FreeBSD kernel IPv4 code
rack_bbr_common.c
Go to the documentation of this file.
1/*-
2 * Copyright (c) 2016-2020 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26/*
27 * Author: Randall Stewart <rrs@netflix.com>
28 * This work is based on the ACM Queue paper
29 * BBR - Congestion Based Congestion Control
30 * and also numerous discussions with Neal, Yuchung and Van.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_tcpdebug.h"
40#include "opt_ratelimit.h"
41#include "opt_kern_tls.h"
42#include <sys/param.h>
43#include <sys/arb.h>
44#include <sys/module.h>
45#include <sys/kernel.h>
46#ifdef TCP_HHOOK
47#include <sys/hhook.h>
48#endif
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/proc.h>
52#include <sys/qmath.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#ifdef KERN_TLS
56#include <sys/ktls.h>
57#endif
58#include <sys/sysctl.h>
59#include <sys/systm.h>
60#include <sys/tree.h>
61#ifdef NETFLIX_STATS
62#include <sys/stats.h> /* Must come after qmath.h and tree.h */
63#endif
64#include <sys/refcount.h>
65#include <sys/queue.h>
66#include <sys/smp.h>
67#include <sys/kthread.h>
68#include <sys/lock.h>
69#include <sys/mutex.h>
70#include <sys/tim_filter.h>
71#include <sys/time.h>
72#include <vm/uma.h>
73#include <sys/kern_prefetch.h>
74
75#include <net/route.h>
76#include <net/vnet.h>
77#include <net/ethernet.h>
78#include <net/bpf.h>
79
80#define TCPSTATES /* for logging */
81
82#include <netinet/in.h>
83#include <netinet/in_kdtrace.h>
84#include <netinet/in_pcb.h>
85#include <netinet/ip.h>
86#include <netinet/ip_icmp.h> /* required for icmp_var.h */
87#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
88#include <netinet/ip_var.h>
89#include <netinet/ip6.h>
90#include <netinet6/in6_pcb.h>
91#include <netinet6/ip6_var.h>
92#include <netinet/tcp.h>
93#include <netinet/tcp_fsm.h>
94#include <netinet/tcp_seq.h>
95#include <netinet/tcp_timer.h>
96#include <netinet/tcp_var.h>
97#include <netinet/tcpip.h>
98#include <netinet/tcp_hpts.h>
99#include <netinet/tcp_lro.h>
100#include <netinet/cc/cc.h>
101#include <netinet/tcp_log_buf.h>
102#ifdef TCPDEBUG
103#include <netinet/tcp_debug.h>
104#endif /* TCPDEBUG */
105#ifdef TCP_OFFLOAD
106#include <netinet/tcp_offload.h>
107#endif
108#ifdef INET6
109#include <netinet6/tcp6_var.h>
110#endif
111#include <netinet/tcp_fastopen.h>
112
113#include <netipsec/ipsec_support.h>
114#include <net/if.h>
115#include <net/if_var.h>
116
117#if defined(IPSEC) || defined(IPSEC_SUPPORT)
118#include <netipsec/ipsec.h>
119#include <netipsec/ipsec6.h>
120#endif /* IPSEC */
121
122#include <netinet/udp.h>
123#include <netinet/udp_var.h>
124#include <machine/in_cksum.h>
125
126#ifdef MAC
127#include <security/mac/mac_framework.h>
128#endif
129#include "rack_bbr_common.h"
130
131/*
132 * Common TCP Functions - These are shared by borth
133 * rack and BBR.
134 */
135#ifdef KERN_TLS
137ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
138{
139 struct ktls_session *tls;
140 uint32_t len;
141
142again:
143 tls = so->so_snd.sb_tls_info;
144 len = tls->params.max_frame_len; /* max tls payload */
145 len += tls->params.tls_hlen; /* tls header len */
146 len += tls->params.tls_tlen; /* tls trailer len */
147 if ((len * 4) > rwnd) {
148 /*
149 * Stroke this will suck counter and what
150 * else should we do Drew? From the
151 * TCP perspective I am not sure
152 * what should be done...
153 */
154 if (tls->params.max_frame_len > 4096) {
155 tls->params.max_frame_len -= 4096;
156 if (tls->params.max_frame_len < 4096)
157 tls->params.max_frame_len = 4096;
158 goto again;
159 }
160 }
161 return (len);
162}
163#endif
164
165static int
166ctf_get_enet_type(struct ifnet *ifp, struct mbuf *m)
167{
168 struct ether_header *eh;
169#ifdef INET6
170 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
171#endif
172#ifdef INET
173 struct ip *ip = NULL; /* Keep compiler happy. */
174#endif
175#if defined(INET) || defined(INET6)
176 struct tcphdr *th;
177 int32_t tlen;
178 uint16_t drop_hdrlen;
179#endif
180 uint16_t etype;
181#ifdef INET
182 uint8_t iptos;
183#endif
184
185 /* Is it the easy way? */
186 if (m->m_flags & M_LRO_EHDRSTRP)
187 return (m->m_pkthdr.lro_etype);
188 /*
189 * Ok this is the old style call, the ethernet header is here.
