FreeBSD kernel kern code
kern_mbuf.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004, 2005,
5 * Bosko Milekic <bmilekic@FreeBSD.org>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "opt_param.h"
34#include "opt_kern_tls.h"
35
36#include <sys/param.h>
37#include <sys/conf.h>
38#include <sys/domainset.h>
39#include <sys/malloc.h>
40#include <sys/systm.h>
41#include <sys/mbuf.h>
42#include <sys/domain.h>
43#include <sys/eventhandler.h>
44#include <sys/kernel.h>
45#include <sys/ktls.h>
46#include <sys/limits.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/protosw.h>
50#include <sys/refcount.h>
51#include <sys/sf_buf.h>
52#include <sys/smp.h>
53#include <sys/socket.h>
54#include <sys/sysctl.h>
55
56#include <net/if.h>
57#include <net/if_var.h>
58
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#include <vm/vm_kern.h>
62#include <vm/vm_page.h>
63#include <vm/vm_pageout.h>
64#include <vm/vm_map.h>
65#include <vm/uma.h>
66#include <vm/uma_dbg.h>
67
68/*
69 * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
70 * Zones.
71 *
72 * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
73 * Zone. The Zone can be capped at kern.ipc.nmbclusters, if the
74 * administrator so desires.
75 *
76 * Mbufs are allocated from a UMA Primary Zone called the Mbuf
77 * Zone.
78 *
79 * Additionally, FreeBSD provides a Packet Zone, which it
80 * configures as a Secondary Zone to the Mbuf Primary Zone,
81 * thus sharing backend Slab kegs with the Mbuf Primary Zone.
82 *
83 * Thus common-case allocations and locking are simplified:
84 *
85 * m_clget() m_getcl()
86 * | |
87 * | .------------>[(Packet Cache)] m_get(), m_gethdr()
88 * | | [ Packet ] |
89 * [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ]
90 * [ Cluster Zone ] [ Zone ] [ Mbuf Primary Zone ]
91 * | \________ |
92 * [ Cluster Keg ] \ /
93 * | [ Mbuf Keg ]
94 * [ Cluster Slabs ] |
95 * | [ Mbuf Slabs ]
96 * \____________(VM)_________________/
97 *
98 *
99 * Whenever an object is allocated with uma_zalloc() out of
100 * one of the Zones its _ctor_ function is executed. The same
101 * for any deallocation through uma_zfree() the _dtor_ function
102 * is executed.
103 *
104 * Caches are per-CPU and are filled from the Primary Zone.
105 *
106 * Whenever an object is allocated from the underlying global
107 * memory pool it gets pre-initialized with the _zinit_ functions.
108 * When the Keg's are overfull objects get decommissioned with
109 * _zfini_ functions and free'd back to the global memory pool.
110 *
111 */
112
113int nmbufs; /* limits number of mbufs */
114int nmbclusters; /* limits number of mbuf clusters */
115int nmbjumbop; /* limits number of page size jumbo clusters */
116int nmbjumbo9; /* limits number of 9k jumbo clusters */
117int nmbjumbo16; /* limits number of 16k jumbo clusters */
118
119bool mb_use_ext_pgs = false; /* use M_EXTPG mbufs for sendfile & TLS */
120
121static int
122sysctl_mb_use_ext_pgs(SYSCTL_HANDLER_ARGS)
123{
124 int error, extpg;
125
126 extpg = mb_use_ext_pgs;
127 error = sysctl_handle_int(oidp, &extpg, 0, req);
128 if (error == 0 && req->newptr != NULL) {
129 if (extpg != 0 && !PMAP_HAS_DMAP)
130 error = EOPNOTSUPP;
131 else
132 mb_use_ext_pgs = extpg != 0;
133 }
134 return (error);
135}
136SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLTYPE_INT | CTLFLAG_RW,
137 &mb_use_ext_pgs, 0,
139 "Use unmapped mbufs for sendfile(2) and TLS offload");
140
141static quad_t maxmbufmem; /* overall real memory limit for all mbufs */
142
143SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
144 "Maximum real memory allocatable to various mbuf types");
145
146static counter_u64_t snd_tag_count;
147SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
148 &snd_tag_count, "# of active mbuf send tags");
149
150/*
151 * tunable_mbinit() has to be run before any mbuf allocations are done.
152 */
153static void
155{
156 quad_t realmem;
157 int extpg;
158
159 /*
160 * The default limit for all mbuf related memory is 1/2 of all
161 * available kernel memory (physical or kmem).
162 * At most it can be 3/4 of available kernel memory.
163 */
164 realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
165 maxmbufmem = realmem / 2;
166 TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
167 if (maxmbufmem > realmem / 4 * 3)
168 maxmbufmem = realmem / 4 * 3;
169
170 TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
171 if (nmbclusters == 0)
172 nmbclusters = maxmbufmem / MCLBYTES / 4;
173
174 TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
175 if (nmbjumbop == 0)
176 nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
177
178 TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
179 if (nmbjumbo9 == 0)
180 nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
181
182 TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
183 if (nmbjumbo16 == 0)
184 nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
185
186 /*
187 * We need at least as many mbufs as we have clusters of
188 * the various types added together.
189 */
190 TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
192 nmbufs = lmax(maxmbufmem / MSIZE / 5,
194
195 /*
196 * Unmapped mbufs can only safely be used on platforms with a direct
197 * map.
198 */
199 if (PMAP_HAS_DMAP) {
200 extpg = 1;
201 TUNABLE_INT_FETCH("kern.ipc.mb_use_ext_pgs", &extpg);
202 mb_use_ext_pgs = extpg != 0;
203 }
204}
205SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
206
207static int
208sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
209{
210 int error, newnmbclusters;
211
212 newnmbclusters = nmbclusters;
213 error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
214 if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
215 if (newnmbclusters > nmbclusters &&
217 nmbclusters = newnmbclusters;
218 nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
219 EVENTHANDLER_INVOKE(nmbclusters_change);
220 } else
221 error = EINVAL;
222 }
223 return (error);
224}
225SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
226 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbclusters, 0,
227 sysctl_nmbclusters, "IU",
228 "Maximum number of mbuf clusters allowed");
229
230static int
231sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
232{
233 int error, newnmbjumbop;
234
235 newnmbjumbop = nmbjumbop;
236 error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
237 if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
238 if (newnmbjumbop > nmbjumbop &&
240 nmbjumbop = newnmbjumbop;
241 nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
242 } else
243 error = EINVAL;
244 }
245 return (error);
246}
247SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
248 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbop, 0,
249 sysctl_nmbjumbop, "IU",
250 "Maximum number of mbuf page size jumbo clusters allowed");
251
252static int
253sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
254{
255 int error, newnmbjumbo9;
256
257 newnmbjumbo9 = nmbjumbo9;
258 error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
259 if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
260 if (newnmbjumbo9 > nmbjumbo9 &&
262 nmbjumbo9 = newnmbjumbo9;
263 nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
264 } else
265 error = EINVAL;
266 }
267 return (error);
268}
269SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
270 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbo9, 0,
271 sysctl_nmbjumbo9, "IU",
272 "Maximum number of mbuf 9k jumbo clusters allowed");
273
274static int
275sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
276{
277 int error, newnmbjumbo16;
278
279 newnmbjumbo16 = nmbjumbo16;
280 error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
281 if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
282 if (newnmbjumbo16 > nmbjumbo16 &&
284 nmbjumbo16 = newnmbjumbo16;
285 nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
286 } else
287 error = EINVAL;
288 }
289 return (error);
290}
291SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
292 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &nmbjumbo16, 0,
293 sysctl_nmbjumbo16, "IU",
294 "Maximum number of mbuf 16k jumbo clusters allowed");
295
296static int
297sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
298{
299 int error, newnmbufs;
300
301 newnmbufs = nmbufs;
302 error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
303 if (error == 0 && req->newptr && newnmbufs != nmbufs) {
304 if (newnmbufs > nmbufs) {
305 nmbufs = newnmbufs;
306 nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
307 EVENTHANDLER_INVOKE(nmbufs_change);
308 } else
309 error = EINVAL;
310 }
311 return (error);
312}
313SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
314 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
315 &nmbufs, 0, sysctl_nmbufs, "IU",
316 "Maximum number of mbufs allowed");
317
318/*
319 * Zones from which we allocate.
