRO mbuf-queue feature */
19597 RACK_OPTS_INC(tcp_rack_mbufq);
19598 if (optval || rack->r_use_cmp_ack)
19599 rack->r_mbuf_queue = 1;
19600 else
19601 rack->r_mbuf_queue = 0;
19602 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19604 else
19605 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19606 break;
19607 case TCP_RACK_NONRXT_CFG_RATE:
19608 RACK_OPTS_INC(tcp_rack_cfg_rate);
19609 if (optval == 0)
19610 rack->rack_rec_nonrxt_use_cr = 0;
19611 else
19612 rack->rack_rec_nonrxt_use_cr = 1;
19613 break;
19614 case TCP_NO_PRR:
19615 RACK_OPTS_INC(tcp_rack_noprr);
19616 if (optval == 0)
19617 rack->rack_no_prr = 0;
19618 else if (optval == 1)
19619 rack->rack_no_prr = 1;
19620 else if (optval == 2)
19621 rack->no_prr_addback = 1;
19622 else
19623 error = EINVAL;
19624 break;
19625 case TCP_TIMELY_DYN_ADJ:
19626 RACK_OPTS_INC(tcp_timely_dyn);
19627 if (optval == 0)
19628 rack->rc_gp_dyn_mul = 0;
19629 else {
19630 rack->rc_gp_dyn_mul = 1;
19631 if (optval >= 100) {
19632 /*
19633 * If the user sets something 100 or more
19634 * its the gp_ca value.
19635 */
19636 rack->r_ctl.rack_per_of_gp_ca = optval;
19637 }
19638 }
19639 break;
19640 case TCP_RACK_DO_DETECTION:
19641 RACK_OPTS_INC(tcp_rack_do_detection);
19642 if (optval == 0)
19643 rack->do_detection = 0;
19644 else
19645 rack->do_detection = 1;
19646 break;
19647 case TCP_RACK_TLP_USE:
19648 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
19649 error = EINVAL;
19650 break;
19651 }
19652 RACK_OPTS_INC(tcp_tlp_use);
19653 rack->rack_tlp_threshold_use = optval;
19654 break;
19655 case TCP_RACK_TLP_REDUCE:
19656 /* RACK TLP cwnd reduction (bool) */
19657 RACK_OPTS_INC(tcp_rack_tlp_reduce);
19658 rack->r_ctl.rc_tlp_cwnd_reduce = optval;
19659 break;
19660 /* Pacing related ones */
19661 case TCP_RACK_PACE_ALWAYS:
19662 /*
19663 * zero is old rack method, 1 is new
19664 * method using a pacing rate.
19665 */
19666 RACK_OPTS_INC(tcp_rack_pace_always);
19667 if (optval > 0) {
19668 if (rack->rc_always_pace) {
19669 error = EALREADY;
19670 break;
19671 } else if (tcp_can_enable_pacing()) {
19672 rack->rc_always_pace = 1;
19673 if (rack->use_fixed_rate || rack->gp_ready)
19674 rack_set_cc_pacing(rack);
19675 }
19676 else {
19677 error = ENOSPC;
19678 break;
19679 }
19680 } else {
19681 if (rack->rc_always_pace) {
19683 rack->rc_always_pace = 0;
19684 rack_undo_cc_pacing(rack);
19685 }
19686 }
19687 if (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19689 else
19690 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19691 /* A rate may be set irate or other, if so set seg size */
19692 rack_update_seg(rack);
19693 break;
19694 case TCP_BBR_RACK_INIT_RATE:
19695 RACK_OPTS_INC(tcp_initial_rate);
19696 val = optval;
19697 /* Change from kbits per second to bytes per second */
19698 val *= 1000;
19699 val /= 8;
19700 rack->r_ctl.init_rate = val;
19702 uint32_t win, snt;
19703
19704 /*
19705 * Options don't always get applied
19706 * in the order you think. So in order
19707 * to assure we update a cwnd we need
19708 * to check and see if we are still
19709 * where we should raise the cwnd.
19710 */
19711 win = rc_init_window(rack);
19712 if (SEQ_GT(tp->snd_max, tp->iss))
19713 snt = tp->snd_max - tp->iss;
19714 else
19715 snt = 0;
19716 if ((snt < win) &&
19717 (tp->snd_cwnd < win))
19718 tp->snd_cwnd = win;
19719 }
19720 if (rack->rc_always_pace)
19721 rack_update_seg(rack);
19722 break;
19723 case TCP_BBR_IWINTSO:
19724 RACK_OPTS_INC(tcp_initial_win);
19725 if (optval && (optval <= 0xff)) {
19726 uint32_t win, snt;
19727
19728 rack->rc_init_win = optval;
19729 win = rc_init_window(rack);
19730 if (SEQ_GT(tp->snd_max, tp->iss))
19731 snt = tp->snd_max - tp->iss;
19732 else
19733 snt = 0;
19734 if ((snt < win) &&
19735 (tp->t_srtt |
19736#ifdef NETFLIX_PEAKRATE
19737 tp->t_maxpeakrate |
19738#endif
19739 rack->r_ctl.init_rate)) {
19740 /*
19741 * We are not past the initial window
19742 * and we have some bases for pacing,
19743 * so we need to possibly adjust up
19744 * the cwnd. Note even if we don't set
19745 * the cwnd, its still ok to raise the rc_init_win
19746 * which can be used coming out of idle when we
19747 * would have a rate.
19748 */
19749 if (tp->snd_cwnd < win)
19750 tp->snd_cwnd = win;
19751 }
19752 if (rack->rc_always_pace)
19753 rack_update_seg(rack);
19754 } else
19755 error = EINVAL;
19756 break;
19757 case TCP_RACK_FORCE_MSEG:
19758 RACK_OPTS_INC(tcp_rack_force_max_seg);
19759 if (optval)
19760 rack->rc_force_max_seg = 1;
19761 else
19762 rack->rc_force_max_seg = 0;
19763 break;
19764 case TCP_RACK_PACE_MAX_SEG:
19765 /* Max segments size in a pace in bytes */
19766 RACK_OPTS_INC(tcp_rack_max_seg);
19767 rack->rc_user_set_max_segs = optval;
19768 rack_set_pace_segments(tp, rack, __LINE__, NULL);
19769 break;
19770 case TCP_RACK_PACE_RATE_REC:
19771 /* Set the fixed pacing rate in Bytes per second ca */
19772 RACK_OPTS_INC(tcp_rack_pace_rate_rec);
19773 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19774 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19775 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19776 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19777 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19778 rack->use_fixed_rate = 1;
19779 if (rack->rc_always_pace)
19780 rack_set_cc_pacing(rack);
19784 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19785 __LINE__, NULL,0);
19786 break;
19787
19788 case TCP_RACK_PACE_RATE_SS:
19789 /* Set the fixed pacing rate in Bytes per second ca */
19790 RACK_OPTS_INC(tcp_rack_pace_rate_ss);
19791 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19792 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19793 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19794 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19795 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19796 rack->use_fixed_rate = 1;
19797 if (rack->rc_always_pace)
19798 rack_set_cc_pacing(rack);
19802 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19803 __LINE__, NULL, 0);
19804 break;
19805
19806 case TCP_RACK_PACE_RATE_CA:
19807 /* Set the fixed pacing rate in Bytes per second ca */
19808 RACK_OPTS_INC(tcp_rack_pace_rate_ca);
19809 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19810 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19811 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19812 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19813 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19814 rack->use_fixed_rate = 1;
19815 if (rack->rc_always_pace)
19816 rack_set_cc_pacing(rack);
19820 rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19821 __LINE__, NULL, 0);
19822 break;
19823 case TCP_RACK_GP_INCREASE_REC:
19824 RACK_OPTS_INC(tcp_gp_inc_rec);
19825 rack->r_ctl.rack_per_of_gp_rec = optval;
19829 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19830 __LINE__, NULL, 0);
19831 break;
19832 case TCP_RACK_GP_INCREASE_CA:
19833 RACK_OPTS_INC(tcp_gp_inc_ca);
19834 ca = optval;
19835 if (ca < 100) {
19836 /*
19837 * We don't allow any reduction
19838 * over the GP b/w.
19839 */
19840 error = EINVAL;
19841 break;
19842 }
19843 rack->r_ctl.rack_per_of_gp_ca = ca;
19847 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19848 __LINE__, NULL, 0);
19849 break;
19850 case TCP_RACK_GP_INCREASE_SS:
19851 RACK_OPTS_INC(tcp_gp_inc_ss);
19852 ss = optval;
19853 if (ss < 100) {
19854 /*
19855 * We don't allow any reduction
19856 * over the GP b/w.
19857 */
19858 error = EINVAL;
19859 break;
19860 }
19861 rack->r_ctl.rack_per_of_gp_ss = ss;
19865 rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19866 __LINE__, NULL, 0);
19867 break;
19868 case TCP_RACK_RR_CONF:
19869 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
19870 if (optval && optval <= 3)
19871 rack->r_rr_config = optval;
19872 else
19873 rack->r_rr_config = 0;
19874 break;
19875 case TCP_HDWR_RATE_CAP:
19876 RACK_OPTS_INC(tcp_hdwr_rate_cap);
19877 if (optval) {
19878 if (rack->r_rack_hw_rate_caps == 0)
19879 rack->r_rack_hw_rate_caps = 1;
19880 else
19881 error = EALREADY;
19882 } else {
19883 rack->r_rack_hw_rate_caps = 0;
19884 }
19885 break;
19886 case TCP_BBR_HDWR_PACE:
19887 RACK_OPTS_INC(tcp_hdwr_pacing);
19888 if (optval){
19889 if (rack->rack_hdrw_pacing == 0) {
19890 rack->rack_hdw_pace_ena = 1;
19891 rack->rack_attempt_hdwr_pace = 0;
19892 } else
19893 error = EALREADY;
19894 } else {
19895 rack->rack_hdw_pace_ena = 0;
19896#ifdef RATELIMIT
19897 if (rack->r_ctl.crte != NULL) {
19898 rack->rack_hdrw_pacing = 0;
19899 rack->rack_attempt_hdwr_pace = 0;
19900 tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
19901 rack->r_ctl.crte = NULL;
19902 }
19903#endif
19904 }
19905 break;
19906 /* End Pacing related ones */
19907 case TCP_RACK_PRR_SENDALOT:
19908 /* Allow PRR to send more than one seg */
19909 RACK_OPTS_INC(tcp_rack_prr_sendalot);
19910 rack->r_ctl.rc_prr_sendalot = optval;
19911 break;
19912 case TCP_RACK_MIN_TO:
19913 /* Minimum time between rack t-o's in ms */
19914 RACK_OPTS_INC(tcp_rack_min_to);
19915 rack->r_ctl.rc_min_to = optval;
19916 break;
19917 case TCP_RACK_EARLY_SEG:
19918 /* If early recovery max segments */
19919 RACK_OPTS_INC(tcp_rack_early_seg);
19920 rack->r_ctl.rc_early_recovery_segs = optval;
19921 break;
19922 case TCP_RACK_ENABLE_HYSTART:
19923 {
19924 if (optval) {
19930 } else {
19932 }
19933 }
19934 break;
19935 case TCP_RACK_REORD_THRESH:
19936 /* RACK reorder threshold (shift amount) */
19937 RACK_OPTS_INC(tcp_rack_reord_thresh);
19938 if ((optval > 0) && (optval < 31))
19939 rack->r_ctl.rc_reorder_shift = optval;
19940 else
19941 error = EINVAL;
19942 break;
19943 case TCP_RACK_REORD_FADE:
19944 /* Does reordering fade after ms time */
19945 RACK_OPTS_INC(tcp_rack_reord_fade);
19946 rack->r_ctl.rc_reorder_fade = optval;
19947 break;
19948 case TCP_RACK_TLP_THRESH:
19949 /* RACK TLP theshold i.e. srtt+(srtt/N) */
19950 RACK_OPTS_INC(tcp_rack_tlp_thresh);
19951 if (optval)
19952 rack->r_ctl.rc_tlp_threshold = optval;
19953 else
19954 error = EINVAL;
19955 break;
19956 case TCP_BBR_USE_RACK_RR:
19957 RACK_OPTS_INC(tcp_rack_rr);
19958 if (optval)
19959 rack->use_rack_rr = 1;
19960 else
19961 rack->use_rack_rr = 0;
19962 break;
19963 case TCP_FAST_RSM_HACK:
19964 RACK_OPTS_INC(tcp_rack_fastrsm_hack);
19965 if (optval)
19966 rack->fast_rsm_hack = 1;
19967 else
19968 rack->fast_rsm_hack = 0;
19969 break;
19970 case TCP_RACK_PKT_DELAY:
19971 /* RACK added ms i.e. rack-rtt + reord + N */
19972 RACK_OPTS_INC(tcp_rack_pkt_delay);
19973 rack->r_ctl.rc_pkt_delay = optval;
19974 break;
19975 case TCP_DELACK:
19976 RACK_OPTS_INC(tcp_rack_delayed_ack);
19977 if (optval == 0)
19978 tp->t_delayed_ack = 0;
19979 else
19980 tp->t_delayed_ack = 1;
19981 if (tp->t_flags & TF_DELACK) {
19982 tp->t_flags &= ~TF_DELACK;
19983 tp->t_flags |= TF_ACKNOW;
19984 NET_EPOCH_ENTER(et);
19985 rack_output(tp);
19986 NET_EPOCH_EXIT(et);
19987 }
19988 break;
19989
19990 case TCP_BBR_RACK_RTT_USE:
19991 RACK_OPTS_INC(tcp_rack_rtt_use);
19992 if ((optval != USE_RTT_HIGH) &&
19993 (optval != USE_RTT_LOW) &&
19994 (optval != USE_RTT_AVG))
19995 error = EINVAL;
19996 else
19997 rack->r_ctl.rc_rate_sample_method = optval;
19998 break;
19999 case TCP_DATA_AFTER_CLOSE:
20000 RACK_OPTS_INC(tcp_data_after_close);
20001 if (optval)
20002 rack->rc_allow_data_af_clo = 1;
20003 else
20004 rack->rc_allow_data_af_clo = 0;
20005 break;
20006 default:
20007 break;
20008 }
20009#ifdef NETFLIX_STATS
20010 tcp_log_socket_option(tp, sopt_name, optval, error);
20011#endif
20012 return (error);
20013}
20014
20015
20016static void
20018{
20019 struct deferred_opt_list *dol, *sdol;
20020 uint32_t s_optval;
20021
20022 TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) {
20023 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
20024 /* Disadvantage of deferal is you loose the error return */
20025 s_optval = (uint32_t)dol->optval;
20026 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval);
20027 free(dol, M_TCPDO);
20028 }
20029}
20030
20031static void
20032rack_hw_tls_change(struct tcpcb *tp, int chg)
20033{
20034 /*
20035 * HW tls state has changed.. fix all
20036 * rsm's in flight.
20037 */
20038 struct tcp_rack *rack;
20039 struct rack_sendmap *rsm;
20040
20041 rack = (struct tcp_rack *)tp->t_fb_ptr;
20042 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
20043 if (chg)
20044 rsm->r_hw_tls = 1;
20045 else
20046 rsm->r_hw_tls = 0;
20047 }
20048 if (chg)
20049 rack->r_ctl.fsb.hw_tls = 1;
20050 else
20051 rack->r_ctl.fsb.hw_tls = 0;
20052}
20053
20054static int
20055rack_pru_options(struct tcpcb *tp, int flags)
20056{
20057 if (flags & PRUS_OOB)
20058 return (EOPNOTSUPP);
20059 return (0);
20060}
20061
20063 .tfb_tcp_block_name = __XSTRING(STACKNAME),
20064 .tfb_tcp_output = rack_output,
20065 .tfb_do_queued_segments = ctf_do_queued_segments,
20066 .tfb_do_segment_nounlock = rack_do_segment_nounlock,
20067 .tfb_tcp_do_segment = rack_do_segment,
20068 .tfb_tcp_ctloutput = rack_ctloutput,
20069 .tfb_tcp_fb_init = rack_init,
20070 .tfb_tcp_fb_fini = rack_fini,
20071 .tfb_tcp_timer_stop_all = rack_stopall,
20072 .tfb_tcp_timer_activate = rack_timer_activate,
20073 .tfb_tcp_timer_active = rack_timer_active,
20074 .tfb_tcp_timer_stop = rack_timer_stop,
20075 .tfb_tcp_rexmit_tmr = rack_remxt_tmr,
20076 .tfb_tcp_handoff_ok = rack_handoff_ok,
20077 .tfb_tcp_mtu_chg = rack_mtu_change,
20078 .tfb_pru_options = rack_pru_options,
20079 .tfb_hwtls_change = rack_hw_tls_change,
20080 .tfb_flags = TCP_FUNC_OUTPUT_CANDROP,
20081};
20082
20083/*
20084 * rack_ctloutput() must drop the inpcb lock before performing copyin on
20085 * socket option arguments. When it re-acquires the lock after the copy, it
20086 * has to revalidate that the connection is still valid for the socket
20087 * option.