190 * This also means no checksum or BPF were done. This
191 * can happen if the race to setup the inp fails and
192 * LRO sees no INP at packet input, but by the time
193 * we queue the packets an INP gets there. Its rare
194 * but it can occur so we will handle it. Note that
195 * this means duplicated work but with the rarity of it
196 * its not worth worrying about.
197 */
198 /* Let the BPF see the packet */
199 if (bpf_peers_present(ifp->if_bpf))
200 ETHER_BPF_MTAP(ifp, m);
201 /* Now the csum */
202 eh = mtod(m, struct ether_header *);
203 etype = ntohs(eh->ether_type);
204 m_adj(m, sizeof(*eh));
205 switch (etype) {
206#ifdef INET6
207 case ETHERTYPE_IPV6:
208 {
209 if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
210 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
211 if (m == NULL) {
212 KMOD_TCPSTAT_INC(tcps_rcvshort);
213 return (-1);
214 }
215 }
216 ip6 = (struct ip6_hdr *)(eh + 1);
217 th = (struct tcphdr *)(ip6 + 1);
218 drop_hdrlen = sizeof(*ip6);
219 tlen = ntohs(ip6->ip6_plen);
220 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
221 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
222 th->th_sum = m->m_pkthdr.csum_data;
223 else
224 th->th_sum = in6_cksum_pseudo(ip6, tlen,
226 m->m_pkthdr.csum_data);
227 th->th_sum ^= 0xffff;
228 } else
229 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
230 if (th->th_sum) {
231 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
232 m_freem(m);
233 return (-1);
234 }
235 return (etype);
236 }
237#endif
238#ifdef INET
239 case ETHERTYPE_IP:
240 {
241 if (m->m_len < sizeof (struct tcpiphdr)) {
242 m = m_pullup(m, sizeof (struct tcpiphdr));
243 if (m == NULL) {
244 KMOD_TCPSTAT_INC(tcps_rcvshort);
245 return (-1);
246 }
247 }
248 ip = (struct ip *)(eh + 1);
249 th = (struct tcphdr *)(ip + 1);
250 drop_hdrlen = sizeof(*ip);
251 iptos = ip->ip_tos;
252 tlen = ntohs(ip->ip_len) - sizeof(struct ip);
253 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
254 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
255 th->th_sum = m->m_pkthdr.csum_data;
256 else
257 th->th_sum = in_pseudo(ip->ip_src.s_addr,
259 htonl(m->m_pkthdr.csum_data + tlen + IPPROTO_TCP));
260 th->th_sum ^= 0xffff;
261 } else {
262 int len;
263 struct ipovly *ipov = (struct ipovly *)ip;
264 /*
265 * Checksum extended TCP header and data.
266 */
267 len = drop_hdrlen + tlen;
268 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
269 ipov->ih_len = htons(tlen);
270 th->th_sum = in_cksum(m, len);
271 /* Reset length for SDT probes. */
272 ip->ip_len = htons(len);
273 /* Reset TOS bits */
274 ip->ip_tos = iptos;
275 /* Re-initialization for later version check */
276 ip->ip_v = IPVERSION;
277 ip->ip_hl = sizeof(*ip) >> 2;
278 }
279 if (th->th_sum) {
280 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
281 m_freem(m);
282 return (-1);
283 }
284 break;
285 }
286#endif
287 };
288 return (etype);
289}
290
291/*
292 * The function ctf_process_inbound_raw() is used by
293 * transport developers to do the steps needed to
294 * support MBUF Queuing i.e. the flags in
295 * inp->inp_flags2:
296 *
297 * - INP_SUPPORTS_MBUFQ
298 * - INP_MBUF_QUEUE_READY
299 * - INP_DONT_SACK_QUEUE
300 * - INP_MBUF_ACKCMP
301 *
302 * These flags help control how LRO will deliver
303 * packets to the transport. You first set in inp_flags2
304 * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
305 * will gladly take a queue of packets instead of a compressed
306 * single packet. You also set in your t_fb pointer the
307 * tfb_do_queued_segments to point to ctf_process_inbound_raw.
308 *
309 * This then gets you lists of inbound ACK's/Data instead
310 * of a condensed compressed ACK/DATA packet. Why would you
311 * want that? This will get you access to all the arrival
312 * times of at least LRO and possibly at the Hardware (if
313 * the interface card supports that) of the actual ACK/DATA.
314 * In some transport designs this is important since knowing
315 * the actual time we got the packet is useful information.
316 *
317 * A new special type of mbuf may also be supported by the transport
318 * if it has set the INP_MBUF_ACKCMP flag. If its set, LRO will
319 * possibly create a M_ACKCMP type mbuf. This is a mbuf with
320 * an array of "acks". One thing also to note is that when this
321 * occurs a subsequent LRO may find at the back of the untouched
322 * mbuf queue chain a M_ACKCMP and append on to it. This means
323 * that until the transport pulls in the mbuf chain queued
324 * for it more ack's may get on the mbufs that were already
325 * delivered. There currently is a limit of 6 acks condensed
326 * into 1 mbuf which means often when this is occuring, we
327 * don't get that effect but it does happen.
328 *
329 * Now there are some interesting Caveats that the transport
330 * designer needs to take into account when using this feature.
331 *
332 * 1) It is used with HPTS and pacing, when the pacing timer
333 * for output calls it will first call the input.
