FreeBSD kernel kern code
sys_pipe.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1996 John S. Dyson
5 * Copyright (c) 2012 Giovanni Trematerra
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice immediately at the beginning of the file, without modification,
13 * this list of conditions, and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Absolutely no warranty of function or purpose is made by the author
18 * John S. Dyson.
19 * 4. Modifications may be freely made to this file if the above conditions
20 * are met.
21 */
22
23/*
24 * This file contains a high-performance replacement for the socket-based
25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
26 * all features of sockets, but does do everything that pipes normally
27 * do.
28 */
29
30/*
31 * This code has two modes of operation, a small write mode and a large
32 * write mode. The small write mode acts like conventional pipes with
33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
35 * and PIPE_SIZE in size, the sending process pins the underlying pages in
36 * memory, and the receiving process copies directly from these pinned pages
37 * in the sending process.
38 *
39 * If the sending process receives a signal, it is possible that it will
40 * go away, and certainly its address space can change, because control
41 * is returned back to the user-mode side. In that case, the pipe code
42 * arranges to copy the buffer supplied by the user process, to a pageable
43 * kernel buffer, and the receiving process will grab the data from the
44 * pageable kernel buffer. Since signals don't happen all that often,
45 * the copy operation is normally eliminated.
46 *
47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48 * happen for small transfers so that the system will not spend all of
49 * its time context switching.
50 *
51 * In order to limit the resource use of pipes, two sysctls exist:
52 *
53 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54 * address space available to us in pipe_map. This value is normally
55 * autotuned, but may also be loader tuned.
56 *
57 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58 * memory in use by pipes.
59 *
60 * Based on how large pipekva is relative to maxpipekva, the following
61 * will happen:
62 *
63 * 0% - 50%:
64 * New pipes are given 16K of memory backing, pipes may dynamically
65 * grow to as large as 64K where needed.
66 * 50% - 75%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes may NOT grow.
69 * 75% - 100%:
70 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
71 * existing pipes will be shrunk down to 4K whenever possible.
72 *
73 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
74 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75 * resize which MUST occur for reverse-direction pipes when they are
76 * first used.
77 *
78 * Additional information about the current state of pipes may be obtained
79 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80 * and kern.ipc.piperesizefail.
81 *
82 * Locking rules: There are two locks present here: A mutex, used via
83 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
84 * the flag, as mutexes can not persist over uiomove. The mutex
85 * exists only to guard access to the flag, and is not in itself a
86 * locking mechanism. Also note that there is only a single mutex for
87 * both directions of a pipe.
88 *
89 * As pipelock() may have to sleep before it can acquire the flag, it
90 * is important to reread all data after a call to pipelock(); everything
91 * in the structure may have changed.
92 */
93
94#include <sys/cdefs.h>
95__FBSDID("$FreeBSD$");
96
97#include <sys/param.h>
98#include <sys/systm.h>
99#include <sys/conf.h>
100#include <sys/fcntl.h>
101#include <sys/file.h>
102#include <sys/filedesc.h>
103#include <sys/filio.h>
104#include <sys/kernel.h>
105#include <sys/lock.h>
106#include <sys/mutex.h>
107#include <sys/ttycom.h>
108#include <sys/stat.h>
109#include <sys/malloc.h>
110#include <sys/poll.h>
111#include <sys/selinfo.h>
112#include <sys/signalvar.h>
113#include <sys/syscallsubr.h>
114#include <sys/sysctl.h>
115#include <sys/sysproto.h>
116#include <sys/pipe.h>
117#include <sys/proc.h>
118#include <sys/vnode.h>
119#include <sys/uio.h>
120#include <sys/user.h>
121#include <sys/event.h>
122
123#include <security/mac/mac_framework.h>
124
125#include <vm/vm.h>
126#include <vm/vm_param.h>
127#include <vm/vm_object.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_extern.h>
130#include <vm/pmap.h>
131#include <vm/vm_map.h>
132#include <vm/vm_page.h>
133#include <vm/uma.h>
134
135/*
136 * Use this define if you want to disable *fancy* VM things. Expect an
137 * approx 30% decrease in transfer rate. This could be useful for
138 * NetBSD or OpenBSD.
139 */
140/* #define PIPE_NODIRECT */
141
142#define PIPE_PEER(pipe) \
143 (((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145/*
146 * interfaces to the outside world
147 */
148static fo_rdwr_t pipe_read;
149static fo_rdwr_t pipe_write;
150static fo_truncate_t pipe_truncate;
151static fo_ioctl_t pipe_ioctl;
152static fo_poll_t pipe_poll;
153static fo_kqfilter_t pipe_kqfilter;
154static fo_stat_t pipe_stat;
155static fo_close_t pipe_close;
156static fo_chmod_t pipe_chmod;
157static fo_chown_t pipe_chown;
158static fo_fill_kinfo_t pipe_fill_kinfo;
159
160struct fileops pipeops = {
161 .fo_read = pipe_read,
162 .fo_write = pipe_write,
163 .fo_truncate = pipe_truncate,
164 .fo_ioctl = pipe_ioctl,
165 .fo_poll = pipe_poll,
166 .fo_kqfilter = pipe_kqfilter,
167 .fo_stat = pipe_stat,
168 .fo_close = pipe_close,
169 .fo_chmod = pipe_chmod,
170 .fo_chown = pipe_chown,
171 .fo_sendfile = invfo_sendfile,
172 .fo_fill_kinfo = pipe_fill_kinfo,
173 .fo_flags = DFLAG_PASSABLE
174};
175
176static void filt_pipedetach(struct knote *kn);
177static void filt_pipedetach_notsup(struct knote *kn);
178static int filt_pipenotsup(struct knote *kn, long hint);
179static int filt_piperead(struct knote *kn, long hint);
180static int filt_pipewrite(struct knote *kn, long hint);
181
182static struct filterops pipe_nfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach_notsup,
185 .f_event = filt_pipenotsup
186};
187static struct filterops pipe_rfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_piperead
191};
192static struct filterops pipe_wfiltops = {
193 .f_isfd = 1,
194 .f_detach = filt_pipedetach,
195 .f_event = filt_pipewrite
196};
197
198/*
199 * Default pipe buffer size(s), this can be kind-of large now because pipe
200 * space is pageable. The pipe code will try to maintain locality of
201 * reference for performance reasons, so small amounts of outstanding I/O
202 * will not wipe the cache.
203 */
204#define MINPIPESIZE (PIPE_SIZE/3)
205#define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207static long amountpipekva;
208static int pipefragretry;
209static int pipeallocfail;
210static int piperesizefail;
211static int piperesizeallowed = 1;
212static long pipe_mindirect = PIPE_MINDIRECT;
213
214SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
215 &maxpipekva, 0, "Pipe KVA limit");
216SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
217 &amountpipekva, 0, "Pipe KVA usage");
218SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
219 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
220SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
221 &pipeallocfail, 0, "Pipe allocation failures");
222SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
223 &piperesizefail, 0, "Pipe resize failures");
224SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
225 &piperesizeallowed, 0, "Pipe resizing allowed");
226
227static void pipeinit(void *dummy __unused);
228static void pipeclose(struct pipe *cpipe);
229static void pipe_free_kmem(struct pipe *cpipe);
230static int pipe_create(struct pipe *pipe, bool backing);
231static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
232static __inline int pipelock(struct pipe *cpipe, int catch);
233static __inline void pipeunlock(struct pipe *cpipe);
234static void pipe_timestamp(struct timespec *tsp);
235#ifndef PIPE_NODIRECT
236static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
237static void pipe_destroy_write_buffer(struct pipe *wpipe);
238static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
239static void pipe_clone_write_buffer(struct pipe *wpipe);
240#endif
241static int pipespace(struct pipe *cpipe, int size);
242static int pipespace_new(struct pipe *cpipe, int size);
243
244static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
245static int pipe_zone_init(void *mem, int size, int flags);
246static void pipe_zone_fini(void *mem, int size);
247
248static uma_zone_t pipe_zone;
249static struct unrhdr64 pipeino_unr;
250static dev_t pipedev_ino;
251
252SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
253
254static void
255pipeinit(void *dummy __unused)
256{
257
258 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
260 UMA_ALIGN_PTR, 0);
261 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
262 new_unrhdr64(&pipeino_unr, 1);
263 pipedev_ino = devfs_alloc_cdp_inode();
264 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
265}
266
267static int
269{
270 int error = 0;
271 long tmp_pipe_mindirect = pipe_mindirect;
272
273 error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
274 if (error != 0 || req->newptr == NULL)
275 return (error);
276
277 /*
278 * Don't allow pipe_mindirect to be set so low that we violate
279 * atomicity requirements.