320 */
321uma_zone_t zone_mbuf;
322uma_zone_t zone_clust;
323uma_zone_t zone_pack;
324uma_zone_t zone_jumbop;
325uma_zone_t zone_jumbo9;
326uma_zone_t zone_jumbo16;
327
328/*
329 * Local prototypes.
330 */
331static int mb_ctor_mbuf(void *, int, void *, int);
332static int mb_ctor_clust(void *, int, void *, int);
333static int mb_ctor_pack(void *, int, void *, int);
334static void mb_dtor_mbuf(void *, int, void *);
335static void mb_dtor_pack(void *, int, void *);
336static int mb_zinit_pack(void *, int, int);
337static void mb_zfini_pack(void *, int);
338static void mb_reclaim(uma_zone_t, int);
339
340/* Ensure that MSIZE is a power of 2. */
341CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
342
343_Static_assert(sizeof(struct mbuf) <= MSIZE,
344 "size of mbuf exceeds MSIZE");
345/*
346 * Initialize FreeBSD Network buffer allocation.
347 */
348static void
350{
351
352 /*
353 * Configure UMA zones for Mbufs, Clusters, and Packets.
354 */
355 zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
356 mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
357 MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
358 if (nmbufs > 0)
359 nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
360 uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
361 uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
362
363 zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
364 mb_ctor_clust, NULL, NULL, NULL,
365 UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
366 if (nmbclusters > 0)
367 nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
368 uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
369 uma_zone_set_maxaction(zone_clust, mb_reclaim);
370
371 zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
373
374 /* Make jumbo frame zone too. Page size, 9k and 16k. */
375 zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
376 mb_ctor_clust, NULL, NULL, NULL,
377 UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
378 if (nmbjumbop > 0)
379 nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
380 uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
381 uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
382
383 zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
384 mb_ctor_clust, NULL, NULL, NULL,
385 UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
386 if (nmbjumbo9 > 0)
387 nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
388 uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
389 uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
390
391 zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
392 mb_ctor_clust, NULL, NULL, NULL,
393 UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
394 if (nmbjumbo16 > 0)
395 nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
396 uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
397 uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
398
399 /*
400 * Hook event handler for low-memory situation, used to
401 * drain protocols and push data back to the caches (UMA
402 * later pushes it back to VM).
403 */
404 EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
405 EVENTHANDLER_PRI_FIRST);
406
408}
409SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
410
411#ifdef DEBUGNET
412/*
413 * debugnet makes use of a pre-allocated pool of mbufs and clusters. When
414 * debugnet is configured, we initialize a set of UMA cache zones which return
415 * items from this pool. At panic-time, the regular UMA zone pointers are
416 * overwritten with those of the cache zones so that drivers may allocate and
417 * free mbufs and clusters without attempting to allocate physical memory.
418 *
419 * We keep mbufs and clusters in a pair of mbuf queues. In particular, for
420 * the purpose of caching clusters, we treat them as mbufs.
421 */
422static struct mbufq dn_mbufq =
423 { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
424static struct mbufq dn_clustq =
425 { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
426
427static int dn_clsize;
428static uma_zone_t dn_zone_mbuf;
429static uma_zone_t dn_zone_clust;
430static uma_zone_t dn_zone_pack;
431
432static struct debugnet_saved_zones {
433 uma_zone_t dsz_mbuf;
434 uma_zone_t dsz_clust;
435 uma_zone_t dsz_pack;
436 uma_zone_t dsz_jumbop;
437 uma_zone_t dsz_jumbo9;
438 uma_zone_t dsz_jumbo16;
439 bool dsz_debugnet_zones_enabled;
440} dn_saved_zones;
441
442static int
443dn_buf_import(void *arg, void **store, int count, int domain __unused,
444 int flags)
445{
446 struct mbufq *q;
447 struct mbuf *m;
448 int i;
449
450 q = arg;
451
452 for (i = 0; i < count; i++) {
453 m = mbufq_dequeue(q);
454 if (m == NULL)
455 break;
456 trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
457 store[i] = m;
458 }
459 KASSERT((flags & M_WAITOK) == 0 || i == count,
460 ("%s: ran out of pre-allocated mbufs", __func__));
461 return (i);
462}
463
464static void
465dn_buf_release(void *arg, void **store, int count)
466{
467 struct mbufq *q;
468 struct mbuf *m;
469 int i;
470
471 q = arg;
472
473 for (i = 0; i < count; i++) {
474 m = store[i];
475 (void)mbufq_enqueue(q, m);
476 }
477}
478
479static int
480dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
481 int flags __unused)
482{
483 struct mbuf *m;
484 void *clust;
485 int i;
486
487 for (i = 0; i < count; i++) {
488 m = m_get(MT_DATA, M_NOWAIT);
489 if (m == NULL)
490 break;
491 clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
492 if (clust == NULL) {
493 m_free(m);
494 break;
495 }
496 mb_ctor_clust(clust, dn_clsize, m, 0);
497 store[i] = m;
498 }
499 KASSERT((flags & M_WAITOK) == 0 || i == count,
500 ("%s: ran out of pre-allocated mbufs", __func__));
501 return (i);
502}
503
504static void
505dn_pack_release(void *arg __unused, void **store, int count)
506{
507 struct mbuf *m;
508 void *clust;
509 int i;
510
511 for (i = 0; i < count; i++) {
512 m = store[i];
513 clust = m->m_ext.ext_buf;
514 uma_zfree(dn_zone_clust, clust);
515 uma_zfree(dn_zone_mbuf, m);
516 }
517}
518
519/*
520 * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
521 * the corresponding UMA cache zones.
522 */
523void
524debugnet_mbuf_drain(void)
525{
526 struct mbuf *m;
527 void *item;
528
529 if (dn_zone_mbuf != NULL) {
530 uma_zdestroy(dn_zone_mbuf);
531 dn_zone_mbuf = NULL;
532 }
533 if (dn_zone_clust != NULL) {
534 uma_zdestroy(dn_zone_clust);
535 dn_zone_clust = NULL;
536 }
537 if (dn_zone_pack != NULL) {
538 uma_zdestroy(dn_zone_pack);
539 dn_zone_pack = NULL;
540 }
541
542 while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
543 m_free(m);
544 while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
545 uma_zfree(m_getzone(dn_clsize), item);
546}
547
548/*
549 * Callback invoked immediately prior to starting a debugnet connection.