334 * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
335 * queue normal packets, I am busy pacing out data and
336 * will process the queued packets before my tfb_tcp_output
337 * call from pacing. If a non-normal packet arrives, (e.g. sack)
338 * you will be awoken immediately.
339 * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
340 * be awoken if a SACK has arrived. You would do this when
341 * you were not only running a pacing for output timer
342 * but a Rack timer as well i.e. you know you are in recovery
343 * and are in the process (via the timers) of dealing with
344 * the loss.
345 *
346 * Now a critical thing you must be aware of here is that the
347 * use of the flags has a far greater scope then just your
348 * typical LRO. Why? Well thats because in the normal compressed
349 * LRO case at the end of a driver interupt all packets are going
350 * to get presented to the transport no matter if there is one
351 * or 100. With the MBUF_QUEUE model, this is not true. You will
352 * only be awoken to process the queue of packets when:
353 * a) The flags discussed above allow it.
354 * <or>
355 * b) You exceed a ack or data limit (by default the
356 * ack limit is infinity (64k acks) and the data
357 * limit is 64k of new TCP data)
358 * <or>
359 * c) The push bit has been set by the peer
360 */
361
362int
363ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
364{
365 /*
366 * We are passed a raw change of mbuf packets
367 * that arrived in LRO. They are linked via
368 * the m_nextpkt link in the pkt-headers.
369 *
370 * We process each one by:
371 * a) saving off the next
372 * b) stripping off the ether-header
373 * c) formulating the arguments for
374 * the tfb_tcp_hpts_do_segment
375 * d) calling each mbuf to tfb_tcp_hpts_do_segment
376 * after adjusting the time to match the arrival time.
377 * Note that the LRO code assures no IP options are present.
378 *
379 * The symantics for calling tfb_tcp_hpts_do_segment are the
380 * following:
381 * 1) It returns 0 if all went well and you (the caller) need
382 * to release the lock.
383 * 2) If nxt_pkt is set, then the function will surpress calls
384 * to tcp_output() since you are promising to call again
385 * with another packet.
386 * 3) If it returns 1, then you must free all the packets being
387 * shipped in, the tcb has been destroyed (or about to be destroyed).
388 */
389 struct mbuf *m_save;
390 struct tcphdr *th;
391#ifdef INET6
392 struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
393#endif
394#ifdef INET
395 struct ip *ip = NULL; /* Keep compiler happy. */
396#endif
397 struct ifnet *ifp;
398 struct timeval tv;
399 struct inpcb *inp;
400 int32_t retval, nxt_pkt, tlen, off;
401 int etype = 0;
402 uint16_t drop_hdrlen;
403 uint8_t iptos, no_vn=0;
404
405 NET_EPOCH_ASSERT();
406 if (m)
407 ifp = m_rcvif(m);
408 else
409 ifp = NULL;
410 if (ifp == NULL) {
411 /*
412 * We probably should not work around
413 * but kassert, since lro alwasy sets rcvif.
414 */
415 no_vn = 1;
416 goto skip_vnet;
417 }
418 CURVNET_SET(ifp->if_vnet);
419skip_vnet:
420 tcp_get_usecs(&tv);
421 while (m) {
422 m_save = m->m_nextpkt;
423 m->m_nextpkt = NULL;
424 if ((m->m_flags & M_ACKCMP) == 0) {
425 /* Now lets get the ether header */
426 etype = ctf_get_enet_type(ifp, m);
427 if (etype == -1) {
428 /* Skip this packet it was freed by checksum */
429 goto skipped_pkt;
430 }
431 KASSERT(((etype == ETHERTYPE_IPV6) || (etype == ETHERTYPE_IP)),
432 ("tp:%p m:%p etype:0x%x -- not IP or IPv6", tp, m, etype));
433 /* Trim off the ethernet header */
434 switch (etype) {
435#ifdef INET6
436 case ETHERTYPE_IPV6:
437 ip6 = mtod(m, struct ip6_hdr *);
438 th = (struct tcphdr *)(ip6 + 1);
439 tlen = ntohs(ip6->ip6_plen);
440 drop_hdrlen = sizeof(*ip6);
441 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
442 break;
443#endif
444#ifdef INET
445 case ETHERTYPE_IP:
446 ip = mtod(m, struct ip *);
447 th = (struct tcphdr *)(ip + 1);
448 drop_hdrlen = sizeof(*ip);
449 iptos = ip->ip_tos;
450 tlen = ntohs(ip->ip_len) - sizeof(struct ip);
451 break;
452#endif
453 } /* end switch */
454 /*
455 * Convert TCP protocol specific fields to host format.
456 */
458 off = th->th_off << 2;
459 if (off < sizeof (struct tcphdr) || off > tlen) {
460 printf("off:%d < hdrlen:%zu || > tlen:%u -- dump\n",
461 off,
462 sizeof(struct tcphdr),
463 tlen);
464 KMOD_TCPSTAT_INC(tcps_rcvbadoff);
465 m_freem(m);
466 goto skipped_pkt;
467 }
468 tlen -= off;
469 drop_hdrlen += off;
470 /*
471 * Now lets setup the timeval to be when we should
472 * have been called (if we can).