280 */
281 if (tmp_pipe_mindirect <= PIPE_BUF)
282 return (EINVAL);
283 pipe_mindirect = tmp_pipe_mindirect;
284 return (0);
285}
286SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
288 "Minimum write size triggering VM optimization");
289
290static int
291pipe_zone_ctor(void *mem, int size, void *arg, int flags)
292{
293 struct pipepair *pp;
294 struct pipe *rpipe, *wpipe;
295
296 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
297
298 pp = (struct pipepair *)mem;
299
300 /*
301 * We zero both pipe endpoints to make sure all the kmem pointers
302 * are NULL, flag fields are zero'd, etc. We timestamp both
303 * endpoints with the same time.
304 */
305 rpipe = &pp->pp_rpipe;
306 bzero(rpipe, sizeof(*rpipe));
307 pipe_timestamp(&rpipe->pipe_ctime);
308 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
309
310 wpipe = &pp->pp_wpipe;
311 bzero(wpipe, sizeof(*wpipe));
312 wpipe->pipe_ctime = rpipe->pipe_ctime;
313 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
314
315 rpipe->pipe_peer = wpipe;
316 rpipe->pipe_pair = pp;
317 wpipe->pipe_peer = rpipe;
318 wpipe->pipe_pair = pp;
319
320 /*
321 * Mark both endpoints as present; they will later get free'd
322 * one at a time. When both are free'd, then the whole pair
323 * is released.
324 */
325 rpipe->pipe_present = PIPE_ACTIVE;
326 wpipe->pipe_present = PIPE_ACTIVE;
327
328 /*
329 * Eventually, the MAC Framework may initialize the label
330 * in ctor or init, but for now we do it elswhere to avoid
331 * blocking in ctor or init.
332 */
333 pp->pp_label = NULL;
334
335 return (0);
336}
337
338static int
339pipe_zone_init(void *mem, int size, int flags)
340{
341 struct pipepair *pp;
342
343 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
344
345 pp = (struct pipepair *)mem;
346
347 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
348 return (0);
349}
350
351static void
352pipe_zone_fini(void *mem, int size)
353{
354 struct pipepair *pp;
355
356 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
357
358 pp = (struct pipepair *)mem;
359
360 mtx_destroy(&pp->pp_mtx);
361}
362
363static int
364pipe_paircreate(struct thread *td, struct pipepair **p_pp)
365{
366 struct pipepair *pp;
367 struct pipe *rpipe, *wpipe;
368 int error;
369
370 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
371#ifdef MAC
372 /*
373 * The MAC label is shared between the connected endpoints. As a
374 * result mac_pipe_init() and mac_pipe_create() are called once
375 * for the pair, and not on the endpoints.
376 */
377 mac_pipe_init(pp);
378 mac_pipe_create(td->td_ucred, pp);
379#endif
380 rpipe = &pp->pp_rpipe;
381 wpipe = &pp->pp_wpipe;
382
383 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
384 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
385
386 /*
387 * Only the forward direction pipe is backed by big buffer by
388 * default.
389 */
390 error = pipe_create(rpipe, true);
391 if (error != 0)
392 goto fail;
393 error = pipe_create(wpipe, false);
394 if (error != 0) {
395 /*
396 * This cleanup leaves the pipe inode number for rpipe
397 * still allocated, but never used. We do not free
398 * inode numbers for opened pipes, which is required
399 * for correctness because numbers must be unique.
400 * But also it avoids any memory use by the unr
401 * allocator, so stashing away the transient inode
402 * number is reasonable.
403 */
404 pipe_free_kmem(rpipe);
405 goto fail;
406 }
407
408 rpipe->pipe_state |= PIPE_DIRECTOK;
409 wpipe->pipe_state |= PIPE_DIRECTOK;
410 return (0);
411
412fail:
413 knlist_destroy(&rpipe->pipe_sel.si_note);
414 knlist_destroy(&wpipe->pipe_sel.si_note);
415#ifdef MAC
416 mac_pipe_destroy(pp);
417#endif
418 uma_zfree(pipe_zone, pp);
419 return (error);
420}
421
422int
423pipe_named_ctor(struct pipe **ppipe, struct thread *td)
424{
425 struct pipepair *pp;
426 int error;
427
428 error = pipe_paircreate(td, &pp);
429 if (error != 0)
430 return (error);
431 pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
432 *ppipe = &pp->pp_rpipe;
433 return (0);
434}
435
436void
437pipe_dtor(struct pipe *dpipe)
438{
439 struct pipe *peer;
440
441 peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
442 funsetown(&dpipe->pipe_sigio);
443 pipeclose(dpipe);
444 if (peer != NULL) {
445 funsetown(&peer->pipe_sigio);
446 pipeclose(peer);
447 }
448}
449
450/*
451 * Get a timestamp.
452 *
453 * This used to be vfs_timestamp but the higher precision is unnecessary and
454 * can very negatively affect performance in virtualized environments (e.g., on
455 * vms running on amd64 when using the rdtscp instruction).
456 */
457static void
458pipe_timestamp(struct timespec *tsp)
459{
460
461 getnanotime(tsp);
462}
463
464/*
465 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
466 * the zone pick up the pieces via pipeclose().
467 */
468int
469kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
470 struct filecaps *fcaps2)
471{
472 struct file *rf, *wf;
473 struct pipe *rpipe, *wpipe;
474 struct pipepair *pp;
475 int fd, fflags, error;
476
477 error = pipe_paircreate(td, &pp);
478 if (error != 0)
479 return (error);
480 rpipe = &pp->pp_rpipe;
481 wpipe = &pp->pp_wpipe;
482 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
483 if (error) {
484 pipeclose(rpipe);
485 pipeclose(wpipe);
486 return (error);
487 }
488 /* An extra reference on `rf' has been held for us by falloc_caps(). */
489 fildes[0] = fd;
490
491 fflags = FREAD | FWRITE;
492 if ((flags & O_NONBLOCK) != 0)
493 fflags |= FNONBLOCK;
494
495 /*
496 * Warning: once we've gotten past allocation of the fd for the
497 * read-side, we can only drop the read side via fdrop() in order
498 * to avoid races against processes which manage to dup() the read
499 * side while we are blocked trying to allocate the write side.