20088 */
20089static int
20090rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt)
20091{
20092#ifdef INET6
20093 struct ip6_hdr *ip6;
20094#endif
20095#ifdef INET
20096 struct ip *ip;
20097#endif
20098 struct tcpcb *tp;
20099 struct tcp_rack *rack;
20100 uint64_t loptval;
20101 int32_t error = 0, optval;
20102
20103 tp = intotcpcb(inp);
20104 rack = (struct tcp_rack *)tp->t_fb_ptr;
20105 if (rack == NULL) {
20106 INP_WUNLOCK(inp);
20107 return (EINVAL);
20108 }
20109#ifdef INET6
20110 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
20111#endif
20112#ifdef INET
20113 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
20114#endif
20115
20116 switch (sopt->sopt_level) {
20117#ifdef INET6
20118 case IPPROTO_IPV6:
20119 MPASS(inp->inp_vflag & INP_IPV6PROTO);
20120 switch (sopt->sopt_name) {
20121 case IPV6_USE_MIN_MTU:
20122 tcp6_use_min_mtu(tp);
20123 break;
20124 case IPV6_TCLASS:
20125 /*
20126 * The DSCP codepoint has changed, update the fsb.
20127 */
20128 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
20130 break;
20131 }
20132 INP_WUNLOCK(inp);
20133 return (0);
20134#endif
20135#ifdef INET
20136 case IPPROTO_IP:
20137 switch (sopt->sopt_name) {
20138 case IP_TOS:
20139 /*
20140 * The DSCP codepoint has changed, update the fsb.
20141 */
20142 ip->ip_tos = rack->rc_inp->inp_ip_tos;
20143 break;
20144 case IP_TTL:
20145 /*
20146 * The TTL has changed, update the fsb.
20147 */
20148 ip->ip_ttl = rack->rc_inp->inp_ip_ttl;
20149 break;
20150 }
20151 INP_WUNLOCK(inp);
20152 return (0);
20153#endif
20154 }
20155
20156 switch (sopt->sopt_name) {
20157 case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */
20158 /* Pacing related ones */
20159 case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */
20160 case TCP_BBR_RACK_INIT_RATE: /* URL:irate */
20161 case TCP_BBR_IWINTSO: /* URL:tso_iwin */
20162 case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */
20163 case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */
20164 case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */
20165 case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/
20166 case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */
20167 case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */
20168 case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */
20169 case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */
20170 case TCP_RACK_RR_CONF: /* URL:rrr_conf */
20171 case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */
20172 case TCP_HDWR_RATE_CAP: /* URL:hdwrcap boolean */
20173 case TCP_PACING_RATE_CAP: /* URL:cap -- used by side-channel */
20174 case TCP_HDWR_UP_ONLY: /* URL:uponly -- hardware pacing boolean */
20175 /* End pacing related */
20176 case TCP_FAST_RSM_HACK: /* URL:frsm_hack */
20177 case TCP_DELACK: /* URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */
20178 case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */
20179 case TCP_RACK_MIN_TO: /* URL:min_to */
20180 case TCP_RACK_EARLY_SEG: /* URL:early_seg */
20181 case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */
20182 case TCP_RACK_REORD_FADE: /* URL:reord_fade */
20183 case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */
20184 case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */
20185 case TCP_RACK_TLP_USE: /* URL:tlp_use */
20186 case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */
20187 case TCP_BBR_USE_RACK_RR: /* URL:rackrr */
20188 case TCP_RACK_DO_DETECTION: /* URL:detect */
20189 case TCP_NO_PRR: /* URL:noprr */
20190 case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */
20191 case TCP_DATA_AFTER_CLOSE: /* no URL */
20192 case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */
20193 case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */
20194 case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */
20195 case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */
20196 case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */
20197 case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */
20198 case TCP_RACK_PROFILE: /* URL:profile */
20199 case TCP_USE_CMP_ACKS: /* URL:cmpack */
20200 case TCP_RACK_ABC_VAL: /* URL:labc */
20201 case TCP_REC_ABC_VAL: /* URL:reclabc */
20202 case TCP_RACK_MEASURE_CNT: /* URL:measurecnt */
20203 case TCP_DEFER_OPTIONS: /* URL:defer */
20204 case TCP_RACK_DSACK_OPT: /* URL:dsack */
20205 case TCP_RACK_PACING_BETA: /* URL:pacing_beta */
20206 case TCP_RACK_PACING_BETA_ECN: /* URL:pacing_beta_ecn */
20207 case TCP_RACK_TIMER_SLOP: /* URL:timer_slop */
20208 case TCP_RACK_ENABLE_HYSTART: /* URL:hystart */
20209 break;
20210 default:
20211 /* Filter off all unknown options to the base stack */
20212 return (tcp_default_ctloutput(inp, sopt));
20213 break;
20214 }
20215 INP_WUNLOCK(inp);
20216 if (sopt->sopt_name == TCP_PACING_RATE_CAP) {
20217 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval));
20218 /*
20219 * We truncate it down to 32 bits for the socket-option trace this
20220 * means rates > 34Gbps won't show right, but thats probably ok.
20221 */
20222 optval = (uint32_t)loptval;
20223 } else {
20224 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
20225 /* Save it in 64 bit form too */
20226 loptval = optval;
20227 }
20228 if (error)
20229 return (error);
20230 INP_WLOCK(inp);
20231 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
20232 INP_WUNLOCK(inp);
20233 return (ECONNRESET);
20234 }
20235 if (tp->t_fb != &__tcp_rack) {
20236 INP_WUNLOCK(inp);
20237 return (ENOPROTOOPT);
20238 }
20239 if (rack->defer_options && (rack->gp_ready == 0) &&
20240 (sopt->sopt_name != TCP_DEFER_OPTIONS) &&
20241 (sopt->sopt_name != TCP_RACK_PACING_BETA) &&
20242 (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) &&
20243 (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) {
20244 /* Options are beind deferred */
20245 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) {
20246 INP_WUNLOCK(inp);
20247 return (0);
20248 } else {
20249 /* No memory to defer, fail */
20250 INP_WUNLOCK(inp);
20251 return (ENOMEM);
20252 }
20253 }
20254 error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval);
20255 INP_WUNLOCK(inp);
20256 return (error);
20257}
20258
20259static void
20260rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
20261{
20262
20264 bzero(ti, sizeof(*ti));
20265
20266 ti->tcpi_state = tp->t_state;
20267 if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
20268 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
20269 if (tp->t_flags & TF_SACK_PERMIT)
20270 ti->tcpi_options |= TCPI_OPT_SACK;
20271 if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
20272 ti->tcpi_options |= TCPI_OPT_WSCALE;
20273 ti->tcpi_snd_wscale = tp->snd_scale;
20274 ti->tcpi_rcv_wscale = tp->rcv_scale;
20275 }
20276 if (tp->t_flags2 & TF2_ECN_PERMIT)
20277 ti->tcpi_options |= TCPI_OPT_ECN;
20278 if (tp->t_flags & TF_FASTOPEN)
20279 ti->tcpi_options |= TCPI_OPT_TFO;
20280 /* still kept in ticks is t_rcvtime */
20281 ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
20282 /* Since we hold everything in precise useconds this is easy */
20283 ti->tcpi_rtt = tp->t_srtt;
20284 ti->tcpi_rttvar = tp->t_rttvar;
20285 ti->tcpi_rto = tp->t_rxtcur;
20286 ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
20287 ti->tcpi_snd_cwnd = tp->snd_cwnd;
20288 /*
20289 * FreeBSD-specific extension fields for tcp_info.
20290 */
20291 ti->tcpi_rcv_space = tp->rcv_wnd;
20292 ti->tcpi_rcv_nxt = tp->rcv_nxt;
20293 ti->tcpi_snd_wnd = tp->snd_wnd;
20294 ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */
20295 ti->tcpi_snd_nxt = tp->snd_nxt;
20296 ti->tcpi_snd_mss = tp->t_maxseg;
20297 ti->tcpi_rcv_mss = tp->t_maxseg;
20298 ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
20299 ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
20300 ti->tcpi_snd_zerowin = tp->t_sndzerowin;
20301#ifdef NETFLIX_STATS
20302 ti->tcpi_total_tlp = tp->t_sndtlppack;
20303 ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte;
20304 memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo));
20305#endif
20306#ifdef TCP_OFFLOAD
20307 if (tp->t_flags & TF_TOE) {
20308 ti->tcpi_options |= TCPI_OPT_TOE;
20309 tcp_offload_tcp_info(tp, ti);
20310 }
20311#endif
20312}
20313
20314static int
20315rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt)
20316{
20317 struct tcpcb *tp;
20318 struct tcp_rack *rack;
20319 int32_t error, optval;
20320 uint64_t val, loptval;
20321 struct tcp_info ti;
20322 /*
20323 * Because all our options are either boolean or an int, we can just
20324 * pull everything into optval and then unlock and copy. If we ever
20325 * add a option that is not a int, then this will have quite an
20326 * impact to this routine.
20327 */
20328 error = 0;
20329 tp = intotcpcb(inp);
20330 rack = (struct tcp_rack *)tp->t_fb_ptr;
20331 if (rack == NULL) {
20332 INP_WUNLOCK(inp);
20333 return (EINVAL);
20334 }
20335 switch (sopt->sopt_name) {
20336 case TCP_INFO:
20337 /* First get the info filled */
20338 rack_fill_info(tp, &ti);
20339 /* Fix up the rtt related fields if needed */
20340 INP_WUNLOCK(inp);
20341 error = sooptcopyout(sopt, &ti, sizeof ti);
20342 return (error);
20343 /*
20344 * Beta is the congestion control value for NewReno that influences how
20345 * much of a backoff happens when loss is detected. It is normally set
20346 * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value
20347 * when you exit recovery.
20348 */
20349 case TCP_RACK_PACING_BETA:
20350 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
20351 error = EINVAL;
20352 else if (rack->rc_pacing_cc_set == 0)
20353 optval = rack->r_ctl.rc_saved_beta.beta;
20354 else {
20355 /*
20356 * Reach out into the CC data and report back what
20357 * I have previously set. Yeah it looks hackish but
20358 * we don't want to report the saved values.
20359 */
20360 if (tp->ccv->cc_data)
20361 optval = ((struct newreno *)tp->ccv->cc_data)->beta;
20362 else
20363 error = EINVAL;
20364 }
20365 break;
20366 /*
20367 * Beta_ecn is the congestion control value for NewReno that influences how
20368 * much of a backoff happens when a ECN mark is detected. It is normally set
20369 * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when
20370 * you exit recovery. Note that classic ECN has a beta of 50, it is only
20371 * ABE Ecn that uses this "less" value, but we do too with pacing :)
20372 */
20373
20374 case TCP_RACK_PACING_BETA_ECN:
20375 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
20376 error = EINVAL;
20377 else if (rack->rc_pacing_cc_set == 0)
20378 optval = rack->r_ctl.rc_saved_beta.beta_ecn;
20379 else {
20380 /*
20381 * Reach out into the CC data and report back what
20382 * I have previously set. Yeah it looks hackish but
20383 * we don't want to report the saved values.