473 */
474 m->m_pkthdr.lro_nsegs = 1;
475 /* Now what about next packet? */
476 } else {
477 /*
478 * This mbuf is an array of acks that have
479 * been compressed. We assert the inp has
480 * the flag set to enable this!
481 */
482 KASSERT((tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP),
483 ("tp:%p inp:%p no INP_MBUF_ACKCMP flags?", tp, tp->t_inpcb));
484 tlen = 0;
485 drop_hdrlen = 0;
486 th = NULL;
487 iptos = 0;
488 }
489 tcp_get_usecs(&tv);
490 if (m_save || has_pkt)
491 nxt_pkt = 1;
492 else
493 nxt_pkt = 0;
494 if ((m->m_flags & M_ACKCMP) == 0)
495 KMOD_TCPSTAT_INC(tcps_rcvtotal);
496 else
497 KMOD_TCPSTAT_ADD(tcps_rcvtotal, (m->m_len / sizeof(struct tcp_ackent)));
498 inp = tp->t_inpcb;
499 INP_WLOCK_ASSERT(inp);
500 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
501 iptos, nxt_pkt, &tv);
502 if (retval) {
503 /* We lost the lock and tcb probably */
504 m = m_save;
505 while(m) {
506 m_save = m->m_nextpkt;
507 m->m_nextpkt = NULL;
508 m_freem(m);
509 m = m_save;
510 }
511 if (no_vn == 0) {
512 CURVNET_RESTORE();
513 }
515 return(retval);
516 }
517skipped_pkt:
518 m = m_save;
519 }
520 if (no_vn == 0) {
521 CURVNET_RESTORE();
522 }
523 return(retval);
524}
525
526int
527ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
528{
529 struct mbuf *m;
530
531 /* First lets see if we have old packets */
532 if (tp->t_in_pkt) {
533 m = tp->t_in_pkt;
534 tp->t_in_pkt = NULL;
535 tp->t_tail_pkt = NULL;
536 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
537 /* We lost the tcpcb (maybe a RST came in)? */
538 return(1);
539 }
540 }
541 return (0);
542}
543
546{
547 uint32_t bytes_out;
548
549 bytes_out = tp->snd_max - tp->snd_una;
550 if (tp->t_state < TCPS_ESTABLISHED)
551 bytes_out++;
552 if (tp->t_flags & TF_SENTFIN)
553 bytes_out++;
554 return (bytes_out);
555}
556
558ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
559{
560 if (rc_sacked <= ctf_outstanding(tp))
561 return(ctf_outstanding(tp) - rc_sacked);
562 else {
563 return (0);
564 }
565}
566
567void
568ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
569 int32_t rstreason, int32_t tlen)
570{
571 if (tp != NULL) {
572 tcp_dropwithreset(m, th, tp, tlen, rstreason);
573 INP_WUNLOCK(tp->t_inpcb);
574 } else
575 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
576}
577
578void
580{
581 if ((ts != NULL) && (cnt != NULL) &&
583 (tcp_ack_war_cnt > 0)) {
584 /* We are possibly doing ack war prevention */
585 uint32_t cts;
586
587 /*
588 * We use a msec tick here which gives us
589 * roughly 49 days. We don't need the
590 * precision of a microsecond timestamp which
591 * would only give us hours.
592 */
593 cts = tcp_ts_getticks();
594 if (TSTMP_LT((*ts), cts)) {
595 /* Timestamp is in the past */
596 *cnt = 0;
597 *ts = (cts + tcp_ack_war_time_window);
598 }
599 if (*cnt < tcp_ack_war_cnt) {
600 *cnt = (*cnt + 1);
601 tp->t_flags |= TF_ACKNOW;
602 } else
603 tp->t_flags &= ~TF_ACKNOW;
604 } else
605 tp->t_flags |= TF_ACKNOW;
606}
607
608/*
609 * ctf_drop_checks returns 1 for you should not proceed. It places
610 * in ret_val what should be returned 1/0 by the caller. The 1 indicates
611 * that the TCB is unlocked and probably dropped. The 0 indicates the
612 * TCB is still valid and locked.
613 */
614int
615_ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th,
616 struct tcpcb *tp, int32_t *tlenp,
617 int32_t *thf, int32_t *drop_hdrlen, int32_t *ret_val,
618 uint32_t *ts, uint32_t *cnt)
619{
620 int32_t todrop;
621 int32_t thflags;
622 int32_t tlen;
623
624 thflags = *thf;
625 tlen = *tlenp;
626 todrop = tp->rcv_nxt - th->th_seq;
627 if (todrop > 0) {
628 if (thflags & TH_SYN) {
629 thflags &= ~TH_SYN;
630 th->th_seq++;
631 if (th->th_urp > 1)
632 th->th_urp--;
633 else
634 thflags &= ~TH_URG;
635 todrop--;
636 }
637 /*
638 * Following if statement from Stevens, vol. 2, p. 960.
639 */
640 if (todrop > tlen
641 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
642 /*
643 * Any valid FIN must be to the left of the window.
644 * At this point the FIN must be a duplicate or out
645 * of sequence; drop it.
646 */
647 thflags &= ~TH_FIN;
648 /*
649 * Send an ACK to resynchronize and drop any data.