500 */
501 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
502 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
503 if (error) {
504 fdclose(td, rf, fildes[0]);
505 fdrop(rf, td);
506 /* rpipe has been closed by fdrop(). */
507 pipeclose(wpipe);
508 return (error);
509 }
510 /* An extra reference on `wf' has been held for us by falloc_caps(). */
511 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
512 fdrop(wf, td);
513 fildes[1] = fd;
514 fdrop(rf, td);
515
516 return (0);
517}
518
519#ifdef COMPAT_FREEBSD10
520/* ARGSUSED */
521int
522freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
523{
524 int error;
525 int fildes[2];
526
527 error = kern_pipe(td, fildes, 0, NULL, NULL);
528 if (error)
529 return (error);
530
531 td->td_retval[0] = fildes[0];
532 td->td_retval[1] = fildes[1];
533
534 return (0);
535}
536#endif
537
538int
539sys_pipe2(struct thread *td, struct pipe2_args *uap)
540{
541 int error, fildes[2];
542
543 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
544 return (EINVAL);
545 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
546 if (error)
547 return (error);
548 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
549 if (error) {
550 (void)kern_close(td, fildes[0]);
551 (void)kern_close(td, fildes[1]);
552 }
553 return (error);
554}
555
556/*
557 * Allocate kva for pipe circular buffer, the space is pageable
558 * This routine will 'realloc' the size of a pipe safely, if it fails
559 * it will retain the old buffer.
560 * If it fails it will return ENOMEM.
561 */
562static int
563pipespace_new(struct pipe *cpipe, int size)
564{
565 caddr_t buffer;
566 int error, cnt, firstseg;
567 static int curfail = 0;
568 static struct timeval lastfail;
569
570 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
571 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
572 ("pipespace: resize of direct writes not allowed"));
573retry:
574 cnt = cpipe->pipe_buffer.cnt;
575 if (cnt > size)
576 size = cnt;
577
578 size = round_page(size);
579 buffer = (caddr_t) vm_map_min(pipe_map);
580
581 error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
582 VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
583 if (error != KERN_SUCCESS) {
584 if (cpipe->pipe_buffer.buffer == NULL &&
585 size > SMALL_PIPE_SIZE) {
586 size = SMALL_PIPE_SIZE;
588 goto retry;
589 }
590 if (cpipe->pipe_buffer.buffer == NULL) {
592 if (ppsratecheck(&lastfail, &curfail, 1))
593 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
594 } else {
596 }
597 return (ENOMEM);
598 }
599
600 /* copy data, then free old resources if we're resizing */
601 if (cnt > 0) {
602 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
603 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
604 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
605 buffer, firstseg);
606 if ((cnt - firstseg) > 0)
607 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
608 cpipe->pipe_buffer.in);
609 } else {
610 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
611 buffer, cnt);
612 }
613 }
614 pipe_free_kmem(cpipe);
615 cpipe->pipe_buffer.buffer = buffer;
616 cpipe->pipe_buffer.size = size;
617 cpipe->pipe_buffer.in = cnt;
618 cpipe->pipe_buffer.out = 0;
619 cpipe->pipe_buffer.cnt = cnt;
620 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
621 return (0);
622}
623
624/*
625 * Wrapper for pipespace_new() that performs locking assertions.
626 */
627static int
628pipespace(struct pipe *cpipe, int size)
629{
630
631 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
632 ("Unlocked pipe passed to pipespace"));
633 return (pipespace_new(cpipe, size));
634}
635
636/*
637 * lock a pipe for I/O, blocking other access
638 */
639static __inline int
640pipelock(struct pipe *cpipe, int catch)
641{
642 int error, prio;
643
644 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
645
646 prio = PRIBIO;
647 if (catch)
648 prio |= PCATCH;
649 while (cpipe->pipe_state & PIPE_LOCKFL) {
650 KASSERT(cpipe->pipe_waiters >= 0,
651 ("%s: bad waiter count %d", __func__,
652 cpipe->pipe_waiters));
653 cpipe->pipe_waiters++;
654 error = msleep(cpipe, PIPE_MTX(cpipe),
655 prio, "pipelk", 0);
656 cpipe->pipe_waiters--;
657 if (error != 0)
658 return (error);
659 }
660 cpipe->pipe_state |= PIPE_LOCKFL;
661 return (0);
662}
663
664/*
665 * unlock a pipe I/O lock
666 */
667static __inline void
668pipeunlock(struct pipe *cpipe)
669{
670
671 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
672 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
673 ("Unlocked pipe passed to pipeunlock"));
674 KASSERT(cpipe->pipe_waiters >= 0,
675 ("%s: bad waiter count %d", __func__,
676 cpipe->pipe_waiters));
677 cpipe->pipe_state &= ~PIPE_LOCKFL;
678 if (cpipe->pipe_waiters > 0) {
679 wakeup_one(cpipe);
680 }
681}
682
683void
684pipeselwakeup(struct pipe *cpipe)
685{
686
687 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
688 if (cpipe->pipe_state & PIPE_SEL) {
689 selwakeuppri(&cpipe->pipe_sel, PSOCK);
690 if (!SEL_WAITING(&cpipe->pipe_sel))
691 cpipe->pipe_state &= ~PIPE_SEL;
692 }
693 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
694 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
695 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
696}
697
698/*
699 * Initialize and allocate VM and memory for pipe. The structure
700 * will start out zero'd from the ctor, so we just manage the kmem.
701 */
702static int
703pipe_create(struct pipe *pipe, bool large_backing)
704{
705 int error;
706
707 error = pipespace_new(pipe, !large_backing || amountpipekva >
708 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
709 if (error == 0)
710 pipe->pipe_ino = alloc_unr64(&pipeino_unr);
711 return (error);
712}
713
714/* ARGSUSED */
715static int
716pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
717 int flags, struct thread *td)
718{
719 struct pipe *rpipe;
720 int error;
721 int nread = 0;
722 int size;
723
724 rpipe = fp->f_data;
725 PIPE_LOCK(rpipe);
726 ++rpipe->pipe_busy;
727 error = pipelock(rpipe, 1);
728 if (error)
729 goto unlocked_error;
730
731#ifdef MAC
732 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
733 if (error)
734 goto locked_error;
735#endif
736 if (amountpipekva > (3 * maxpipekva) / 4) {
737 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
738 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
739 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
740 piperesizeallowed == 1) {
741 PIPE_UNLOCK(rpipe);
742 pipespace(rpipe, SMALL_PIPE_SIZE);
743 PIPE_LOCK(rpipe);
744 }
745 }
746
747 while (uio->uio_resid) {
748 /*
749 * normal pipe buffer receive
750 */
751 if (rpipe->pipe_buffer.cnt > 0) {
752 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
753 if (size > rpipe->pipe_buffer.cnt)
754 size = rpipe->pipe_buffer.cnt;
755 if (size > uio->uio_resid)
756 size = uio->uio_resid;
757
758 PIPE_UNLOCK(rpipe);
759 error = uiomove(
760 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
761 size, uio);
762 PIPE_LOCK(rpipe);
763 if (error)
764 break;
765
766 rpipe->pipe_buffer.out += size;
767 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
768 rpipe->pipe_buffer.out = 0;
769
770 rpipe->pipe_buffer.cnt -= size;
771
772 /*
773 * If there is no more to read in the pipe, reset
774 * its pointers to the beginning. This improves
775 * cache hit stats.
776 */
777 if (rpipe->pipe_buffer.cnt == 0) {
778 rpipe->pipe_buffer.in = 0;
779 rpipe->pipe_buffer.out = 0;
780 }
781 nread += size;
782#ifndef PIPE_NODIRECT
783 /*
784 * Direct copy, bypassing a kernel buffer.
785 */
786 } else if ((size = rpipe->pipe_pages.cnt) != 0) {
787 if (size > uio->uio_resid)
788 size = (u_int) uio->uio_resid;
789 PIPE_UNLOCK(rpipe);
790 error = uiomove_fromphys(rpipe->pipe_pages.ms,
791 rpipe->pipe_pages.pos, size, uio);
792 PIPE_LOCK(rpipe);
793 if (error)
794 break;
795 nread += size;
796 rpipe->pipe_pages.pos += size;
797 rpipe->pipe_pages.cnt -= size;
798 if (rpipe->pipe_pages.cnt == 0) {
799 rpipe->pipe_state &= ~PIPE_WANTW;
800 wakeup(rpipe);
801 }
802#endif
803 } else {
804 /*
805 * detect EOF condition
806 * read returns 0 on EOF, no need to set error
807 */
808 if (rpipe->pipe_state & PIPE_EOF)
809 break;
810
811 /*
812 * If the "write-side" has been blocked, wake it up now.