550 */
551void
552debugnet_mbuf_start(void)
553{
554
555 MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
556
557 /* Save the old zone pointers to restore when debugnet is closed. */
558 dn_saved_zones = (struct debugnet_saved_zones) {
559 .dsz_debugnet_zones_enabled = true,
560 .dsz_mbuf = zone_mbuf,
561 .dsz_clust = zone_clust,
562 .dsz_pack = zone_pack,
563 .dsz_jumbop = zone_jumbop,
564 .dsz_jumbo9 = zone_jumbo9,
565 .dsz_jumbo16 = zone_jumbo16,
566 };
567
568 /*
569 * All cluster zones return buffers of the size requested by the
570 * drivers. It's up to the driver to reinitialize the zones if the
571 * MTU of a debugnet-enabled interface changes.
572 */
573 printf("debugnet: overwriting mbuf zone pointers\n");
574 zone_mbuf = dn_zone_mbuf;
575 zone_clust = dn_zone_clust;
576 zone_pack = dn_zone_pack;
577 zone_jumbop = dn_zone_clust;
578 zone_jumbo9 = dn_zone_clust;
579 zone_jumbo16 = dn_zone_clust;
580}
581
582/*
583 * Callback invoked when a debugnet connection is closed/finished.
584 */
585void
586debugnet_mbuf_finish(void)
587{
588
589 MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
590
591 printf("debugnet: restoring mbuf zone pointers\n");
592 zone_mbuf = dn_saved_zones.dsz_mbuf;
593 zone_clust = dn_saved_zones.dsz_clust;
594 zone_pack = dn_saved_zones.dsz_pack;
595 zone_jumbop = dn_saved_zones.dsz_jumbop;
596 zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
597 zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
598
599 memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
600}
601
602/*
603 * Reinitialize the debugnet mbuf+cluster pool and cache zones.
604 */
605void
606debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
607{
608 struct mbuf *m;
609 void *item;
610
611 debugnet_mbuf_drain();
612
613 dn_clsize = clsize;
614
615 dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
616 MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
617 dn_buf_import, dn_buf_release,
618 &dn_mbufq, UMA_ZONE_NOBUCKET);
619
620 dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
621 clsize, mb_ctor_clust, NULL, NULL, NULL,
622 dn_buf_import, dn_buf_release,
623 &dn_clustq, UMA_ZONE_NOBUCKET);
624
625 dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
626 MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
627 dn_pack_import, dn_pack_release,
628 NULL, UMA_ZONE_NOBUCKET);
629
630 while (nmbuf-- > 0) {
631 m = m_get(MT_DATA, M_WAITOK);
632 uma_zfree(dn_zone_mbuf, m);
633 }
634 while (nclust-- > 0) {
635 item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
636 uma_zfree(dn_zone_clust, item);
637 }
638}
639#endif /* DEBUGNET */
640
641/*
642 * Constructor for Mbuf primary zone.
643 *
644 * The 'arg' pointer points to a mb_args structure which
645 * contains call-specific information required to support the
646 * mbuf allocation API. See mbuf.h.
647 */
648static int
649mb_ctor_mbuf(void *mem, int size, void *arg, int how)
650{
651 struct mbuf *m;
652 struct mb_args *args;
653 int error;
654 int flags;
655 short type;
656
657 args = (struct mb_args *)arg;
658 type = args->type;
659
660 /*
661 * The mbuf is initialized later. The caller has the
662 * responsibility to set up any MAC labels too.
663 */
664 if (type == MT_NOINIT)
665 return (0);
666
667 m = (struct mbuf *)mem;
668 flags = args->flags;
669 MPASS((flags & M_NOFREE) == 0);
670
671 error = m_init(m, how, type, flags);
672
673 return (error);
674}
675
676/*
677 * The Mbuf primary zone destructor.
678 */
679static void
680mb_dtor_mbuf(void *mem, int size, void *arg)
681{
682 struct mbuf *m;
683 unsigned long flags __diagused;
684
685 m = (struct mbuf *)mem;
686 flags = (unsigned long)arg;
687
688 KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
689 KASSERT((flags & 0x1) == 0, ("%s: obsolete MB_DTOR_SKIP passed", __func__));
690 if ((m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
691 m_tag_delete_chain(m, NULL);
692}
693
694/*
695 * The Mbuf Packet zone destructor.
696 */
697static void
698mb_dtor_pack(void *mem, int size, void *arg)
699{
700 struct mbuf *m;
701
702 m = (struct mbuf *)mem;
703 if ((m->m_flags & M_PKTHDR) != 0)
704 m_tag_delete_chain(m, NULL);
705
706 /* Make sure we've got a clean cluster back. */
707 KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
708 KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
709 KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
710 KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
711 KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
712 KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
713 KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
714#if defined(INVARIANTS) && !defined(KMSAN)
715 trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
716#endif
717 /*
718 * If there are processes blocked on zone_clust, waiting for pages
719 * to be freed up, cause them to be woken up by draining the
720 * packet zone. We are exposed to a race here (in the check for
721 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
722 * is deliberate. We don't want to acquire the zone lock for every
723 * mbuf free.
724 */
725 if (uma_zone_exhausted(zone_clust))
726 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
727}
728
729/*
730 * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
731 *
732 * Here the 'arg' pointer points to the Mbuf which we
733 * are configuring cluster storage for. If 'arg' is
734 * empty we allocate just the cluster without setting
735 * the mbuf to it. See mbuf.h.
736 */
737static int
738mb_ctor_clust(void *mem, int size, void *arg, int how)
739{
740 struct mbuf *m;
741
742 m = (struct mbuf *)arg;
743 if (m != NULL) {
744 m->m_ext.ext_buf = (char *)mem;
745 m->m_data = m->m_ext.ext_buf;
746 m->m_flags |= M_EXT;
747 m->m_ext.ext_free = NULL;
748 m->m_ext.ext_arg1 = NULL;
749 m->m_ext.ext_arg2 = NULL;
750 m->m_ext.ext_size = size;
751 m->m_ext.ext_type = m_gettype(size);
752 m->m_ext.ext_flags = EXT_FLAG_EMBREF;
753 m->m_ext.ext_count = 1;
754 }
755
756 return (0);
757}
758
759/*
760 * The Packet secondary zone's init routine, executed on the
761 * object's transition from mbuf keg slab to zone cache.
762 */
763static int
764mb_zinit_pack(void *mem, int size, int how)
765{
766 struct mbuf *m;
767
768 m = (struct mbuf *)mem; /* m is virgin. */
769 if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
770 m->m_ext.ext_buf == NULL)
771 return (ENOMEM);
772 m->m_ext.ext_type = EXT_PACKET; /* Override. */
773#if defined(INVARIANTS) && !defined(KMSAN)
774 trash_init(m->m_ext.ext_buf, MCLBYTES, how);
775#endif
776 return (0);
777}
778
779/*
780 * The Packet secondary zone's fini routine, executed on the
781 * object's transition from zone cache to keg slab.
782 */
783static void
784mb_zfini_pack(void *mem, int size)
785{
786 struct mbuf *m;
787
788 m = (struct mbuf *)mem;
789#if defined(INVARIANTS) && !defined(KMSAN)
790 trash_fini(m->m_ext.ext_buf, MCLBYTES);
791#endif
792 uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
793#if defined(INVARIANTS) && !defined(KMSAN)
794 trash_dtor(mem, size, NULL);
795#endif
796}
797
798/*
799 * The "packet" keg constructor.