650 * But keep on processing for RST or ACK.
651 */
652 ctf_ack_war_checks(tp, ts, cnt);
653 todrop = tlen;
654 KMOD_TCPSTAT_INC(tcps_rcvduppack);
655 KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
656 } else {
657 KMOD_TCPSTAT_INC(tcps_rcvpartduppack);
658 KMOD_TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
659 }
660 /*
661 * DSACK - add SACK block for dropped range
662 */
663 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
664 /*
665 * ACK now, as the next in-sequence segment
666 * will clear the DSACK block again
667 */
668 ctf_ack_war_checks(tp, ts, cnt);
669 if (tp->t_flags & TF_ACKNOW)
670 tcp_update_sack_list(tp, th->th_seq,
671 th->th_seq + todrop);
672 }
673 *drop_hdrlen += todrop; /* drop from the top afterwards */
674 th->th_seq += todrop;
675 tlen -= todrop;
676 if (th->th_urp > todrop)
677 th->th_urp -= todrop;
678 else {
679 thflags &= ~TH_URG;
680 th->th_urp = 0;
681 }
682 }
683 /*
684 * If segment ends after window, drop trailing data (and PUSH and
685 * FIN); if nothing left, just ACK.
686 */
687 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
688 if (todrop > 0) {
689 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
690 if (todrop >= tlen) {
691 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
692 /*
693 * If window is closed can only take segments at
694 * window edge, and have to drop data and PUSH from
695 * incoming segments. Continue processing, but
696 * remember to ack. Otherwise, drop segment and
697 * ack.
698 */
699 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
700 ctf_ack_war_checks(tp, ts, cnt);
701 KMOD_TCPSTAT_INC(tcps_rcvwinprobe);
702 } else {
703 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val, ts, cnt);
704 return (1);
705 }
706 } else
707 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
708 m_adj(m, -todrop);
709 tlen -= todrop;
710 thflags &= ~(TH_PUSH | TH_FIN);
711 }
712 *thf = thflags;
713 *tlenp = tlen;
714 return (0);
715}
716
717/*
718 * The value in ret_val informs the caller
719 * if we dropped the tcb (and lock) or not.
720 * 1 = we dropped it, 0 = the TCB is still locked
721 * and valid.
722 */
723void
724__ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
725{
726 /*
727 * Generate an ACK dropping incoming segment if it occupies sequence
728 * space, where the ACK reflects our state.
729 *
730 * We can now skip the test for the RST flag since all paths to this
731 * code happen after packets containing RST have been dropped.
732 *
733 * In the SYN-RECEIVED state, don't send an ACK unless the segment
734 * we received passes the SYN-RECEIVED ACK test. If it fails send a
735 * RST. This breaks the loop in the "LAND" DoS attack, and also
736 * prevents an ACK storm between two listening ports that have been
737 * sent forged SYN segments, each with the source address of the
738 * other.
739 */
740 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
741 (SEQ_GT(tp->snd_una, th->th_ack) ||
742 SEQ_GT(th->th_ack, tp->snd_max))) {
743 *ret_val = 1;
745 return;
746 } else
747 *ret_val = 0;
748 ctf_ack_war_checks(tp, ts, cnt);
749 if (m)
750 m_freem(m);
751}
752
753void
754ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
755{
756
757 /*
758 * Drop space held by incoming segment and return.
759 */
760 if (tp != NULL)
761 INP_WUNLOCK(tp->t_inpcb);
762 if (m)
763 m_freem(m);
764}
765
766int
767__ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so,
768 struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
769{
770 /*
771 * RFC5961 Section 3.2
772 *
773 * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
774 * window, we send challenge ACK.
775 *
776 * Note: to take into account delayed ACKs, we should test against
777 * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
778 * of closed window, not covered by the RFC.
779 */
780 int dropped = 0;
781
782 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
783 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
784 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
785 KASSERT(tp->t_state != TCPS_SYN_SENT,
786 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
787 __func__, th, tp));
788
789 if (V_tcp_insecure_rst ||
790 (tp->last_ack_sent == th->th_seq) ||
791 (tp->rcv_nxt == th->th_seq)) {
792 KMOD_TCPSTAT_INC(tcps_drops);
793 /* Drop the connection. */
794 switch (tp->t_state) {
796 so->so_error = ECONNREFUSED;
797 goto close;
798 case TCPS_ESTABLISHED:
799 case TCPS_FIN_WAIT_1:
800 case TCPS_FIN_WAIT_2:
801 case TCPS_CLOSE_WAIT:
802 case TCPS_CLOSING:
803 case TCPS_LAST_ACK:
804 so->so_error = ECONNRESET;
805 close:
807 /* FALLTHROUGH */
808 default:
810 tp = tcp_close(tp);
811 }
812 dropped = 1;
813 ctf_do_drop(m, tp);
814 } else {
815 int send_challenge;
816
817 KMOD_TCPSTAT_INC(tcps_badrst);
818 if ((ts != NULL) && (cnt != NULL) &&
820 (tcp_ack_war_cnt > 0)) {
821 /* We are possibly preventing an ack-rst war prevention */
822 uint32_t cts;
823
824 /*
825 * We use a msec tick here which gives us
826 * roughly 49 days. We don't need the
827 * precision of a microsecond timestamp which
828 * would only give us hours.