813 */
814 if (rpipe->pipe_state & PIPE_WANTW) {
815 rpipe->pipe_state &= ~PIPE_WANTW;
816 wakeup(rpipe);
817 }
818
819 /*
820 * Break if some data was read.
821 */
822 if (nread > 0)
823 break;
824
825 /*
826 * Unlock the pipe buffer for our remaining processing.
827 * We will either break out with an error or we will
828 * sleep and relock to loop.
829 */
830 pipeunlock(rpipe);
831
832 /*
833 * Handle non-blocking mode operation or
834 * wait for more data.
835 */
836 if (fp->f_flag & FNONBLOCK) {
837 error = EAGAIN;
838 } else {
839 rpipe->pipe_state |= PIPE_WANTR;
840 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
841 PRIBIO | PCATCH,
842 "piperd", 0)) == 0)
843 error = pipelock(rpipe, 1);
844 }
845 if (error)
846 goto unlocked_error;
847 }
848 }
849#ifdef MAC
850locked_error:
851#endif
852 pipeunlock(rpipe);
853
854 /* XXX: should probably do this before getting any locks. */
855 if (error == 0)
856 pipe_timestamp(&rpipe->pipe_atime);
857unlocked_error:
858 --rpipe->pipe_busy;
859
860 /*
861 * PIPE_WANT processing only makes sense if pipe_busy is 0.
862 */
863 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
864 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
865 wakeup(rpipe);
866 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
867 /*
868 * Handle write blocking hysteresis.
869 */
870 if (rpipe->pipe_state & PIPE_WANTW) {
871 rpipe->pipe_state &= ~PIPE_WANTW;
872 wakeup(rpipe);
873 }
874 }
875
876 /*
877 * Only wake up writers if there was actually something read.
878 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
879 */
880 if (nread > 0 &&
881 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
882 pipeselwakeup(rpipe);
883
884 PIPE_UNLOCK(rpipe);
885 if (nread > 0)
886 td->td_ru.ru_msgrcv++;
887 return (error);
888}
889
890#ifndef PIPE_NODIRECT
891/*
892 * Map the sending processes' buffer into kernel space and wire it.
893 * This is similar to a physical write operation.
894 */
895static int
896pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
897{
898 u_int size;
899 int i;
900
901 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
902 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
903 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
904 KASSERT(wpipe->pipe_pages.cnt == 0,
905 ("%s: pipe map for %p contains residual data", __func__, wpipe));
906
907 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
908 size = wpipe->pipe_buffer.size;
909 else
910 size = uio->uio_iov->iov_len;
911
912 wpipe->pipe_state |= PIPE_DIRECTW;
913 PIPE_UNLOCK(wpipe);
914 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
915 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
916 wpipe->pipe_pages.ms, PIPENPAGES);
917 PIPE_LOCK(wpipe);
918 if (i < 0) {
919 wpipe->pipe_state &= ~PIPE_DIRECTW;
920 return (EFAULT);
921 }
922
923 wpipe->pipe_pages.npages = i;
924 wpipe->pipe_pages.pos =
925 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
926 wpipe->pipe_pages.cnt = size;
927
928 uio->uio_iov->iov_len -= size;
929 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
930 if (uio->uio_iov->iov_len == 0)
931 uio->uio_iov++;
932 uio->uio_resid -= size;
933 uio->uio_offset += size;
934 return (0);
935}
936
937/*
938 * Unwire the process buffer.
939 */
940static void
941pipe_destroy_write_buffer(struct pipe *wpipe)
942{
943
944 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
945 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
946 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
947 KASSERT(wpipe->pipe_pages.cnt == 0,
948 ("%s: pipe map for %p contains residual data", __func__, wpipe));
949
950 wpipe->pipe_state &= ~PIPE_DIRECTW;
951 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
952 wpipe->pipe_pages.npages = 0;
953}
954
955/*
956 * In the case of a signal, the writing process might go away. This
957 * code copies the data into the circular buffer so that the source
958 * pages can be freed without loss of data.
959 */
960static void
961pipe_clone_write_buffer(struct pipe *wpipe)
962{
963 struct uio uio;
964 struct iovec iov;
965 int size;
966 int pos;
967
968 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
969 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
970 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
971
972 size = wpipe->pipe_pages.cnt;
973 pos = wpipe->pipe_pages.pos;
974 wpipe->pipe_pages.cnt = 0;
975
976 wpipe->pipe_buffer.in = size;
977 wpipe->pipe_buffer.out = 0;
978 wpipe->pipe_buffer.cnt = size;
979
980 PIPE_UNLOCK(wpipe);
981 iov.iov_base = wpipe->pipe_buffer.buffer;
982 iov.iov_len = size;
983 uio.uio_iov = &iov;
984 uio.uio_iovcnt = 1;
985 uio.uio_offset = 0;
986 uio.uio_resid = size;
987 uio.uio_segflg = UIO_SYSSPACE;
988 uio.uio_rw = UIO_READ;
989 uio.uio_td = curthread;
990 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
991 PIPE_LOCK(wpipe);
993}
994
995/*
996 * This implements the pipe buffer write mechanism. Note that only
997 * a direct write OR a normal pipe write can be pending at any given time.
998 * If there are any characters in the pipe buffer, the direct write will
999 * be deferred until the receiving process grabs all of the bytes from
1000 * the pipe buffer. Then the direct mapping write is set-up.
1001 */
1002static int
1003pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1004{
1005 int error;
1006
1007retry:
1008 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1009 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1010 error = EPIPE;
1011 goto error1;
1012 }
1013 if (wpipe->pipe_state & PIPE_DIRECTW) {
1014 if (wpipe->pipe_state & PIPE_WANTR) {
1015 wpipe->pipe_state &= ~PIPE_WANTR;
1016 wakeup(wpipe);
1017 }
1018 pipeselwakeup(wpipe);
1019 wpipe->pipe_state |= PIPE_WANTW;
1020 pipeunlock(wpipe);
1021 error = msleep(wpipe, PIPE_MTX(wpipe),
1022 PRIBIO | PCATCH, "pipdww", 0);
1023 pipelock(wpipe, 0);
1024 if (error != 0)
1025 goto error1;
1026 goto retry;
1027 }
1028 if (wpipe->pipe_buffer.cnt > 0) {
1029 if (wpipe->pipe_state & PIPE_WANTR) {
1030 wpipe->pipe_state &= ~PIPE_WANTR;
1031 wakeup(wpipe);
1032 }
1033 pipeselwakeup(wpipe);
1034 wpipe->pipe_state |= PIPE_WANTW;
1035 pipeunlock(wpipe);
1036 error = msleep(wpipe, PIPE_MTX(wpipe),
1037 PRIBIO | PCATCH, "pipdwc", 0);
1038 pipelock(wpipe, 0);
1039 if (error != 0)
1040 goto error1;
1041 goto retry;
1042 }
1043
1044 error = pipe_build_write_buffer(wpipe, uio);
1045 if (error) {
1046 goto error1;
1047 }
1048
1049 while (wpipe->pipe_pages.cnt != 0 &&
1050 (wpipe->pipe_state & PIPE_EOF) == 0) {
1051 if (wpipe->pipe_state & PIPE_WANTR) {
1052 wpipe->pipe_state &= ~PIPE_WANTR;
1053 wakeup(wpipe);
1054 }
1055 pipeselwakeup(wpipe);
1056 wpipe->pipe_state |= PIPE_WANTW;
1057 pipeunlock(wpipe);
1058 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1059 "pipdwt", 0);
1060 pipelock(wpipe, 0);
1061 if (error != 0)
1062 break;
1063 }
1064
1065 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1066 wpipe->pipe_pages.cnt = 0;
1068 pipeselwakeup(wpipe);
1069 error = EPIPE;
1070 } else if (error == EINTR || error == ERESTART) {
1072 } else {
1074 }
1075 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1076 ("pipe %p leaked PIPE_DIRECTW", wpipe));
1077 return (error);
1078
1079error1:
1080 wakeup(wpipe);
1081 return (error);
1082}
1083#endif
1084
1085static int
1086pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1087 int flags, struct thread *td)
1088{
1089 struct pipe *wpipe, *rpipe;
1090 ssize_t orig_resid;
1091 int desiredsize, error;
1092
1093 rpipe = fp->f_data;
1094 wpipe = PIPE_PEER(rpipe);
1095 PIPE_LOCK(rpipe);
1096 error = pipelock(wpipe, 1);
1097 if (error) {
1098 PIPE_UNLOCK(rpipe);
1099 return (error);
1100 }
1101 /*
1102 * detect loss of pipe read side, issue SIGPIPE if lost.
