FreeBSD kernel kern code
vfs_subr.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
37 */
38
39/*
40 * External virtual filesystem routines
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46#include "opt_ddb.h"
47#include "opt_watchdog.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/asan.h>
52#include <sys/bio.h>
53#include <sys/buf.h>
54#include <sys/capsicum.h>
55#include <sys/condvar.h>
56#include <sys/conf.h>
57#include <sys/counter.h>
58#include <sys/dirent.h>
59#include <sys/event.h>
60#include <sys/eventhandler.h>
61#include <sys/extattr.h>
62#include <sys/file.h>
63#include <sys/fcntl.h>
64#include <sys/jail.h>
65#include <sys/kdb.h>
66#include <sys/kernel.h>
67#include <sys/kthread.h>
68#include <sys/ktr.h>
69#include <sys/lockf.h>
70#include <sys/malloc.h>
71#include <sys/mount.h>
72#include <sys/namei.h>
73#include <sys/pctrie.h>
74#include <sys/priv.h>
75#include <sys/reboot.h>
76#include <sys/refcount.h>
77#include <sys/rwlock.h>
78#include <sys/sched.h>
79#include <sys/sleepqueue.h>
80#include <sys/smr.h>
81#include <sys/smp.h>
82#include <sys/stat.h>
83#include <sys/sysctl.h>
84#include <sys/syslog.h>
85#include <sys/vmmeter.h>
86#include <sys/vnode.h>
87#include <sys/watchdog.h>
88
89#include <machine/stdarg.h>
90
91#include <security/mac/mac_framework.h>
92
93#include <vm/vm.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_page.h>
99#include <vm/vm_kern.h>
100#include <vm/uma.h>
101
102#ifdef DDB
103#include <ddb/ddb.h>
104#endif
105
106static void delmntque(struct vnode *vp);
107static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 int slpflag, int slptimeo);
109static void syncer_shutdown(void *arg, int howto);
110static int vtryrecycle(struct vnode *vp);
111static void v_init_counters(struct vnode *);
112static void vn_seqc_init(struct vnode *);
113static void vn_seqc_write_end_free(struct vnode *vp);
114static void vgonel(struct vnode *);
115static bool vhold_recycle_free(struct vnode *);
116static void vdropl_recycle(struct vnode *vp);
117static void vdrop_recycle(struct vnode *vp);
118static void vfs_knllock(void *arg);
119static void vfs_knlunlock(void *arg);
120static void vfs_knl_assert_lock(void *arg, int what);
121static void destroy_vpollinfo(struct vpollinfo *vi);
122static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 daddr_t startlbn, daddr_t endlbn);
124static void vnlru_recalc(void);
125
126/*
127 * Number of vnodes in existence. Increased whenever getnewvnode()
128 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129 */
130static u_long __exclusive_cache_line numvnodes;
131
132SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133 "Number of vnodes in existence");
134
135static counter_u64_t vnodes_created;
137 "Number of vnodes created by getnewvnode");
138
139/*
140 * Conversion tables for conversion from vnode types to inode formats
141 * and back.
142 */
143enum vtype iftovt_tab[16] = {
144 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146};
147int vttoif_tab[10] = {
148 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150};
151
152/*
153 * List of allocates vnodes in the system.
154 */
155static TAILQ_HEAD(freelst, vnode) vnode_list;
156static struct vnode *vnode_list_free_marker;
157static struct vnode *vnode_list_reclaim_marker;
158
159/*
160 * "Free" vnode target. Free vnodes are rarely completely free, but are
161 * just ones that are cheap to recycle. Usually they are for files which
162 * have been stat'd but not read; these usually have inode and namecache
163 * data attached to them. This target is the preferred minimum size of a
164 * sub-cache consisting mostly of such files. The system balances the size
165 * of this sub-cache with its complement to try to prevent either from
166 * thrashing while the other is relatively inactive. The targets express
167 * a preference for the best balance.
168 *
169 * "Above" this target there are 2 further targets (watermarks) related
170 * to recyling of free vnodes. In the best-operating case, the cache is
171 * exactly full, the free list has size between vlowat and vhiwat above the
172 * free target, and recycling from it and normal use maintains this state.
173 * Sometimes the free list is below vlowat or even empty, but this state
174 * is even better for immediate use provided the cache is not full.
175 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176 * ones) to reach one of these states. The watermarks are currently hard-
177 * coded as 4% and 9% of the available space higher. These and the default
178 * of 25% for wantfreevnodes are too large if the memory size is large.
179 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180 * whenever vnlru_proc() becomes active.
181 */
182static long wantfreevnodes;
183static long __exclusive_cache_line freevnodes;
184SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185 &freevnodes, 0, "Number of \"free\" vnodes");
186static long freevnodes_old;
187
188static counter_u64_t recycles_count;
189SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190 "Number of vnodes recycled to meet vnode cache targets");
191
192static counter_u64_t recycles_free_count;
193SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194 "Number of free vnodes recycled to meet vnode cache targets");
195
196static counter_u64_t deferred_inact;
197SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198 "Number of times inactive processing was deferred");
199
200/* To keep more than one thread at a time from running vfs_getnewfsid */
201static struct mtx mntid_mtx;
202
203/*
204 * Lock for any access to the following:
205 * vnode_list
206 * numvnodes
207 * freevnodes
208 */
209static struct mtx __exclusive_cache_line vnode_list_mtx;
210
211/* Publicly exported FS */
212struct nfs_public nfs_pub;
213
214static uma_zone_t buf_trie_zone;
215static smr_t buf_trie_smr;
216
217/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218static uma_zone_t vnode_zone;
219MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220
221__read_frequently smr_t vfs_smr;
222
223/*
224 * The workitem queue.
225 *
226 * It is useful to delay writes of file data and filesystem metadata
227 * for tens of seconds so that quickly created and deleted files need
228 * not waste disk bandwidth being created and removed. To realize this,
229 * we append vnodes to a "workitem" queue. When running with a soft
230 * updates implementation, most pending metadata dependencies should
231 * not wait for more than a few seconds. Thus, mounted on block devices
232 * are delayed only about a half the time that file data is delayed.
233 * Similarly, directory updates are more critical, so are only delayed
234 * about a third the time that file data is delayed. Thus, there are
235 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236 * one each second (driven off the filesystem syncer process). The
237 * syncer_delayno variable indicates the next queue that is to be processed.
238 * Items that need to be processed soon are placed in this queue:
239 *
240 * syncer_workitem_pending[syncer_delayno]
241 *
242 * A delay of fifteen seconds is done by placing the request fifteen
243 * entries later in the queue:
244 *
245 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246 *
247 */
248static int syncer_delayno;
249static long syncer_mask;
250LIST_HEAD(synclist, bufobj);
251static struct synclist *syncer_workitem_pending;
252/*
253 * The sync_mtx protects:
254 * bo->bo_synclist
255 * sync_vnode_count
256 * syncer_delayno
257 * syncer_state
258 * syncer_workitem_pending
259 * syncer_worklist_len
260 * rushjob
261 */
262static struct mtx sync_mtx;
263static struct cv sync_wakeup;
264
265#define SYNCER_MAXDELAY 32
266static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
267static int syncdelay = 30; /* max time to delay syncing data */
268static int filedelay = 30; /* time to delay syncing files */
269SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270 "Time to delay syncing files (in seconds)");
271static int dirdelay = 29; /* time to delay syncing directories */
272SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273 "Time to delay syncing directories (in seconds)");
274static int metadelay = 28; /* time to delay syncing metadata */
275SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276 "Time to delay syncing metadata (in seconds)");
277static int rushjob; /* number of slots to run ASAP */
278static int stat_rush_requests; /* number of times I/O speeded up */
279SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280 "Number of times I/O speeded up (rush requests)");
281
282#define VDBATCH_SIZE 8
283struct vdbatch {
284 u_int index;
285 long freevnodes;
286 struct mtx lock;
287 struct vnode *tab[VDBATCH_SIZE];
288};
289DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290
291static void vdbatch_dequeue(struct vnode *vp);
292
293/*
294 * When shutting down the syncer, run it at four times normal speed.
295 */
296#define SYNCER_SHUTDOWN_SPEEDUP 4
301
302/* Target for maximum number of vnodes. */
304static u_long gapvnodes; /* gap between wanted and desired */
305static u_long vhiwat; /* enough extras after expansion */
306static u_long vlowat; /* minimal extras before expansion */
307static u_long vstir; /* nonzero to stir non-free vnodes */
308static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
309
310static u_long vnlru_read_freevnodes(void);
311
312/*
313 * Note that no attempt is made to sanitize these parameters.
314 */
315static int
316sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317{
318 u_long val;
319 int error;
320
321 val = desiredvnodes;
322 error = sysctl_handle_long(oidp, &val, 0, req);
323 if (error != 0 || req->newptr == NULL)
324 return (error);
325
326 if (val == desiredvnodes)
327 return (0);
328 mtx_lock(&vnode_list_mtx);
329 desiredvnodes = val;
330 wantfreevnodes = desiredvnodes / 4;
331 vnlru_recalc();
332 mtx_unlock(&vnode_list_mtx);
333 /*
334 * XXX There is no protection against multiple threads changing
335 * desiredvnodes at the same time. Locking above only helps vnlru and
336 * getnewvnode.
337 */
340 return (0);
341}
342
343SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345 "LU", "Target for maximum number of vnodes");
346
347static int
348sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349{
350 u_long val;
351 int error;
352
353 val = wantfreevnodes;
354 error = sysctl_handle_long(oidp, &val, 0, req);
355 if (error != 0 || req->newptr == NULL)
356 return (error);
357
358 if (val == wantfreevnodes)
359 return (0);
360 mtx_lock(&vnode_list_mtx);
361 wantfreevnodes = val;
362 vnlru_recalc();
363 mtx_unlock(&vnode_list_mtx);
364 return (0);
365}
366
367SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369 "LU", "Target for minimum number of \"free\" vnodes");
370
371SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372 &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373static int vnlru_nowhere;
374SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
375 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376
377static int
378sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379{
380 struct vnode *vp;
381 struct nameidata nd;
382 char *buf;
383 unsigned long ndflags;
384 int error;
385
386 if (req->newptr == NULL)
387 return (EINVAL);
388 if (req->newlen >= PATH_MAX)
389 return (E2BIG);
390
391 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 error = SYSCTL_IN(req, buf, req->newlen);
393 if (error != 0)
394 goto out;
395
396 buf[req->newlen] = '\0';
397
398 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
399 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 if ((error = namei(&nd)) != 0)
401 goto out;
402 vp = nd.ni_vp;
403
404 if (VN_IS_DOOMED(vp)) {
405 /*
406 * This vnode is being recycled. Return != 0 to let the caller
407 * know that the sysctl had no effect. Return EAGAIN because a
408 * subsequent call will likely succeed (since namei will create
409 * a new vnode if necessary)
410 */
411 error = EAGAIN;
412 goto putvnode;
413 }
414
415 counter_u64_add(recycles_count, 1);
416 vgone(vp);
417putvnode:
418 NDFREE(&nd, 0);
419out:
420 free(buf, M_TEMP);
421 return (error);
422}
423
424static int
425sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426{
427 struct thread *td = curthread;
428 struct vnode *vp;
429 struct file *fp;
430 int error;
431 int fd;
432
433 if (req->newptr == NULL)
434 return (EBADF);
435
436 error = sysctl_handle_int(oidp, &fd, 0, req);
437 if (error != 0)
438 return (error);
439 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
440 if (error != 0)
441 return (error);
442 vp = fp->f_vnode;
443
444 error = vn_lock(vp, LK_EXCLUSIVE);
445 if (error != 0)
446 goto drop;
447
448 counter_u64_add(recycles_count, 1);
449 vgone(vp);
450 VOP_UNLOCK(vp);
451drop:
452 fdrop(fp, td);
453 return (error);
454}
455
456SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
457 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
458 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
459SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
460 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
462 "Try to reclaim a vnode by its file descriptor");
463
464/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
465#define vnsz2log 8
466#ifndef DEBUG_LOCKS
467_Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
468 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
469 "vnsz2log needs to be updated");
470#endif
471
472/*
473 * Support for the bufobj clean & dirty pctrie.