829 */
830 cts = tcp_ts_getticks();
831 if (TSTMP_LT((*ts), cts)) {
832 /* Timestamp is in the past */
833 *cnt = 0;
834 *ts = (cts + tcp_ack_war_time_window);
835 }
836 if (*cnt < tcp_ack_war_cnt) {
837 *cnt = (*cnt + 1);
838 send_challenge = 1;
839 } else
840 send_challenge = 0;
841 } else
842 send_challenge = 1;
843 if (send_challenge) {
844 /* Send challenge ACK. */
845 tcp_respond(tp, mtod(m, void *), th, m,
846 tp->rcv_nxt, tp->snd_nxt, TH_ACK);
847 tp->last_ack_sent = tp->rcv_nxt;
848 }
849 }
850 } else {
851 m_freem(m);
852 }
853 return (dropped);
854}
855
856/*
857 * The value in ret_val informs the caller
858 * if we dropped the tcb (and lock) or not.
859 * 1 = we dropped it, 0 = the TCB is still locked
860 * and valid.
861 */
862void
863ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
864{
865
866 NET_EPOCH_ASSERT();
867
868 KMOD_TCPSTAT_INC(tcps_badsyn);
869 if (V_tcp_insecure_syn &&
870 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
871 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
872 tp = tcp_drop(tp, ECONNRESET);
873 *ret_val = 1;
874 ctf_do_drop(m, tp);
875 } else {
876 /* Send challenge ACK. */
877 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
878 tp->snd_nxt, TH_ACK);
879 tp->last_ack_sent = tp->rcv_nxt;
880 m = NULL;
881 *ret_val = 0;
882 ctf_do_drop(m, NULL);
883 }
884}
885
886/*
887 * ctf_ts_check returns 1 for you should not proceed, the state
888 * machine should return. It places in ret_val what should
889 * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
890 * that the TCB is unlocked and probably dropped. The 0 indicates the
891 * TCB is still valid and locked.
892 */
893int
894ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
895 int32_t tlen, int32_t thflags, int32_t * ret_val)
896{
897
899 /*
900 * Invalidate ts_recent. If this segment updates ts_recent,
901 * the age will be reset later and ts_recent will get a
902 * valid value. If it does not, setting ts_recent to zero
903 * will at least satisfy the requirement that zero be placed
904 * in the timestamp echo reply when ts_recent isn't valid.
905 * The age isn't reset until we get a valid ts_recent
906 * because we don't want out-of-order segments to be dropped
907 * when ts_recent is old.
908 */
909 tp->ts_recent = 0;
910 } else {
911 KMOD_TCPSTAT_INC(tcps_rcvduppack);
912 KMOD_TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
913 KMOD_TCPSTAT_INC(tcps_pawsdrop);
914 *ret_val = 0;
915 if (tlen) {
916 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
917 } else {
918 ctf_do_drop(m, NULL);
919 }
920 return (1);
921 }
922 return (0);
923}
924
925int
926ctf_ts_check_ac(struct tcpcb *tp, int32_t thflags)
927{
928
930 /*
931 * Invalidate ts_recent. If this segment updates ts_recent,
932 * the age will be reset later and ts_recent will get a
933 * valid value. If it does not, setting ts_recent to zero
934 * will at least satisfy the requirement that zero be placed
935 * in the timestamp echo reply when ts_recent isn't valid.
936 * The age isn't reset until we get a valid ts_recent
937 * because we don't want out-of-order segments to be dropped
938 * when ts_recent is old.
939 */
940 tp->ts_recent = 0;
941 } else {
942 KMOD_TCPSTAT_INC(tcps_rcvduppack);
943 KMOD_TCPSTAT_INC(tcps_pawsdrop);
944 return (1);
945 }
946 return (0);
947}
948
949
950
951void
952ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
953{
954 int32_t win;
955
956 /*
957 * Calculate amount of space in receive window, and then do TCP
958 * input processing. Receive window is amount of space in rcv queue,
959 * but not less than advertised window.
960 */
961 win = sbspace(&so->so_rcv);
962 if (win < 0)
963 win = 0;
964 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
965}
966
967void
968ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
969 int32_t rstreason, int32_t tlen)
970{
971
972 tcp_dropwithreset(m, th, tp, tlen, rstreason);
973 tp = tcp_drop(tp, ETIMEDOUT);
974 if (tp)
975 INP_WUNLOCK(tp->t_inpcb);
976}
977
980{
981 return (tcp_fixed_maxseg(tp));
982}
983
984void
985ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
986{
987 if (tp->t_logstate != TCP_LOG_STATE_OFF) {
988 union tcp_log_stackspecific log;
989 struct timeval tv;
990
991 memset(&log, 0, sizeof(log));
992 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
993 log.u_bbr.flex8 = num_sack_blks;
994 if (num_sack_blks > 0) {
995 log.u_bbr.flex1 = sack_blocks[0].start;
996 log.u_bbr.flex2 = sack_blocks[0].end;
997 }
998 if (num_sack_blks > 1) {
999 log.u_bbr.flex3 = sack_blocks[1].start;
1000 log.u_bbr.flex4 = sack_blocks[1].end;
1001 }
1002 if (num_sack_blks > 2) {
1003 log.u_bbr.flex5 = sack_blocks[2].start;
1004 log.u_bbr.flex6 = sack_blocks[2].end;
1005 }
1006 if (num_sack_blks > 3) {
1007 log.u_bbr.applimited = sack_blocks[3].start;
1008 log.u_bbr.pkts_out = sack_blocks[3].end;
1009 }
1010 TCP_LOG_EVENTP(tp, NULL,
1011 &tp->t_inpcb->inp_socket->so_rcv,
1012 &tp->t_inpcb->inp_socket->so_snd,
1014 0, &log, false, &tv);
1015 }
1016}
1017
1020{
1021 /*
1022 * Given a count, decay it by a set percentage. The
1023 * percentage is in thousands i.e. 100% = 1000,
1024 * 19.3% = 193.