20384 */
20385 if (tp->ccv->cc_data)
20386 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn;
20387 else
20388 error = EINVAL;
20389 }
20390 break;
20391 case TCP_RACK_DSACK_OPT:
20392 optval = 0;
20393 if (rack->rc_rack_tmr_std_based) {
20394 optval |= 1;
20395 }
20396 if (rack->rc_rack_use_dsack) {
20397 optval |= 2;
20398 }
20399 break;
20400 case TCP_RACK_ENABLE_HYSTART:
20401 {
20402 if (tp->ccv->flags & CCF_HYSTART_ALLOWED) {
20403 optval = RACK_HYSTART_ON;
20405 optval = RACK_HYSTART_ON_W_SC;
20406 if (tp->ccv->flags & CCF_HYSTART_CONS_SSTH)
20407 optval = RACK_HYSTART_ON_W_SC_C;
20408 } else {
20409 optval = RACK_HYSTART_OFF;
20410 }
20411 }
20412 break;
20413 case TCP_FAST_RSM_HACK:
20414 optval = rack->fast_rsm_hack;
20415 break;
20416 case TCP_DEFER_OPTIONS:
20417 optval = rack->defer_options;
20418 break;
20419 case TCP_RACK_MEASURE_CNT:
20420 optval = rack->r_ctl.req_measurements;
20421 break;
20422 case TCP_REC_ABC_VAL:
20423 optval = rack->r_use_labc_for_rec;
20424 break;
20425 case TCP_RACK_ABC_VAL:
20426 optval = rack->rc_labc;
20427 break;
20428 case TCP_HDWR_UP_ONLY:
20429 optval= rack->r_up_only;
20430 break;
20431 case TCP_PACING_RATE_CAP:
20432 loptval = rack->r_ctl.bw_rate_cap;
20433 break;
20434 case TCP_RACK_PROFILE:
20435 /* You cannot retrieve a profile, its write only */
20436 error = EINVAL;
20437 break;
20438 case TCP_USE_CMP_ACKS:
20439 optval = rack->r_use_cmp_ack;
20440 break;
20441 case TCP_RACK_PACE_TO_FILL:
20442 optval = rack->rc_pace_to_cwnd;
20443 if (optval && rack->r_fill_less_agg)
20444 optval++;
20445 break;
20446 case TCP_RACK_NO_PUSH_AT_MAX:
20447 optval = rack->r_ctl.rc_no_push_at_mrtt;
20448 break;
20449 case TCP_SHARED_CWND_ENABLE:
20450 optval = rack->rack_enable_scwnd;
20451 break;
20452 case TCP_RACK_NONRXT_CFG_RATE:
20453 optval = rack->rack_rec_nonrxt_use_cr;
20454 break;
20455 case TCP_NO_PRR:
20456 if (rack->rack_no_prr == 1)
20457 optval = 1;
20458 else if (rack->no_prr_addback == 1)
20459 optval = 2;
20460 else
20461 optval = 0;
20462 break;
20463 case TCP_RACK_DO_DETECTION:
20464 optval = rack->do_detection;
20465 break;
20466 case TCP_RACK_MBUF_QUEUE:
20467 /* Now do we use the LRO mbuf-queue feature */
20468 optval = rack->r_mbuf_queue;
20469 break;
20470 case TCP_TIMELY_DYN_ADJ:
20471 optval = rack->rc_gp_dyn_mul;
20472 break;
20473 case TCP_BBR_IWINTSO:
20474 optval = rack->rc_init_win;
20475 break;
20476 case TCP_RACK_TLP_REDUCE:
20477 /* RACK TLP cwnd reduction (bool) */
20478 optval = rack->r_ctl.rc_tlp_cwnd_reduce;
20479 break;
20480 case TCP_BBR_RACK_INIT_RATE:
20481 val = rack->r_ctl.init_rate;
20482 /* convert to kbits per sec */
20483 val *= 8;
20484 val /= 1000;
20485 optval = (uint32_t)val;
20486 break;
20487 case TCP_RACK_FORCE_MSEG:
20488 optval = rack->rc_force_max_seg;
20489 break;
20490 case TCP_RACK_PACE_MAX_SEG:
20491 /* Max segments in a pace */
20492 optval = rack->rc_user_set_max_segs;
20493 break;
20494 case TCP_RACK_PACE_ALWAYS:
20495 /* Use the always pace method */
20496 optval = rack->rc_always_pace;
20497 break;
20498 case TCP_RACK_PRR_SENDALOT:
20499 /* Allow PRR to send more than one seg */
20500 optval = rack->r_ctl.rc_prr_sendalot;
20501 break;
20502 case TCP_RACK_MIN_TO:
20503 /* Minimum time between rack t-o's in ms */
20504 optval = rack->r_ctl.rc_min_to;
20505 break;
20506 case TCP_RACK_EARLY_SEG:
20507 /* If early recovery max segments */
20508 optval = rack->r_ctl.rc_early_recovery_segs;
20509 break;
20510 case TCP_RACK_REORD_THRESH:
20511 /* RACK reorder threshold (shift amount) */
20512 optval = rack->r_ctl.rc_reorder_shift;
20513 break;
20514 case TCP_RACK_REORD_FADE:
20515 /* Does reordering fade after ms time */
20516 optval = rack->r_ctl.rc_reorder_fade;
20517 break;
20518 case TCP_BBR_USE_RACK_RR:
20519 /* Do we use the rack cheat for rxt */
20520 optval = rack->use_rack_rr;
20521 break;
20522 case TCP_RACK_RR_CONF:
20523 optval = rack->r_rr_config;
20524 break;
20525 case TCP_HDWR_RATE_CAP:
20526 optval = rack->r_rack_hw_rate_caps;
20527 break;
20528 case TCP_BBR_HDWR_PACE:
20529 optval = rack->rack_hdw_pace_ena;
20530 break;
20531 case TCP_RACK_TLP_THRESH:
20532 /* RACK TLP theshold i.e. srtt+(srtt/N) */
20533 optval = rack->r_ctl.rc_tlp_threshold;
20534 break;
20535 case TCP_RACK_PKT_DELAY:
20536 /* RACK added ms i.e. rack-rtt + reord + N */
20537 optval = rack->r_ctl.rc_pkt_delay;
20538 break;
20539 case TCP_RACK_TLP_USE:
20540 optval = rack->rack_tlp_threshold_use;
20541 break;
20542 case TCP_RACK_PACE_RATE_CA:
20543 optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
20544 break;
20545 case TCP_RACK_PACE_RATE_SS:
20546 optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
20547 break;
20548 case TCP_RACK_PACE_RATE_REC:
20549 optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
20550 break;
20551 case TCP_RACK_GP_INCREASE_SS:
20552 optval = rack->r_ctl.rack_per_of_gp_ca;
20553 break;
20554 case TCP_RACK_GP_INCREASE_CA:
20555 optval = rack->r_ctl.rack_per_of_gp_ss;
20556 break;
20557 case TCP_BBR_RACK_RTT_USE:
20558 optval = rack->r_ctl.rc_rate_sample_method;
20559 break;
20560 case TCP_DELACK:
20561 optval = tp->t_delayed_ack;
20562 break;
20563 case TCP_DATA_AFTER_CLOSE:
20564 optval = rack->rc_allow_data_af_clo;
20565 break;
20566 case TCP_SHARED_CWND_TIME_LIMIT:
20567 optval = rack->r_limit_scw;
20568 break;
20569 case TCP_RACK_TIMER_SLOP:
20570 optval = rack->r_ctl.timer_slop;
20571 break;
20572 default:
20573 return (tcp_default_ctloutput(inp, sopt));
20574 break;
20575 }
20576 INP_WUNLOCK(inp);
20577 if (error == 0) {
20578 if (TCP_PACING_RATE_CAP)
20579 error = sooptcopyout(sopt, &loptval, sizeof loptval);
20580 else
20581 error = sooptcopyout(sopt, &optval, sizeof optval);
20582 }
20583 return (error);
20584}
20585
20586static int
20587rack_ctloutput(struct inpcb *inp, struct sockopt *sopt)
20588{
20589 if (sopt->sopt_dir == SOPT_SET) {
20590 return (rack_set_sockopt(inp, sopt));
20591 } else if (sopt->sopt_dir == SOPT_GET) {
20592 return (rack_get_sockopt(inp, sopt));
20593 } else {
20594 panic("%s: sopt_dir $%d", __func__, sopt->sopt_dir);
20595 }
20596}
20597
20598static const char *rack_stack_names[] = {
20599 __XSTRING(STACKNAME),
20600#ifdef STACKALIAS
20601 __XSTRING(STACKALIAS),
20602#endif
20603};
20604
20605static int
20606rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
20607{
20608 memset(mem, 0, size);
20609 return (0);
20610}
20611
20612static void
20613rack_dtor(void *mem, int32_t size, void *arg)
20614{
20615
20616}
20617
20618static bool rack_mod_inited = false;
20619
20620static int
20621tcp_addrack(module_t mod, int32_t type, void *data)
20622{
20623 int32_t err = 0;
20624 int num_stacks;
20625
20626 switch (type) {
20627 case MOD_LOAD:
20628 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
20629 sizeof(struct rack_sendmap),
20630 rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
20631
20632 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
20633 sizeof(struct tcp_rack),
20634 rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
20635
20636 sysctl_ctx_init(&rack_sysctl_ctx);
20637 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
20638 SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
20639 OID_AUTO,
20640#ifdef STACKALIAS
20641 __XSTRING(STACKALIAS),
20642#else
20643 __XSTRING(STACKNAME),
20644#endif
20645 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
20646 "");
20647 if (rack_sysctl_root == NULL) {
20648 printf("Failed to add sysctl node\n");
20649 err = EFAULT;
20650 goto free_uma;
20651 }
20653 num_stacks = nitems(rack_stack_names);
20655 rack_stack_names, &num_stacks);
20656 if (err) {
20657 printf("Failed to register %s stack name for "
20658 "%s module\n", rack_stack_names[num_stacks],
20659 __XSTRING(MODNAME));
20660 sysctl_ctx_free(&rack_sysctl_ctx);
20661free_uma:
20662 uma_zdestroy(rack_zone);
20663 uma_zdestroy(rack_pcb_zone);
20665 printf("Failed to register rack module -- err:%d\n", err);
20666 return (err);
20667 }
20669 rack_mod_inited = true;
20670 break;
20671 case MOD_QUIESCE:
20672 err = deregister_tcp_functions(&__tcp_rack, true, false);
20673 break;
20674 case MOD_UNLOAD:
20675 err = deregister_tcp_functions(&__tcp_rack, false, true);
20676 if (err == EBUSY)
20677 break;
20678 if (rack_mod_inited) {
20679 uma_zdestroy(rack_zone);
20680 uma_zdestroy(rack_pcb_zone);
20681 sysctl_ctx_free(&rack_sysctl_ctx);
20683 rack_mod_inited = false;
20684 }
20686 err = 0;
20687 break;
20688 default:
20689 return (EOPNOTSUPP);
20690 }
20691 return (err);
20692}
20693
20694static moduledata_t tcp_rack = {
20695 .name = __XSTRING(MODNAME),
20696 .evhand = tcp_addrack,
20697 .priv = 0
20698};
20699
20700MODULE_VERSION(MODNAME, 1);
20701DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
20702MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
#define CC_NDUPACK
Definition: cc.h:137
#define CCF_CWND_LIMITED
Definition: cc.h:109
#define CCF_USE_LOCAL_ABC
Definition: cc.h:110
#define CC_ECN
Definition: cc.h:134
#define CCF_HYSTART_CAN_SH_CWND
Definition: cc.h:119
#define CCF_HYSTART_ALLOWED
Definition: cc.h:118
#define CC_ALGO(tp)
Definition: cc.h:210
#define CCF_ABC_SENTAWND
Definition: cc.h:108
#define CC_ACK
Definition: cc.h:123
#define CC_RTO
Definition: cc.h:135
#define CC_RTO_ERR
Definition: cc.h:136
#define CCF_HYSTART_CONS_SSTH
Definition: cc.h:120
#define CCALGONAME_NEWRENO
Definition: cc_newreno.h:32
#define CC_NEWRENO_BETA
Definition: cc_newreno.h:54
#define CC_NEWRENO_BETA_ECN
Definition: cc_newreno.h:55
#define CC_NEWRENO_BETA_ECN_ENABLED
Definition: cc_newreno.h:60
#define BANDLIM_UNLIMITED
Definition: icmp_var.h:92
#define BANDLIM_RST_OPENPORT
Definition: icmp_var.h:97
__uint32_t uint32_t
Definition: in.h:62
__uint16_t uint16_t
Definition: in.h:57
__uint8_t uint8_t
Definition: in.h:52
#define IPPROTO_TCP
Definition: in.h:45
#define IPPROTO_UDP
Definition: in.h:46
#define IPPROTO_IP
Definition: in.h:43
u_short in_pseudo(u_int32_t a, u_int32_t b, u_int32_t c)
Definition: in_cksum.c:197
#define TCP_PROBE5(probe, arg0, arg1, arg2, arg3, arg4)
Definition: in_kdtrace.h:47
void in_losing(struct inpcb *inp)
Definition: in_pcb.c:2577
#define INP_WLOCK(inp)
Definition: in_pcb.h:518
#define INP_IPV6PROTO
Definition: in_pcb.h:615
#define INP_DONT_SACK_QUEUE
Definition: in_pcb.h:679
#define INP_MBUF_QUEUE_READY
Definition: in_pcb.h:678
#define INP_WLOCK_ASSERT(inp)
Definition: in_pcb.h:529
#define INP_SUPPORTS_MBUFQ
Definition: in_pcb.h:677
#define INP_TIMEWAIT
Definition: in_pcb.h:644
#define INP_DROPPED
Definition: in_pcb.h:646
#define INP_WUNLOCK(inp)
Definition: in_pcb.h:522
#define INP_IPV6
Definition: in_pcb.h:614
#define INP_MBUF_ACKCMP
Definition: in_pcb.h:664
#define IPV6_FLOWINFO_MASK
Definition: ip6.h:99
#define IP_MAXPACKET
Definition: ip.h:74
#define IPTOS_ECN_MASK
Definition: ip.h:135
#define IPVERSION
Definition: ip.h:46
#define IP_DF
Definition: ip.h:13
ipfw_dyn_rule * next
Definition: ip_fw.h:0
int ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct inpcb *inp)
Definition: ip_output.c:320
#define IP_NO_SND_TAG_RL
Definition: ip_var.h:172
static int32_t rack_gp_rtt_mindiv
Definition: rack.c:311
static void rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, uint32_t rtt, uint32_t line, uint8_t reas)
Definition: rack.c:3419
counter_u64_t rack_to_alloc_hard
Definition: rack.c:351
static int32_t rack_hptsi_segments
Definition: rack.c:257
static void rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
Definition: rack.c:3543
static int rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
Definition: rack.c:16059
counter_u64_t rack_sack_proc_all
Definition: rack.c:366
static void rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm)
Definition: rack.c:5889
static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
Definition: rack.c:12671
static int32_t rack_wma_divisor
Definition: rack.c:262
counter_u64_t rack_tlp_retran_bytes
Definition: rack.c:347
static void rack_adjust_orig_mlen(struct rack_sendmap *rsm)
Definition: rack.c:5870
static int32_t rack_use_rsm_rfo
Definition: rack.c:221
static int32_t rack_hw_pace_extra_slots
Definition: rack.c:202
static struct rack_sendmap * rack_find_lowest_rsm(struct tcp_rack *rack)
Definition: rack.c:4860
static int rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, uint8_t *quality)
Definition: rack.c:2959
static int32_t rack_limits_scwnd
Definition: rack.c:228
counter_u64_t rack_persists_loss
Definition: rack.c:338
static uint32_t rack_probertt_use_min_rtt_entry
Definition: rack.c:285
static int32_t rack_gp_rtt_maxmul
Definition: rack.c:309
static void rack_do_decay(struct tcp_rack *rack)
Definition: rack.c:8757
static uint16_t rack_per_of_gp_lowthresh
Definition: rack.c:278
static int32_t rack_send_a_lot_in_prr
Definition: rack.c:213
static void rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
Definition: rack.c:9299
#define RACK_REXMTVAL(tp)
Definition: rack.c:391
static void rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *prev, struct rack_sendmap *rsm, struct rack_sendmap *next, int flag, uint32_t th_ack, int line)
Definition: rack.c:2167
static uint32_t rack_min_rtt_movement
Definition: rack.c:295
static void rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags, unsigned ipoptlen, int32_t orig_len, int32_t len, int error, int rsm_is_null, int optlen, int line, uint16_t mode)
Definition: rack.c:15306
static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
Definition: rack.c:2826
counter_u64_t rack_move_none
Definition: rack.c:378
static int32_t rack_max_per_above
Definition: rack.c:302
static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
Definition: rack.c:2134
static const int32_t rack_free_cache
Definition: rack.c:256
static int32_t rack_per_upper_bound_ca
Definition: rack.c:316
static uint16_t rack_per_of_gp_ss
Definition: rack.c:272
counter_u64_t rack_to_alloc_emerg
Definition: rack.c:352