474 */
475static void *
476buf_trie_alloc(struct pctrie *ptree)
477{
478 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
479}
480
481static void
482buf_trie_free(struct pctrie *ptree, void *node)
483{
484 uma_zfree_smr(buf_trie_zone, node);
485}
487 buf_trie_smr);
488
489/*
490 * Initialize the vnode management data structures.
491 *
492 * Reevaluate the following cap on the number of vnodes after the physical
493 * memory size exceeds 512GB. In the limit, as the physical memory size
494 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
495 */
496#ifndef MAXVNODES_MAX
497#define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
498#endif
499
500static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
501
502static struct vnode *
503vn_alloc_marker(struct mount *mp)
504{
505 struct vnode *vp;
506
507 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
508 vp->v_type = VMARKER;
509 vp->v_mount = mp;
510
511 return (vp);
512}
513
514static void
515vn_free_marker(struct vnode *vp)
516{
517
518 MPASS(vp->v_type == VMARKER);
519 free(vp, M_VNODE_MARKER);
520}
521
522#ifdef KASAN
523static int
524vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
525{
526 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
527 return (0);
528}
529
530static void
531vnode_dtor(void *mem, int size, void *arg __unused)
532{
533 size_t end1, end2, off1, off2;
534
535 _Static_assert(offsetof(struct vnode, v_vnodelist) <
536 offsetof(struct vnode, v_dbatchcpu),
537 "KASAN marks require updating");
538
539 off1 = offsetof(struct vnode, v_vnodelist);
540 off2 = offsetof(struct vnode, v_dbatchcpu);
541 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
542 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
543
544 /*
545 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
546 * after the vnode has been freed. Try to get some KASAN coverage by
547 * marking everything except those two fields as invalid. Because
548 * KASAN's tracking is not byte-granular, any preceding fields sharing
549 * the same 8-byte aligned word must also be marked valid.
550 */
551
552 /* Handle the area from the start until v_vnodelist... */
553 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
554 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
555
556 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
557 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
558 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
559 if (off2 > off1)
560 kasan_mark((void *)((char *)mem + off1), off2 - off1,
561 off2 - off1, KASAN_UMA_FREED);
562
563 /* ... and finally the area from v_dbatchcpu to the end. */
564 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
565 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
566 KASAN_UMA_FREED);
567}
568#endif /* KASAN */
569
570/*
571 * Initialize a vnode as it first enters the zone.
572 */
573static int
574vnode_init(void *mem, int size, int flags)
575{
576 struct vnode *vp;
577
578 vp = mem;
579 bzero(vp, size);
580 /*
581 * Setup locks.
582 */
583 vp->v_vnlock = &vp->v_lock;
584 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
585 /*
586 * By default, don't allow shared locks unless filesystems opt-in.
587 */
588 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
589 LK_NOSHARE | LK_IS_VNODE);
590 /*
591 * Initialize bufobj.
592 */
593 bufobj_init(&vp->v_bufobj, vp);
594 /*
595 * Initialize namecache.
596 */
598 /*
599 * Initialize rangelocks.
600 */
601 rangelock_init(&vp->v_rl);
602
603 vp->v_dbatchcpu = NOCPU;
604
605 /*
606 * Check vhold_recycle_free for an explanation.
607 */
608 vp->v_holdcnt = VHOLD_NO_SMR;
609 vp->v_type = VNON;
610 mtx_lock(&vnode_list_mtx);
611 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
612 mtx_unlock(&vnode_list_mtx);
613 return (0);
614}
615
616/*
617 * Free a vnode when it is cleared from the zone.
618 */
619static void
620vnode_fini(void *mem, int size)
621{
622 struct vnode *vp;
623 struct bufobj *bo;
624
625 vp = mem;
626 vdbatch_dequeue(vp);
627 mtx_lock(&vnode_list_mtx);
628 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
629 mtx_unlock(&vnode_list_mtx);
630 rangelock_destroy(&vp->v_rl);
631 lockdestroy(vp->v_vnlock);
632 mtx_destroy(&vp->v_interlock);
633 bo = &vp->v_bufobj;
634 rw_destroy(BO_LOCKPTR(bo));
635
636 kasan_mark(mem, size, size, 0);
637}
638
639/*
640 * Provide the size of NFS nclnode and NFS fh for calculation of the
641 * vnode memory consumption. The size is specified directly to
642 * eliminate dependency on NFS-private header.
643 *
644 * Other filesystems may use bigger or smaller (like UFS and ZFS)
645 * private inode data, but the NFS-based estimation is ample enough.
646 * Still, we care about differences in the size between 64- and 32-bit
647 * platforms.
648 *
649 * Namecache structure size is heuristically
650 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
651 */
652#ifdef _LP64
653#define NFS_NCLNODE_SZ (528 + 64)
654#define NC_SZ 148
655#else
656#define NFS_NCLNODE_SZ (360 + 32)
657#define NC_SZ 92
658#endif
659
660static void
661vntblinit(void *dummy __unused)
662{
663 struct vdbatch *vd;
664 uma_ctor ctor;
665 uma_dtor dtor;
666 int cpu, physvnodes, virtvnodes;
667
668 /*
669 * Desiredvnodes is a function of the physical memory size and the
670 * kernel's heap size. Generally speaking, it scales with the
671 * physical memory size. The ratio of desiredvnodes to the physical
672 * memory size is 1:16 until desiredvnodes exceeds 98,304.
673 * Thereafter, the
674 * marginal ratio of desiredvnodes to the physical memory size is
675 * 1:64. However, desiredvnodes is limited by the kernel's heap
676 * size. The memory required by desiredvnodes vnodes and vm objects
677 * must not exceed 1/10th of the kernel's heap size.
678 */
679 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
680 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
681 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
682 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
683 desiredvnodes = min(physvnodes, virtvnodes);
685 if (bootverbose)
686 printf("Reducing kern.maxvnodes %lu -> %lu\n",
689 }
690 wantfreevnodes = desiredvnodes / 4;
691 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
692 TAILQ_INIT(&vnode_list);
693 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
694 /*
695 * The lock is taken to appease WITNESS.
696 */
697 mtx_lock(&vnode_list_mtx);
698 vnlru_recalc();
699 mtx_unlock(&vnode_list_mtx);
700 vnode_list_free_marker = vn_alloc_marker(NULL);
701 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
702 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
703 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
704
705#ifdef KASAN
706 ctor = vnode_ctor;
707 dtor = vnode_dtor;
708#else
709 ctor = NULL;
710 dtor = NULL;
711#endif
712 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
713 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
714 uma_zone_set_smr(vnode_zone, vfs_smr);
715
716 /*
717 * Preallocate enough nodes to support one-per buf so that
718 * we can not fail an insert. reassignbuf() callers can not
719 * tolerate the insertion failure.
720 */
721 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
722 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
723 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
724 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
725 uma_prealloc(buf_trie_zone, nbuf);
726
728 recycles_count = counter_u64_alloc(M_WAITOK);
729 recycles_free_count = counter_u64_alloc(M_WAITOK);
730 deferred_inact = counter_u64_alloc(M_WAITOK);
731
732 /*
733 * Initialize the filesystem syncer.
734 */
735 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
736 &syncer_mask);
737 syncer_maxdelay = syncer_mask + 1;
738 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
739 cv_init(&sync_wakeup, "syncer");
740
741 CPU_FOREACH(cpu) {
742 vd = DPCPU_ID_PTR((cpu), vd);
743 bzero(vd, sizeof(*vd));
744 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
745 }
746}
747SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
748
749/*
750 * Mark a mount point as busy. Used to synchronize access and to delay
751 * unmounting. Eventually, mountlist_mtx is not released on failure.
752 *
753 * vfs_busy() is a custom lock, it can block the caller.
754 * vfs_busy() only sleeps if the unmount is active on the mount point.
755 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
756 * vnode belonging to mp.
757 *
758 * Lookup uses vfs_busy() to traverse mount points.
759 * root fs var fs
760 * / vnode lock A / vnode lock (/var) D
761 * /var vnode lock B /log vnode lock(/var/log) E
762 * vfs_busy lock C vfs_busy lock F
763 *
764 * Within each file system, the lock order is C->A->B and F->D->E.
765 *
766 * When traversing across mounts, the system follows that lock order:
767 *
768 * C->A->B
769 * |
770 * +->F->D->E
771 *
772 * The lookup() process for namei("/var") illustrates the process:
773 * VOP_LOOKUP() obtains B while A is held
774 * vfs_busy() obtains a shared lock on F while A and B are held
775 * vput() releases lock on B
776 * vput() releases lock on A
777 * VFS_ROOT() obtains lock on D while shared lock on F is held
778 * vfs_unbusy() releases shared lock on F
779 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
780 * Attempt to lock A (instead of vp_crossmp) while D is held would
781 * violate the global order, causing deadlocks.
782 *
783 * dounmount() locks B while F is drained.
784 */
785int
786vfs_busy(struct mount *mp, int flags)
787{
788 struct mount_pcpu *mpcpu;
789
790 MPASS((flags & ~MBF_MASK) == 0);
791 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
792
793 if (vfs_op_thread_enter(mp, mpcpu)) {
794 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
795 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
796 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
797 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
798 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
799 vfs_op_thread_exit(mp, mpcpu);
800 if (flags & MBF_MNTLSTLOCK)
801 mtx_unlock(&mountlist_mtx);
802 return (0);
803 }
804
805 MNT_ILOCK(mp);
806 vfs_assert_mount_counters(mp);
807 MNT_REF(mp);
808 /*
809 * If mount point is currently being unmounted, sleep until the
810 * mount point fate is decided. If thread doing the unmounting fails,
811 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
812 * that this mount point has survived the unmount attempt and vfs_busy
813 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
814 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
815 * about to be really destroyed. vfs_busy needs to release its
816 * reference on the mount point in this case and return with ENOENT,
817 * telling the caller that mount mount it tried to busy is no longer
818 * valid.