1025 */
1026 uint64_t perc_count, decay_per;
1027 uint32_t decayed_count;
1028 if (decay > 1000) {
1029 /* We don't raise it */
1030 return (count);
1031 }
1032 perc_count = count;
1033 decay_per = decay;
1034 perc_count *= decay_per;
1035 perc_count /= 1000;
1036 /*
1037 * So now perc_count holds the
1038 * count decay value.
1039 */
1040 decayed_count = count - (uint32_t)perc_count;
1041 return(decayed_count);
1042}
1043
1044int32_t
1046{
1047 if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
1048 if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
1049 /*
1050 * There is an assumption that the caller
1051 * will drop the connection so we will
1052 * increment the counters here.
1053 */
1054 if (log)
1056#ifdef NETFLIX_STATS
1057 KMOD_TCPSTAT_INC(tcps_progdrops);
1058#endif
1059 return (1);
1060 }
1061 }
1062 return (0);
1063}
#define BANDLIM_RST_OPENPORT
Definition: icmp_var.h:97
__uint32_t uint32_t
Definition: in.h:62
__uint16_t uint16_t
Definition: in.h:57
__uint8_t uint8_t
Definition: in.h:52
#define IPPROTO_TCP
Definition: in.h:45
u_short in_pseudo(u_int32_t a, u_int32_t b, u_int32_t c)
Definition: in_cksum.c:197
#define INP_WLOCK_ASSERT(inp)
Definition: in_pcb.h:529
#define INP_UNLOCK_ASSERT(inp)
Definition: in_pcb.h:530
#define INP_WUNLOCK(inp)
Definition: in_pcb.h:522
#define INP_MBUF_ACKCMP
Definition: in_pcb.h:664
#define IPVERSION
Definition: ip.h:46
u_int16_t count
Definition: ip_fw.h:18
int __ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
uint32_t ctf_decay_count(uint32_t count, uint32_t decay)
int32_t ctf_progress_timeout_check(struct tcpcb *tp, bool log)
int ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
void ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
void ctf_ack_war_checks(struct tcpcb *tp, uint32_t *ts, uint32_t *cnt)
static int ctf_get_enet_type(struct ifnet *ifp, struct mbuf *m)
int ctf_ts_check_ac(struct tcpcb *tp, int32_t thflags)
void ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t rstreason, int32_t tlen)
void ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
void ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t *ret_val)
__FBSDID("$FreeBSD$")
int _ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t *tlenp, int32_t *thf, int32_t *drop_hdrlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
uint32_t ctf_outstanding(struct tcpcb *tp)
uint32_t ctf_fixed_maxseg(struct tcpcb *tp)
uint32_t ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
void __ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t *ret_val, uint32_t *ts, uint32_t *cnt)
int ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
int ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t tlen, int32_t thflags, int32_t *ret_val)
void ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
void ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t rstreason, int32_t tlen)
#define ctf_do_dropafterack(a, b, c, d, e, f)
in_addr_t s_addr
Definition: in.h:84
Definition: in_pcb.h:217
struct socket * inp_socket
Definition: in_pcb.h:254
int inp_flags2
Definition: in_pcb.h:247
Definition: ip6.h:74
Definition: ip.h:51
struct in_addr ip_src ip_dst
Definition: ip.h:71
u_char ip_tos
Definition: ip.h:60
u_char ip_hl
Definition: ip.h:53
u_short ip_len
Definition: ip.h:61
u_char ip_v
Definition: ip.h:54
Definition: ip_var.h:47
u_short ih_len
Definition: ip_var.h:50
u_char ih_x1[9]
Definition: ip_var.h:48
tcp_seq end
Definition: tcp_var.h:98
tcp_seq start
Definition: tcp_var.h:97
int(* tfb_do_segment_nounlock)(struct mbuf *, struct tcphdr *, struct socket *, struct tcpcb *, int, int, uint8_t, int, struct timeval *)
Definition: tcp_var.h:355
uint32_t flex3
Definition: tcp_log_buf.h:87
uint32_t timeStamp
Definition: tcp_log_buf.h:81
uint32_t flex5
Definition: tcp_log_buf.h:89
uint32_t flex2