static int rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11047
static void rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
Definition: rack.c:9927
static uint32_t rack_min_srtts
Definition: rack.c:251
static uint32_t rack_probertt_lower_within
Definition: rack.c:294
static int rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
Definition: rack.c:19375
static void rack_remxt_tmr(struct tcpcb *tp)
Definition: rack.c:6410
static void rack_collapsed_window(struct tcp_rack *rack)
Definition: rack.c:10234
static int rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11853
static int rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t *doing_tlp)
Definition: rack.c:6034
static uint32_t rack_probertt_gpsrtt_cnt_mul
Definition: rack.c:290
counter_u64_t rack_persists_lost_ends
Definition: rack.c:339
counter_u64_t rack_fto_send
Definition: rack.c:360
counter_u64_t rack_proc_non_comp_ack
Definition: rack.c:358
static void rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
Definition: rack.c:12195
static struct mbuf * rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen, struct rack_fast_send_blk *fsb, int32_t seglimit, int32_t segsize, int hw_tls)
Definition: rack.c:15340
static void rack_need_set_test(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack, int line, int use_which)
Definition: rack.c:7993
static int32_t rack_enable_hw_pacing
Definition: rack.c:201
static void rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
Definition: rack.c:3126
static uint16_t rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
Definition: rack.c:1880
static int rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name, uint32_t optval, uint64_t loptval)
Definition: rack.c:19394
static void tcp_rack_partialack(struct tcpcb *tp)
Definition: rack.c:4626
static int32_t rack_handoff_ok(struct tcpcb *tp)
Definition: rack.c:12631
static __inline int rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
Definition: rack.c:1741
static int32_t rack_do_dyn_mul
Definition: rack.c:317
static uint32_t rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
Definition: rack.c:8136
static struct rack_sendmap * rack_alloc(struct tcp_rack *rack)
Definition: rack.c:2739
static void rack_update_seg(struct tcp_rack *rack)
Definition: rack.c:19134
static int rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:6578
static uint32_t rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:5070
static void rack_init_sysctls(void)
Definition: rack.c:776
static int32_t rack_persist_max
Definition: rack.c:234
static int32_t rack_gp_decrease_per
Definition: rack.c:312
counter_u64_t rack_input_idle_reduces
Definition: rack.c:381
static int32_t rack_req_segs
Definition: rack.c:327
static int rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
Definition: rack.c:10389
static int32_t rack_client_low_buf
Definition: rack.c:223
static int rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:5824
static struct rack_sendmap * rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
Definition: rack.c:5088
static int32_t rack_tlp_threshold_use
Definition: rack.c:270
static int32_t pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
Definition: rack.c:14645
static int rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:12327
static void rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
Definition: rack.c:3489
static bool rack_mod_inited
Definition: rack.c:20618
#define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop)
Definition: rack.c:393
static void rack_undo_cc_pacing(struct tcp_rack *rack)
Definition: rack.c:638
static int rack_ctloutput(struct inpcb *inp, struct sockopt *sopt)
Definition: rack.c:20587
static int32_t rack_rwnd_block_ends_measure
Definition: rack.c:264
counter_u64_t rack_try_scwnd
Definition: rack.c:383
static int32_t rack_enable_shared_cwnd
Definition: rack.c:217
static void rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, int32_t tlen, int32_t tfo_syn)
Definition: rack.c:10324
static int32_t rack_tlp_use_greater
Definition: rack.c:193
struct sysctl_ctx_list rack_sysctl_ctx
Definition: rack.c:153
RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp)
static int32_t rack_verbose_logging
Definition: rack.c:215
static int rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
Definition: rack.c:9233
counter_u64_t rack_saw_enobuf_hw
Definition: rack.c:334
static uint32_t rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:2880
static void rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm, uint8_t quality)
Definition: rack.c:14555
static void rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
Definition: rack.c:7684
static void rack_stop_all_timers(struct tcpcb *tp)
Definition: rack.c:7017
static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
Definition: rack.c:7456
static int rack_set_profile(struct tcp_rack *rack, int prof)
Definition: rack.c:19179
static int32_t rack_gp_per_bw_mul_down
Definition: rack.c:308
static uint32_t rack_min_probertt_hold
Definition: rack.c:292
static int32_t rack_max_abc_post_recovery
Definition: rack.c:222
DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY)
static uint32_t rack_probertt_gpsrtt_cnt_div
Definition: rack.c:291
static void rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
Definition: rack.c:9887
static int32_t rack_reorder_fade
Definition: rack.c:195
counter_u64_t rack_sack_used_next_merge
Definition: rack.c:371
static int32_t rack_persist_min
Definition: rack.c:233
#define CUM_ACKED
Definition: rack.c:156
static void rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
Definition: rack.c:2461
counter_u64_t rack_to_tot
Definition: rack.c:348
static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:12825
counter_u64_t rack_sack_used_prev_merge
Definition: rack.c:373
static int32_t rack_use_max_for_nobackoff
Definition: rack.c:323
static int rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11967
static void rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery)
Definition: rack.c:4497
counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]
Definition: rack.c:388
static int32_t rack_probertt_clear_is
Definition: rack.c:297
static void rack_mtu_change(struct tcpcb *tp)
Definition: rack.c:19145
static int32_t rack_limit_time_with_srtt
Definition: rack.c:237
counter_u64_t rack_collapsed_win
Definition: rack.c:382
static int rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
Definition: rack.c:3053
static void rack_dtor(void *mem, int32_t size, void *arg)
Definition: rack.c:20613
static uint32_t rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:5128
static uint32_t rack_probe_rtt_sets_cwnd
Definition: rack.c:287
static void rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm)
Definition: rack.c:7959
static void rack_hw_tls_change(struct tcpcb *tp, int chg)
Definition: rack.c:20032
static uint32_t rack_highest_sack_thresh_seen
Definition: rack.c:199
static int32_t rack_gp_increase_per
Definition: rack.c:313
static void rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
Definition: rack.c:12881
static int32_t rack_do_hystart
Definition: rack.c:209
VNET_DECLARE(uint32_t, newreno_beta)
static int32_t rack_pkt_delay
Definition: rack.c:212
static int32_t use_rack_rr
Definition: rack.c:231
static void rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
Definition: rack.c:2057
static int rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling, uint8_t *doing_tlp)
Definition: rack.c:6844
MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1)
static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
Definition: rack.c:6990
static void rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
Definition: rack.c:2286
static struct tcp_function_block __tcp_rack
Definition: rack.c:20062
static void rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:12272
static uint32_t rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
Definition: rack.c:5143
static __inline void rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, struct rack_sendmap *rsm, uint32_t start)
Definition: rack.c:5914
counter_u64_t rack_saw_enetunreach
Definition: rack.c:335
static int rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11725
static void rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_rec, int dup_ack_struck)
Definition: rack.c:9362
static int32_t rack_ignore_data_after_close
Definition: rack.c:216
static int rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:10681
static uint32_t rack_time_between_probertt
Definition: rack.c:289
static int32_t rack_use_fsb
Definition: rack.c:219
static uint32_t rc_init_window(struct tcp_rack *rack)
Definition: rack.c:1784
static void rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, struct hpts_diag *diag, struct timeval *tv)
Definition: rack.c:5467
static int rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len, uint8_t doing_tlp)
Definition: rack.c:15541
counter_u64_t rack_to_alloc
Definition: rack.c:350
#define SACKED
Definition: rack.c:157
static void rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:5410
static int32_t rack_disable_prr
Definition: rack.c:230
static int32_t tcp_addrack(module_t mod, int32_t type, void *data)
Definition: rack.c:20621
uma_zone_t rack_zone
Definition: rack.c:137
static int rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, uint32_t tiwin, int32_t tlen, int32_t *ofia, int32_t thflags, int32_t *ret_val)
Definition: rack.c:10005
static int32_t rack_hbp_thresh
Definition: rack.c:299
static int32_t rack_use_rfo
Definition: rack.c:220
static void rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
Definition: rack.c:7005
static uint64_t rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
Definition: rack.c:2002
static int32_t rack_rto_min
Definition: rack.c:254
static struct rack_sendmap * rack_alloc_full_limit(struct tcp_rack *rack)
Definition: rack.c:2781
static int32_t rack_apply_rtt_with_reduced_conf
Definition: rack.c:210
static void rack_set_cc_pacing(struct tcp_rack *rack)
Definition: rack.c:551
static void rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
Definition: rack.c:12965
counter_u64_t rack_sack_proc_restart
Definition: rack.c:368
static int32_t rack_gp_no_rec_chg
Definition: rack.c:318
static int32_t rack_tlp_thresh
Definition: rack.c:191
counter_u64_t rack_tlp_tot
Definition: rack.c:344
static void rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, int32_t slot, uint32_t tot_len_this_send, int sup_rack)
Definition: rack.c:5527
static int32_t rack_timely_max_push_rise
Definition: rack.c:320
static void rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
Definition: rack.c:3157
static int32_t rack_hw_rate_min
Definition: rack.c:204
static int32_t rack_enobuf_hw_boost_mult
Definition: rack.c:239
counter_u64_t rack_to_alloc_limited
Definition: rack.c:353
MODULE_VERSION(MODNAME, 1)
static int32_t rack_use_cmp_acks
Definition: rack.c:218
static uint16_t rack_per_of_gp_probertt
Definition: rack.c:277
static void rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
Definition: rack.c:20260
static int32_t rack_enobuf_hw_min
Definition: rack.c:241
static void rack_counter_destroy(void)
Definition: rack.c:2684
static uint32_t rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t srtt)
Definition: rack.c:4986
counter_u64_t rack_tlp_retran
Definition: rack.c:346
static uint8_t rack_req_measurements
Definition: rack.c:197
static void rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:9104
static int32_t rack_timely_int_timely_only
Definition: rack.c:324
static void rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack)
Definition: rack.c:10350
counter_u64_t rack_hot_alloc
Definition: rack.c:349
counter_u64_t rack_hw_pace_init_fail
Definition: rack.c:384
static int32_t rack_prr_addbackmax
Definition: rack.c:208
static void rack_log_timely(struct tcp_rack *rack, uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, uint64_t up_bnd, int line, uint8_t method)
Definition: rack.c:3003
static int32_t rack_lower_cwnd_at_tlp
Definition: rack.c:267
static int rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:12081
static void rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
Definition: rack.c:14456
counter_u64_t rack_saw_enobuf
Definition: rack.c:333
__FBSDID("$FreeBSD$")
static int rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:6350
static void rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
Definition: rack.c:8816
static int32_t rack_timely_max_push_drop
Definition: rack.c:321
static void rack_handle_probe_response(struct tcp_rack *rack, uint32_t tiwin, uint32_t us_cts)
Definition: rack.c:13166
static void rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
Definition: rack.c:7036
static uint32_t rack_probertt_use_min_rtt_exit
Definition: rack.c:286
static void rack_log_hdwr_pacing(struct tcp_rack *rack, uint64_t rate, uint64_t hw_rate, int line, int error, uint16_t mod)
Definition: rack.c:1954
static void rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, struct timeval *tv, uint32_t flags_on_entry)
Definition: rack.c:2522
counter_u64_t rack_fto_rsm_send
Definition: rack.c:361
static void rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
Definition: rack.c:2340
static struct mbuf * rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen, int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
Definition: rack.c:15502
static int32_t rack_always_send_oldest
Definition: rack.c:269
static int32_t rack_slot_reduction
Definition: rack.c:261
RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp)
static int32_t rack_output(struct tcpcb *tp)
Definition: rack.c:16474
static int32_t rack_enobuf_hw_max
Definition: rack.c:240
static int32_t rack_per_upper_bound_ss
Definition: rack.c:315
static int32_t rack_rate_sample_method
Definition: rack.c:258
static void rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
Definition: rack.c:2392