819 */
820 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
821 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
822 ("%s: non-empty upper mount list with pending unmount",
823 __func__));
824 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
825 MNT_REL(mp);
826 MNT_IUNLOCK(mp);
827 CTR1(KTR_VFS, "%s: failed busying before sleeping",
828 __func__);
829 return (ENOENT);
830 }
831 if (flags & MBF_MNTLSTLOCK)
832 mtx_unlock(&mountlist_mtx);
833 mp->mnt_kern_flag |= MNTK_MWAIT;
834 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
835 if (flags & MBF_MNTLSTLOCK)
836 mtx_lock(&mountlist_mtx);
837 MNT_ILOCK(mp);
838 }
839 if (flags & MBF_MNTLSTLOCK)
840 mtx_unlock(&mountlist_mtx);
841 mp->mnt_lockref++;
842 MNT_IUNLOCK(mp);
843 return (0);
844}
845
846/*
847 * Free a busy filesystem.
848 */
849void
850vfs_unbusy(struct mount *mp)
851{
852 struct mount_pcpu *mpcpu;
853 int c;
854
855 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
856
857 if (vfs_op_thread_enter(mp, mpcpu)) {
858 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
859 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
860 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
861 vfs_op_thread_exit(mp, mpcpu);
862 return;
863 }
864
865 MNT_ILOCK(mp);
866 vfs_assert_mount_counters(mp);
867 MNT_REL(mp);
868 c = --mp->mnt_lockref;
869 if (mp->mnt_vfs_ops == 0) {
870 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
871 MNT_IUNLOCK(mp);
872 return;
873 }
874 if (c < 0)
875 vfs_dump_mount_counters(mp);
876 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
877 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
878 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
879 mp->mnt_kern_flag &= ~MNTK_DRAINING;
880 wakeup(&mp->mnt_lockref);
881 }
882 MNT_IUNLOCK(mp);
883}
884
885/*
886 * Lookup a mount point by filesystem identifier.
887 */
888struct mount *
889vfs_getvfs(fsid_t *fsid)
890{
891 struct mount *mp;
892
893 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
894 mtx_lock(&mountlist_mtx);
895 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
896 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
897 vfs_ref(mp);
898 mtx_unlock(&mountlist_mtx);
899 return (mp);
900 }
901 }
902 mtx_unlock(&mountlist_mtx);
903 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
904 return ((struct mount *) 0);
905}
906
907/*
908 * Lookup a mount point by filesystem identifier, busying it before
909 * returning.
910 *
911 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
912 * cache for popular filesystem identifiers. The cache is lockess, using
913 * the fact that struct mount's are never freed. In worst case we may
914 * get pointer to unmounted or even different filesystem, so we have to
915 * check what we got, and go slow way if so.
916 */
917struct mount *
918vfs_busyfs(fsid_t *fsid)
919{
920#define FSID_CACHE_SIZE 256
921 typedef struct mount * volatile vmp_t;
922 static vmp_t cache[FSID_CACHE_SIZE];
923 struct mount *mp;
924 int error;
925 uint32_t hash;
926
927 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
928 hash = fsid->val[0] ^ fsid->val[1];
929 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
930 mp = cache[hash];
931 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
932 goto slow;
933 if (vfs_busy(mp, 0) != 0) {
934 cache[hash] = NULL;
935 goto slow;
936 }
937 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
938 return (mp);
939 else
940 vfs_unbusy(mp);
941
942slow:
943 mtx_lock(&mountlist_mtx);
944 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
945 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
946 error = vfs_busy(mp, MBF_MNTLSTLOCK);
947 if (error) {
948 cache[hash] = NULL;
949 mtx_unlock(&mountlist_mtx);
950 return (NULL);
951 }
952 cache[hash] = mp;
953 return (mp);
954 }
955 }
956 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
957 mtx_unlock(&mountlist_mtx);
958 return ((struct mount *) 0);
959}
960
961/*
962 * Check if a user can access privileged mount options.
963 */
964int
965vfs_suser(struct mount *mp, struct thread *td)
966{
967 int error;
968
969 if (jailed(td->td_ucred)) {
970 /*
971 * If the jail of the calling thread lacks permission for
972 * this type of file system, deny immediately.
973 */
974 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
975 return (EPERM);
976
977 /*
978 * If the file system was mounted outside the jail of the
979 * calling thread, deny immediately.
980 */
981 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
982 return (EPERM);
983 }
984
985 /*
986 * If file system supports delegated administration, we don't check
987 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
988 * by the file system itself.
989 * If this is not the user that did original mount, we check for
990 * the PRIV_VFS_MOUNT_OWNER privilege.
991 */
992 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
993 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
994 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
995 return (error);
996 }
997 return (0);
998}
999
1000/*
1001 * Get a new unique fsid. Try to make its val[0] unique, since this value
1002 * will be used to create fake device numbers for stat(). Also try (but
1003 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1004 * support 16-bit device numbers. We end up with unique val[0]'s for the
1005 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1006 *
1007 * Keep in mind that several mounts may be running in parallel. Starting
1008 * the search one past where the previous search terminated is both a
1009 * micro-optimization and a defense against returning the same fsid to
1010 * different mounts.
1011 */
1012void
1013vfs_getnewfsid(struct mount *mp)
1014{
1015 static uint16_t mntid_base;
1016 struct mount *nmp;
1017 fsid_t tfsid;
1018 int mtype;
1019
1020 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1021 mtx_lock(&mntid_mtx);
1022 mtype = mp->mnt_vfc->vfc_typenum;
1023 tfsid.val[1] = mtype;
1024 mtype = (mtype & 0xFF) << 24;
1025 for (;;) {
1026 tfsid.val[0] = makedev(255,
1027 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1028 mntid_base++;
1029 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1030 break;
1031 vfs_rel(nmp);
1032 }
1033 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1034 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1035 mtx_unlock(&mntid_mtx);
1036}
1037
1038/*
1039 * Knob to control the precision of file timestamps:
1040 *
1041 * 0 = seconds only; nanoseconds zeroed.
1042 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1043 * 2 = seconds and nanoseconds, truncated to microseconds.
1044 * >=3 = seconds and nanoseconds, maximum precision.
1045 */
1047
1049SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1050 &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1051 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1052 "3+: sec + ns (max. precision))");
1053
1054/*
1055 * Get a current timestamp.
1056 */
1057void
1058vfs_timestamp(struct timespec *tsp)
1059{
1060 struct timeval tv;
1061
1062 switch (timestamp_precision) {
1063 case TSP_SEC:
1064 tsp->tv_sec = time_second;
1065 tsp->tv_nsec = 0;
1066 break;
1067 case TSP_HZ:
1068 getnanotime(tsp);
1069 break;
1070 case TSP_USEC:
1071 microtime(&tv);
1072 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1073 break;
1074 case TSP_NSEC:
1075 default:
1076 nanotime(tsp);
1077 break;
1078 }
1079}
1080
1081/*
1082 * Set vnode attributes to VNOVAL
1083 */
1084void
1085vattr_null(struct vattr *vap)
1086{
1087
1088 vap->va_type = VNON;
1089 vap->va_size = VNOVAL;
1090 vap->va_bytes = VNOVAL;
1091 vap->va_mode = VNOVAL;
1092 vap->va_nlink = VNOVAL;
1093 vap->va_uid = VNOVAL;
1094 vap->va_gid = VNOVAL;
1095 vap->va_fsid = VNOVAL;
1096 vap->va_fileid = VNOVAL;
1097 vap->va_blocksize = VNOVAL;
1098 vap->va_rdev = VNOVAL;
1099 vap->va_atime.tv_sec = VNOVAL;
1100 vap->va_atime.tv_nsec = VNOVAL;
1101 vap->va_mtime.tv_sec = VNOVAL;
1102 vap->va_mtime.tv_nsec = VNOVAL;
1103 vap->va_ctime.tv_sec = VNOVAL;
1104 vap->va_ctime.tv_nsec = VNOVAL;
1105 vap->va_birthtime.tv_sec = VNOVAL;
1106 vap->va_birthtime.tv_nsec = VNOVAL;
1107 vap->va_flags = VNOVAL;
1108 vap->va_gen = VNOVAL;
1109 vap->va_vaflags = 0;
1110}
1111
1112/*
1113 * Try to reduce the total number of vnodes.
1114 *
1115 * This routine (and its user) are buggy in at least the following ways:
1116 * - all parameters were picked years ago when RAM sizes were significantly
1117 * smaller
1118 * - it can pick vnodes based on pages used by the vm object, but filesystems
1119 * like ZFS don't use it making the pick broken
1120 * - since ZFS has its own aging policy it gets partially combated by this one
1121 * - a dedicated method should be provided for filesystems to let them decide
1122 * whether the vnode should be recycled
1123 *
1124 * This routine is called when we have too many vnodes. It attempts
1125 * to free <count> vnodes and will potentially free vnodes that still
1126 * have VM backing store (VM backing store is typically the cause
1127 * of a vnode blowout so we want to do this). Therefore, this operation
1128 * is not considered cheap.
1129 *
1130 * A number of conditions may prevent a vnode from being reclaimed.
1131 * the buffer cache may have references on the vnode, a directory
1132 * vnode may still have references due to the namei cache representing
1133 * underlying files, or the vnode may be in active use. It is not
1134 * desirable to reuse such vnodes. These conditions may cause the
1135 * number of vnodes to reach some minimum value regardless of what
1136 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1137 *
1138 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1139 * entries if this argument is strue
1140 * @param trigger Only reclaim vnodes with fewer than this many resident
1141 * pages.
1142 * @param target How many vnodes to reclaim.
1143 * @return The number of vnodes that were reclaimed.
1144 */
1145static int
1146vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1147{
1148 struct vnode *vp, *mvp;
1149 struct mount *mp;
1150 struct vm_object *object;
1151 u_long done;
1152 bool retried;
1153
1154 mtx_assert(&vnode_list_mtx, MA_OWNED);
1155
1156 retried = false;
1157 done = 0;
1158
1159 mvp = vnode_list_reclaim_marker;
1160restart:
1161 vp = mvp;
1162 while (done < target) {
1163 vp = TAILQ_NEXT(vp, v_vnodelist);
1164 if (__predict_false(vp == NULL))
1165 break;
1166
1167 if (__predict_false(vp->v_type == VMARKER))
1168 continue;
1169
1170 /*
1171 * If it's been deconstructed already, it's still
1172 * referenced, or it exceeds the trigger, skip it.
1173 * Also skip free vnodes. We are trying to make space
1174 * to expand the free list, not reduce it.
1175 */
1176 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1177 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1178 goto next_iter;
1179
1180 if (vp->v_type == VBAD || vp->v_type == VNON)
1181 goto next_iter;
1182
1183 object = atomic_load_ptr(&vp->v_object);
1184 if (object == NULL || object->resident_page_count > trigger) {
1185 goto next_iter;
1186 }
1187
1188 /*
1189 * Handle races against vnode allocation. Filesystems lock the
1190 * vnode some time after it gets returned from getnewvnode,
1191 * despite type and hold count being manipulated earlier.
1192 * Resorting to checking v_mount restores guarantees present
1193 * before the global list was reworked to contain all vnodes.