800 */
801static int
802mb_ctor_pack(void *mem, int size, void *arg, int how)
803{
804 struct mbuf *m;
805 struct mb_args *args;
806 int error, flags;
807 short type;
808
809 m = (struct mbuf *)mem;
810 args = (struct mb_args *)arg;
811 flags = args->flags;
812 type = args->type;
813 MPASS((flags & M_NOFREE) == 0);
814
815#if defined(INVARIANTS) && !defined(KMSAN)
816 trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
817#endif
818
819 error = m_init(m, how, type, flags);
820
821 /* m_ext is already initialized. */
822 m->m_data = m->m_ext.ext_buf;
823 m->m_flags = (flags | M_EXT);
824
825 return (error);
826}
827
828/*
829 * This is the protocol drain routine. Called by UMA whenever any of the
830 * mbuf zones is closed to its limit.
831 *
832 * No locks should be held when this is called. The drain routines have to
833 * presently acquire some locks which raises the possibility of lock order
834 * reversal.
835 */
836static void
837mb_reclaim(uma_zone_t zone __unused, int pending __unused)
838{
839 struct epoch_tracker et;
840 struct domain *dp;
841 struct protosw *pr;
842
843 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
844
845 NET_EPOCH_ENTER(et);
846 for (dp = domains; dp != NULL; dp = dp->dom_next)
847 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
848 if (pr->pr_drain != NULL)
849 (*pr->pr_drain)();
850 NET_EPOCH_EXIT(et);
851}
852
853/*
854 * Free "count" units of I/O from an mbuf chain. They could be held
855 * in M_EXTPG or just as a normal mbuf. This code is intended to be
856 * called in an error path (I/O error, closed connection, etc).
857 */
858void
859mb_free_notready(struct mbuf *m, int count)
860{
861 int i;
862
863 for (i = 0; i < count && m != NULL; i++) {
864 if ((m->m_flags & M_EXTPG) != 0) {
865 m->m_epg_nrdy--;
866 if (m->m_epg_nrdy != 0)
867 continue;
868 }
869 m = m_free(m);
870 }
871 KASSERT(i == count, ("Removed only %d items from %p", i, m));
872}
873
874/*
875 * Compress an unmapped mbuf into a simple mbuf when it holds a small
876 * amount of data. This is used as a DOS defense to avoid having
877 * small packets tie up wired pages, an ext_pgs structure, and an
878 * mbuf. Since this converts the existing mbuf in place, it can only
879 * be used if there are no other references to 'm'.
880 */
881int
882mb_unmapped_compress(struct mbuf *m)
883{
884 volatile u_int *refcnt;
885 char buf[MLEN];
886
887 /*
888 * Assert that 'm' does not have a packet header. If 'm' had
889 * a packet header, it would only be able to hold MHLEN bytes
890 * and m_data would have to be initialized differently.
891 */
892 KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG),
893 ("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m));
894 KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
895
896 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
897 refcnt = &m->m_ext.ext_count;
898 } else {
899 KASSERT(m->m_ext.ext_cnt != NULL,
900 ("%s: no refcounting pointer on %p", __func__, m));
901 refcnt = m->m_ext.ext_cnt;
902 }
903
904 if (*refcnt != 1)
905 return (EBUSY);
906
907 m_copydata(m, 0, m->m_len, buf);
908
909 /* Free the backing pages. */
910 m->m_ext.ext_free(m);
911
912 /* Turn 'm' into a "normal" mbuf. */
913 m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG);
914 m->m_data = m->m_dat;
915
916 /* Copy data back into m. */
917 bcopy(buf, mtod(m, char *), m->m_len);
918
919 return (0);
920}
921
922/*
923 * These next few routines are used to permit downgrading an unmapped
924 * mbuf to a chain of mapped mbufs. This is used when an interface
925 * doesn't supported unmapped mbufs or if checksums need to be
926 * computed in software.
927 *
928 * Each unmapped mbuf is converted to a chain of mbufs. First, any
929 * TLS header data is stored in a regular mbuf. Second, each page of
930 * unmapped data is stored in an mbuf with an EXT_SFBUF external
931 * cluster. These mbufs use an sf_buf to provide a valid KVA for the
932 * associated physical page. They also hold a reference on the
933 * original M_EXTPG mbuf to ensure the physical page doesn't go away.
934 * Finally, any TLS trailer data is stored in a regular mbuf.
935 *
936 * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
937 * mbufs. It frees the associated sf_buf and releases its reference
938 * on the original M_EXTPG mbuf.
939 *
940 * _mb_unmapped_to_ext() is a helper function that converts a single
941 * unmapped mbuf into a chain of mbufs.
942 *
943 * mb_unmapped_to_ext() is the public function that walks an mbuf
944 * chain converting any unmapped mbufs to mapped mbufs. It returns
945 * the new chain of unmapped mbufs on success. On failure it frees
946 * the original mbuf chain and returns NULL.
947 */
948static void
950{
951 struct sf_buf *sf;
952 struct mbuf *old_m;
953
954 sf = m->m_ext.ext_arg1;
955 sf_buf_free(sf);
956
957 /* Drop the reference on the backing M_EXTPG mbuf. */
958 old_m = m->m_ext.ext_arg2;
959 mb_free_extpg(old_m);
960}
961
962static struct mbuf *
963_mb_unmapped_to_ext(struct mbuf *m)
964{
965 struct mbuf *m_new, *top, *prev, *mref;
966 struct sf_buf *sf;
967 vm_page_t pg;
968 int i, len, off, pglen, pgoff, seglen, segoff;
969 volatile u_int *refcnt;
970 u_int ref_inc = 0;
971
972 M_ASSERTEXTPG(m);
973 len = m->m_len;
974 KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p",
975 __func__, m));
976
977 /* See if this is the mbuf that holds the embedded refcount. */
978 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
979 refcnt = &m->m_ext.ext_count;
980 mref = m;
981 } else {
982 KASSERT(m->m_ext.ext_cnt != NULL,
983 ("%s: no refcounting pointer on %p", __func__, m));
984 refcnt = m->m_ext.ext_cnt;
985 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
986 }
987
988 /* Skip over any data removed from the front. */
989 off = mtod(m, vm_offset_t);
990
991 top = NULL;
992 if (m->m_epg_hdrlen != 0) {
993 if (off >= m->m_epg_hdrlen) {
994 off -= m->m_epg_hdrlen;
995 } else {
996 seglen = m->m_epg_hdrlen - off;
997 segoff = off;
998 seglen = min(seglen, len);
999 off = 0;
1000 len -= seglen;
1001 m_new = m_get(M_NOWAIT, MT_DATA);
1002 if (m_new == NULL)
1003 goto fail;
1004 m_new->m_len = seglen;
1005 prev = top = m_new;
1006 memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff],
1007 seglen);
1008 }
1009 }
1010 pgoff = m->m_epg_1st_off;
1011 for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1012 pglen = m_epg_pagelen(m, i, pgoff);
1013 if (off >= pglen) {
1014 off -= pglen;
1015 pgoff = 0;
1016 continue;
1017 }
1018 seglen = pglen - off;
1019 segoff = pgoff + off;
1020 off = 0;
1021 seglen = min(seglen, len);
1022 len -= seglen;
1023
1024 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1025 m_new = m_get(M_NOWAIT, MT_DATA);
1026 if (m_new == NULL)
1027 goto fail;
1028 if (top == NULL) {
1029 top = prev = m_new;
1030 } else {
1031 prev->m_next = m_new;
1032 prev = m_new;
1033 }
1034 sf = sf_buf_alloc(pg, SFB_NOWAIT);
1035 if (sf == NULL)
1036 goto fail;
1037
1038 ref_inc++;
1039 m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
1040 mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
1041 m_new->m_data += segoff;
1042 m_new->m_len = seglen;
1043
1044 pgoff = 0;
1045 };
1046 if (len != 0) {
1047 KASSERT((off + len) <= m->m_epg_trllen,
1048 ("off + len > trail (%d + %d > %d)", off, len,
1049 m->m_epg_trllen));
1050 m_new = m_get(M_NOWAIT, MT_DATA);
1051 if (m_new == NULL)
1052 goto fail;
1053 if (top == NULL)
1054 top = m_new;
1055 else
1056 prev->m_next = m_new;
1057 m_new->m_len = len;
1058 memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len);
1059 }
1060
1061 if (ref_inc != 0) {
1062 /*
1063 * Obtain an additional reference on the old mbuf for
1064 * each created EXT_SFBUF mbuf. They will be dropped
1065 * in mb_unmapped_free_mext().