static void rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
Definition: rack.c:2489
static void rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line)
Definition: rack.c:2365
uma_zone_t rack_pcb_zone
Definition: rack.c:138
static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
Definition: rack.c:20606
counter_u64_t rack_split_limited
Definition: rack.c:355
static void tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
Definition: rack.c:7525
static struct rack_sendmap * rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
Definition: rack.c:2798
static int32_t rack_def_profile
Definition: rack.c:265
static void rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
Definition: rack.c:3146
static uint32_t rack_def_data_window
Definition: rack.c:249
static uint32_t rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
Definition: rack.c:3276
counter_u64_t rack_sack_splits
Definition: rack.c:372
static uint64_t rack_bw_rate_cap
Definition: rack.c:328
static void rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:5378
struct rack_sendmap * tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
Definition: rack.c:14482
static int sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
Definition: rack.c:708
counter_u64_t rack_tlp_newdata
Definition: rack.c:345
static int rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
Definition: rack.c:7728
static int32_t rack_hw_rwnd_factor
Definition: rack.c:242
counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]
Definition: rack.c:387
static uint16_t rack_atexit_prtt
Definition: rack.c:281
static void rack_strike_dupack(struct tcp_rack *rack)
Definition: rack.c:9724
static void rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd)
Definition: rack.c:2619
static int32_t rack_timely_dec_clear
Definition: rack.c:319
counter_u64_t rack_extended_rfo
Definition: rack.c:364
static int32_t rack_non_rxt_use_cr
Definition: rack.c:232
static void rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
Definition: rack.c:13020
static int32_t rack_hw_rate_to_low
Definition: rack.c:205
static void rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
Definition: rack.c:3470
static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq)
Definition: rack.c:4645
static int rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, int32_t nxt_pkt, struct timeval *tv)
Definition: rack.c:13901
static void rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, uint32_t rtt, int32_t rtt_diff)
Definition: rack.c:3807
counter_u64_t rack_alloc_limited_conns
Definition: rack.c:354
static int rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11597
static void rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
Definition: rack.c:5506
static uint16_t rack_per_of_gp_rec
Definition: rack.c:274
#define DELAY_ACK(tp, tlen)
Definition: rack.c:4853
static void rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
Definition: rack.c:2589
counter_u64_t rack_sack_proc_short
Definition: rack.c:367
static void rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
Definition: rack.c:3299
static int rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11465
static int rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
Definition: rack.c:11251
static int32_t rack_pace_every_seg
Definition: rack.c:259
static uint32_t rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
Definition: rack.c:14624
static int rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
Definition: rack.c:13220
static int32_t rack_dsack_std_based
Definition: rack.c:224
static const char * rack_stack_names[]
Definition: rack.c:20598
struct sysctl_oid * rack_sysctl_root
Definition: rack.c:154
MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block")
static uint64_t rack_get_fixed_pacing_bw(struct tcp_rack *rack)
Definition: rack.c:1800
counter_u64_t rack_persists_acks
Definition: rack.c:337
static struct rack_sendmap * rack_merge_rsm(struct tcp_rack *rack, struct rack_sendmap *l_rsm, struct rack_sendmap *r_rsm)
Definition: rack.c:5958
static int32_t rack_tlp_limit
Definition: rack.c:192
static uint16_t rack_per_of_gp_ca
Definition: rack.c:273
static void rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, uint32_t seq_out, uint16_t th_flags, int32_t err, uint64_t ts, struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff, int hw_tls)
Definition: rack.c:7158
static void rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
Definition: rack.c:2420
static void rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
Definition: rack.c:2098
counter_u64_t rack_hw_pace_lost
Definition: rack.c:385
static int32_t rack_delayed_ack_time
Definition: rack.c:260
static uint32_t rack_must_drain
Definition: rack.c:284
static int32_t rack_gp_rtt_minmul
Definition: rack.c:310
static int is_rsm_inside_declared_tlp_block(struct tcp_rack *rack, struct rack_sendmap *rsm)
Definition: rack.c:8120
static void rack_clear_rate_sample(struct tcp_rack *rack)
Definition: rack.c:12187
static uint64_t rack_get_bw(struct tcp_rack *rack)
Definition: rack.c:1811
static void rack_sndbuf_autoscale(struct tcp_rack *rack)
Definition: rack.c:16004
static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
Definition: rack.c:6953
static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
Definition: rack.c:7011
static int32_t rack_stopall(struct tcpcb *tp)
Definition: rack.c:6996
static int rack_get_sockopt(struct inpcb *inp, struct sockopt *sopt)
Definition: rack.c:20315
static int32_t rack_hw_up_only
Definition: rack.c:206
static int32_t rack_enable_mqueue_for_nonpaced
Definition: rack.c:229
static void rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
Definition: rack.c:4813
static void rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack)
Definition: rack.c:4720
static int32_t rack_gp_per_bw_mul_up
Definition: rack.c:307
static void rack_convert_rtts(struct tcpcb *tp)
Definition: rack.c:6490
static void rack_check_bottom_drag(struct tcpcb *tp, struct tcp_rack *rack, struct socket *so, int32_t acked)
Definition: rack.c:9762
static int rack_pru_options(struct tcpcb *tp, int flags)
Definition: rack.c:20055
#define timersub(tvp, uvp, vvp)
static int rack_set_sockopt(struct inpcb *inp, struct sockopt *sopt)
Definition: rack.c:20090
static int32_t rack_down_raise_thresh
Definition: rack.c:326
static int32_t rack_cwnd_block_ends_measure
Definition: rack.c:263
static void rack_cc_conn_init(struct tcpcb *tp)
Definition: rack.c:6542
static void rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq startseq, uint32_t sb_offset)
Definition: rack.c:15064
static int32_t rack_timely_no_stopping
Definition: rack.c:325
static void rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
Definition: rack.c:8722
counter_u64_t rack_sack_skipped_acked
Definition: rack.c:374
static uint32_t rack_max_drain_wait
Definition: rack.c:283
static void rack_apply_deferred_options(struct tcp_rack *rack)
Definition: rack.c:20017
static uint32_t rack_probertt_filter_life
Definition: rack.c:293
static int32_t rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
Definition: rack.c:14746
static void rack_un_collapse_window(struct tcp_rack *rack)
Definition: rack.c:10310
static uint32_t rack_min_measure_usec
Definition: rack.c:252
static struct rack_sendmap * rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
Definition: rack.c:4880
counter_u64_t rack_move_some
Definition: rack.c:379
static uint32_t rack_probe_rtt_safety_val
Definition: rack.c:288
static int32_t rack_limited_retran
Definition: rack.c:268
#define V_newreno_beta_ecn
Definition: rack.c:147
static uint16_t rack_per_of_gp_probertt_reduce
Definition: rack.c:279
static int32_t rack_hw_rate_caps
Definition: rack.c:203
static void rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, struct rack_sendmap *rsm, int conf)
Definition: rack.c:2216
int32_t rack_clear_counter
Definition: rack.c:548
static void rack_free_trim(struct tcp_rack *rack)
Definition: rack.c:2862
static int32_t rack_stats_gets_ms_rtt
Definition: rack.c:207
static int32_t rack_max_drain_hbp
Definition: rack.c:298
counter_u64_t rack_ack_total
Definition: rack.c:375
counter_u64_t rack_sack_total
Definition: rack.c:377
static int32_t rack_tlp_min
Definition: rack.c:253
static void rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
Definition: rack.c:3712
static int32_t rack_per_lower_bound
Definition: rack.c:314
static int32_t rack_pace_one_seg
Definition: rack.c:296
counter_u64_t rack_non_fto_send
Definition: rack.c:363
static uint16_t rack_atexit_prtt_hbp
Definition: rack.c:280
static int32_t rack_reorder_thresh
Definition: rack.c:194
static void rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, int line, uint8_t quality)
Definition: rack.c:4038
static int32_t rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
Definition: rack.c:3974
static void rack_log_dsack_event(struct tcp_rack *rack, uint8_t mod, uint32_t flex4, uint32_t flex5, uint32_t flex6)
Definition: rack.c:1916
static int32_t rack_init(struct tcpcb *tp)
Definition: rack.c:12348
static uint32_t rack_highest_move_thresh_seen
Definition: rack.c:200
counter_u64_t rack_sack_attacks_detected
Definition: rack.c:369
counter_u64_t rack_sack_attacks_reversed
Definition: rack.c:370
static int rack_check_data_after_close(struct mbuf *m, struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
Definition: rack.c:11692
static int rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:6236
static int32_t rack_use_imac_dack
Definition: rack.c:331
counter_u64_t rack_multi_single_eq
Definition: rack.c:357
static int rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
Definition: rack.c:10826
static uint32_t rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
Definition: rack.c:7079
static int32_t rack_rto_max
Definition: rack.c:255
counter_u64_t rack_nfto_resend
Definition: rack.c:362
static uint32_t rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
Definition: rack.c:4900
static void rack_log_alt_to_to_cancel(struct tcp_rack *rack, uint32_t flex1, uint32_t flex2, uint32_t flex3, uint32_t flex4, uint32_t flex5, uint32_t flex6, uint16_t flex7, uint8_t mod)
Definition: rack.c:2556
counter_u64_t rack_express_sack
Definition: rack.c:376
static int32_t rack_sack_not_required
Definition: rack.c:235
static int32_t rack_min_to
Definition: rack.c:214
static int32_t rack_autosndbuf_inc
Definition: rack.c:238
static int32_t rack_timely_min_segs
Definition: rack.c:322
static uint32_t rack_goal_bdp
Definition: rack.c:250
counter_u64_t rack_persists_sends
Definition: rack.c:336
static int rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
Definition: rack.c:6258
static int32_t rack_default_init_window
Definition: rack.c:236
static uint32_t rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
Definition: rack.c:3248
static uint32_t rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, uint32_t avail, int32_t sb_offset)
Definition: rack.c:15264
int __ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
uint32_t ctf_decay_count(uint32_t count, uint32_t decay)
int32_t ctf_progress_timeout_check(struct tcpcb *tp, bool log)
int ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
void ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
void ctf_ack_war_checks(struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
int ctf_ts_check_ac(struct tcpcb *tp, int32_t thflags)
void ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t rstreason, int32_t tlen)
void ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
void ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t *ret_val)
int _ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t *tlenp, int32_t *thf, int32_t *drop_hdrlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
uint32_t ctf_outstanding(struct tcpcb *tp)
uint32_t ctf_fixed_maxseg(struct tcpcb *tp)
uint32_t ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
void __ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
int ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t *ret_val)
void ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
void ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t rstreason, int32_t tlen)
#define PROGRESS_UPDATE
#define ONE_POINT_TWO_MEG
#define USE_RTT_HIGH
#define TCP_MSS_ACCT_SIZE
#define CTF_JR_APP_LIMITED
#define CTF_JR_PRR
#define TCP_MSS_ACCT_INPACE
#define USE_RTT_LOW
#define TCP_MSS_ACCT_JUSTRET
#define PROGRESS_DROP
#define ctf_do_dropafterack(a, b, c, d, e, f)
#define TCP_MSS_ACCT_SNDACK
#define TCP_MSS_ACCT_PERSIST
#define CTF_JR_ASSESSING
#define CTF_JR_CWND_LIMITED
#define USE_RTT_AVG
#define PROGRESS_CLEAR
#define PROGRESS_START
#define TCP_MSS_ACCT_ATIMER
#define CTF_JR_SENT_DATA
#define PACE_MAX_IP_BYTES
#define DUP_ACK_THRESHOLD
#define CTF_JR_RWND_LIMITED
int sack_filter_blks(struct sack_filter *sf, struct sackblk *in, int numblks, tcp_seq th_ack)
Definition: sack_filter.c:499
void sack_filter_clear(struct sack_filter *sf, tcp_seq seq)
Definition: sack_filter.c:101
const struct tcp_hwrate_limit_table * crte
Definition: tcp_bbr.h:663
uint32_t rc_min_to
Definition: tcp_bbr.h:653
char name[TCP_CA_NAME_MAX]
Definition: cc.h:147
uint32_t val
Definition: cc_newreno.h:51
void * cc_data
Definition: cc.h:94
int bytes_this_ack
Definition: cc.h:95
uint8_t labc
Definition: cc.h:104
uint16_t nsegs
Definition: cc.h:103
tcp_seq curack
Definition: cc.h:96
uint32_t flags
Definition: cc.h:97
uint64_t optval
Definition: tcp_rack.h:82
uint32_t p_hpts_active
Definition: tcp_hpts.h:40
uint32_t slot_req
Definition: tcp_hpts.h:45
uint32_t p_nxt_slot
Definition: tcp_hpts.h:41
uint32_t yet_to_sleep
Definition: tcp_hpts.h:50
uint32_t p_prev_slot
Definition: tcp_hpts.h:43
uint32_t wheel_cts
Definition: tcp_hpts.h:54
uint8_t p_on_min_sleep
Definition: tcp_hpts.h:58
uint32_t p_curtick
Definition: tcp_hpts.h:56
uint32_t slot_remaining
Definition: tcp_hpts.h:47
int32_t co_ret
Definition: tcp_hpts.h:55