1194 */
1195 if (!VI_TRYLOCK(vp))
1196 goto next_iter;
1197 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1198 VI_UNLOCK(vp);
1199 goto next_iter;
1200 }
1201 if (vp->v_mount == NULL) {
1202 VI_UNLOCK(vp);
1203 goto next_iter;
1204 }
1205 vholdl(vp);
1206 VI_UNLOCK(vp);
1207 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1208 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1209 mtx_unlock(&vnode_list_mtx);
1210
1211 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1212 vdrop_recycle(vp);
1213 goto next_iter_unlocked;
1214 }
1215 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1216 vdrop_recycle(vp);
1218 goto next_iter_unlocked;
1219 }
1220
1221 VI_LOCK(vp);
1222 if (vp->v_usecount > 0 ||
1223 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1224 (vp->v_object != NULL && vp->v_object->handle == vp &&
1225 vp->v_object->resident_page_count > trigger)) {
1226 VOP_UNLOCK(vp);
1227 vdropl_recycle(vp);
1229 goto next_iter_unlocked;
1230 }
1231 counter_u64_add(recycles_count, 1);
1232 vgonel(vp);
1233 VOP_UNLOCK(vp);
1234 vdropl_recycle(vp);
1236 done++;
1237next_iter_unlocked:
1238 if (should_yield())
1239 kern_yield(PRI_USER);
1240 mtx_lock(&vnode_list_mtx);
1241 goto restart;
1242next_iter:
1243 MPASS(vp->v_type != VMARKER);
1244 if (!should_yield())
1245 continue;
1246 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1247 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1248 mtx_unlock(&vnode_list_mtx);
1249 kern_yield(PRI_USER);
1250 mtx_lock(&vnode_list_mtx);
1251 goto restart;
1252 }
1253 if (done == 0 && !retried) {
1254 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1255 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1256 retried = true;
1257 goto restart;
1258 }
1259 return (done);
1260}
1261
1262static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1263SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1264 0,
1265 "limit on vnode free requests per call to the vnlru_free routine");
1266
1267/*
1268 * Attempt to reduce the free list by the requested amount.
1269 */
1270static int
1271vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1272{
1273 struct vnode *vp;
1274 struct mount *mp;
1275 int ocount;
1276
1277 mtx_assert(&vnode_list_mtx, MA_OWNED);
1278 if (count > max_vnlru_free)
1280 ocount = count;
1281 vp = mvp;
1282 for (;;) {
1283 if (count == 0) {
1284 break;
1285 }
1286 vp = TAILQ_NEXT(vp, v_vnodelist);
1287 if (__predict_false(vp == NULL)) {
1288 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1289 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1290 break;
1291 }
1292 if (__predict_false(vp->v_type == VMARKER))
1293 continue;
1294 if (vp->v_holdcnt > 0)
1295 continue;
1296 /*
1297 * Don't recycle if our vnode is from different type
1298 * of mount point. Note that mp is type-safe, the
1299 * check does not reach unmapped address even if
1300 * vnode is reclaimed.
1301 */
1302 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1303 mp->mnt_op != mnt_op) {
1304 continue;
1305 }
1306 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1307 continue;
1308 }
1309 if (!vhold_recycle_free(vp))
1310 continue;
1311 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1312 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1313 mtx_unlock(&vnode_list_mtx);
1314 /*
1315 * FIXME: ignores the return value, meaning it may be nothing
1316 * got recycled but it claims otherwise to the caller.
1317 *
1318 * Originally the value started being ignored in 2005 with
1319 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1320 *
1321 * Respecting the value can run into significant stalls if most
1322 * vnodes belong to one file system and it has writes
1323 * suspended. In presence of many threads and millions of
1324 * vnodes they keep contending on the vnode_list_mtx lock only
1325 * to find vnodes they can't recycle.
1326 *
1327 * The solution would be to pre-check if the vnode is likely to
1328 * be recycle-able, but it needs to happen with the
1329 * vnode_list_mtx lock held. This runs into a problem where
1330 * VOP_GETWRITEMOUNT (currently needed to find out about if
1331 * writes are frozen) can take locks which LOR against it.
1332 *
1333 * Check nullfs for one example (null_getwritemount).
1334 */
1335 vtryrecycle(vp);
1336 count--;
1337 mtx_lock(&vnode_list_mtx);
1338 vp = mvp;
1339 }
1340 return (ocount - count);
1341}
1342
1343static int
1345{
1346
1347 mtx_assert(&vnode_list_mtx, MA_OWNED);
1348 return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1349}
1350
1351void
1352vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1353{
1354
1355 MPASS(mnt_op != NULL);
1356 MPASS(mvp != NULL);
1357 VNPASS(mvp->v_type == VMARKER, mvp);
1358 mtx_lock(&vnode_list_mtx);
1359 vnlru_free_impl(count, mnt_op, mvp);
1360 mtx_unlock(&vnode_list_mtx);
1361}
1362
1363struct vnode *
1365{
1366 struct vnode *mvp;
1367
1368 mvp = vn_alloc_marker(NULL);
1369 mtx_lock(&vnode_list_mtx);
1370 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1371 mtx_unlock(&vnode_list_mtx);
1372 return (mvp);
1373}
1374
1375void
1376vnlru_free_marker(struct vnode *mvp)
1377{
1378 mtx_lock(&vnode_list_mtx);
1379 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1380 mtx_unlock(&vnode_list_mtx);
1381 vn_free_marker(mvp);
1382}
1383
1384static void
1386{
1387
1388 mtx_assert(&vnode_list_mtx, MA_OWNED);
1389 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1390 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1391 vlowat = vhiwat / 2;
1392}
1393
1394/*
1395 * Attempt to recycle vnodes in a context that is always safe to block.
1396 * Calling vlrurecycle() from the bowels of filesystem code has some
1397 * interesting deadlock problems.
1398 */
1399static struct proc *vnlruproc;
1400static int vnlruproc_sig;
1401
1402/*
1403 * The main freevnodes counter is only updated when threads requeue their vnode
1404 * batches. CPUs are conditionally walked to compute a more accurate total.
1405 *
1406 * Limit how much of a slop are we willing to tolerate. Note: the actual value
1407 * at any given moment can still exceed slop, but it should not be by significant
1408 * margin in practice.
1409 */
1410#define VNLRU_FREEVNODES_SLOP 128
1411
1412static __inline void
1414{
1415 struct vdbatch *vd;
1416
1417 critical_enter();
1418 vd = DPCPU_PTR(vd);
1419 vd->freevnodes++;
1420 critical_exit();
1421}
1422
1423static __inline void
1425{
1426 struct vdbatch *vd;
1427
1428 critical_enter();
1429 vd = DPCPU_PTR(vd);
1430 vd->freevnodes--;
1431 critical_exit();
1432}
1433
1434static u_long
1436{
1437 struct vdbatch *vd;
1438 long slop;
1439 int cpu;
1440
1441 mtx_assert(&vnode_list_mtx, MA_OWNED);
1442 if (freevnodes > freevnodes_old)
1443 slop = freevnodes - freevnodes_old;
1444 else
1445 slop = freevnodes_old - freevnodes;
1446 if (slop < VNLRU_FREEVNODES_SLOP)
1447 return (freevnodes >= 0 ? freevnodes : 0);
1448 freevnodes_old = freevnodes;
1449 CPU_FOREACH(cpu) {
1450 vd = DPCPU_ID_PTR((cpu), vd);
1451 freevnodes_old += vd->freevnodes;
1452 }
1453 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1454}
1455
1456static bool
1457vnlru_under(u_long rnumvnodes, u_long limit)
1458{
1459 u_long rfreevnodes, space;
1460
1461 if (__predict_false(rnumvnodes > desiredvnodes))
1462 return (true);
1463
1464 space = desiredvnodes - rnumvnodes;
1465 if (space < limit) {
1466 rfreevnodes = vnlru_read_freevnodes();
1467 if (rfreevnodes > wantfreevnodes)
1468 space += rfreevnodes - wantfreevnodes;
1469 }
1470 return (space < limit);
1471}
1472
1473static bool
1474vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1475{
1476 long rfreevnodes, space;
1477
1478 if (__predict_false(rnumvnodes > desiredvnodes))
1479 return (true);
1480
1481 space = desiredvnodes - rnumvnodes;
1482 if (space < limit) {
1483 rfreevnodes = atomic_load_long(&freevnodes);
1484 if (rfreevnodes > wantfreevnodes)
1485 space += rfreevnodes - wantfreevnodes;
1486 }
1487 return (space < limit);
1488}
1489
1490static void
1492{
1493
1494 mtx_assert(&vnode_list_mtx, MA_OWNED);
1495 if (vnlruproc_sig == 0) {
1496 vnlruproc_sig = 1;
1498 }
1499}
1500
1501static void
1503{
1504 u_long rnumvnodes, rfreevnodes, target;
1505 unsigned long onumvnodes;
1506 int done, force, trigger, usevnodes;
1507 bool reclaim_nc_src, want_reread;
1508
1509 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1510 SHUTDOWN_PRI_FIRST);
1511
1512 force = 0;
1513 want_reread = false;
1514 for (;;) {
1516 mtx_lock(&vnode_list_mtx);
1517 rnumvnodes = atomic_load_long(&numvnodes);
1518
1519 if (want_reread) {
1520 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1521 want_reread = false;
1522 }
1523
1524 /*
1525 * If numvnodes is too large (due to desiredvnodes being
1526 * adjusted using its sysctl, or emergency growth), first
1527 * try to reduce it by discarding from the free list.
1528 */
1529 if (rnumvnodes > desiredvnodes) {
1530 vnlru_free_locked(rnumvnodes - desiredvnodes);
1531 rnumvnodes = atomic_load_long(&numvnodes);
1532 }
1533 /*
1534 * Sleep if the vnode cache is in a good state. This is
1535 * when it is not over-full and has space for about a 4%
1536 * or 9% expansion (by growing its size or inexcessively
1537 * reducing its free list). Otherwise, try to reclaim
1538 * space for a 10% expansion.
1539 */
1540 if (vstir && force == 0) {
1541 force = 1;
1542 vstir = 0;
1543 }
1544 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1545 vnlruproc_sig = 0;
1547 msleep(vnlruproc, &vnode_list_mtx,
1548 PVFS|PDROP, "vlruwt", hz);
1549 continue;
1550 }
1551 rfreevnodes = vnlru_read_freevnodes();
1552
1553 onumvnodes = rnumvnodes;
1554 /*
1555 * Calculate parameters for recycling. These are the same
1556 * throughout the loop to give some semblance of fairness.
1557 * The trigger point is to avoid recycling vnodes with lots
1558 * of resident pages. We aren't trying to free memory; we
1559 * are trying to recycle or at least free vnodes.