1103 */
1104 if (wpipe->pipe_present != PIPE_ACTIVE ||
1105 (wpipe->pipe_state & PIPE_EOF)) {
1106 pipeunlock(wpipe);
1107 PIPE_UNLOCK(rpipe);
1108 return (EPIPE);
1109 }
1110#ifdef MAC
1111 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1112 if (error) {
1113 pipeunlock(wpipe);
1114 PIPE_UNLOCK(rpipe);
1115 return (error);
1116 }
1117#endif
1118 ++wpipe->pipe_busy;
1119
1120 /* Choose a larger size if it's advantageous */
1121 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1122 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1123 if (piperesizeallowed != 1)
1124 break;
1125 if (amountpipekva > maxpipekva / 2)
1126 break;
1127 if (desiredsize == BIG_PIPE_SIZE)
1128 break;
1129 desiredsize = desiredsize * 2;
1130 }
1131
1132 /* Choose a smaller size if we're in a OOM situation */
1133 if (amountpipekva > (3 * maxpipekva) / 4 &&
1134 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1135 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1136 piperesizeallowed == 1)
1137 desiredsize = SMALL_PIPE_SIZE;
1138
1139 /* Resize if the above determined that a new size was necessary */
1140 if (desiredsize != wpipe->pipe_buffer.size &&
1141 (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1142 PIPE_UNLOCK(wpipe);
1143 pipespace(wpipe, desiredsize);
1144 PIPE_LOCK(wpipe);
1145 }
1146 MPASS(wpipe->pipe_buffer.size != 0);
1147
1148 orig_resid = uio->uio_resid;
1149
1150 while (uio->uio_resid) {
1151 int space;
1152
1153 if (wpipe->pipe_state & PIPE_EOF) {
1154 error = EPIPE;
1155 break;
1156 }
1157#ifndef PIPE_NODIRECT
1158 /*
1159 * If the transfer is large, we can gain performance if
1160 * we do process-to-process copies directly.
1161 * If the write is non-blocking, we don't use the
1162 * direct write mechanism.
1163 *
1164 * The direct write mechanism will detect the reader going
1165 * away on us.
1166 */
1167 if (uio->uio_segflg == UIO_USERSPACE &&
1168 uio->uio_iov->iov_len >= pipe_mindirect &&
1169 wpipe->pipe_buffer.size >= pipe_mindirect &&
1170 (fp->f_flag & FNONBLOCK) == 0) {
1171 error = pipe_direct_write(wpipe, uio);
1172 if (error != 0)
1173 break;
1174 continue;
1175 }
1176#endif
1177
1178 /*
1179 * Pipe buffered writes cannot be coincidental with
1180 * direct writes. We wait until the currently executing
1181 * direct write is completed before we start filling the
1182 * pipe buffer. We break out if a signal occurs or the
1183 * reader goes away.
1184 */
1185 if (wpipe->pipe_pages.cnt != 0) {
1186 if (wpipe->pipe_state & PIPE_WANTR) {
1187 wpipe->pipe_state &= ~PIPE_WANTR;
1188 wakeup(wpipe);
1189 }
1190 pipeselwakeup(wpipe);
1191 wpipe->pipe_state |= PIPE_WANTW;
1192 pipeunlock(wpipe);
1193 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1194 "pipbww", 0);
1195 pipelock(wpipe, 0);
1196 if (error != 0)
1197 break;
1198 continue;
1199 }
1200
1201 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1202
1203 /* Writes of size <= PIPE_BUF must be atomic. */
1204 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1205 space = 0;
1206
1207 if (space > 0) {
1208 int size; /* Transfer size */
1209 int segsize; /* first segment to transfer */
1210
1211 /*
1212 * Transfer size is minimum of uio transfer
1213 * and free space in pipe buffer.
1214 */
1215 if (space > uio->uio_resid)
1216 size = uio->uio_resid;
1217 else
1218 size = space;
1219 /*
1220 * First segment to transfer is minimum of
1221 * transfer size and contiguous space in
1222 * pipe buffer. If first segment to transfer
1223 * is less than the transfer size, we've got
1224 * a wraparound in the buffer.
1225 */
1226 segsize = wpipe->pipe_buffer.size -
1227 wpipe->pipe_buffer.in;
1228 if (segsize > size)
1229 segsize = size;
1230
1231 /* Transfer first segment */
1232
1233 PIPE_UNLOCK(rpipe);
1234 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1235 segsize, uio);
1236 PIPE_LOCK(rpipe);
1237
1238 if (error == 0 && segsize < size) {
1239 KASSERT(wpipe->pipe_buffer.in + segsize ==
1240 wpipe->pipe_buffer.size,
1241 ("Pipe buffer wraparound disappeared"));
1242 /*
1243 * Transfer remaining part now, to
1244 * support atomic writes. Wraparound
1245 * happened.
1246 */
1247
1248 PIPE_UNLOCK(rpipe);
1249 error = uiomove(
1250 &wpipe->pipe_buffer.buffer[0],
1251 size - segsize, uio);
1252 PIPE_LOCK(rpipe);
1253 }
1254 if (error == 0) {
1255 wpipe->pipe_buffer.in += size;
1256 if (wpipe->pipe_buffer.in >=
1257 wpipe->pipe_buffer.size) {
1258 KASSERT(wpipe->pipe_buffer.in ==
1259 size - segsize +
1260 wpipe->pipe_buffer.size,
1261 ("Expected wraparound bad"));
1262 wpipe->pipe_buffer.in = size - segsize;
1263 }
1264
1265 wpipe->pipe_buffer.cnt += size;
1266 KASSERT(wpipe->pipe_buffer.cnt <=
1267 wpipe->pipe_buffer.size,
1268 ("Pipe buffer overflow"));
1269 }
1270 if (error != 0)
1271 break;
1272 continue;
1273 } else {
1274 /*
1275 * If the "read-side" has been blocked, wake it up now.
1276 */
1277 if (wpipe->pipe_state & PIPE_WANTR) {
1278 wpipe->pipe_state &= ~PIPE_WANTR;
1279 wakeup(wpipe);
1280 }
1281
1282 /*
1283 * don't block on non-blocking I/O
1284 */
1285 if (fp->f_flag & FNONBLOCK) {
1286 error = EAGAIN;
1287 break;
1288 }
1289
1290 /*
1291 * We have no more space and have something to offer,
1292 * wake up select/poll.
1293 */
1294 pipeselwakeup(wpipe);
1295
1296 wpipe->pipe_state |= PIPE_WANTW;
1297 pipeunlock(wpipe);
1298 error = msleep(wpipe, PIPE_MTX(rpipe),
1299 PRIBIO | PCATCH, "pipewr", 0);
1300 pipelock(wpipe, 0);
1301 if (error != 0)
1302 break;
1303 continue;
1304 }
1305 }
1306
1307 --wpipe->pipe_busy;
1308
1309 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1310 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1311 wakeup(wpipe);
1312 } else if (wpipe->pipe_buffer.cnt > 0) {
1313 /*
1314 * If we have put any characters in the buffer, we wake up
1315 * the reader.