1066 */
1067 if (*refcnt == 1)
1068 *refcnt += ref_inc;
1069 else
1070 atomic_add_int(refcnt, ref_inc);
1071 }
1072 m_free(m);
1073 return (top);
1074
1075fail:
1076 if (ref_inc != 0) {
1077 /*
1078 * Obtain an additional reference on the old mbuf for
1079 * each created EXT_SFBUF mbuf. They will be
1080 * immediately dropped when these mbufs are freed
1081 * below.
1082 */
1083 if (*refcnt == 1)
1084 *refcnt += ref_inc;
1085 else
1086 atomic_add_int(refcnt, ref_inc);
1087 }
1088 m_free(m);
1089 m_freem(top);
1090 return (NULL);
1091}
1092
1093struct mbuf *
1094mb_unmapped_to_ext(struct mbuf *top)
1095{
1096 struct mbuf *m, *next, *prev = NULL;
1097
1098 prev = NULL;
1099 for (m = top; m != NULL; m = next) {
1100 /* m might be freed, so cache the next pointer. */
1101 next = m->m_next;
1102 if (m->m_flags & M_EXTPG) {
1103 if (prev != NULL) {
1104 /*
1105 * Remove 'm' from the new chain so
1106 * that the 'top' chain terminates
1107 * before 'm' in case 'top' is freed
1108 * due to an error.
1109 */
1110 prev->m_next = NULL;
1111 }
1112 m = _mb_unmapped_to_ext(m);
1113 if (m == NULL) {
1114 m_freem(top);
1115 m_freem(next);
1116 return (NULL);
1117 }
1118 if (prev == NULL) {
1119 top = m;
1120 } else {
1121 prev->m_next = m;
1122 }
1123
1124 /*
1125 * Replaced one mbuf with a chain, so we must
1126 * find the end of chain.
1127 */
1128 prev = m_last(m);
1129 } else {
1130 if (prev != NULL) {
1131 prev->m_next = m;
1132 }
1133 prev = m;
1134 }
1135 }
1136 return (top);
1137}
1138
1139/*
1140 * Allocate an empty M_EXTPG mbuf. The ext_free routine is
1141 * responsible for freeing any pages backing this mbuf when it is
1142 * freed.
1143 */
1144struct mbuf *
1145mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
1146{
1147 struct mbuf *m;
1148
1149 m = m_get(how, MT_DATA);
1150 if (m == NULL)
1151 return (NULL);
1152
1153 m->m_epg_npgs = 0;
1154 m->m_epg_nrdy = 0;
1155 m->m_epg_1st_off = 0;
1156 m->m_epg_last_len = 0;
1157 m->m_epg_flags = 0;
1158 m->m_epg_hdrlen = 0;
1159 m->m_epg_trllen = 0;
1160 m->m_epg_tls = NULL;
1161 m->m_epg_so = NULL;
1162 m->m_data = NULL;
1163 m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG);
1164 m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1165 m->m_ext.ext_count = 1;
1166 m->m_ext.ext_size = 0;
1167 m->m_ext.ext_free = ext_free;
1168 return (m);
1169}
1170
1171/*
1172 * Clean up after mbufs with M_EXT storage attached to them if the
1173 * reference count hits 1.
1174 */
1175void
1176mb_free_ext(struct mbuf *m)
1177{
1178 volatile u_int *refcnt;
1179 struct mbuf *mref;
1180 int freembuf;
1181
1182 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
1183
1184 /* See if this is the mbuf that holds the embedded refcount. */
1185 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1186 refcnt = &m->m_ext.ext_count;
1187 mref = m;
1188 } else {
1189 KASSERT(m->m_ext.ext_cnt != NULL,
1190 ("%s: no refcounting pointer on %p", __func__, m));
1191 refcnt = m->m_ext.ext_cnt;
1192 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1193 }
1194
1195 /*
1196 * Check if the header is embedded in the cluster. It is
1197 * important that we can't touch any of the mbuf fields
1198 * after we have freed the external storage, since mbuf
1199 * could have been embedded in it. For now, the mbufs
1200 * embedded into the cluster are always of type EXT_EXTREF,
1201 * and for this type we won't free the mref.
1202 */
1203 if (m->m_flags & M_NOFREE) {
1204 freembuf = 0;
1205 KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
1206 m->m_ext.ext_type == EXT_RXRING,
1207 ("%s: no-free mbuf %p has wrong type", __func__, m));
1208 } else
1209 freembuf = 1;
1210
1211 /* Free attached storage if this mbuf is the only reference to it. */
1212 if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1213 switch (m->m_ext.ext_type) {
1214 case EXT_PACKET:
1215 /* The packet zone is special. */
1216 if (*refcnt == 0)
1217 *refcnt = 1;
1218 uma_zfree(zone_pack, mref);
1219 break;
1220 case EXT_CLUSTER:
1221 uma_zfree(zone_clust, m->m_ext.ext_buf);
1222 m_free_raw(mref);
1223 break;
1224 case EXT_JUMBOP:
1225 uma_zfree(zone_jumbop, m->m_ext.ext_buf);
1226 m_free_raw(mref);
1227 break;
1228 case EXT_JUMBO9:
1229 uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
1230 m_free_raw(mref);
1231 break;
1232 case EXT_JUMBO16:
1233 uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
1234 m_free_raw(mref);
1235 break;
1236 case EXT_SFBUF:
1237 case EXT_NET_DRV:
1238 case EXT_MOD_TYPE:
1239 case EXT_DISPOSABLE:
1240 KASSERT(mref->m_ext.ext_free != NULL,
1241 ("%s: ext_free not set", __func__));
1242 mref->m_ext.ext_free(mref);
1243 m_free_raw(mref);
1244 break;
1245 case EXT_EXTREF:
1246 KASSERT(m->m_ext.ext_free != NULL,
1247 ("%s: ext_free not set", __func__));
1248 m->m_ext.ext_free(m);
1249 break;
1250 case EXT_RXRING:
1251 KASSERT(m->m_ext.ext_free == NULL,
1252 ("%s: ext_free is set", __func__));
1253 break;
1254 default:
1255 KASSERT(m->m_ext.ext_type == 0,
1256 ("%s: unknown ext_type", __func__));
1257 }
1258 }
1259
1260 if (freembuf && m != mref)
1261 m_free_raw(m);
1262}
1263
1264/*
1265 * Clean up after mbufs with M_EXTPG storage attached to them if the
1266 * reference count hits 1.