1560 */
1561 if (rnumvnodes <= desiredvnodes)
1562 usevnodes = rnumvnodes - rfreevnodes;
1563 else
1564 usevnodes = rnumvnodes;
1565 if (usevnodes <= 0)
1566 usevnodes = 1;
1567 /*
1568 * The trigger value is is chosen to give a conservatively
1569 * large value to ensure that it alone doesn't prevent
1570 * making progress. The value can easily be so large that
1571 * it is effectively infinite in some congested and
1572 * misconfigured cases, and this is necessary. Normally
1573 * it is about 8 to 100 (pages), which is quite large.
1574 */
1575 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1576 if (force < 2)
1577 trigger = vsmalltrigger;
1578 reclaim_nc_src = force >= 3;
1579 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1580 target = target / 10 + 1;
1581 done = vlrureclaim(reclaim_nc_src, trigger, target);
1582 mtx_unlock(&vnode_list_mtx);
1583 if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1584 uma_reclaim(UMA_RECLAIM_DRAIN);
1585 if (done == 0) {
1586 if (force == 0 || force == 1) {
1587 force = 2;
1588 continue;
1589 }
1590 if (force == 2) {
1591 force = 3;
1592 continue;
1593 }
1594 want_reread = true;
1595 force = 0;
1596 vnlru_nowhere++;
1597 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1598 } else {
1599 want_reread = true;
1600 kern_yield(PRI_USER);
1601 }
1602 }
1603}
1604
1605static struct kproc_desc vnlru_kp = {
1606 "vnlru",
1607 vnlru_proc,
1608 &vnlruproc
1609};
1610SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1611 &vnlru_kp);
1612
1613/*
1614 * Routines having to do with the management of the vnode table.
1615 */
1616
1617/*
1618 * Try to recycle a freed vnode. We abort if anyone picks up a reference
1619 * before we actually vgone(). This function must be called with the vnode
1620 * held to prevent the vnode from being returned to the free list midway
1621 * through vgone().
1622 */
1623static int
1624vtryrecycle(struct vnode *vp)
1625{
1626 struct mount *vnmp;
1627
1628 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1629 VNASSERT(vp->v_holdcnt, vp,
1630 ("vtryrecycle: Recycling vp %p without a reference.", vp));
1631 /*
1632 * This vnode may found and locked via some other list, if so we
1633 * can't recycle it yet.
1634 */
1635 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1636 CTR2(KTR_VFS,
1637 "%s: impossible to recycle, vp %p lock is already held",
1638 __func__, vp);
1639 vdrop_recycle(vp);
1640 return (EWOULDBLOCK);
1641 }
1642 /*
1643 * Don't recycle if its filesystem is being suspended.
1644 */
1645 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1646 VOP_UNLOCK(vp);
1647 CTR2(KTR_VFS,
1648 "%s: impossible to recycle, cannot start the write for %p",
1649 __func__, vp);
1650 vdrop_recycle(vp);
1651 return (EBUSY);
1652 }
1653 /*
1654 * If we got this far, we need to acquire the interlock and see if
1655 * anyone picked up this vnode from another list. If not, we will
1656 * mark it with DOOMED via vgonel() so that anyone who does find it
1657 * will skip over it.
1658 */
1659 VI_LOCK(vp);
1660 if (vp->v_usecount) {
1661 VOP_UNLOCK(vp);
1662 vdropl_recycle(vp);
1663 vn_finished_write(vnmp);
1664 CTR2(KTR_VFS,
1665 "%s: impossible to recycle, %p is already referenced",
1666 __func__, vp);
1667 return (EBUSY);
1668 }
1669 if (!VN_IS_DOOMED(vp)) {
1670 counter_u64_add(recycles_free_count, 1);
1671 vgonel(vp);
1672 }
1673 VOP_UNLOCK(vp);
1674 vdropl_recycle(vp);
1675 vn_finished_write(vnmp);
1676 return (0);
1677}
1678
1679/*
1680 * Allocate a new vnode.
1681 *
1682 * The operation never returns an error. Returning an error was disabled
1683 * in r145385 (dated 2005) with the following comment:
1684 *
1685 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1686 *
1687 * Given the age of this commit (almost 15 years at the time of writing this
1688 * comment) restoring the ability to fail requires a significant audit of
1689 * all codepaths.
1690 *
1691 * The routine can try to free a vnode or stall for up to 1 second waiting for
1692 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1693 */
1695
1696static struct vnode * __noinline
1697vn_alloc_hard(struct mount *mp)
1698{
1699 u_long rnumvnodes, rfreevnodes;
1700
1701 mtx_lock(&vnode_list_mtx);
1702 rnumvnodes = atomic_load_long(&numvnodes);
1703 if (rnumvnodes + 1 < desiredvnodes) {
1705 goto alloc;
1706 }
1707 rfreevnodes = vnlru_read_freevnodes();
1708 if (vn_alloc_cyclecount++ >= rfreevnodes) {
1710 vstir = 1;
1711 }
1712 /*
1713 * Grow the vnode cache if it will not be above its target max
1714 * after growing. Otherwise, if the free list is nonempty, try
1715 * to reclaim 1 item from it before growing the cache (possibly
1716 * above its target max if the reclamation failed or is delayed).
1717 * Otherwise, wait for some space. In all cases, schedule
1718 * vnlru_proc() if we are getting short of space. The watermarks
1719 * should be chosen so that we never wait or even reclaim from
1720 * the free list to below its target minimum.
1721 */
1722 if (vnlru_free_locked(1) > 0)
1723 goto alloc;
1724 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1725 /*
1726 * Wait for space for a new vnode.
1727 */
1728 vnlru_kick();
1729 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1730 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1733 }
1734alloc:
1735 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1736 if (vnlru_under(rnumvnodes, vlowat))
1737 vnlru_kick();
1738 mtx_unlock(&vnode_list_mtx);
1739 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1740}
1741
1742static struct vnode *
1743vn_alloc(struct mount *mp)
1744{
1745 u_long rnumvnodes;
1746
1747 if (__predict_false(vn_alloc_cyclecount != 0))
1748 return (vn_alloc_hard(mp));
1749 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1750 if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1751 atomic_subtract_long(&numvnodes, 1);
1752 return (vn_alloc_hard(mp));
1753 }
1754
1755 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1756}
1757
1758static void
1759vn_free(struct vnode *vp)
1760{
1761
1762 atomic_subtract_long(&numvnodes, 1);
1763 uma_zfree_smr(vnode_zone, vp);
1764}
1765
1766/*
1767 * Return the next vnode from the free list.
1768 */
1769int
1770getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1771 struct vnode **vpp)
1772{
1773 struct vnode *vp;
1774 struct thread *td;
1775 struct lock_object *lo;
1776
1777 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1778
1779 KASSERT(vops->registered,
1780 ("%s: not registered vector op %p\n", __func__, vops));
1781
1782 td = curthread;
1783 if (td->td_vp_reserved != NULL) {
1784 vp = td->td_vp_reserved;
1785 td->td_vp_reserved = NULL;
1786 } else {
1787 vp = vn_alloc(mp);
1788 }
1789 counter_u64_add(vnodes_created, 1);
1790 /*
1791 * Locks are given the generic name "vnode" when created.
1792 * Follow the historic practice of using the filesystem
1793 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1794 *
1795 * Locks live in a witness group keyed on their name. Thus,
1796 * when a lock is renamed, it must also move from the witness
1797 * group of its old name to the witness group of its new name.
1798 *
1799 * The change only needs to be made when the vnode moves
1800 * from one filesystem type to another. We ensure that each
1801 * filesystem use a single static name pointer for its tag so
1802 * that we can compare pointers rather than doing a strcmp().
1803 */
1804 lo = &vp->v_vnlock->lock_object;
1805#ifdef WITNESS
1806 if (lo->lo_name != tag) {
1807#endif
1808 lo->lo_name = tag;
1809#ifdef WITNESS
1810 WITNESS_DESTROY(lo);
1811 WITNESS_INIT(lo, tag);
1812 }
1813#endif
1814 /*
1815 * By default, don't allow shared locks unless filesystems opt-in.
1816 */
1817 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1818 /*
1819 * Finalize various vnode identity bits.
1820 */
1821 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1822 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1823 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1824 vp->v_type = VNON;
1825 vp->v_op = vops;
1826 vp->v_irflag = 0;
1827 v_init_counters(vp);
1828 vn_seqc_init(vp);
1829 vp->v_bufobj.bo_ops = &buf_ops_bio;
1830#ifdef DIAGNOSTIC
1831 if (mp == NULL && vops != &dead_vnodeops)
1832 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1833#endif
1834#ifdef MAC
1835 mac_vnode_init(vp);
1836 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1837 mac_vnode_associate_singlelabel(mp, vp);
1838#endif
1839 if (mp != NULL) {
1840 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1841 }
1842
1843 /*
1844 * For the filesystems which do not use vfs_hash_insert(),
1845 * still initialize v_hash to have vfs_hash_index() useful.
1846 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1847 * its own hashing.
1848 */
1849 vp->v_hash = (uintptr_t)vp >> vnsz2log;
1850
1851 *vpp = vp;
1852 return (0);
1853}
1854
1855void
1857{
1858 struct thread *td;
1859
1860 td = curthread;
1861 MPASS(td->td_vp_reserved == NULL);
1862 td->td_vp_reserved = vn_alloc(NULL);
1863}
1864
1865void
1867{
1868 struct thread *td;
1869
1870 td = curthread;
1871 if (td->td_vp_reserved != NULL) {
1872 vn_free(td->td_vp_reserved);
1873 td->td_vp_reserved = NULL;
1874 }
1875}
1876
1877static void __noinline
1878freevnode(struct vnode *vp)
1879{
1880 struct bufobj *bo;
1881
1882 /*
1883 * The vnode has been marked for destruction, so free it.
1884 *
1885 * The vnode will be returned to the zone where it will
1886 * normally remain until it is needed for another vnode. We
1887 * need to cleanup (or verify that the cleanup has already
1888 * been done) any residual data left from its current use
1889 * so as not to contaminate the freshly allocated vnode.
1890 */
1891 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1892 /*
1893 * Paired with vgone.
1894 */
1896
1897 bo = &vp->v_bufobj;
1898 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1899 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1900 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1901 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1902 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1903 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1904 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1905 ("clean blk trie not empty"));
1906 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1907 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1908 ("dirty blk trie not empty"));
1909 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1910 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1911 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1912 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1913 ("Dangling rangelock waiters"));
1914 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1915 ("Leaked inactivation"));
1916 VI_UNLOCK(vp);
1917#ifdef MAC
1918 mac_vnode_destroy(vp);
1919#endif
1920 if (vp->v_pollinfo != NULL) {
1921 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1922 destroy_vpollinfo(vp->v_pollinfo);
1923 VOP_UNLOCK(vp);
1924 vp->v_pollinfo = NULL;
1925 }
1926 vp->v_mountedhere = NULL;
1927 vp->v_unpcb = NULL;
1928 vp->v_rdev = NULL;
1929 vp->v_fifoinfo = NULL;
1930 vp->v_iflag = 0;
1931 vp->v_vflag = 0;
1932 bo->bo_flag = 0;
1933 vn_free(vp);
1934}
1935
1936/*
1937 * Delete from old mount point vnode list, if on one.