1316 */
1317 if (wpipe->pipe_state & PIPE_WANTR) {
1318 wpipe->pipe_state &= ~PIPE_WANTR;
1319 wakeup(wpipe);
1320 }
1321 }
1322
1323 /*
1324 * Don't return EPIPE if any byte was written.
1325 * EINTR and other interrupts are handled by generic I/O layer.
1326 * Do not pretend that I/O succeeded for obvious user error
1327 * like EFAULT.
1328 */
1329 if (uio->uio_resid != orig_resid && error == EPIPE)
1330 error = 0;
1331
1332 if (error == 0)
1333 pipe_timestamp(&wpipe->pipe_mtime);
1334
1335 /*
1336 * We have something to offer,
1337 * wake up select/poll.
1338 */
1339 if (wpipe->pipe_buffer.cnt)
1340 pipeselwakeup(wpipe);
1341
1342 pipeunlock(wpipe);
1343 PIPE_UNLOCK(rpipe);
1344 if (uio->uio_resid != orig_resid)
1345 td->td_ru.ru_msgsnd++;
1346 return (error);
1347}
1348
1349/* ARGSUSED */
1350static int
1351pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1352 struct thread *td)
1353{
1354 struct pipe *cpipe;
1355 int error;
1356
1357 cpipe = fp->f_data;
1358 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1359 error = vnops.fo_truncate(fp, length, active_cred, td);
1360 else
1361 error = invfo_truncate(fp, length, active_cred, td);
1362 return (error);
1363}
1364
1365/*
1366 * we implement a very minimal set of ioctls for compatibility with sockets.
1367 */
1368static int
1369pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1370 struct thread *td)
1371{
1372 struct pipe *mpipe = fp->f_data;
1373 int error;
1374
1375 PIPE_LOCK(mpipe);
1376
1377#ifdef MAC
1378 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1379 if (error) {
1380 PIPE_UNLOCK(mpipe);
1381 return (error);
1382 }
1383#endif
1384
1385 error = 0;
1386 switch (cmd) {
1387 case FIONBIO:
1388 break;
1389
1390 case FIOASYNC:
1391 if (*(int *)data) {
1392 mpipe->pipe_state |= PIPE_ASYNC;
1393 } else {
1394 mpipe->pipe_state &= ~PIPE_ASYNC;
1395 }
1396 break;
1397
1398 case FIONREAD:
1399 if (!(fp->f_flag & FREAD)) {
1400 *(int *)data = 0;
1401 PIPE_UNLOCK(mpipe);
1402 return (0);
1403 }
1404 if (mpipe->pipe_pages.cnt != 0)
1405 *(int *)data = mpipe->pipe_pages.cnt;
1406 else
1407 *(int *)data = mpipe->pipe_buffer.cnt;
1408 break;
1409
1410 case FIOSETOWN:
1411 PIPE_UNLOCK(mpipe);
1412 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1413 goto out_unlocked;
1414
1415 case FIOGETOWN:
1416 *(int *)data = fgetown(&mpipe->pipe_sigio);
1417 break;
1418
1419 /* This is deprecated, FIOSETOWN should be used instead. */
1420 case TIOCSPGRP:
1421 PIPE_UNLOCK(mpipe);
1422 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1423 goto out_unlocked;
1424
1425 /* This is deprecated, FIOGETOWN should be used instead. */
1426 case TIOCGPGRP:
1427 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1428 break;
1429
1430 default:
1431 error = ENOTTY;
1432 break;
1433 }
1434 PIPE_UNLOCK(mpipe);
1435out_unlocked:
1436 return (error);
1437}
1438
1439static int
1440pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1441 struct thread *td)
1442{
1443 struct pipe *rpipe;
1444 struct pipe *wpipe;
1445 int levents, revents;
1446#ifdef MAC
1447 int error;
1448#endif
1449
1450 revents = 0;
1451 rpipe = fp->f_data;
1452 wpipe = PIPE_PEER(rpipe);
1453 PIPE_LOCK(rpipe);
1454#ifdef MAC
1455 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1456 if (error)
1457 goto locked_error;
1458#endif
1459 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1460 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1461 revents |= events & (POLLIN | POLLRDNORM);
1462
1463 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1464 if (wpipe->pipe_present != PIPE_ACTIVE ||
1465 (wpipe->pipe_state & PIPE_EOF) ||
1466 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1467 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1468 wpipe->pipe_buffer.size == 0)))
1469 revents |= events & (POLLOUT | POLLWRNORM);
1470
1471 levents = events &
1472 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1473 if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1474 fp->f_pipegen == rpipe->pipe_wgen)
1475 events |= POLLINIGNEOF;
1476
1477 if ((events & POLLINIGNEOF) == 0) {
1478 if (rpipe->pipe_state & PIPE_EOF) {
1479 if (fp->f_flag & FREAD)
1480 revents |= (events & (POLLIN | POLLRDNORM));
1481 if (wpipe->pipe_present != PIPE_ACTIVE ||
1482 (wpipe->pipe_state & PIPE_EOF))
1483 revents |= POLLHUP;
1484 }
1485 }
1486
1487 if (revents == 0) {
1488 /*
1489 * Add ourselves regardless of eventmask as we have to return
1490 * POLLHUP even if it was not asked for.
1491 */
1492 if ((fp->f_flag & FREAD) != 0) {
1493 selrecord(td, &rpipe->pipe_sel);
1494 if (SEL_WAITING(&rpipe->pipe_sel))
1495 rpipe->pipe_state |= PIPE_SEL;
1496 }
1497
1498 if ((fp->f_flag & FWRITE) != 0 &&
1499 wpipe->pipe_present == PIPE_ACTIVE) {
1500 selrecord(td, &wpipe->pipe_sel);
1501 if (SEL_WAITING(&wpipe->pipe_sel))
1502 wpipe->pipe_state |= PIPE_SEL;
1503 }
1504 }
1505#ifdef MAC
1506locked_error:
1507#endif
1508 PIPE_UNLOCK(rpipe);
1509
1510 return (revents);
1511}
1512
1513/*
1514 * We shouldn't need locks here as we're doing a read and this should
1515 * be a natural race.