uint32_t wheel_slot
Definition: tcp_hpts.h:52
uint32_t inp_hptsslot
Definition: tcp_hpts.h:46
uint32_t p_lasttick
Definition: tcp_hpts.h:57
uint32_t p_runningslot
Definition: tcp_hpts.h:44
uint32_t hpts_sleep_time
Definition: tcp_hpts.h:49
uint32_t maxslots
Definition: tcp_hpts.h:53
uint32_t need_new_to
Definition: tcp_hpts.h:51
uint32_t have_slept
Definition: tcp_hpts.h:48
uint32_t p_cur_slot
Definition: tcp_hpts.h:42
in_addr_t s_addr
Definition: in.h:84
Definition: in_pcb.h:217
struct socket * inp_socket
Definition: in_pcb.h:254
struct ip6_pktopts * in6p_outputopts
Definition: in_pcb.h:286
struct route inp_route
Definition: in_pcb.h:301
uint8_t inp_hpts_calls
Definition: in_pcb.h:249
int inp_flags
Definition: in_pcb.h:246
struct route_in6 inp_route6
Definition: in_pcb.h:302
int inp_flags2
Definition: in_pcb.h:247
u_char inp_vflag
Definition: in_pcb.h:260
u_int32_t inp_flow
Definition: in_pcb.h:259
struct mbuf * inp_options
Definition: in_pcb.h:279
u_char inp_ip_ttl
Definition: in_pcb.h:261
struct m_snd_tag * inp_snd_tag
Definition: in_pcb.h:265
u_char inp_ip_tos
Definition: in_pcb.h:278
int32_t inp_hptsslot
Definition: in_pcb.h:255
struct in_conninfo inp_inc
Definition: in_pcb.h:270
Definition: ip6.h:74
Definition: ip.h:51
struct in_addr ip_src ip_dst
Definition: ip.h:71
u_char ip_tos
Definition: ip.h:60
u_short ip_len
Definition: ip.h:61
u_char ip_v
Definition: ip.h:54
u_char ip_ttl
Definition: ip.h:68
u_short ip_off
Definition: ip.h:63
Definition: ip_var.h:47
uint32_t newreno_flags
Definition: cc_newreno.h:37
uint32_t beta
Definition: cc_newreno.h:35
uint32_t beta_ecn
Definition: cc_newreno.h:36
uint32_t ack_count
Definition: tcp_rack.h:411
uint32_t rc_ssthresh_at_erec
Definition: tcp_rack.h:455
uint32_t rc_prr_sndcnt
Definition: tcp_rack.h:367
uint8_t dsack_persist
Definition: tcp_rack.h:486
uint32_t rc_cwnd_at_erec
Definition: tcp_rack.h:454
uint32_t retran_during_recovery
Definition: tcp_rack.h:457
uint32_t rc_fixed_pacing_rate_rec
Definition: tcp_rack.h:347
struct time_filter_small rc_gp_min_rtt
Definition: tcp_rack.h:432
uint32_t rc_timer_exp
Definition: tcp_rack.h:350
uint32_t rc_went_idle_time
Definition: tcp_rack.h:392
struct rack_sendmap * rc_resend
Definition: tcp_rack.h:339
uint32_t rc_last_us_rtt
Definition: tcp_rack.h:450
uint32_t rc_prr_delivered
Definition: tcp_rack.h:372
uint64_t last_gp_comp_bw
Definition: tcp_rack.h:430
uint32_t rc_highest_us_rtt
Definition: tcp_rack.h:449
struct rack_sendmap * rc_end_appl
Definition: tcp_rack.h:398
struct rack_sendmap * rc_first_appl
Definition: tcp_rack.h:397
uint32_t rc_probertt_sndmax_atexit
Definition: tcp_rack.h:453
uint32_t rc_min_to
Definition: tcp_rack.h:469
uint32_t rc_pace_max_segs
Definition: tcp_rack.h:403
struct rack_sendmap * rc_sacklast
Definition: tcp_rack.h:394
uint16_t rack_per_of_gp_ss
Definition: tcp_rack.h:406
uint32_t rc_pkt_delay
Definition: tcp_rack.h:470
uint16_t rc_early_recovery_segs
Definition: tcp_rack.h:484
uint8_t rc_rate_sample_method
Definition: tcp_rack.h:492
uint32_t rc_num_split_allocs
Definition: tcp_rack.h:389
uint32_t rc_reorder_fade
Definition: tcp_rack.h:378
uint32_t rc_rcvtime
Definition: tcp_rack.h:388
uint32_t challenge_ack_ts
Definition: tcp_rack.h:467
int32_t rc_scw_index
Definition: tcp_rack.h:462
uint32_t rc_lower_rtt_us_cts
Definition: tcp_rack.h:445
uint32_t dsack_byte_cnt
Definition: tcp_rack.h:456
struct rack_sendmap * rc_tlpsend
Definition: tcp_rack.h:337
uint16_t rack_per_of_gp_ca
Definition: tcp_rack.h:407
uint16_t rc_reorder_shift
Definition: tcp_rack.h:485
uint32_t rc_last_timeout_snduna
Definition: tcp_rack.h:464
uint32_t rc_agg_early
Definition: tcp_rack.h:417
uint16_t rack_per_of_gp_probertt
Definition: tcp_rack.h:409
uint16_t rack_per_of_gp_rec
Definition: tcp_rack.h:408
uint64_t rc_gp_output_ts
Definition: tcp_rack.h:421
uint32_t rc_num_maps_alloced
Definition: tcp_rack.h:386
uint32_t rc_loss_count
Definition: tcp_rack.h:376
uint32_t rc_rack_tmit_time
Definition: tcp_rack.h:383
struct rack_rb_tree_head rc_mtree
Definition: tcp_rack.h:335
uint32_t sack_count
Definition: tcp_rack.h:412
uint64_t bw_rate_cap
Definition: tcp_rack.h:358
uint64_t gp_bw
Definition: tcp_rack.h:425
struct rack_head rc_tmap
Definition: tcp_rack.h:336
uint32_t rc_lowest_us_rtt
Definition: tcp_rack.h:448
uint32_t rc_rack_min_rtt
Definition: tcp_rack.h:351
uint32_t rc_last_output_to
Definition: tcp_rack.h:391
uint32_t rc_snd_max_at_rto
Definition: tcp_rack.h:460
uint32_t rc_agg_delayed
Definition: tcp_rack.h:418
uint32_t rc_target_probertt_flight
Definition: tcp_rack.h:452
uint32_t rc_saved_cwnd
Definition: tcp_rack.h:420
uint64_t crte_prev_rate
Definition: tcp_rack.h:357
uint32_t last_sent_tlp_seq
Definition: tcp_rack.h:370
uint32_t rc_high_rwnd
Definition: tcp_rack.h:410
struct timeval rc_last_time_decay
Definition: tcp_rack.h:424
uint32_t rc_prr_out
Definition: tcp_rack.h:363
uint32_t rc_reorder_ts
Definition: tcp_rack.h:359
uint32_t cwnd_to_use
Definition: tcp_rack.h:349
uint32_t rc_fixed_pacing_rate_ss
Definition: tcp_rack.h:348
uint32_t last_tlp_acked_start
Definition: tcp_rack.h:465
struct newreno rc_saved_beta
Definition: tcp_rack.h:472
uint32_t rc_tlp_threshold
Definition: tcp_rack.h:463
uint32_t sack_moved_extra
Definition: tcp_rack.h:414
uint32_t rc_loss_at_start
Definition: tcp_rack.h:438
uint32_t rc_hpts_flags
Definition: tcp_rack.h:345
uint32_t last_tlp_acked_end
Definition: tcp_rack.h:466
uint32_t input_pkt
Definition: tcp_rack.h:343
struct timeval act_rcv_time
Definition: tcp_rack.h:423
struct rack_head rc_free
Definition: tcp_rack.h:355
uint8_t rc_tlp_cwnd_reduce
Definition: tcp_rack.h:490
uint32_t dsack_round_end
Definition: tcp_rack.h:440
uint8_t rc_no_push_at_mrtt
Definition: tcp_rack.h:487
uint32_t rc_pace_min_segs
Definition: tcp_rack.h:404
uint32_t sack_noextra_move
Definition: tcp_rack.h:413
uint16_t last_sent_tlp_len
Definition: tcp_rack.h:374
int32_t rc_rtt_diff
Definition: tcp_rack.h:434
uint16_t rc_tlp_cnt_out
Definition: tcp_rack.h:373
uint32_t rc_fixed_pacing_rate_ca
Definition: tcp_rack.h:346
uint32_t forced_ack_ts
Definition: tcp_rack.h:444
uint32_t rc_gp_lowrtt
Definition: tcp_rack.h:458
uint32_t rc_prr_recovery_fs
Definition: tcp_rack.h:365
uint32_t challenge_ack_cnt
Definition: tcp_rack.h:468
uint8_t req_measurements
Definition: tcp_rack.h:489
uint8_t num_measurements
Definition: tcp_rack.h:488
uint32_t rc_holes_rxt
Definition: tcp_rack.h:384
struct rack_fast_send_blk fsb
Definition: tcp_rack.h:341
uint32_t rc_app_limited_cnt
Definition: tcp_rack.h:405
uint32_t saved_input_pkt
Definition: tcp_rack.h:344
uint32_t rc_time_probertt_entered
Definition: tcp_rack.h:446
const struct tcp_hwrate_limit_table * crte
Definition: tcp_rack.h:416
uint8_t rc_prr_sendalot
Definition: tcp_rack.h:491
uint32_t rc_gp_high_rwnd
Definition: tcp_rack.h:459
uint32_t rc_prev_gp_srtt
Definition: tcp_rack.h:436
uint64_t init_rate
Definition: tcp_rack.h:426
uint32_t rc_out_at_rto
Definition: tcp_rack.h:461
uint32_t rc_rack_largest_cwnd
Definition: tcp_rack.h:352
uint32_t rc_gp_srtt
Definition: tcp_rack.h:435
uint32_t roundends
Definition: tcp_rack.h:442
uint32_t rc_tlp_new_data
Definition: tcp_rack.h:361
struct def_opt_head opt_list
Definition: tcp_rack.h:433
uint32_t rc_sacked
Definition: tcp_rack.h:369
uint32_t rc_tlp_rxt_last_time
Definition: tcp_rack.h:419
uint32_t rc_time_probertt_starts
Definition: tcp_rack.h:447
uint32_t rc_entry_gp_rtt
Definition: tcp_rack.h:437
uint32_t num_dsack
Definition: tcp_rack.h:443
uint32_t rc_time_of_last_probertt
Definition: tcp_rack.h:451
uint32_t persist_lost_ends
Definition: tcp_rack.h:471
struct sack_filter rack_sf
Definition: tcp_rack.h:400
struct rack_rtt_sample rack_rs
Definition: tcp_rack.h:415
uint64_t last_max_bw
Definition: tcp_rack.h:431
uint32_t current_round
Definition: tcp_rack.h:441
uint32_t timer_slop
Definition: tcp_rack.h:342
uint64_t last_hw_bw_req
Definition: tcp_rack.h:356
uint64_t rc_gp_cumack_ts
Definition: tcp_rack.h:422
uint32_t o_m_len
Definition: tcp_rack.h:327
uint32_t recwin
Definition: tcp_rack.h:322
uint32_t rfo_apply_push
Definition: tcp_rack.h:328
struct udphdr * udp
Definition: tcp_rack.h:325
uint8_t * tcp_ip_hdr
Definition: tcp_rack.h:321
struct tcphdr * th
Definition: tcp_rack.h:324
uint32_t left_to_send
Definition: tcp_rack.h:317
uint8_t hoplimit
Definition: tcp_rack.h:320
struct mbuf * m
Definition: tcp_rack.h:326
uint8_t tcp_flags
Definition: tcp_rack.h:319
uint32_t hw_tls
Definition: tcp_rack.h:329
uint16_t tcp_ip_hdr_len
Definition: tcp_rack.h:318
uint32_t rs_rtt_highest
Definition: tcp_rack.h:147
uint32_t rs_us_rtt
Definition: tcp_rack.h:149
uint64_t rs_rtt_tot
Definition: tcp_rack.h:151
int32_t confidence
Definition: tcp_rack.h:150
uint32_t rs_flags
Definition: tcp_rack.h:145
uint16_t rs_us_rtrcnt
Definition: tcp_rack.h:152
uint32_t rs_rtt_cnt
Definition: tcp_rack.h:148
uint32_t rs_rtt_lowest
Definition: tcp_rack.h:146
uint32_t r_nseq_appl
Definition: tcp_rack.h:64
uint8_t r_dupack
Definition: tcp_rack.h:65
struct mbuf * m
Definition: tcp_rack.h:61
uint8_t r_hw_tls
Definition: tcp_rack.h:71
uint32_t r_fas
Definition: tcp_rack.h:76
uint32_t r_rtr_cnt
Definition: tcp_rack.h:60
uint64_t r_ack_arrival
Definition: tcp_rack.h:74
uint32_t soff
Definition: tcp_rack.h:62
uint8_t r_no_rtt_allowed
Definition: tcp_rack.h:70
uint8_t r_limit_type
Definition: tcp_rack.h:67
uint32_t r_flags
Definition: tcp_rack.h:59
uint8_t r_in_tmap
Definition: tcp_rack.h:66
uint32_t orig_m_len
Definition: tcp_rack.h:63
uint32_t r_end
Definition: tcp_rack.h:57
uint8_t r_one_out_nr
Definition: tcp_rack.h:69
uint64_t r_tim_lastsent[RACK_NUM_OF_RETRANS]
Definition: tcp_rack.h:73
uint32_t r_rtr_bytes
Definition: tcp_rack.h:58
uint32_t r_start
Definition: tcp_rack.h:56
uint8_t r_just_ret
Definition: tcp_rack.h:68
tcp_seq end
Definition: tcp_var.h:98
tcp_seq start
Definition: tcp_var.h:97
uint8_t ack_val_set
Definition: tcp_lro.h:188
uint64_t timestamp
Definition: tcp_lro.h:180
uint32_t ts_echo
Definition: tcp_lro.h:184
uint16_t win
Definition: tcp_lro.h:185
uint8_t codepoint
Definition: tcp_lro.h:187
uint32_t seq
Definition: tcp_lro.h:181
uint32_t ts_value
Definition: tcp_lro.h:183
uint32_t ack
Definition: tcp_lro.h:182
uint16_t flags
Definition: tcp_lro.h:186
char tfb_tcp_block_name[TCP_FUNCTION_NAME_LEN_MAX]
Definition: tcp_var.h:348
void(* tfb_tcp_do_segment)(struct mbuf *, struct tcphdr *, struct socket *, struct tcpcb *, int, int, uint8_t)
Definition: tcp_var.h:351
const struct tcp_rate_set * ptbl
Definition: tcp_ratelimit.h:44
uint64_t delRate
Definition: tcp_log_buf.h:75
uint64_t bw_inuse
Definition: tcp_log_buf.h:77
uint32_t lost
Definition: tcp_log_buf.h:91
uint8_t bbr_substate
Definition: tcp_log_buf.h:96
uint32_t inflight
Definition: tcp_log_buf.h:78
uint8_t use_lt_bw
Definition: tcp_log_buf.h:99
uint32_t flex3
Definition: tcp_log_buf.h:87
uint16_t cwnd_gain
Definition: tcp_log_buf.h:93
uint32_t timeStamp
Definition: tcp_log_buf.h:81
uint32_t flex5
Definition: tcp_log_buf.h:89
uint32_t lt_epoch
Definition: tcp_log_buf.h:83
uint16_t pacing_gain
Definition: tcp_log_buf.h:92
uint32_t flex2
Definition: tcp_log_buf.h:86
uint64_t rttProp
Definition: tcp_log_buf.h:76
uint32_t pkt_epoch
Definition: tcp_log_buf.h:101
uint32_t flex4
Definition: tcp_log_buf.h:88
uint32_t flex1
Definition: tcp_log_buf.h:85
uint8_t inhpts
Definition: tcp_log_buf.h:97
uint32_t applimited
Definition: tcp_log_buf.h:79
uint16_t flex7
Definition: tcp_log_buf.h:94
uint32_t flex6
Definition: tcp_log_buf.h:90
uint32_t pkts_out
Definition: tcp_log_buf.h:84
uint32_t delivered
Definition: tcp_log_buf.h:80
uint8_t flex8
Definition: tcp_log_buf.h:100
uint32_t epoch
Definition: tcp_log_buf.h:82
uint64_t cur_del_rate
Definition: tcp_log_buf.h:74
union tcp_log_stackspecific tlb_stackinfo
Definition: tcp_log_buf.h:161
uint8_t rc_tlp_in_progress
Definition: tcp_rack.h:586
int32_t(* r_substate)(struct mbuf *, struct tcphdr *, struct socket *, struct tcpcb *, struct tcpopt *, int32_t, int32_t, uint32_t, int, int, uint8_t)
Definition: tcp_rack.h:509
uint16_t rc_gp_incr
Definition: tcp_rack.h:567
uint16_t r_fsb_inited
Definition: tcp_rack.h:558
uint8_t r_state
Definition: tcp_rack.h:578
uint8_t rc_pace_fill_if_rttin_range
Definition: tcp_rack.h:589
uint8_t rack_hdw_pace_ena
Definition: tcp_rack.h:597
struct inpcb * rc_inp
Definition: tcp_rack.h:513
uint8_t r_early
Definition: tcp_rack.h:613
uint16_t r_up_only
Definition: tcp_rack.h:560
uint8_t rc_last_tlp_acked_set
Definition: tcp_rack.h:543
uint16_t r_via_fill_cw
Definition: tcp_rack.h:561
uint8_t rc_pace_to_cwnd
Definition: tcp_rack.h:588
uint16_t rc_gp_saw_ss
Definition: tcp_rack.h:623
uint16_t forced_ack
Definition: tcp_rack.h:566
uint8_t no_prr_addback
Definition: tcp_rack.h:517
uint16_t r_mbuf_queue
Definition: tcp_rack.h:550
uint8_t r_is_v6
Definition: tcp_rack.h:584
uint8_t rc_in_persist
Definition: tcp_rack.h:585
uint16_t rc_gp_filled
Definition: tcp_rack.h:576
uint8_t rack_no_prr
Definition: tcp_rack.h:603
uint8_t r_late
Definition: tcp_rack.h:614
uint16_t rc_gp_saw_rec
Definition: tcp_rack.h:621
struct rack_control r_ctl
Definition: tcp_rack.h:628
uint8_t r_timer_override
Definition: tcp_rack.h:583
uint8_t rack_attempted_scwnd
Definition: tcp_rack.h:602
uint8_t rc_tmr_stopped
Definition: tcp_rack.h:579
uint8_t rack_scwnd_is_idle
Definition: tcp_rack.h:604
uint8_t defer_options
Definition: tcp_rack.h:519
uint8_t r_rr_config
Definition: tcp_rack.h:616
uint8_t rc_labc
Definition: tcp_rack.h:565
uint8_t rack_hdrw_pacing
Definition: tcp_rack.h:596
uint8_t rc_force_max_seg
Definition: tcp_rack.h:612
uint8_t rc_last_sent_tlp_seq_valid
Definition: tcp_rack.h:545
uint16_t r_use_cmp_ack
Definition: tcp_rack.h:554
uint16_t r_might_revert
Definition: tcp_rack.h:556
uint16_t in_probe_rtt
Definition: tcp_rack.h:625
uint8_t rc_always_pace
Definition: tcp_rack.h:587
uint8_t rc_rack_tmr_std_based
Definition: tcp_rack.h:540
uint8_t rc_allow_data_af_clo
Definition: tcp_rack.h:605