1938 */
1939static void
1940delmntque(struct vnode *vp)
1941{
1942 struct mount *mp;
1943
1944 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1945
1946 mp = vp->v_mount;
1947 if (mp == NULL)
1948 return;
1949 MNT_ILOCK(mp);
1950 VI_LOCK(vp);
1951 vp->v_mount = NULL;
1952 VI_UNLOCK(vp);
1953 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1954 ("bad mount point vnode list size"));
1955 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1956 mp->mnt_nvnodelistsize--;
1957 MNT_REL(mp);
1958 MNT_IUNLOCK(mp);
1959}
1960
1961static int
1962insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1963{
1964
1965 KASSERT(vp->v_mount == NULL,
1966 ("insmntque: vnode already on per mount vnode list"));
1967 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1968 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1969 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1970 } else {
1971 KASSERT(!dtr,
1972 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1973 __func__));
1974 }
1975
1976 /*
1977 * We acquire the vnode interlock early to ensure that the
1978 * vnode cannot be recycled by another process releasing a
1979 * holdcnt on it before we get it on both the vnode list
1980 * and the active vnode list. The mount mutex protects only
1981 * manipulation of the vnode list and the vnode freelist
1982 * mutex protects only manipulation of the active vnode list.
1983 * Hence the need to hold the vnode interlock throughout.
1984 */
1985 MNT_ILOCK(mp);
1986 VI_LOCK(vp);
1987 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1988 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1989 mp->mnt_nvnodelistsize == 0)) &&
1990 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1991 VI_UNLOCK(vp);
1992 MNT_IUNLOCK(mp);
1993 if (dtr) {
1994 vp->v_data = NULL;
1995 vp->v_op = &dead_vnodeops;
1996 vgone(vp);
1997 vput(vp);
1998 }
1999 return (EBUSY);
2000 }
2001 vp->v_mount = mp;
2002 MNT_REF(mp);
2003 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2004 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2005 ("neg mount point vnode list size"));
2006 mp->mnt_nvnodelistsize++;
2007 VI_UNLOCK(vp);
2008 MNT_IUNLOCK(mp);
2009 return (0);
2010}
2011
2012/*
2013 * Insert into list of vnodes for the new mount point, if available.
2014 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2015 * leaves handling of the vnode to the caller.
2016 */
2017int
2018insmntque(struct vnode *vp, struct mount *mp)
2019{
2020 return (insmntque1_int(vp, mp, true));
2021}
2022
2023int
2024insmntque1(struct vnode *vp, struct mount *mp)
2025{
2026 return (insmntque1_int(vp, mp, false));
2027}
2028
2029/*
2030 * Flush out and invalidate all buffers associated with a bufobj
2031 * Called with the underlying object locked.
2032 */
2033int
2034bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2035{
2036 int error;
2037
2038 BO_LOCK(bo);
2039 if (flags & V_SAVE) {
2040 error = bufobj_wwait(bo, slpflag, slptimeo);
2041 if (error) {
2042 BO_UNLOCK(bo);
2043 return (error);
2044 }
2045 if (bo->bo_dirty.bv_cnt > 0) {
2046 BO_UNLOCK(bo);
2047 do {
2048 error = BO_SYNC(bo, MNT_WAIT);
2049 } while (error == ERELOOKUP);
2050 if (error != 0)
2051 return (error);
2052 BO_LOCK(bo);
2053 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2054 BO_UNLOCK(bo);
2055 return (EBUSY);
2056 }
2057 }
2058 }
2059 /*
2060 * If you alter this loop please notice that interlock is dropped and
2061 * reacquired in flushbuflist. Special care is needed to ensure that
2062 * no race conditions occur from this.
2063 */
2064 do {
2065 error = flushbuflist(&bo->bo_clean,
2066 flags, bo, slpflag, slptimeo);
2067 if (error == 0 && !(flags & V_CLEANONLY))
2068 error = flushbuflist(&bo->bo_dirty,
2069 flags, bo, slpflag, slptimeo);
2070 if (error != 0 && error != EAGAIN) {
2071 BO_UNLOCK(bo);
2072 return (error);
2073 }
2074 } while (error != 0);
2075
2076 /*
2077 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2078 * have write I/O in-progress but if there is a VM object then the
2079 * VM object can also have read-I/O in-progress.
2080 */
2081 do {
2082 bufobj_wwait(bo, 0, 0);
2083 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2084 BO_UNLOCK(bo);
2085 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2086 BO_LOCK(bo);
2087 }
2088 } while (bo->bo_numoutput > 0);
2089 BO_UNLOCK(bo);
2090
2091 /*
2092 * Destroy the copy in the VM cache, too.
2093 */
2094 if (bo->bo_object != NULL &&
2095 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2096 VM_OBJECT_WLOCK(bo->bo_object);
2097 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2098 OBJPR_CLEANONLY : 0);
2099 VM_OBJECT_WUNLOCK(bo->bo_object);
2100 }
2101
2102#ifdef INVARIANTS
2103 BO_LOCK(bo);
2104 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2105 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2106 bo->bo_clean.bv_cnt > 0))
2107 panic("vinvalbuf: flush failed");
2108 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2109 bo->bo_dirty.bv_cnt > 0)
2110 panic("vinvalbuf: flush dirty failed");
2111 BO_UNLOCK(bo);
2112#endif
2113 return (0);
2114}
2115
2116/*
2117 * Flush out and invalidate all buffers associated with a vnode.
2118 * Called with the underlying object locked.
2119 */
2120int
2121vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2122{
2123
2124 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2125 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2126 if (vp->v_object != NULL && vp->v_object->handle != vp)
2127 return (0);
2128 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2129}
2130
2131/*
2132 * Flush out buffers on the specified list.
2133 *
2134 */
2135static int
2136flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2137 int slptimeo)
2138{
2139 struct buf *bp, *nbp;
2140 int retval, error;
2141 daddr_t lblkno;
2142 b_xflags_t xflags;
2143
2144 ASSERT_BO_WLOCKED(bo);
2145
2146 retval = 0;
2147 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2148 /*
2149 * If we are flushing both V_NORMAL and V_ALT buffers then
2150 * do not skip any buffers. If we are flushing only V_NORMAL
2151 * buffers then skip buffers marked as BX_ALTDATA. If we are
2152 * flushing only V_ALT buffers then skip buffers not marked
2153 * as BX_ALTDATA.
2154 */
2155 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2156 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2157 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2158 continue;
2159 }
2160 if (nbp != NULL) {
2161 lblkno = nbp->b_lblkno;
2162 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2163 }
2164 retval = EAGAIN;
2165 error = BUF_TIMELOCK(bp,
2166 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2167 "flushbuf", slpflag, slptimeo);
2168 if (error) {
2169 BO_LOCK(bo);
2170 return (error != ENOLCK ? error : EAGAIN);
2171 }
2172 KASSERT(bp->b_bufobj == bo,
2173 ("bp %p wrong b_bufobj %p should be %p",
2174 bp, bp->b_bufobj, bo));
2175 /*
2176 * XXX Since there are no node locks for NFS, I
2177 * believe there is a slight chance that a delayed
2178 * write will occur while sleeping just above, so
2179 * check for it.
2180 */
2181 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2182 (flags & V_SAVE)) {
2183 bremfree(bp);
2184 bp->b_flags |= B_ASYNC;
2185 bwrite(bp);
2186 BO_LOCK(bo);
2187 return (EAGAIN); /* XXX: why not loop ? */
2188 }
2189 bremfree(bp);
2190 bp->b_flags |= (B_INVAL | B_RELBUF);
2191 bp->b_flags &= ~B_ASYNC;
2192 brelse(bp);
2193 BO_LOCK(bo);
2194 if (nbp == NULL)
2195 break;
2196 nbp = gbincore(bo, lblkno);
2197 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2198 != xflags)
2199 break; /* nbp invalid */
2200 }
2201 return (retval);
2202}
2203
2204int
2205bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2206{
2207 struct buf *bp;
2208 int error;
2209 daddr_t lblkno;
2210
2211 ASSERT_BO_LOCKED(bo);
2212
2213 for (lblkno = startn;;) {
2214again:
2215 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2216 if (bp == NULL || bp->b_lblkno >= endn ||
2217 bp->b_lblkno < startn)
2218 break;
2219 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2220 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2221 if (error != 0) {
2222 BO_RLOCK(bo);
2223 if (error == ENOLCK)
2224 goto again;
2225 return (error);
2226 }
2227 KASSERT(bp->b_bufobj == bo,
2228 ("bp %p wrong b_bufobj %p should be %p",
2229 bp, bp->b_bufobj, bo));
2230 lblkno = bp->b_lblkno + 1;
2231 if ((bp->b_flags & B_MANAGED) == 0)
2232 bremfree(bp);
2233 bp->b_flags |= B_RELBUF;
2234 /*
2235 * In the VMIO case, use the B_NOREUSE flag to hint that the
2236 * pages backing each buffer in the range are unlikely to be
2237 * reused. Dirty buffers will have the hint applied once
2238 * they've been written.
2239 */
2240 if ((bp->b_flags & B_VMIO) != 0)
2241 bp->b_flags |= B_NOREUSE;
2242 brelse(bp);
2243 BO_RLOCK(bo);
2244 }
2245 return (0);
2246}
2247
2248/*
2249 * Truncate a file's buffer and pages to a specified length. This
2250 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2251 * sync activity.
2252 */
2253int
2254vtruncbuf(struct vnode *vp, off_t length, int blksize)
2255{
2256 struct buf *bp, *nbp;
2257 struct bufobj *bo;
2258 daddr_t startlbn;
2259
2260 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2261 vp, blksize, (uintmax_t)length);
2262
2263 /*
2264 * Round up to the *next* lbn.
2265 */
2266 startlbn = howmany(length, blksize);
2267
2268 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2269
2270 bo = &vp->v_bufobj;
2271restart_unlocked:
2272 BO_LOCK(bo);
2273
2274 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2275 ;
2276
2277 if (length > 0) {
2278restartsync:
2279 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2280 if (bp->b_lblkno > 0)
2281 continue;
2282 /*
2283 * Since we hold the vnode lock this should only
2284 * fail if we're racing with the buf daemon.
2285 */
2286 if (BUF_LOCK(bp,
2287 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2288 BO_LOCKPTR(bo)) == ENOLCK)
2289 goto restart_unlocked;
2290
2291 VNASSERT((bp->b_flags & B_DELWRI), vp,
2292 ("buf(%p) on dirty queue without DELWRI", bp));
2293
2294 bremfree(bp);
2295 bawrite(bp);
2296 BO_LOCK(bo);
2297 goto restartsync;
2298 }
2299 }
2300
2301 bufobj_wwait(bo, 0, 0);
2302 BO_UNLOCK(bo);
2303 vnode_pager_setsize(vp, length);
2304
2305 return (0);
2306}
2307
2308/*
2309 * Invalidate the cached pages of a file's buffer within the range of block
2310 * numbers [startlbn, endlbn).