1267 */
1268void
1269mb_free_extpg(struct mbuf *m)
1270{
1271 volatile u_int *refcnt;
1272 struct mbuf *mref;
1273
1274 M_ASSERTEXTPG(m);
1275
1276 /* See if this is the mbuf that holds the embedded refcount. */
1277 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1278 refcnt = &m->m_ext.ext_count;
1279 mref = m;
1280 } else {
1281 KASSERT(m->m_ext.ext_cnt != NULL,
1282 ("%s: no refcounting pointer on %p", __func__, m));
1283 refcnt = m->m_ext.ext_cnt;
1284 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1285 }
1286
1287 /* Free attached storage if this mbuf is the only reference to it. */
1288 if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1289 KASSERT(mref->m_ext.ext_free != NULL,
1290 ("%s: ext_free not set", __func__));
1291
1292 mref->m_ext.ext_free(mref);
1293#ifdef KERN_TLS
1294 if (mref->m_epg_tls != NULL &&
1295 !refcount_release_if_not_last(&mref->m_epg_tls->refcount))
1297 else
1298#endif
1299 m_free_raw(mref);
1300 }
1301
1302 if (m != mref)
1303 m_free_raw(m);
1304}
1305
1306/*
1307 * Official mbuf(9) allocation KPI for stack and drivers:
1308 *
1309 * m_get() - a single mbuf without any attachments, sys/mbuf.h.
1310 * m_gethdr() - a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
1311 * m_getcl() - an mbuf + 2k cluster, sys/mbuf.h.
1312 * m_clget() - attach cluster to already allocated mbuf.
1313 * m_cljget() - attach jumbo cluster to already allocated mbuf.
1314 * m_get2() - allocate minimum mbuf that would fit size argument.
1315 * m_getm2() - allocate a chain of mbufs/clusters.
1316 * m_extadd() - attach external cluster to mbuf.
1317 *
1318 * m_free() - free single mbuf with its tags and ext, sys/mbuf.h.
1319 * m_freem() - free chain of mbufs.
1320 */
1321
1322int
1323m_clget(struct mbuf *m, int how)
1324{
1325
1326 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1327 __func__, m));
1328 m->m_ext.ext_buf = (char *)NULL;
1329 uma_zalloc_arg(zone_clust, m, how);
1330 /*
1331 * On a cluster allocation failure, drain the packet zone and retry,
1332 * we might be able to loosen a few clusters up on the drain.
1333 */
1334 if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
1335 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
1336 uma_zalloc_arg(zone_clust, m, how);
1337 }
1338 MBUF_PROBE2(m__clget, m, how);
1339 return (m->m_flags & M_EXT);
1340}
1341
1342/*
1343 * m_cljget() is different from m_clget() as it can allocate clusters without
1344 * attaching them to an mbuf. In that case the return value is the pointer
1345 * to the cluster of the requested size. If an mbuf was specified, it gets
1346 * the cluster attached to it and the return value can be safely ignored.
1347 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1348 */
1349void *
1350m_cljget(struct mbuf *m, int how, int size)
1351{
1352 uma_zone_t zone;
1353 void *retval;
1354
1355 if (m != NULL) {
1356 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1357 __func__, m));
1358 m->m_ext.ext_buf = NULL;
1359 }
1360
1361 zone = m_getzone(size);
1362 retval = uma_zalloc_arg(zone, m, how);
1363
1364 MBUF_PROBE4(m__cljget, m, how, size, retval);
1365
1366 return (retval);
1367}
1368
1369/*
1370 * m_get2() allocates minimum mbuf that would fit "size" argument.
1371 */
1372struct mbuf *
1373m_get2(int size, int how, short type, int flags)
1374{
1375 struct mb_args args;
1376 struct mbuf *m, *n;
1377
1378 args.flags = flags;
1379 args.type = type;
1380
1381 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
1382 return (uma_zalloc_arg(zone_mbuf, &args, how));
1383 if (size <= MCLBYTES)
1384 return (uma_zalloc_arg(zone_pack, &args, how));
1385
1386 if (size > MJUMPAGESIZE)
1387 return (NULL);
1388
1389 m = uma_zalloc_arg(zone_mbuf, &args, how);
1390 if (m == NULL)
1391 return (NULL);
1392
1393 n = uma_zalloc_arg(zone_jumbop, m, how);
1394 if (n == NULL) {
1395 m_free_raw(m);
1396 return (NULL);
1397 }
1398
1399 return (m);
1400}
1401
1402/*
1403 * m_get3() allocates minimum mbuf that would fit "size" argument.
1404 * Unlike m_get2() it can allocate clusters up to MJUM16BYTES.
1405 */
1406struct mbuf *
1407m_get3(int size, int how, short type, int flags)
1408{
1409 struct mb_args args;
1410 struct mbuf *m, *n;
1411 uma_zone_t zone;
1412
1413 if (size <= MJUMPAGESIZE)
1414 return (m_get2(size, how, type, flags));
1415
1416 if (size > MJUM16BYTES)
1417 return (NULL);
1418
1419 args.flags = flags;
1420 args.type = type;
1421
1422 m = uma_zalloc_arg(zone_mbuf, &args, how);
1423 if (m == NULL)
1424 return (NULL);
1425
1426 if (size <= MJUM9BYTES)
1427 zone = zone_jumbo9;
1428 else
1429 zone = zone_jumbo16;
1430
1431 n = uma_zalloc_arg(zone, m, how);
1432 if (n == NULL) {
1433 m_free_raw(m);
1434 return (NULL);
1435 }
1436
1437 return (m);
1438}
1439
1440/*
1441 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1442 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1443 */
1444struct mbuf *
1445m_getjcl(int how, short type, int flags, int size)
1446{
1447 struct mb_args args;
1448 struct mbuf *m, *n;
1449 uma_zone_t zone;
1450
1451 if (size == MCLBYTES)
1452 return m_getcl(how, type, flags);
1453
1454 args.flags = flags;
1455 args.type = type;
1456
1457 m = uma_zalloc_arg(zone_mbuf, &args, how);
1458 if (m == NULL)
1459 return (NULL);
1460
1461 zone = m_getzone(size);
1462 n = uma_zalloc_arg(zone, m, how);
1463 if (n == NULL) {
1464 m_free_raw(m);
1465 return (NULL);
1466 }
1467 MBUF_PROBE5(m__getjcl, how, type, flags, size, m);
1468 return (m);
1469}
1470
1471/*
1472 * Allocate a given length worth of mbufs and/or clusters (whatever fits
1473 * best) and return a pointer to the top of the allocated chain. If an
1474 * existing mbuf chain is provided, then we will append the new chain
1475 * to the existing one and return a pointer to the provided mbuf.