1516 */
1517static int
1518pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1519{
1520 struct pipe *pipe;
1521#ifdef MAC
1522 int error;
1523#endif
1524
1525 pipe = fp->f_data;
1526#ifdef MAC
1527 if (mac_pipe_check_stat_enabled()) {
1528 PIPE_LOCK(pipe);
1529 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1530 PIPE_UNLOCK(pipe);
1531 if (error) {
1532 return (error);
1533 }
1534 }
1535#endif
1536
1537 /* For named pipes ask the underlying filesystem. */
1538 if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1539 return (vnops.fo_stat(fp, ub, active_cred));
1540 }
1541
1542 bzero(ub, sizeof(*ub));
1543 ub->st_mode = S_IFIFO;
1544 ub->st_blksize = PAGE_SIZE;
1545 if (pipe->pipe_pages.cnt != 0)
1546 ub->st_size = pipe->pipe_pages.cnt;
1547 else
1548 ub->st_size = pipe->pipe_buffer.cnt;
1549 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1550 ub->st_atim = pipe->pipe_atime;
1551 ub->st_mtim = pipe->pipe_mtime;
1552 ub->st_ctim = pipe->pipe_ctime;
1553 ub->st_uid = fp->f_cred->cr_uid;
1554 ub->st_gid = fp->f_cred->cr_gid;
1555 ub->st_dev = pipedev_ino;
1556 ub->st_ino = pipe->pipe_ino;
1557 /*
1558 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1559 */
1560 return (0);
1561}
1562
1563/* ARGSUSED */
1564static int
1565pipe_close(struct file *fp, struct thread *td)
1566{
1567
1568 if (fp->f_vnode != NULL)
1569 return vnops.fo_close(fp, td);
1570 fp->f_ops = &badfileops;
1571 pipe_dtor(fp->f_data);
1572 fp->f_data = NULL;
1573 return (0);
1574}
1575
1576static int
1577pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1578{
1579 struct pipe *cpipe;
1580 int error;
1581
1582 cpipe = fp->f_data;
1583 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1584 error = vn_chmod(fp, mode, active_cred, td);
1585 else
1586 error = invfo_chmod(fp, mode, active_cred, td);
1587 return (error);
1588}
1589
1590static int
1591pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1592 struct thread *td)
1593{
1594 struct pipe *cpipe;
1595 int error;
1596
1597 cpipe = fp->f_data;
1598 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1599 error = vn_chown(fp, uid, gid, active_cred, td);
1600 else
1601 error = invfo_chown(fp, uid, gid, active_cred, td);
1602 return (error);
1603}
1604
1605static int
1606pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1607{
1608 struct pipe *pi;
1609
1610 if (fp->f_type == DTYPE_FIFO)
1611 return (vn_fill_kinfo(fp, kif, fdp));
1612 kif->kf_type = KF_TYPE_PIPE;
1613 pi = fp->f_data;
1614 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1615 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1616 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1617 return (0);
1618}
1619
1620static void
1621pipe_free_kmem(struct pipe *cpipe)
1622{
1623
1624 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1625 ("pipe_free_kmem: pipe mutex locked"));
1626
1627 if (cpipe->pipe_buffer.buffer != NULL) {
1628 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1629 vm_map_remove(pipe_map,
1630 (vm_offset_t)cpipe->pipe_buffer.buffer,
1631 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1632 cpipe->pipe_buffer.buffer = NULL;
1633 }
1634#ifndef PIPE_NODIRECT
1635 {
1636 cpipe->pipe_pages.cnt = 0;
1637 cpipe->pipe_pages.pos = 0;
1638 cpipe->pipe_pages.npages = 0;
1639 }
1640#endif
1641}
1642
1643/*
1644 * shutdown the pipe
1645 */
1646static void
1647pipeclose(struct pipe *cpipe)
1648{
1649 struct pipepair *pp;
1650 struct pipe *ppipe;
1651
1652 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1653
1654 PIPE_LOCK(cpipe);
1655 pipelock(cpipe, 0);
1656 pp = cpipe->pipe_pair;
1657
1658 /*
1659 * If the other side is blocked, wake it up saying that
1660 * we want to close it down.
1661 */
1662 cpipe->pipe_state |= PIPE_EOF;
1663 while (cpipe->pipe_busy) {
1664 wakeup(cpipe);
1665 cpipe->pipe_state |= PIPE_WANT;
1666 pipeunlock(cpipe);
1667 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1668 pipelock(cpipe, 0);
1669 }
1670
1671 pipeselwakeup(cpipe);
1672
1673 /*
1674 * Disconnect from peer, if any.
1675 */
1676 ppipe = cpipe->pipe_peer;
1677 if (ppipe->pipe_present == PIPE_ACTIVE) {
1678 ppipe->pipe_state |= PIPE_EOF;
1679 wakeup(ppipe);
1680 pipeselwakeup(ppipe);
1681 }
1682
1683 /*
1684 * Mark this endpoint as free. Release kmem resources. We
1685 * don't mark this endpoint as unused until we've finished
1686 * doing that, or the pipe might disappear out from under
1687 * us.
1688 */
1689 PIPE_UNLOCK(cpipe);
1690 pipe_free_kmem(cpipe);
1691 PIPE_LOCK(cpipe);
1692 cpipe->pipe_present = PIPE_CLOSING;
1693 pipeunlock(cpipe);
1694
1695 /*
1696 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1697 * PIPE_FINALIZED, that allows other end to free the
1698 * pipe_pair, only after the knotes are completely dismantled.
1699 */
1700 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1701 cpipe->pipe_present = PIPE_FINALIZED;
1702 seldrain(&cpipe->pipe_sel);
1703 knlist_destroy(&cpipe->pipe_sel.si_note);
1704
1705 /*
1706 * If both endpoints are now closed, release the memory for the
1707 * pipe pair. If not, unlock.
1708 */
1709 if (ppipe->pipe_present == PIPE_FINALIZED) {
1710 PIPE_UNLOCK(cpipe);
1711#ifdef MAC
1712 mac_pipe_destroy(pp);
1713#endif
1714 uma_zfree(pipe_zone, cpipe->pipe_pair);
1715 } else
1716 PIPE_UNLOCK(cpipe);
1717}
1718
1719/*ARGSUSED*/
1720static int
1721pipe_kqfilter(struct file *fp, struct knote *kn)
1722{
1723 struct pipe *cpipe;
1724
1725 /*
1726 * If a filter is requested that is not supported by this file
1727 * descriptor, don't return an error, but also don't ever generate an
1728 * event.
1729 */
1730 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1731 kn->kn_fop = &pipe_nfiltops;
1732 return (0);
1733 }
1734 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1735 kn->kn_fop = &pipe_nfiltops;
1736 return (0);
1737 }
1738 cpipe = fp->f_data;
1739 PIPE_LOCK(cpipe);
1740 switch (kn->kn_filter) {
1741 case EVFILT_READ:
1742 kn->kn_fop = &pipe_rfiltops;
1743 break;
1744 case EVFILT_WRITE:
1745 kn->kn_fop = &pipe_wfiltops;
1746 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1747 /* other end of pipe has been closed */
1748 PIPE_UNLOCK(cpipe);
1749 return (EPIPE);
1750 }
1751 cpipe = PIPE_PEER(cpipe);
1752 break;
1753 default:
1754 if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1755 PIPE_UNLOCK(cpipe);
1756 return (vnops.fo_kqfilter(fp, kn));
1757 }
1758 PIPE_UNLOCK(cpipe);
1759 return (EINVAL);
1760 }
1761
1762 kn->kn_hook = cpipe;
1763 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1764 PIPE_UNLOCK(cpipe);
1765 return (0);
1766}
1767
1768static void
1770{
1771 struct pipe *cpipe = kn->kn_hook;
1772
1773 PIPE_LOCK(cpipe);
1774 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1775 PIPE_UNLOCK(cpipe);
1776}
1777
1778/*ARGSUSED*/
1779static int
1780filt_piperead(struct knote *kn, long hint)
1781{
1782 struct file *fp = kn->kn_fp;
1783 struct pipe *rpipe = kn->kn_hook;
1784
1785 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1786 kn->kn_data = rpipe->pipe_buffer.cnt;
1787 if (kn->kn_data == 0)
1788 kn->kn_data = rpipe->pipe_pages.cnt;
1789
1790 if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1791 ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1792 fp->f_pipegen != rpipe->pipe_wgen)) {
1793 kn->kn_flags |= EV_EOF;
1794 return (1);
1795 }
1796 kn->kn_flags &= ~EV_EOF;
1797 return (kn->kn_data > 0);
1798}
1799
1800/*ARGSUSED*/
1801static int
1802filt_pipewrite(struct knote *kn, long hint)
1803{
1804 struct pipe *wpipe = kn->kn_hook;
1805
1806 /*
1807 * If this end of the pipe is closed, the knote was removed from the
1808 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1809 */
1810 if (wpipe->pipe_present == PIPE_ACTIVE ||
1811 (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1812 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1813
1814 if (wpipe->pipe_state & PIPE_DIRECTW) {
1815 kn->kn_data = 0;
1816 } else if (wpipe->pipe_buffer.size > 0) {
1817 kn->kn_data = wpipe->pipe_buffer.size -
1818 wpipe->pipe_buffer.cnt;
1819 } else {
1820 kn->kn_data = PIPE_BUF;
1821 }
1822 }
1823
1824 if (wpipe->pipe_present != PIPE_ACTIVE ||
1825 (wpipe->pipe_state & PIPE_EOF)) {
1826 kn->kn_flags |= EV_EOF;
1827 return (1);
1828 }
1829 kn->kn_flags &= ~EV_EOF;
1830 return (kn->kn_data >= PIPE_BUF);
1831}
1832
1833static void
1835{
1836
1837}
1838
1839static int
1840filt_pipenotsup(struct knote *kn, long hint)
1841{
1842
1843 return (0);
1844}
int invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred, struct thread *td)
int fsetown(pid_t pgid, struct sigio **sigiop)
int invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td)
void funsetown(struct sigio **sigiop)
pid_t fgetown(struct sigio **sigiop)
void fdclose(struct thread *td, struct file *fp, int idx)
int kern_close(struct thread *td, int fd)
struct fileops badfileops
void finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops)
int invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio, struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags, struct thread *td)
int falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags, struct filecaps *fcaps)
int invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
void knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:2467
void knlist_add(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:2420
void knlist_destroy(struct knlist *knl)
Definition: kern_event.c:2589
void knote(struct knlist *list, long hint, int lockflags)
Definition: kern_event.c:2363
void knlist_init_mtx(struct knlist *knl, struct mtx *lock)
Definition: kern_event.c:2564
void pgsigio(struct sigio **sigiop, int sig, int checkctty)
Definition: kern_sig.c:4041
void wakeup(const void *ident)
Definition: kern_synch.c:349
void wakeup_one(const void *ident)
Definition: kern_synch.c:369
int sysctl_handle_long(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1700
void getnanotime(struct timespec *tsp)
Definition: kern_tc.c:472
int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
Definition: kern_time.c:1118
uint32_t * data
Definition: msi_if.m:90
u_long maxpipekva
Definition: subr_param.c:102
int printf(const char *fmt,...)