2311 */
2312void
2313v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2314 int blksize)
2315{
2316 struct bufobj *bo;
2317 off_t start, end;
2318
2319 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2320
2321 start = blksize * startlbn;
2322 end = blksize * endlbn;
2323
2324 bo = &vp->v_bufobj;
2325 BO_LOCK(bo);
2326 MPASS(blksize == bo->bo_bsize);
2327
2328 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2329 ;
2330
2331 BO_UNLOCK(bo);
2332 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2333}
2334
2335static int
2336v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2337 daddr_t startlbn, daddr_t endlbn)
2338{
2339 struct buf *bp, *nbp;
2340 bool anyfreed;
2341
2342 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2343 ASSERT_BO_LOCKED(bo);
2344
2345 do {
2346 anyfreed = false;
2347 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2348 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2349 continue;
2350 if (BUF_LOCK(bp,
2351 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2352 BO_LOCKPTR(bo)) == ENOLCK) {
2353 BO_LOCK(bo);
2354 return (EAGAIN);
2355 }
2356
2357 bremfree(bp);
2358 bp->b_flags |= B_INVAL | B_RELBUF;
2359 bp->b_flags &= ~B_ASYNC;
2360 brelse(bp);
2361 anyfreed = true;
2362
2363 BO_LOCK(bo);
2364 if (nbp != NULL &&
2365 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2366 nbp->b_vp != vp ||
2367 (nbp->b_flags & B_DELWRI) != 0))
2368 return (EAGAIN);
2369 }
2370
2371 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2372 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2373 continue;
2374 if (BUF_LOCK(bp,
2375 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2376 BO_LOCKPTR(bo)) == ENOLCK) {
2377 BO_LOCK(bo);
2378 return (EAGAIN);
2379 }
2380 bremfree(bp);
2381 bp->b_flags |= B_INVAL | B_RELBUF;
2382 bp->b_flags &= ~B_ASYNC;
2383 brelse(bp);
2384 anyfreed = true;
2385
2386 BO_LOCK(bo);
2387 if (nbp != NULL &&
2388 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2389 (nbp->b_vp != vp) ||
2390 (nbp->b_flags & B_DELWRI) == 0))
2391 return (EAGAIN);
2392 }
2393 } while (anyfreed);
2394 return (0);
2395}
2396
2397static void
2399{
2400 struct bufv *bv;
2401 b_xflags_t flags;
2402
2403 flags = bp->b_xflags;
2404
2405 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2406 ASSERT_BO_WLOCKED(bp->b_bufobj);
2407 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2408 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2409 ("%s: buffer %p has invalid queue state", __func__, bp));
2410
2411 if ((flags & BX_VNDIRTY) != 0)
2412 bv = &bp->b_bufobj->bo_dirty;
2413 else
2414 bv = &bp->b_bufobj->bo_clean;
2415 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2416 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2417 bv->bv_cnt--;
2418 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2419}
2420
2421/*
2422 * Add the buffer to the sorted clean or dirty block list.
2423 *
2424 * NOTE: xflags is passed as a constant, optimizing this inline function!
2425 */
2426static void
2427buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2428{
2429 struct bufv *bv;
2430 struct buf *n;
2431 int error;
2432
2433 ASSERT_BO_WLOCKED(bo);
2434 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2435 ("buf_vlist_add: bo %p does not allow bufs", bo));
2436 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2437 ("dead bo %p", bo));
2438 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2439 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2440 bp->b_xflags |= xflags;
2441 if (xflags & BX_VNDIRTY)
2442 bv = &bo->bo_dirty;
2443 else
2444 bv = &bo->bo_clean;
2445
2446 /*
2447 * Keep the list ordered. Optimize empty list insertion. Assume
2448 * we tend to grow at the tail so lookup_le should usually be cheaper
2449 * than _ge.
2450 */
2451 if (bv->bv_cnt == 0 ||
2452 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2453 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2454 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2455 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2456 else
2457 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2458 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2459 if (error)
2460 panic("buf_vlist_add: Preallocated nodes insufficient.");
2461 bv->bv_cnt++;
2462}
2463
2464/*
2465 * Look up a buffer using the buffer tries.
2466 */
2467struct buf *
2468gbincore(struct bufobj *bo, daddr_t lblkno)
2469{
2470 struct buf *bp;
2471
2472 ASSERT_BO_LOCKED(bo);
2473 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2474 if (bp != NULL)
2475 return (bp);
2476 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2477}
2478
2479/*
2480 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2481 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2482 * stability of the result. Like other lockless lookups, the found buf may
2483 * already be invalid by the time this function returns.
2484 */
2485struct buf *
2486gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2487{
2488 struct buf *bp;
2489
2490 ASSERT_BO_UNLOCKED(bo);
2491 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2492 if (bp != NULL)
2493 return (bp);
2494 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2495}
2496
2497/*
2498 * Associate a buffer with a vnode.
2499 */
2500void
2501bgetvp(struct vnode *vp, struct buf *bp)
2502{
2503 struct bufobj *bo;
2504
2505 bo = &vp->v_bufobj;
2506 ASSERT_BO_WLOCKED(bo);
2507 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2508
2509 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2510 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2511 ("bgetvp: bp already attached! %p", bp));
2512
2513 vhold(vp);
2514 bp->b_vp = vp;
2515 bp->b_bufobj = bo;
2516 /*
2517 * Insert onto list for new vnode.
2518 */
2519 buf_vlist_add(bp, bo, BX_VNCLEAN);
2520}
2521
2522/*
2523 * Disassociate a buffer from a vnode.
2524 */
2525void
2526brelvp(struct buf *bp)
2527{
2528 struct bufobj *bo;
2529 struct vnode *vp;
2530
2531 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2532 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2533
2534 /*
2535 * Delete from old vnode list, if on one.
2536 */
2537 vp = bp->b_vp; /* XXX */
2538 bo = bp->b_bufobj;
2539 BO_LOCK(bo);
2540 buf_vlist_remove(bp);
2541 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2542 bo->bo_flag &= ~BO_ONWORKLST;
2543 mtx_lock(&sync_mtx);
2544 LIST_REMOVE(bo, bo_synclist);
2546 mtx_unlock(&sync_mtx);
2547 }
2548 bp->b_vp = NULL;
2549 bp->b_bufobj = NULL;
2550 BO_UNLOCK(bo);
2551 vdrop(vp);
2552}
2553
2554/*
2555 * Add an item to the syncer work queue.
2556 */
2557static void
2558vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2559{
2560 int slot;
2561
2562 ASSERT_BO_WLOCKED(bo);
2563
2564 mtx_lock(&sync_mtx);
2565 if (bo->bo_flag & BO_ONWORKLST)
2566 LIST_REMOVE(bo, bo_synclist);
2567 else {
2568 bo->bo_flag |= BO_ONWORKLST;
2570 }
2571
2572 if (delay > syncer_maxdelay - 2)
2573 delay = syncer_maxdelay - 2;
2574 slot = (syncer_delayno + delay) & syncer_mask;
2575
2576 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2577 mtx_unlock(&sync_mtx);
2578}
2579
2580static int
2581sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2582{
2583 int error, len;
2584
2585 mtx_lock(&sync_mtx);
2587 mtx_unlock(&sync_mtx);
2588 error = SYSCTL_OUT(req, &len, sizeof(len));
2589 return (error);
2590}
2591
2592SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2593 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2594 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2595
2596static struct proc *updateproc;
2597static void sched_sync(void);
2598static struct kproc_desc up_kp = {
2599 "syncer",
2600 sched_sync,
2601 &updateproc
2602};
2603SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2604
2605static int
2606sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2607{
2608 struct vnode *vp;
2609 struct mount *mp;
2610
2611 *bo = LIST_FIRST(slp);
2612 if (*bo == NULL)
2613 return (0);
2614 vp = bo2vnode(*bo);
2615 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2616 return (1);
2617 /*
2618 * We use vhold in case the vnode does not
2619 * successfully sync. vhold prevents the vnode from
2620 * going away when we unlock the sync_mtx so that
2621 * we can acquire the vnode interlock.
2622 */
2623 vholdl(vp);
2624 mtx_unlock(&sync_mtx);
2625 VI_UNLOCK(vp);
2626 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2627 vdrop(vp);
2628 mtx_lock(&sync_mtx);
2629 return (*bo == LIST_FIRST(slp));
2630 }
2631 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2632 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2633 VOP_UNLOCK(vp);
2635 BO_LOCK(*bo);
2636 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2637 /*
2638 * Put us back on the worklist. The worklist
2639 * routine will remove us from our current
2640 * position and then add us back in at a later
2641 * position.
2642 */
2643 vn_syncer_add_to_worklist(*bo, syncdelay);
2644 }
2645 BO_UNLOCK(*bo);
2646 vdrop(vp);
2647 mtx_lock(&sync_mtx);
2648 return (0);
2649}
2650
2651static int first_printf = 1;
2652
2653/*
2654 * System filesystem synchronizer daemon.
2655 */
2656static void
2658{
2659 struct synclist *next, *slp;
2660 struct bufobj *bo;
2661 long starttime;
2662 struct thread *td = curthread;
2663 int last_work_seen;
2664 int net_worklist_len;
2665 int syncer_final_iter;
2666 int error;
2667
2668 last_work_seen = 0;
2669 syncer_final_iter = 0;
2671 starttime = time_uptime;
2672 td->td_pflags |= TDP_NORUNNINGBUF;
2673
2674 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2675 SHUTDOWN_PRI_LAST);
2676
2677 mtx_lock(&sync_mtx);
2678 for (;;) {
2680 syncer_final_iter == 0) {
2681 mtx_unlock(&sync_mtx);
2682 kproc_suspend_check(td->td_proc);
2683 mtx_lock(&sync_mtx);
2684 }
2685 net_worklist_len = syncer_worklist_len - sync_vnode_count;
2687 starttime != time_uptime) {
2688 if (first_printf) {
2689 printf("\nSyncing disks, vnodes remaining... ");
2690 first_printf = 0;
2691 }
2692 printf("%d ", net_worklist_len);
2693 }
2694 starttime = time_uptime;
2695
2696 /*
2697 * Push files whose dirty time has expired. Be careful
2698 * of interrupt race on slp queue.
2699 *
2700 * Skip over empty worklist slots when shutting down.
2701 */
2702 do {
2703 slp = &syncer_workitem_pending[syncer_delayno];
2704 syncer_delayno += 1;
2705 if (syncer_delayno == syncer_maxdelay)
2706 syncer_delayno = 0;
2707 next = &syncer_workitem_pending[syncer_delayno];
2708 /*
2709 * If the worklist has wrapped since the
2710 * it was emptied of all but syncer vnodes,
2711 * switch to the FINAL_DELAY state and run
2712 * for one more second.
2713 */
2715 net_worklist_len == 0 &&
2716 last_work_seen == syncer_delayno) {
2718 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2719 }
2720 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2722
2723 /*
2724 * Keep track of the last time there was anything
2725 * on the worklist other than syncer vnodes.
2726 * Return to the SHUTTING_DOWN state if any
2727 * new work appears.