1476 */
1477struct mbuf *
1478m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1479{
1480 struct mbuf *mb, *nm = NULL, *mtail = NULL;
1481
1482 KASSERT(len >= 0, ("%s: len is < 0", __func__));
1483
1484 /* Validate flags. */
1485 flags &= (M_PKTHDR | M_EOR);
1486
1487 /* Packet header mbuf must be first in chain. */
1488 if ((flags & M_PKTHDR) && m != NULL)
1489 flags &= ~M_PKTHDR;
1490
1491 /* Loop and append maximum sized mbufs to the chain tail. */
1492 while (len > 0) {
1493 mb = NULL;
1494 if (len > MCLBYTES) {
1495 mb = m_getjcl(M_NOWAIT, type, (flags & M_PKTHDR),
1496 MJUMPAGESIZE);
1497 }
1498 if (mb == NULL) {
1499 if (len >= MINCLSIZE)
1500 mb = m_getcl(how, type, (flags & M_PKTHDR));
1501 else if (flags & M_PKTHDR)
1502 mb = m_gethdr(how, type);
1503 else
1504 mb = m_get(how, type);
1505
1506 /*
1507 * Fail the whole operation if one mbuf can't be
1508 * allocated.
1509 */
1510 if (mb == NULL) {
1511 m_freem(nm);
1512 return (NULL);
1513 }
1514 }
1515
1516 /* Book keeping. */
1517 len -= M_SIZE(mb);
1518 if (mtail != NULL)
1519 mtail->m_next = mb;
1520 else
1521 nm = mb;
1522 mtail = mb;
1523 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */
1524 }
1525 if (flags & M_EOR)
1526 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */
1527
1528 /* If mbuf was supplied, append new chain to the end of it. */
1529 if (m != NULL) {
1530 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
1531 ;
1532 mtail->m_next = nm;
1533 mtail->m_flags &= ~M_EOR;
1534 } else
1535 m = nm;
1536
1537 return (m);
1538}
1539
1540/*-
1541 * Configure a provided mbuf to refer to the provided external storage
1542 * buffer and setup a reference count for said buffer.
1543 *
1544 * Arguments:
1545 * mb The existing mbuf to which to attach the provided buffer.
1546 * buf The address of the provided external storage buffer.
1547 * size The size of the provided buffer.
1548 * freef A pointer to a routine that is responsible for freeing the
1549 * provided external storage buffer.
1550 * args A pointer to an argument structure (of any type) to be passed
1551 * to the provided freef routine (may be NULL).
1552 * flags Any other flags to be passed to the provided mbuf.
1553 * type The type that the external storage buffer should be
1554 * labeled with.
1555 *
1556 * Returns:
1557 * Nothing.
1558 */
1559void
1560m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1561 void *arg1, void *arg2, int flags, int type)
1562{
1563
1564 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1565
1566 mb->m_flags |= (M_EXT | flags);
1567 mb->m_ext.ext_buf = buf;
1568 mb->m_data = mb->m_ext.ext_buf;
1569 mb->m_ext.ext_size = size;
1570 mb->m_ext.ext_free = freef;
1571 mb->m_ext.ext_arg1 = arg1;
1572 mb->m_ext.ext_arg2 = arg2;
1573 mb->m_ext.ext_type = type;
1574
1575 if (type != EXT_EXTREF) {
1576 mb->m_ext.ext_count = 1;
1577 mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1578 } else
1579 mb->m_ext.ext_flags = 0;
1580}
1581
1582/*
1583 * Free an entire chain of mbufs and associated external buffers, if
1584 * applicable.
1585 */
1586void
1587m_freem(struct mbuf *mb)
1588{
1589
1590 MBUF_PROBE1(m__freem, mb);
1591 while (mb != NULL)
1592 mb = m_free(mb);
1593}
1594
1595/*
1596 * Temporary primitive to allow freeing without going through m_free.
1597 */
1598void
1599m_free_raw(struct mbuf *mb)
1600{
1601
1602 uma_zfree(zone_mbuf, mb);
1603}
1604
1605int
1606m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
1607 struct m_snd_tag **mstp)
1608{
1609
1610 if (ifp->if_snd_tag_alloc == NULL)
1611 return (EOPNOTSUPP);
1612 return (ifp->if_snd_tag_alloc(ifp, params, mstp));
1613}
1614
1615void
1616m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp,
1617 const struct if_snd_tag_sw *sw)
1618{
1619
1620 if_ref(ifp);
1621 mst->ifp = ifp;
1622 refcount_init(&mst->refcount, 1);
1623 mst->sw = sw;
1624 counter_u64_add(snd_tag_count, 1);
1625}
1626
1627void
1628m_snd_tag_destroy(struct m_snd_tag *mst)
1629{
1630 struct ifnet *ifp;
1631
1632 ifp = mst->ifp;
1633 mst->sw->snd_tag_free(mst);
1634 if_rele(ifp);
1635 counter_u64_add(snd_tag_count, -1);
1636}
1637
1638void
1639m_rcvif_serialize(struct mbuf *m)
1640{
1641 u_short idx, gen;
1642
1643 M_ASSERTPKTHDR(m);
1644 idx = m->m_pkthdr.rcvif->if_index;
1645 gen = m->m_pkthdr.rcvif->if_idxgen;
1646 m->m_pkthdr.rcvidx = idx;
1647 m->m_pkthdr.rcvgen = gen;
1648}
1649
1650struct ifnet *
1651m_rcvif_restore(struct mbuf *m)
1652{
1653 struct ifnet *ifp;
1654
1655 M_ASSERTPKTHDR(m);
1656 NET_EPOCH_ASSERT();
1657
1658 ifp = ifnet_byindexgen(m->m_pkthdr.rcvidx, m->m_pkthdr.rcvgen);
1659 if (ifp == NULL || (ifp->if_flags & IFF_DYING))
1660 return (NULL);
1661
1662 return (m->m_pkthdr.rcvif = ifp);
1663}
1664
1665/*
1666 * Allocate an mbuf with anonymous external pages.
1667 */
1668struct mbuf *
1670{
1671 struct mbuf *m;
1672 vm_page_t pg;
1673 int i, npgs;
1674
1676 if (m == NULL)
1677 return (NULL);
1678 m->m_epg_flags |= EPG_FLAG_ANON;
1679 npgs = howmany(len, PAGE_SIZE);
1680 for (i = 0; i < npgs; i++) {
1681 do {
1682 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
1683 VM_ALLOC_WIRED);
1684 if (pg == NULL) {
1685 if (how == M_NOWAIT) {
1686 m->m_epg_npgs = i;
1687 m_free(m);
1688 return (NULL);
1689 }
1690 vm_wait(NULL);
1691 }
1692 } while (pg == NULL);
1693 m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg);
1694 }
1695 m->m_epg_npgs = npgs;
1696 return (m);
1697}
1698
1699/*
1700 * Copy the data in the mbuf chain to a chain of mbufs with anonymous external
1701 * unmapped pages.
1702 * len is the length of data in the input mbuf chain.
1703 * mlen is the maximum number of bytes put into each ext_page mbuf.