Definition: subr_prf.c:397
uint16_t flags
Definition: subr_stats.c:2
int uiomove(void *cp, int n, struct uio *uio)
Definition: subr_uio.c:195
void selwakeuppri(struct selinfo *sip, int pri)
Definition: sys_generic.c:1924
void seldrain(struct selinfo *sip)
Definition: sys_generic.c:1851
void selrecord(struct thread *selector, struct selinfo *sip)
Definition: sys_generic.c:1869
static void pipe_destroy_write_buffer(struct pipe *wpipe)
Definition: sys_pipe.c:941
static int filt_piperead(struct knote *kn, long hint)
Definition: sys_pipe.c:1780
struct fileops pipeops
Definition: sys_pipe.c:160
static void pipe_free_kmem(struct pipe *cpipe)
Definition: sys_pipe.c:1621
static void filt_pipedetach(struct knote *kn)
Definition: sys_pipe.c:1769
static int pipeallocfail
Definition: sys_pipe.c:209
static fo_poll_t pipe_poll
Definition: sys_pipe.c:152
static int pipespace_new(struct pipe *cpipe, int size)
Definition: sys_pipe.c:563
static dev_t pipedev_ino
Definition: sys_pipe.c:250
static long pipe_mindirect
Definition: sys_pipe.c:212
static void pipe_timestamp(struct timespec *tsp)
Definition: sys_pipe.c:458
static int sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
Definition: sys_pipe.c:268
static int filt_pipenotsup(struct knote *kn, long hint)
Definition: sys_pipe.c:1840
static void pipe_zone_fini(void *mem, int size)
Definition: sys_pipe.c:352
static int piperesizefail
Definition: sys_pipe.c:210
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL)
static uma_zone_t pipe_zone
Definition: sys_pipe.c:248
static fo_rdwr_t pipe_read
Definition: sys_pipe.c:148
static fo_close_t pipe_close
Definition: sys_pipe.c:155
static int filt_pipewrite(struct knote *kn, long hint)
Definition: sys_pipe.c:1802
static int pipe_zone_init(void *mem, int size, int flags)
Definition: sys_pipe.c:339
static fo_kqfilter_t pipe_kqfilter
Definition: sys_pipe.c:153
static int pipespace(struct pipe *cpipe, int size)
Definition: sys_pipe.c:628
void pipeselwakeup(struct pipe *cpipe)
Definition: sys_pipe.c:684
static struct filterops pipe_wfiltops
Definition: sys_pipe.c:192
SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG|CTLFLAG_RW, &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L", "Minimum write size triggering VM optimization")
static fo_truncate_t pipe_truncate
Definition: sys_pipe.c:150
static void pipeinit(void *dummy __unused)
Definition: sys_pipe.c:255
__FBSDID("$FreeBSD$")
static int pipefragretry
Definition: sys_pipe.c:208
static fo_ioctl_t pipe_ioctl
Definition: sys_pipe.c:151
int sys_pipe2(struct thread *td, struct pipe2_args *uap)
Definition: sys_pipe.c:539
static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
Definition: sys_pipe.c:896
static void pipeclose(struct pipe *cpipe)
Definition: sys_pipe.c:1647
#define PIPE_PEER(pipe)
Definition: sys_pipe.c:142
static fo_chown_t pipe_chown
Definition: sys_pipe.c:157
static struct filterops pipe_nfiltops
Definition: sys_pipe.c:182
static __inline void pipeunlock(struct pipe *cpipe)
Definition: sys_pipe.c:668
static fo_rdwr_t pipe_write
Definition: sys_pipe.c:149
static fo_stat_t pipe_stat
Definition: sys_pipe.c:154
int kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, struct filecaps *fcaps2)
Definition: sys_pipe.c:469
void pipe_dtor(struct pipe *dpipe)
Definition: sys_pipe.c:437
static fo_chmod_t pipe_chmod
Definition: sys_pipe.c:156
static struct unrhdr64 pipeino_unr
Definition: sys_pipe.c:249
int pipe_named_ctor(struct pipe **ppipe, struct thread *td)
Definition: sys_pipe.c:423
static __inline int pipelock(struct pipe *cpipe, int catch)
Definition: sys_pipe.c:640
static int piperesizeallowed
Definition: sys_pipe.c:211
static struct filterops pipe_rfiltops
Definition: sys_pipe.c:187
SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN|CTLFLAG_NOFETCH, &maxpipekva, 0, "Pipe KVA limit")
static int pipe_direct_write(struct pipe *wpipe, struct uio *uio)
Definition: sys_pipe.c:1003
static int pipe_create(struct pipe *pipe, bool backing)
Definition: sys_pipe.c:703
static int pipe_zone_ctor(void *mem, int size, void *arg, int flags)
Definition: sys_pipe.c:291
static void pipe_clone_write_buffer(struct pipe *wpipe)
Definition: sys_pipe.c:961
SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD, &pipefragretry, 0, "Pipe allocation retries due to fragmentation")
static long amountpipekva
Definition: sys_pipe.c:207
static fo_fill_kinfo_t pipe_fill_kinfo
Definition: sys_pipe.c:158
static void filt_pipedetach_notsup(struct knote *kn)
Definition: sys_pipe.c:1834
#define MINPIPESIZE
Definition: sys_pipe.c:204
static int pipe_paircreate(struct thread *td, struct pipepair **p_pp)
Definition: sys_pipe.c:364
static int dummy
int fd
mode_t mode
int vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
Definition: vfs_vnops.c:2631
int vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td)
Definition: vfs_vnops.c:2418
struct fileops vnops
Definition: vfs_vnops.c:111
int vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
Definition: vfs_vnops.c:2403