Definition: tcp_log_buf.h:86
uint32_t flex4
Definition: tcp_log_buf.h:88
uint32_t flex1
Definition: tcp_log_buf.h:85
uint32_t applimited
Definition: tcp_log_buf.h:79
uint32_t flex6
Definition: tcp_log_buf.h:90
uint32_t pkts_out
Definition: tcp_log_buf.h:84
uint8_t flex8
Definition: tcp_log_buf.h:100
Definition: tcp_var.h:132
tcp_seq last_ack_sent
Definition: tcp_var.h:174
uint32_t t_logstate
Definition: tcp_var.h:138
tcp_seq snd_nxt
Definition: tcp_var.h:151
tcp_seq snd_max
Definition: tcp_var.h:148
tcp_seq snd_una
Definition: tcp_var.h:147
uint32_t t_state
Definition: tcp_var.h:140
u_int t_maxunacktime
Definition: tcp_var.h:244
struct mbuf * t_tail_pkt
Definition: tcp_var.h:182
u_int t_acktime
Definition: tcp_var.h:195
uint32_t rcv_wnd
Definition: tcp_var.h:165
u_int32_t ts_recent
Definition: tcp_var.h:169
u_int ts_recent_age
Definition: tcp_var.h:197
tcp_seq rcv_nxt
Definition: tcp_var.h:163
u_int t_flags
Definition: tcp_var.h:146
struct mbuf * t_in_pkt
Definition: tcp_var.h:181
struct tcp_function_block * t_fb
Definition: tcp_var.h:135
struct inpcb * t_inpcb
Definition: tcp_var.h:134
tcp_seq rcv_adv
Definition: tcp_var.h:164
Definition: tcpip.h:41
#define TCPS_CLOSING
Definition: tcp_fsm.h:56
#define TCPS_FIN_WAIT_1
Definition: tcp_fsm.h:55
#define TCPS_ESTABLISHED
Definition: tcp_fsm.h:52
#define TCPS_SYN_SENT
Definition: tcp_fsm.h:49
#define TCPS_SYN_RECEIVED
Definition: tcp_fsm.h:50
#define TCPS_LAST_ACK
Definition: tcp_fsm.h:57
#define TCPS_CLOSE_WAIT
Definition: tcp_fsm.h:53
#define TCPS_FIN_WAIT_2
Definition: tcp_fsm.h:59
#define TCPS_CLOSED
Definition: tcp_fsm.h:47
static __inline uint32_t tcp_get_usecs(struct timeval *tv)
Definition: tcp_hpts.h:198
void tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int tlen, int rstreason)
Definition: tcp_input.c:3357
@ TCP_LOG_STATE_OFF
Definition: tcp_log_buf.h:244
#define TCP_LOG_EVENTP(tp, th, rxbuf, txbuf, eventid, errornum, len, stackinfo, th_hostorder, tv)
Definition: tcp_log_buf.h:346
@ TCP_SACK_FILTER_RES
Definition: tcp_log_buf.h:229
#define M_ACKCMP
Definition: tcp_lro.h:193
#define M_LRO_EHDRSTRP
Definition: tcp_lro.h:194
void tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
Definition: tcp_sack.c:272
#define SEQ_GEQ(a, b)
Definition: tcp_seq.h:45
#define SEQ_GT(a, b)
Definition: tcp_seq.h:44
static __inline uint32_t tcp_ts_getticks(void)
Definition: tcp_seq.h:89
#define TSTMP_LT(a, b)
Definition: tcp_seq.h:59
#define TSTMP_GT(a, b)
Definition: tcp_seq.h:60
#define TCP_PAWS_IDLE
Definition: tcp_seq.h:82
#define SEQ_LT(a, b)
Definition: tcp_seq.h:42
struct tcpcb * tcp_drop(struct tcpcb *tp, int errno)
Definition: tcp_subr.c:2283
uint32_t tcp_ack_war_cnt
Definition: tcp_subr.c:204
void tcp_state_change(struct tcpcb *tp, int newstate)
Definition: tcp_subr.c:3999
struct tcpcb * tcp_close(struct tcpcb *tp)
Definition: tcp_subr.c:2471
void tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
Definition: tcp_subr.c:1728
u_int tcp_fixed_maxseg(const struct tcpcb *tp)
Definition: tcp_subr.c:3587
void tcp_log_end_status(struct tcpcb *tp, uint8_t status)
Definition: tcp_subr.c:4081
uint32_t tcp_ack_war_time_window
Definition: tcp_subr.c:199
#define TF_ACKNOW
Definition: tcp_var.h:497
#define TCP_EI_STATUS_CLIENT_RST
Definition: tcp_var.h:52
#define V_tcp_insecure_rst
Definition: tcp_var.h:1050
#define TF_SENTFIN
Definition: tcp_var.h:501
static void tcp_fields_to_host(struct tcphdr *th)
Definition: tcp_var.h:1245
#define V_tcp_insecure_syn
Definition: tcp_var.h:1051
#define KMOD_TCPSTAT_INC(name)
Definition: tcp_var.h:850
#define TF_SACK_PERMIT
Definition: tcp_var.h:506
#define TCP_EI_STATUS_PROGRESS
Definition: tcp_var.h:56
#define KMOD_TCPSTAT_ADD(name, val)
Definition: tcp_var.h:848
struct tcp_log_bbr u_bbr
Definition: tcp_log_buf.h:108