1704 */
1705struct mbuf *
1706mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how,
1707 struct mbuf **mlast)
1708{
1709 struct mbuf *m, *mout;
1710 char *pgpos, *mbpos;
1711 int i, mblen, mbufsiz, pglen, xfer;
1712
1713 if (len == 0)
1714 return (NULL);
1715 mbufsiz = min(mlen, len);
1716 m = mout = mb_alloc_ext_plus_pages(mbufsiz, how);
1717 if (m == NULL)
1718 return (m);
1719 pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[0]);
1720 pglen = PAGE_SIZE;
1721 mblen = 0;
1722 i = 0;
1723 do {
1724 if (pglen == 0) {
1725 if (++i == m->m_epg_npgs) {
1726 m->m_epg_last_len = PAGE_SIZE;
1727 mbufsiz = min(mlen, len);
1728 m->m_next = mb_alloc_ext_plus_pages(mbufsiz,
1729 how);
1730 m = m->m_next;
1731 if (m == NULL) {
1732 m_freem(mout);
1733 return (m);
1734 }
1735 i = 0;
1736 }
1737 pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]);
1738 pglen = PAGE_SIZE;
1739 }
1740 while (mblen == 0) {
1741 if (mp == NULL) {
1742 m_freem(mout);
1743 return (NULL);
1744 }
1745 KASSERT((mp->m_flags & M_EXTPG) == 0,
1746 ("mb_copym_ext_pgs: ext_pgs input mbuf"));
1747 mbpos = mtod(mp, char *);
1748 mblen = mp->m_len;
1749 mp = mp->m_next;
1750 }
1751 xfer = min(mblen, pglen);
1752 memcpy(pgpos, mbpos, xfer);
1753 pgpos += xfer;
1754 mbpos += xfer;
1755 pglen -= xfer;
1756 mblen -= xfer;
1757 len -= xfer;
1758 m->m_len += xfer;
1759 } while (len > 0);
1760 m->m_epg_last_len = PAGE_SIZE - pglen;
1761 if (mlast != NULL)
1762 *mlast = m;
1763 return (mout);
1764}
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
u_long vm_kmem_size
Definition: kern_malloc.c:188
struct mbuf * mb_alloc_ext_plus_pages(int len, int how)
Definition: kern_mbuf.c:1669
uma_zone_t zone_clust
Definition: kern_mbuf.c:322
void m_rcvif_serialize(struct mbuf *m)
Definition: kern_mbuf.c:1639
SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN|CTLFLAG_NOFETCH, &maxmbufmem, 0, "Maximum real memory allocatable to various mbuf types")
static int mb_ctor_clust(void *, int, void *, int)
Definition: kern_mbuf.c:738
SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLTYPE_INT|CTLFLAG_RW, &mb_use_ext_pgs, 0, sysctl_mb_use_ext_pgs, "IU", "Use unmapped mbufs for sendfile(2) and TLS offload")
void m_freem(struct mbuf *mb)
Definition: kern_mbuf.c:1587
int m_clget(struct mbuf *m, int how)
Definition: kern_mbuf.c:1323
static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:208
void m_free_raw(struct mbuf *mb)
Definition: kern_mbuf.c:1599
struct mbuf * mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how, struct mbuf **mlast)
Definition: kern_mbuf.c:1706
static void mbuf_init(void *dummy)
Definition: kern_mbuf.c:349
static quad_t maxmbufmem
Definition: kern_mbuf.c:141
struct mbuf * mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
Definition: kern_mbuf.c:1145
uma_zone_t zone_jumbo16
Definition: kern_mbuf.c:326
struct mbuf * m_getjcl(int how, short type, int flags, int size)
Definition: kern_mbuf.c:1445
static void mb_unmapped_free_mext(struct mbuf *m)
Definition: kern_mbuf.c:949
SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL)
SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW, &snd_tag_count, "# of active mbuf send tags")
static void mb_dtor_pack(void *, int, void *)
Definition: kern_mbuf.c:698
uma_zone_t zone_jumbo9
Definition: kern_mbuf.c:325
struct ifnet * m_rcvif_restore(struct mbuf *m)
Definition: kern_mbuf.c:1651
int mb_unmapped_compress(struct mbuf *m)
Definition: kern_mbuf.c:882
int nmbjumbop
Definition: kern_mbuf.c:115
struct mbuf * m_get2(int size, int how, short type, int flags)
Definition: kern_mbuf.c:1373
void m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef, void *arg1, void *arg2, int flags, int type)
Definition: kern_mbuf.c:1560
static void mb_dtor_mbuf(void *, int, void *)
Definition: kern_mbuf.c:680
static int mb_zinit_pack(void *, int, int)
Definition: kern_mbuf.c:764
__FBSDID("$FreeBSD$")
int m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **mstp)
Definition: kern_mbuf.c:1606
uma_zone_t zone_pack
Definition: kern_mbuf.c:323
void mb_free_notready(struct mbuf *m, int count)
Definition: kern_mbuf.c:859
static int sysctl_mb_use_ext_pgs(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:122
static int mb_ctor_pack(void *, int, void *, int)
Definition: kern_mbuf.c:802
CTASSERT((((MSIZE - 1) ^ MSIZE)+1) > > 1==MSIZE)
static void mb_zfini_pack(void *, int)
Definition: kern_mbuf.c:784
static struct mbuf * _mb_unmapped_to_ext(struct mbuf *m)
Definition: kern_mbuf.c:963
uma_zone_t zone_mbuf
Definition: kern_mbuf.c:321
static void mb_reclaim(uma_zone_t, int)
static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:297
struct mbuf * mb_unmapped_to_ext(struct mbuf *top)
Definition: kern_mbuf.c:1094
void * m_cljget(struct mbuf *m, int how, int size)
Definition: kern_mbuf.c:1350
void m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp, const struct if_snd_tag_sw *sw)
Definition: kern_mbuf.c:1616
static int sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:231
struct mbuf * m_get3(int size, int how, short type, int flags)
Definition: kern_mbuf.c:1407
void m_snd_tag_destroy(struct m_snd_tag *mst)
Definition: kern_mbuf.c:1628
static counter_u64_t snd_tag_count
Definition: kern_mbuf.c:146
static int mb_ctor_mbuf(void *, int, void *, int)
Definition: kern_mbuf.c:649
struct mbuf * m_getm2(struct mbuf *m, int len, int how, short type, int flags)
Definition: kern_mbuf.c:1478
bool mb_use_ext_pgs
Definition: kern_mbuf.c:119
void mb_free_extpg(struct mbuf *m)
Definition: kern_mbuf.c:1269
_Static_assert(sizeof(struct mbuf)<=MSIZE, "size of mbuf exceeds MSIZE")
void mb_free_ext(struct mbuf *m)
Definition: kern_mbuf.c:1176
int nmbjumbo16
Definition: kern_mbuf.c:117
uma_zone_t zone_jumbop
Definition: kern_mbuf.c:324
int nmbclusters
Definition: kern_mbuf.c:114
static void tunable_mbinit(void *dummy)
Definition: kern_mbuf.c:154
static int sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:253
int nmbufs
Definition: kern_mbuf.c:113
static int sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
Definition: kern_mbuf.c:275
int nmbjumbo9
Definition: kern_mbuf.c:116
static struct pollrec pr[POLL_LIST_LEN]
Definition: kern_poll.c:261
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1644
struct iommu_domain ** domain
Definition: msi_if.m:96
counter_u64_t counter_u64_alloc(int flags)
Definition: subr_counter.c:61
long realmem
Definition: subr_physmem.c:87
int printf(const char *fmt,...)
Definition: subr_prf.c:397
struct sf_buf * sf_buf_alloc(struct vm_page *m, int flags)
Definition: subr_sfbuf.c:114
void sf_buf_free(struct sf_buf *sf)
Definition: subr_sfbuf.c:177
uint16_t flags
Definition: subr_stats.c:2
void ktls_enqueue_to_free(struct mbuf *m)
Definition: uipc_ktls.c:2194
void m_tag_delete_chain(struct mbuf *m, struct m_tag *t)
Definition: uipc_mbuf2.c:344
void mb_free_mext_pgs(struct mbuf *m)
Definition: uipc_mbuf.c:1754
void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
Definition: uipc_mbuf.c:654
static int dummy
struct stat * buf