uint16_t rc_highly_buffered
Definition: tcp_rack.h:572
uint16_t r_use_labc_for_rec
Definition: tcp_rack.h:571
uint16_t r_fast_output
Definition: tcp_rack.h:557
uint8_t rack_enable_scwnd
Definition: tcp_rack.h:601
uint16_t rc_gp_bwred
Definition: tcp_rack.h:568
uint8_t rc_srtt_measure_made
Definition: tcp_rack.h:590
uint16_t r_limit_scw
Definition: tcp_rack.h:552
uint8_t r_wanted_output
Definition: tcp_rack.h:615
uint16_t rc_gp_no_rec_chg
Definition: tcp_rack.h:624
uint8_t do_detection
Definition: tcp_rack.h:611
uint8_t set_pacing_done_a_iw
Definition: tcp_rack.h:607
uint16_t rc_gp_saw_ca
Definition: tcp_rack.h:622
uint8_t probe_not_answered
Definition: tcp_rack.h:547
uint16_t rc_dack_mode
Definition: tcp_rack.h:574
uint8_t rc_on_min_to
Definition: tcp_rack.h:582
uint8_t app_limited_needs_set
Definition: tcp_rack.h:591
uint16_t r_rack_hw_rate_caps
Definition: tcp_rack.h:559
uint8_t rc_ack_can_sendout_data
Definition: tcp_rack.h:521
uint8_t gp_ready
Definition: tcp_rack.h:518
uint8_t rack_rec_nonrxt_use_cr
Definition: tcp_rack.h:600
uint8_t rc_free_cnt
Definition: tcp_rack.h:514
uint16_t rc_init_win
Definition: tcp_rack.h:618
uint8_t client_bufferlvl
Definition: tcp_rack.h:516
uint8_t r_rep_reverse
Definition: tcp_rack.h:595
uint32_t rc_rack_rtt
Definition: tcp_rack.h:549
uint8_t use_fixed_rate
Definition: tcp_rack.h:592
uint8_t fast_rsm_hack
Definition: tcp_rack.h:520
uint8_t rc_has_collapsed
Definition: tcp_rack.h:593
uint8_t sack_attack_disable
Definition: tcp_rack.h:610
uint8_t rc_rack_use_dsack
Definition: tcp_rack.h:541
uint16_t r_must_retran
Definition: tcp_rack.h:553
uint8_t r_rep_attack
Definition: tcp_rack.h:594
uint8_t t_timers_stopped
Definition: tcp_rack.h:580
uint16_t rtt_limit_mul
Definition: tcp_rack.h:551
uint16_t rc_gp_dyn_mul
Definition: tcp_rack.h:620
uint16_t measure_saw_probe_rtt
Definition: tcp_rack.h:626
uint16_t rc_gp_timely_dec_cnt
Definition: tcp_rack.h:570
uint8_t rc_last_tlp_past_cumack
Definition: tcp_rack.h:544
uint8_t use_rack_rr
Definition: tcp_rack.h:608
uint16_t r_fill_less_agg
Definition: tcp_rack.h:562
struct tcpcb * rc_tp
Definition: tcp_rack.h:512
uint16_t r_ent_rec_ns
Definition: tcp_rack.h:555
uint16_t rc_gp_rtt_set
Definition: tcp_rack.h:619
uint16_t rc_dack_toggle
Definition: tcp_rack.h:575
uint8_t rc_last_sent_tlp_past_cumack
Definition: tcp_rack.h:546
uint8_t rc_user_set_max_segs
Definition: tcp_rack.h:564
uint16_t rc_gp_timely_inc_cnt
Definition: tcp_rack.h:569
uint8_t rack_attempt_hdwr_pace
Definition: tcp_rack.h:598
uint16_t rc_dragged_bottom
Definition: tcp_rack.h:573
uint8_t rc_dsack_round_seen
Definition: tcp_rack.h:542
uint8_t rc_enobuf
Definition: tcp_rack.h:581
uint8_t rack_tlp_threshold_use
Definition: tcp_rack.h:599
uint8_t alloc_limit_reported
Definition: tcp_rack.h:609
uint8_t rc_pacing_cc_set
Definition: tcp_rack.h:528
struct ifnet * rs_ifp
Definition: tcp_ratelimit.h:65
uint32_t tt_flags
Definition: tcp_timer.h:154
Definition: tcp_var.h:132
tcp_seq last_ack_sent
Definition: tcp_var.h:174
tcp_seq iss
Definition: tcp_var.h:194
uint32_t t_logstate
Definition: tcp_var.h:138
tcp_seq snd_recover
Definition: tcp_var.h:198
u_int t_rcvtime
Definition: tcp_var.h:175
struct cc_algo * cc_algo
Definition: tcp_var.h:240
tcp_seq rcv_up
Definition: tcp_var.h:177
tcp_seq snd_nxt
Definition: tcp_var.h:151
int t_dupacks
Definition: tcp_var.h:249
int t_softerror
Definition: tcp_var.h:219
u_int t_starttime
Definition: tcp_var.h:208
uint64_t server
Definition: tcp_var.h:279
int t_sndrexmitpack
Definition: tcp_var.h:237
u_int t_tsomaxsegsize
Definition: tcp_var.h:162
unsigned int * t_tfo_pending
Definition: tcp_var.h:276
tcp_seq gput_seq
Definition: tcp_var.h:262
struct sackblk sackblks[MAX_SACK_BLKS]
Definition: tcp_var.h:232
u_char snd_scale
Definition: tcp_var.h:170
u_int t_badrxtwin
Definition: tcp_var.h:228
u_int t_tsomax
Definition: tcp_var.h:160
struct tcp_timer * t_timers
Definition: tcp_var.h:183
u_char request_r_scale
Definition: tcp_var.h:173
uint32_t snd_wnd
Definition: tcp_var.h:153
tcp_seq t_rtseq
Definition: tcp_var.h:207
tcp_seq snd_up
Definition: tcp_var.h:152
struct cc_var * ccv
Definition: tcp_var.h:241
tcp_seq snd_max
Definition: tcp_var.h:148
uint32_t snd_cwnd_prev
Definition: tcp_var.h:222
tcp_seq gput_ack
Definition: tcp_var.h:263
union tcpcb::@55 t_tfo_cookie
tcp_seq snd_una
Definition: tcp_var.h:147
uint32_t t_state
Definition: tcp_var.h:140
uint32_t gput_ts
Definition: tcp_var.h:261
u_int t_maxunacktime
Definition: tcp_var.h:244
u_int32_t rfbuf_ts
Definition: tcp_var.h:158
u_int t_rttbest
Definition: tcp_var.h:217
u_char rcv_scale
Definition: tcp_var.h:171
u_long t_rttupdated
Definition: tcp_var.h:226
int32_t t_stats_gput_prev
Definition: tcp_var.h:264
struct tcp_log_id_bucket * t_lib
Definition: tcp_var.h:257
int t_rttvar
Definition: tcp_var.h:168
tcp_seq snd_recover_prev
Definition: tcp_var.h:224
struct mbuf * t_tail_pkt
Definition: tcp_var.h:182
u_int t_acktime
Definition: tcp_var.h:195
u_int t_fbyte_in
Definition: tcp_var.h:209
uint32_t snd_ssthresh
Definition: tcp_var.h:185
uint32_t t_idle_reduce
Definition: tcp_var.h:141
u_int t_pmtud_saved_maxseg
Definition: tcp_var.h:212
struct statsblob * t_stats
Definition: tcp_var.h:259
tcp_seq snd_wl2
Definition: tcp_var.h:191
uint32_t rcv_wnd
Definition: tcp_var.h:165
uint32_t t_fin_is_rst
Definition: tcp_var.h:143
u_int32_t ts_recent
Definition: tcp_var.h:169
uint8_t t_tfo_client_cookie_len
Definition: tcp_var.h:274
int t_srtt
Definition: tcp_var.h:167
u_int ts_recent_age
Definition: tcp_var.h:197
uint32_t t_delayed_ack
Definition: tcp_var.h:142
uint32_t snd_ssthresh_prev
Definition: tcp_var.h:223
u_int32_t ts_offset
Definition: tcp_var.h:157
tcp_seq snd_wl1
Definition: tcp_var.h:189
u_int t_tsomaxsegcount
Definition: tcp_var.h:161
tcp_seq irs
Definition: tcp_var.h:193
u_int t_fbyte_out
Definition: tcp_var.h:210
int t_rxtcur
Definition: tcp_var.h:202
int t_rxtshift
Definition: tcp_var.h:204
u_int t_flags2
Definition: tcp_var.h:166
uint64_t t_sndtlpbyte
Definition: tcp_var.h:267
tcp_seq rcv_nxt
Definition: tcp_var.h:163
u_int t_flags
Definition: tcp_var.h:146
u_int t_rtttime
Definition: tcp_var.h:205
uint32_t t_port
Definition: tcp_var.h:139
int t_bytes_acked
Definition: tcp_var.h:243
uint32_t t_maxpeakrate
Definition: tcp_var.h:265
uint32_t t_maxseg
Definition: tcp_var.h:137
uint32_t max_sndwnd
Definition: tcp_var.h:220
uint32_t snd_cwnd
Definition: tcp_var.h:154
uint32_t t_peakrate_thr
Definition: tcp_var.h:155
struct mbuf * t_in_pkt
Definition: tcp_var.h:181
uint8_t client[TCP_FASTOPEN_MAX_COOKIE_LEN]
Definition: tcp_var.h:278
uint32_t t_sndtlppack
Definition: tcp_var.h:266
int t_sndzerowin
Definition: tcp_var.h:225
void * t_fb_ptr
Definition: tcp_var.h:136
struct tcp_function_block * t_fb
Definition: tcp_var.h:135
int t_rttlow
Definition: tcp_var.h:234
int t_rcvoopack
Definition: tcp_var.h:238
int rcv_numsacks
Definition: tcp_var.h:159
struct inpcb * t_inpcb
Definition: tcp_var.h:134
tcp_seq rcv_adv
Definition: tcp_var.h:164
Definition: tcpip.h:41
u_int8_t to_tfo_len
Definition: tcp_var.h:595
u_char * to_signature
Definition: tcp_var.h:590
u_int32_t to_tsval
Definition: tcp_var.h:587
u_int8_t to_nsacks
Definition: tcp_var.h:594
u_char * to_sacks
Definition: tcp_var.h:589
u_int16_t to_mss
Definition: tcp_var.h:592
u_int32_t to_flags
Definition: tcp_var.h:578
u_int8_t to_wscale
Definition: tcp_var.h:593
u_int8_t * to_tfo_cookie
Definition: tcp_var.h:591
u_int32_t to_tsecr
Definition: tcp_var.h:588
u_char tt_ipgen[40]
Definition: tcp_var.h:294
struct tcphdr tt_t
Definition: tcp_var.h:295
Definition: udp.h:45
u_short uh_ulen
Definition: udp.h:48
u_short uh_sport
Definition: udp.h:46
u_short uh_sum
Definition: udp.h:49
u_short uh_dport
Definition: udp.h:47
#define VOI_TCP_FRWIN
Definition: tcp.h:430
#define VOI_TCP_RETXPB
Definition: tcp.h:429
#define VOI_TCP_GPUT_ND
Definition: tcp.h:436
#define VOI_TCP_CSIG
Definition: tcp.h:433
#define VOI_TCP_CALCFRWINDIFF
Definition: tcp.h:435
#define VOI_TCP_LCWIN
Definition: tcp.h:431
#define VOI_TCP_TXPB
Definition: tcp.h:428
#define VOI_TCP_GPUT
Definition: tcp.h:434
#define VOI_TCP_RTT
Definition: tcp.h:432
#define CYC_HANDLE_ACK
#define CYC_HANDLE_MAP
#define SND_OUT_FAIL
#define SND_LIMITED
#define CNT_OF_MSS_OUT
#define ACK_DUPACK
#define SND_BLOCKED
#define SND_OUT_ACK
#define ACK_RWND
#define CNT_OF_ACKS_IN
#define SND_OUT_DATA
#define ACK_BEHIND
Definition: tcp_accounting.h:8
#define ACK_CUMACK
struct bbr_control r_ctl
Definition: tcp_bbr.h:77
void tcp_trace(short act, short ostate, struct tcpcb *tp, void *ipgen, struct tcphdr *th, int req)
Definition: tcp_debug.c:99
#define IP6_HDR_LEN
Definition: tcp_debug.h:50
#define TA_INPUT
Definition: tcp_debug.h:63
int tcp_ecn_input_segment(struct tcpcb *tp, uint16_t thflags, int iptos)
Definition: tcp_ecn.c:145
int tcp_ecn_output_established(struct tcpcb *tp, uint16_t *thflags, int len, bool rxmit)
Definition: tcp_ecn.c:204
void tcp_ecn_input_syn_sent(struct tcpcb *tp, uint16_t thflags, int iptos)
Definition: tcp_ecn.c:110
uint16_t tcp_ecn_output_syn_sent(struct tcpcb *tp)
Definition: tcp_ecn.c:183
void tcp_ecn_input_parallel_syn(struct tcpcb *tp, uint16_t thflags, int iptos)
Definition: tcp_ecn.c:125
void tcp_fastopen_disable_path(struct tcpcb *tp)
Definition: tcp_fastopen.c:956
void tcp_fastopen_decrement_counter(unsigned int *counter)
Definition: tcp_fastopen.c:479
void tcp_fastopen_update_cache(struct tcpcb *tp, uint16_t mss, uint8_t cookie_len, uint8_t *cookie)
Definition: tcp_fastopen.c:981
#define TCP_FASTOPEN_COOKIE_LEN
Definition: tcp_fastopen.h:36
#define TCPS_CLOSING
Definition: tcp_fsm.h:56
#define TCPS_HAVERCVDSYN(s)
Definition: tcp_fsm.h:62
#define TCPS_FIN_WAIT_1
Definition: tcp_fsm.h:55
#define TCPS_TIME_WAIT
Definition: tcp_fsm.h:60
#define TCPS_HAVERCVDFIN(s)
Definition: tcp_fsm.h:64
#define TCPS_ESTABLISHED
Definition: tcp_fsm.h:52
#define TCPS_SYN_SENT
Definition: tcp_fsm.h:49
#define TCPS_SYN_RECEIVED
Definition: tcp_fsm.h:50
#define TCPS_LAST_ACK
Definition: tcp_fsm.h:57
#define TCPS_CLOSE_WAIT
Definition: tcp_fsm.h:53
#define TCPS_LISTEN
Definition: tcp_fsm.h:48
#define TCPS_FIN_WAIT_2
Definition: tcp_fsm.h:59
#define TCPS_HAVEESTABLISHED(s)
Definition: tcp_fsm.h:63
#define TCPS_CLOSED
Definition: tcp_fsm.h:47
void tcp_hpts_remove(struct inpcb *inp)
Definition: tcp_hpts.c:563
bool tcp_in_hpts(struct inpcb *inp)
Definition: tcp_hpts.c:610
uint32_t tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
Definition: tcp_hpts.c:815
#define HPTS_USEC_TO_SLOTS(x)
Definition: tcp_hpts.h:34
#define PACE_TMR_PERSIT
Definition: tcp_hpts.h:66
static __inline uint32_t tcp_tv_to_mssectick(const struct timeval *sv)
Definition: tcp_hpts.h:174
#define PACE_TMR_RACK
Definition: tcp_hpts.h:63
#define HPTS_USEC_IN_SEC
Definition: tcp_hpts.h:35
#define PACE_TMR_MASK
Definition: tcp_hpts.h:69
#define PACE_TMR_DELACK
Definition: tcp_hpts.h:62
#define HPTS_TICKS_PER_SLOT
Definition: tcp_hpts.h:32
static __inline uint32_t tcp_tv_to_usectick(const struct timeval *sv)
Definition: tcp_hpts.h:168
#define tcp_set_hpts(a)
Definition: tcp_hpts.h:145
#define PACE_PKT_OUTPUT
Definition: tcp_hpts.h:68
#define HPTS_MS_TO_SLOTS(x)
Definition: tcp_hpts.h:33
#define PACE_TMR_TLP
Definition: tcp_hpts.h:64
static __inline uint32_t tcp_get_usecs(struct timeval *tv)
Definition: tcp_hpts.h:198
#define HPTS_USEC_IN_MSEC
Definition: tcp_hpts.h:37
#define PACE_TMR_KEEP
Definition: tcp_hpts.h:67
#define tcp_hpts_insert(inp, slot)
Definition: tcp_hpts.h:141
#define PACE_TMR_RXT
Definition: tcp_hpts.h:65
int tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int tlen)
Definition: tcp_input.c:1465
uint32_t tcp_compute_initwnd(uint32_t maxseg)
Definition: tcp_input.c:4049
void tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
Definition: tcp_input.c:3422
void cc_conn_init(struct tcpcb *tp)
Definition: tcp_input.c:368
int tcp_mssopt(struct in_conninfo *inc)
Definition: tcp_input.c:3891
void tcp_mss(struct tcpcb *tp, int offer)
Definition: tcp_input.c:3814
void tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
Definition: tcp_input.c:3665
void tcp_log_flowend(struct tcpcb *tp)
Definition: tcp_log_buf.c:2631
struct tcp_log_buffer * tcp_log_event_(struct tcpcb *tp, struct tcphdr *th, struct sockbuf *rxbuf, struct sockbuf *txbuf, uint8_t eventid, int errornum, uint32_t len, union tcp_log_stackspecific *stackinfo, int th_hostorder, const char *output_caller, const char *func, int line, const struct timeval *itv)
Definition: tcp_log_buf.c:1520
int tcp_log_dump_tp_logbuf(struct tcpcb *tp, char *reason, int how, bool force)
Definition: tcp_log_buf.c:2152
@ TCP_LOG_STATE_OFF
Definition: tcp_log_buf.h:244
#define ERRNO_UNK
Definition: tcp_log_buf.h:257
#define TCP_LOG_EVENTP(tp, th, rxbuf, txbuf, eventid, errornum, len, stackinfo, th_hostorder, tv)
Definition: tcp_log_buf.h:346
@ TCP_LOG_SB_WAKE
Definition: tcp_log_buf.h:177
@ BBR_LOG_BBRUPD
Definition: tcp_log_buf.h:182
@ TCP_LOG_IN
Definition: tcp_log_buf.h:174
@ TCP_SAD_DETECTION
Definition: tcp_log_buf.h:230
@ BBR_LOG_HPTSDIAG
Definition: tcp_log_buf.h:210
@ TCP_LOG_FSB
Definition: tcp_log_buf.h:236
@ BBR_LOG_TIMERSTAR
Definition: tcp_log_buf.h:186
@ RACK_DSACK_HANDLING
Definition: tcp_log_buf.h:237
@ BBR_LOG_CWND
Definition: tcp_log_buf.h:190
@ TCP_HDWR_PACE_SIZE
Definition: tcp_log_buf.h:224
@ BBR_LOG_TO_PROCESS
Definition: tcp_log_buf.h:208
@ BBR_LOG_RTO
Definition: tcp_log_buf.h:199
@ BBR_LOG_DOSEG_DONE
Definition: tcp_log_buf.h:200
@ TCP_LOG_MAPCHG
Definition: tcp_log_buf.h:203
@ BBR_LOG_PROGRESS
Definition: tcp_log_buf.h:212
@ BBR_LOG_RTT_SHRINKS
Definition: tcp_log_buf.h:217
@ TCP_LOG_RTT
Definition: tcp_log_buf.h:220
@ BBR_LOG_TIMERCANC
Definition: tcp_log_buf.h:187
@ BBR_LOG_JUSTRET
Definition: tcp_log_buf.h:194
@ TCP_LOG_OUT
Definition: tcp_log_buf.h:175
@ BBR_LOG_HPTSI_CALC
Definition: tcp_log_buf.h:216
@ TCP_TIMELY_WORK
Definition: tcp_log_buf.h:231
@ BBR_LOG_BBRRTT
Definition: tcp_log_buf.h:193
@ BBR_LOG_SETTINGS_CHG
Definition: tcp_log_buf.h:221
@ BBR_LOG_BBRSND
Definition: tcp_log_buf.h:183
@ BBR_LOG_HDWR_PACE
Definition: tcp_log_buf.h:225
void tcp_lro_reg_mbufq(void)
Definition: tcp_lro.c:136
void tcp_lro_dereg_mbufq(void)
Definition: tcp_lro.c:142
#define TSTMP_LRO
Definition: tcp_lro.h:57
#define TSTMP_HDWR
Definition: tcp_lro.h:58
#define HAS_TSTMP
Definition: tcp_lro.h:59
#define M_ACKCMP
Definition: tcp_lro.h:193
int tcp_offload_output(struct tcpcb *tp)
Definition: tcp_offload.c:143
void tcp_offload_tcp_info(struct tcpcb *tp, struct tcp_info *ti)
Definition: tcp_offload.c:190
int tcp_addoptions(struct tcpopt *to, u_char *optp)
Definition: tcp_output.c:1790
struct mbuf * tcp_m_copym(struct mbuf *m, int32_t off0, int32_t *plen, int32_t seglimit, int32_t segsize, struct sockbuf *sb, bool hw_tls)
Definition: tcp_output.c:1954
#define RACK_USE_END_OR_THACK
Definition: tcp_rack.h:249
#define RACK_RWND_COLLAPSED
Definition: tcp_rack.h:39
#define TLP_USE_TWO_ONE
Definition: tcp_rack.h:252
#define RACK_RTT_EMPTY
Definition: tcp_rack.h:142
#define TLP_USE_TWO_TWO
Definition: tcp_rack.h:253
#define MAP_MERGE
Definition: tcp_rack.h:122
#define RACK_TO_FRM_TMR
Definition: tcp_rack.h:165
#define RACK_HAS_FIN
Definition: tcp_rack.h:37
#define RACK_QUALITY_HIGH
Definition: tcp_rack.h:258
#define MAP_SACK_M5
Definition: tcp_rack.h:129
#define RACK_HYSTART_OFF
Definition: tcp_rack.h:499
#define RACK_MUST_RXT
Definition: tcp_rack.h:47
#define RACK_TO_FRM_DELACK
Definition: tcp_rack.h:170
#define RACK_MIN_BW
Definition: tcp_rack.h:254
#define RACK_OPTS_INC(name)
Definition: tcp_rack.h:270
#define MAP_SACK_M2
Definition: tcp_rack.h:126
#define RACK_QUALITY_PERSIST
Definition: tcp_rack.h:260
#define RACK_QUALITY_PROBERTT
Definition: tcp_rack.h:261
#define RACK_RTTS_INIT
Definition: tcp_rack.h:238
#define RACK_RTTS_SAFETY
Definition: tcp_rack.h:245
#define RACK_SENT_SP
Definition: tcp_rack.h:44
#define MAP_TRIM_HEAD
Definition: tcp_rack.h:131
#define RACK_HAD_PUSH
Definition: tcp_rack.h:46
#define RACK_INITIAL_RTO
Definition: tcp_rack.h:50
uint64_t rack_to_usec_ts(struct timeval *tv)
Definition: tcp_rack.h:105
#define RACK_RTTS_NEWRTT
Definition: tcp_rack.h:239
#define RACK_ACKED
Definition: tcp_rack.h:31
#define TLP_USE_ID
Definition: tcp_rack.h:251
#define RACK_HYSTART_ON
Definition: tcp_rack.h:500
#define RACK_QUALITY_APPLIMITED
Definition: tcp_rack.h:259
#define RACK_SENT_W_DSACK
Definition: tcp_rack.h:43
#define RACK_RTTS_ENTERPROBE
Definition: tcp_rack.h:241
uint32_t rack_ts_to_msec(uint64_t ts)
Definition: tcp_rack.h:111
#define RACK_TLP
Definition: tcp_rack.h:38
#define RACK_TIMELY_CNT_BOOST
Definition: tcp_rack.h:496
#define RACK_RTTS_EXITPROBE
Definition: tcp_rack.h:240
#define RACK_HAS_SYN
Definition: tcp_rack.h:42
#define RACK_TO_REXT
Definition: tcp_rack.h:32
#define RACK_LIMIT_TYPE_SPLIT
Definition: tcp_rack.h:133
#define MAP_NEW
Definition: tcp_rack.h:124
#define RACK_WAS_SACKPASS
Definition: tcp_rack.h:36
#define RACK_SENT_FP
Definition: tcp_rack.h:45
#define MAP_SACK_M3
Definition: tcp_rack.h:127
#define RACK_OPTS_SIZE
Definition: tcp_rack.h:267
#define MAP_SACK_M4
Definition: tcp_rack.h:128
#define RACK_TO_FRM_TLP
Definition: tcp_rack.h:166
#define RACK_OVERMAX
Definition: tcp_rack.h:34
#define RACK_HYSTART_ON_W_SC_C
Definition: tcp_rack.h:502
#define MIN_GP_WIN
Definition: tcp_rack.h:265
#define RACK_SACK_PASSED
Definition: tcp_rack.h:35
#define RACK_HYSTART_ON_W_SC
Definition: tcp_rack.h:501
#define RACK_APP_LIMITED
Definition: tcp_rack.h:40
#define RACK_QUALITY_NONE
Definition: tcp_rack.h:257
#define RACK_USE_BEG
Definition: tcp_rack.h:247
#define RACK_USE_END
Definition: tcp_rack.h:248
#define RACK_TO_FRM_KEEP
Definition: tcp_rack.h:168
#define MAP_FREE
Definition: tcp_rack.h:130
#define RACK_RTTS_REACHTARGET
Definition: tcp_rack.h:242
#define MAP_SACK_M1
Definition: tcp_rack.h:125
#define RACK_QUALITY_ALLACKED
Definition: tcp_rack.h:262
#define RACK_TO_FRM_RACK
Definition: tcp_rack.h:167
#define RACK_RTTS_SEEHBP
Definition: tcp_rack.h:243
#define RACK_WAS_ACKED
Definition: tcp_rack.h:41
uint8_t delayed_ack
Definition: tcp_rack.h:99
#define RACK_NUM_OF_RETRANS
Definition: tcp_rack.h:48
#define RACK_REQ_AVG
Definition: tcp_rack.h:52
#define RACK_TO_FRM_PERSIST
Definition: tcp_rack.h:169
#define RACK_RTT_VALID
Definition: tcp_rack.h:143
#define MAP_SPLIT
Definition: tcp_rack.h:123
#define USECS_IN_SECOND
Definition: tcp_ratelimit.c:64
void tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
static uint64_t tcp_hw_highest_rate(const struct tcp_hwrate_limit_table *rle)
uint32_t tcp_get_pacing_burst_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss, const struct tcp_hwrate_limit_table *te, int *err)
static const struct tcp_hwrate_limit_table * tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp, struct ifnet *ifp, uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
static const struct tcp_hwrate_limit_table * tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp, uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
static uint64_t tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
static void tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
#define RS_PACING_GEQ
Definition: tcp_ratelimit.h:84
#define ETHERNET_SEGMENT_SIZE
Definition: tcp_ratelimit.h:89
int tcp_reass(struct tcpcb *tp, struct tcphdr *th, tcp_seq *seq_start, int *tlenp, struct mbuf *m)
Definition: tcp_reass.c:526
void tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
Definition: tcp_sack.c:176
void tcp_clean_sackreport(struct tcpcb *tp)
Definition: tcp_sack.c:451
void tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
Definition: tcp_sack.c:272
int tcp_dsack_block_exists(struct tcpcb *tp)
Definition: tcp_sack.c:161
void tcp_clean_dsack_blocks(struct tcpcb *tp)
Definition: tcp_sack.c:409
#define SEQ_GEQ(a, b)
Definition: tcp_seq.h:45
#define TSTMP_GEQ(a, b)
Definition: tcp_seq.h:61
#define SEQ_GT(a, b)
Definition: tcp_seq.h:44
static __inline uint32_t tcp_ts_getticks(void)
Definition: tcp_seq.h:89
#define TSTMP_LT(a, b)
Definition: tcp_seq.h:59
#define SEQ_LEQ(a, b)
Definition: tcp_seq.h:43
#define tcp_rcvseqinit(tp)
Definition: tcp_seq.h:68
#define TSTMP_GT(a, b)
Definition: tcp_seq.h:60
#define SEQ_LT(a, b)
Definition: tcp_seq.h:42
void tcp_decrement_paced_conn(void)
Definition: tcp_subr.c:4126
int tcp_can_enable_pacing(void)
Definition: tcp_subr.c:4110
struct tcpcb * tcp_drop(struct tcpcb *tp, int errno)
Definition: tcp_subr.c:2283
int deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, bool force)
Definition: tcp_subr.c:1338
int register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, const char *names[], int *num_names)
Definition: tcp_subr.c:1189
u_int tcp_maxseg(const struct tcpcb *tp)
Definition: tcp_subr.c:3538
void tcp_switch_back_to_default(struct tcpcb *tp)
Definition: tcp_subr.c:523
void tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr)
Definition: tcp_subr.c:1637
void tcp_state_change(struct tcpcb *tp, int newstate)
Definition: tcp_subr.c:3999
struct tcpcb * tcp_close(struct tcpcb *tp)
Definition: tcp_subr.c:2471
void tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
Definition: tcp_subr.c:1728
void tcp_log_end_status(struct tcpcb *tp, uint8_t status)
Definition: tcp_subr.c:4081
struct tcptemp * tcpip_maketemplate(struct inpcb *inp)
Definition: tcp_subr.c:1702
void tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp)
Definition: tcp_subr.c:397
int tcp_rexmit_slop
Definition: tcp_timer.c:138
int tcp_maxpersistidle
Definition: tcp_timer.c:165
int tcp_totbackoff
Definition: tcp_timer.c:257
int tcp_timer_active(struct tcpcb *tp, uint32_t timer_type)
Definition: tcp_timer.c:905
int tcp_backoff[TCP_MAXRXTSHIFT+1]
Definition: tcp_timer.c:254
int tcp_delacktime
Definition: tcp_timer.c:114
int tcp_timer_suspend(struct tcpcb *tp, uint32_t timer_type)
Definition: tcp_timer.c:943
int tcp_rexmit_drop_options
Definition: tcp_timer.c:167
void tcp_timer_activate(struct tcpcb *tp, uint32_t timer_type, u_int delta)
Definition: tcp_timer.c:854
int tcp_finwait2_timeout
Definition: tcp_timer.c:154
int tcp_fast_finwait2_recycle
Definition: tcp_timer.c:149
#define TCP_MAXRXTSHIFT
Definition: tcp_timer.h:117
#define TP_MAXIDLE(tp)
Definition: tcp_timer.h:184
#define TCPTV_PERSMAX
Definition: tcp_timer.h:82
#define TT_STOPPED
Definition: tcp_timer.h:178
#define TP_KEEPINIT(tp)
Definition: tcp_timer.h:180
#define V_tcp_always_keepalive
Definition: tcp_timer.h:206
#define V_tcp_pmtud_blackhole_detect
Definition: tcp_timer.h:208
#define TP_KEEPIDLE(tp)
Definition: tcp_timer.h:181
#define V_tcp_pmtud_blackhole_mss
Definition: tcp_timer.h:210
#define TT_KEEP
Definition: tcp_timer.h:164
#define V_tcp_v6pmtud_blackhole_mss
Definition: tcp_timer.h:212
#define TCPTV_REXMTMAX
Definition: tcp_timer.h:113
#define TT_2MSL
Definition: tcp_timer.h:165
#define TT_DELACK
Definition: tcp_timer.h:161
#define TT_PERSIST
Definition: tcp_timer.h:163
#define TT_REXMT
Definition: tcp_timer.h:162
void tcp_twstart(struct tcpcb *tp)
Definition: tcp_timewait.c:236
int tcp_default_ctloutput(struct inpcb *inp, struct sockopt *sopt)
Definition: tcp_usrreq.c:2120
#define TCP_EI_STATUS_SERVER_FIN
Definition: tcp_var.h:53
#define TOF_MSS
Definition: tcp_var.h:579
#define TF_SIGNATURE
Definition: tcp_var.h:519
#define TCP_EI_STATUS_SERVER_RST
Definition: tcp_var.h:54
#define TF_ACKNOW
Definition: tcp_var.h:497
#define V_tcp_do_autosndbuf
Definition: tcp_var.h:1037
#define TCP_EI_STATUS_RST_IN_FRONT
Definition: tcp_var.h:60
#define TF_LASTIDLE
Definition: tcp_var.h:515
#define TOF_SIGNATURE
Definition: tcp_var.h:583
static uint16_t tcp_get_flags(const struct tcphdr *th)
Definition: tcp_var.h:1265
#define TF2_PLPMTU_MAXSEGSNT
Definition: tcp_var.h:561
#define SEGQ_EMPTY(tp)
Definition: tcp_var.h:123
#define TF_FASTOPEN
Definition: tcp_var.h:528
#define TOF_FASTOPEN
Definition: tcp_var.h:585
#define TCP_EI_STATUS_KEEP_MAX
Definition: tcp_var.h:58
#define IN_CONGRECOVERY(t_flags)
Definition: tcp_var.h:534
#define TF2_ECN_PERMIT
Definition: tcp_var.h:564
#define IN_FASTRECOVERY(t_flags)
Definition: tcp_var.h:530
static void tcp_set_flags(struct tcphdr *th, uint16_t flags)
Definition: tcp_var.h:1271
#define TF_RCVD_SCALE
Definition: tcp_var.h:503
#define TCP_FUNC_OUTPUT_CANDROP
Definition: tcp_var.h:322
#define V_tcp_udp_tunneling_port
Definition: tcp_var.h:1067
#define V_tcp_udp_tunneling_overhead
Definition: tcp_var.h:1066
#define TF_NEEDFIN
Definition: tcp_var.h:508
#define TOF_SACKPERM
Definition: tcp_var.h:581
#define V_tcp_do_ecn
Definition: tcp_var.h:1038
#define V_tcp_autosndbuf_max
Definition: tcp_var.h:1034
#define TF_NOPUSH
Definition: tcp_var.h:509
#define TF_WAKESOR
Definition: tcp_var.h:511
#define V_tcp_autosndbuf_inc
Definition: tcp_var.h:1033
#define intotcpcb(ip)
Definition: tcp_var.h:645
#define TO_SYN
Definition: tcp_var.h:602
#define TF_TSO
Definition: tcp_var.h:521
#define V_tcp_mssdflt
Definition: tcp_var.h:1055
#define TF2_ECN_SND_CWR
Definition: tcp_var.h:565
#define TF2_FBYTES_COMPLETE
Definition: tcp_var.h:568
#define V_tcp_do_tso
Definition: tcp_var.h:1047
#define TF_REQ_SCALE
Definition: tcp_var.h:502
#define TF_NOOPT
Definition: tcp_var.h:500
void tcp6_use_min_mtu(struct tcpcb *)
#define V_tcp_map_entries_limit
Definition: tcp_var.h:1052
#define TF_DELACK
Definition: tcp_var.h:498
#define TF_WASFRECOVERY
Definition: tcp_var.h:518
#define TF_SENTFIN
Definition: tcp_var.h:501
#define TF_PREVVALID
Definition: tcp_var.h:510
#define TF2_PLPMTU_PMTUD
Definition: tcp_var.h:560
#define TOF_SCALE
Definition: tcp_var.h:580
#define V_tcp_delack_enabled
Definition: tcp_var.h:1035
#define TF2_DROP_AF_DATA
Definition: tcp_var.h:563
#define TF_TOE
Definition: tcp_var.h:522
#define TF2_PLPMTU_BLACKHOLE
Definition: tcp_var.h:559
#define TF_GPUTINPROG
Definition: tcp_var.h:512
#define TCP_RTT_SCALE
Definition: tcp_var.h:658
#define TF_RCVD_TSTMP
Definition: tcp_var.h:505
#define TCP_EI_STATUS_DATA_A_CLOSE
Definition: tcp_var.h:59
#define TOF_SACK
Definition: tcp_var.h:584
#define TF_RXWIN0SENT
Definition: tcp_var.h:516
#define EXIT_CONGRECOVERY(t_flags)
Definition: tcp_var.h:536
#define IN_RECOVERY(t_flags)
Definition: tcp_var.h:538
#define TCP_EI_STATUS_CLIENT_FIN
Definition: tcp_var.h:51
#define V_tcp_tolerate_missing_ts
Definition: tcp_var.h:1040
#define BYTES_THIS_ACK(tp, th)
Definition: tcp_var.h:548
#define TF_WASCRECOVERY
Definition: tcp_var.h:527
#define V_tcp_do_newsack
Definition: tcp_var.h:1045
#define V_tcp_map_split_limit
Definition: tcp_var.h:1053
#define TF_NODELAY
Definition: tcp_var.h:499
#define TCP_EI_STATUS_RETRAN
Definition: tcp_var.h:55
#define KMOD_TCPSTAT_INC(name)
Definition: tcp_var.h:850
#define IS_FASTOPEN(t_flags)
Definition: tcp_var.h:543
#define TCP_RTTVAR_SHIFT
Definition: tcp_var.h:661
#define ENTER_FASTRECOVERY(t_flags)
Definition: tcp_var.h:531
#define TF_NEEDSYN
Definition: tcp_var.h:507
#define TF_SACK_PERMIT
Definition: tcp_var.h:506
#define V_path_mtu_discovery
Definition: tcp_var.h:1029
#define V_tcp_minmss
Definition: tcp_var.h:1054
#define TF2_ECN_SND_ECE
Definition: tcp_var.h:566
#define KMOD_TCPSTAT_ADD(name, val)
Definition: tcp_var.h:848
#define TF_REQ_TSTMP
Definition: tcp_var.h:504
#define TF_MORETOCOME
Definition: tcp_var.h:513
#define TOF_TS
Definition: tcp_var.h:582
#define EXIT_RECOVERY(t_flags)
Definition: tcp_var.h:540
#define TCP_EI_STATUS_PERSIST_MAX
Definition: tcp_var.h:57
#define ENTER_CONGRECOVERY(t_flags)
Definition: tcp_var.h:535
static void tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt, uint8_t is_tlp, int hw_tls)
Definition: tcp_var.h:1278
#define V_drop_synfin
Definition: tcp_var.h:1028
#define TCP_RTT_SHIFT
Definition: tcp_var.h:659
#define V_tcp_abc_l_var
Definition: tcp_var.h:1031
#define UDPSTAT_INC(name)
Definition: udp_var.h:118
struct tcp_log_bbr u_bbr
Definition: tcp_log_buf.h:108