2728 */
2729 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2730 last_work_seen = syncer_delayno;
2731 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2733 while (!LIST_EMPTY(slp)) {
2734 error = sync_vnode(slp, &bo, td);
2735 if (error == 1) {
2736 LIST_REMOVE(bo, bo_synclist);
2737 LIST_INSERT_HEAD(next, bo, bo_synclist);
2738 continue;
2739 }
2740
2741 if (first_printf == 0) {
2742 /*
2743 * Drop the sync mutex, because some watchdog
2744 * drivers need to sleep while patting
2745 */
2746 mtx_unlock(&sync_mtx);
2747 wdog_kern_pat(WD_LASTVAL);
2748 mtx_lock(&sync_mtx);
2749 }
2750 }
2751 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2752 syncer_final_iter--;
2753 /*
2754 * The variable rushjob allows the kernel to speed up the
2755 * processing of the filesystem syncer process. A rushjob
2756 * value of N tells the filesystem syncer to process the next
2757 * N seconds worth of work on its queue ASAP. Currently rushjob
2758 * is used by the soft update code to speed up the filesystem
2759 * syncer process when the incore state is getting so far
2760 * ahead of the disk that the kernel memory pool is being
2761 * threatened with exhaustion.
2762 */
2763 if (rushjob > 0) {
2764 rushjob -= 1;
2765 continue;
2766 }
2767 /*
2768 * Just sleep for a short period of time between
2769 * iterations when shutting down to allow some I/O
2770 * to happen.
2771 *
2772 * If it has taken us less than a second to process the
2773 * current work, then wait. Otherwise start right over
2774 * again. We can still lose time if any single round
2775 * takes more than two seconds, but it does not really
2776 * matter as we are just trying to generally pace the
2777 * filesystem activity.
2778 */
2780 time_uptime == starttime) {
2781 thread_lock(td);
2782 sched_prio(td, PPAUSE);
2783 thread_unlock(td);
2784 }
2786 cv_timedwait(&sync_wakeup, &sync_mtx,
2788 else if (time_uptime == starttime)
2789 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2790 }
2791}
2792
2793/*
2794 * Request the syncer daemon to speed up its work.
2795 * We never push it to speed up more than half of its
2796 * normal turn time, otherwise it could take over the cpu.
2797 */
2798int
2800{
2801 int ret = 0;
2802
2803 mtx_lock(&sync_mtx);
2804 if (rushjob < syncdelay / 2) {
2805 rushjob += 1;
2806 stat_rush_requests += 1;
2807 ret = 1;
2808 }
2809 mtx_unlock(&sync_mtx);
2810 cv_broadcast(&sync_wakeup);
2811 return (ret);
2812}
2813
2814/*
2815 * Tell the syncer to speed up its work and run though its work
2816 * list several times, then tell it to shut down.
2817 */
2818static void
2819syncer_shutdown(void *arg, int howto)
2820{
2821
2822 if (howto & RB_NOSYNC)
2823 return;
2824 mtx_lock(&sync_mtx);
2826 rushjob = 0;
2827 mtx_unlock(&sync_mtx);
2828 cv_broadcast(&sync_wakeup);
2829 kproc_shutdown(arg, howto);
2830}
2831
2832void
2834{
2835
2837}
2838
2839void
2841{
2842
2843 mtx_lock(&sync_mtx);
2844 first_printf = 1;
2846 mtx_unlock(&sync_mtx);
2847 cv_broadcast(&sync_wakeup);
2849}
2850
2851/*
2852 * Move the buffer between the clean and dirty lists of its vnode.
2853 */
2854void
2855reassignbuf(struct buf *bp)
2856{
2857 struct vnode *vp;
2858 struct bufobj *bo;
2859 int delay;
2860#ifdef INVARIANTS
2861 struct bufv *bv;
2862#endif
2863
2864 vp = bp->b_vp;
2865 bo = bp->b_bufobj;
2866
2867 KASSERT((bp->b_flags & B_PAGING) == 0,
2868 ("%s: cannot reassign paging buffer %p", __func__, bp));
2869
2870 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2871 bp, bp->b_vp, bp->b_flags);
2872
2873 BO_LOCK(bo);
2874 buf_vlist_remove(bp);
2875
2876 /*
2877 * If dirty, put on list of dirty buffers; otherwise insert onto list
2878 * of clean buffers.
2879 */
2880 if (bp->b_flags & B_DELWRI) {
2881 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2882 switch (vp->v_type) {
2883 case VDIR:
2884 delay = dirdelay;
2885 break;
2886 case VCHR:
2887 delay = metadelay;
2888 break;
2889 default:
2890 delay = filedelay;
2891 }
2892 vn_syncer_add_to_worklist(bo, delay);
2893 }
2894 buf_vlist_add(bp, bo, BX_VNDIRTY);
2895 } else {
2896 buf_vlist_add(bp, bo, BX_VNCLEAN);
2897
2898 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2899 mtx_lock(&sync_mtx);
2900 LIST_REMOVE(bo, bo_synclist);
2902 mtx_unlock(&sync_mtx);
2903 bo->bo_flag &= ~BO_ONWORKLST;
2904 }
2905 }
2906#ifdef INVARIANTS
2907 bv = &bo->bo_clean;
2908 bp = TAILQ_FIRST(&bv->bv_hd);
2909 KASSERT(bp == NULL || bp->b_bufobj == bo,
2910 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2911 bp = TAILQ_LAST(&bv->bv_hd, buflists);
2912 KASSERT(bp == NULL || bp->b_bufobj == bo,
2913 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2914 bv = &bo->bo_dirty;
2915 bp = TAILQ_FIRST(&bv->bv_hd);
2916 KASSERT(bp == NULL || bp->b_bufobj == bo,
2917 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2918 bp = TAILQ_LAST(&bv->bv_hd, buflists);
2919 KASSERT(bp == NULL || bp->b_bufobj == bo,
2920 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2921#endif
2922 BO_UNLOCK(bo);
2923}
2924
2925static void
2926v_init_counters(struct vnode *vp)
2927{
2928
2929 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2930 vp, ("%s called for an initialized vnode", __FUNCTION__));
2931 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2932
2933 refcount_init(&vp->v_holdcnt, 1);
2934 refcount_init(&vp->v_usecount, 1);
2935}
2936
2937/*
2938 * Grab a particular vnode from the free list, increment its
2939 * reference count and lock it. VIRF_DOOMED is set if the vnode
2940 * is being destroyed. Only callers who specify LK_RETRY will
2941 * see doomed vnodes. If inactive processing was delayed in
2942 * vput try to do it here.
2943 *
2944 * usecount is manipulated using atomics without holding any locks.
2945 *
2946 * holdcnt can be manipulated using atomics without holding any locks,
2947 * except when transitioning 1<->0, in which case the interlock is held.
2948 *
2949 * Consumers which don't guarantee liveness of the vnode can use SMR to
2950 * try to get a reference. Note this operation can fail since the vnode
2951 * may be awaiting getting freed by the time they get to it.
2952 */
2953enum vgetstate
2954vget_prep_smr(struct vnode *vp)
2955{
2956 enum vgetstate vs;
2957
2958 VFS_SMR_ASSERT_ENTERED();
2959
2960 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2961 vs = VGET_USECOUNT;
2962 } else {
2963 if (vhold_smr(vp))
2964 vs = VGET_HOLDCNT;
2965 else
2966 vs = VGET_NONE;
2967 }
2968 return (vs);
2969}
2970
2971enum vgetstate
2972vget_prep(struct vnode *vp)
2973{
2974 enum vgetstate vs;
2975
2976 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2977 vs = VGET_USECOUNT;
2978 } else {
2979 vhold(vp);
2980 vs = VGET_HOLDCNT;
2981 }
2982 return (vs);
2983}
2984
2985void
2986vget_abort(struct vnode *vp, enum vgetstate vs)
2987{
2988
2989 switch (vs) {
2990 case VGET_USECOUNT:
2991 vrele(vp);
2992 break;
2993 case VGET_HOLDCNT:
2994 vdrop(vp);
2995 break;
2996 default:
2997 __assert_unreachable();
2998 }
2999}
3000
3001int
3002vget(struct vnode *vp, int flags)
3003{
3004 enum vgetstate vs;
3005
3006 vs = vget_prep(vp);
3007 return (vget_finish(vp, flags, vs));
3008}
3009
3010int
3011vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3012{
3013 int error;
3014
3015 if ((flags & LK_INTERLOCK) != 0)
3016 ASSERT_VI_LOCKED(vp, __func__);
3017 else
3018 ASSERT_VI_UNLOCKED(vp, __func__);
3019 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3020 VNPASS(vp->v_holdcnt > 0, vp);
3021 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3022
3023 error = vn_lock(vp, flags);
3024 if (__predict_false(error != 0)) {
3025 vget_abort(vp, vs);
3026 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3027 vp);
3028 return (error);
3029 }
3030
3031 vget_finish_ref(vp, vs);
3032 return (0);
3033}
3034
3035void
3036vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3037{
3038 int old;
3039
3040 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3041 VNPASS(vp->v_holdcnt > 0, vp);
3042 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3043
3044 if (vs == VGET_USECOUNT)
3045 return;
3046
3047 /*
3048 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3049 * the vnode around. Otherwise someone else lended their hold count and
3050 * we have to drop ours.
3051 */
3052 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3053 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3054 if (old != 0) {
3055#ifdef INVARIANTS
3056 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3057 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3058#else
3059 refcount_release(&vp->v_holdcnt);
3060#endif
3061 }
3062}
3063
3064void
3065vref(struct vnode *vp)
3066{
3067 enum vgetstate vs;
3068
3069 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3070 vs = vget_prep(vp);
3071 vget_finish_ref(vp, vs);
3072}
3073
3074void
3075vrefact(struct vnode *vp)
3076{
3077
3078 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3079#ifdef INVARIANTS
3080 int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3081 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3082#else
3083 refcount_acquire(&vp->v_usecount);
3084#endif
3085}
3086
3087void
3088vlazy(struct vnode *vp)
3089{
3090 struct mount *mp;
3091
3092 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3093
3094 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3095 return;
3096 /*
3097 * We may get here for inactive routines after the vnode got doomed.
3098 */
3099 if (VN_IS_DOOMED(vp))
3100 return;
3101 mp = vp->v_mount;
3102 mtx_lock(&mp->mnt_listmtx);
3103 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3104 vp->v_mflag |= VMP_LAZYLIST;
3105 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3106 mp->mnt_lazyvnodelistsize++;
3107 }
3108 mtx_unlock(&mp->mnt_listmtx);
3109}
3110
3111static void
3112vunlazy(struct vnode *vp)
3113{
3114 struct mount *mp;
3115
3116 ASSERT_VI_LOCKED(vp, __func__);
3117 VNPASS(!VN_IS_DOOMED(vp), vp);
3118
3119 mp = vp->v_mount;
3120 mtx_lock(&mp->mnt_listmtx);
3121 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3122 /*
3123 * Don't remove the vnode from the lazy list if another thread
3124 * has increased the hold count. It may have re-enqueued the
3125 * vnode to the lazy list and is now responsible for its
3126 * removal.
3127 */
3128 if (vp->v_holdcnt == 0) {
3129 vp->v_mflag &= ~VMP_LAZYLIST;
3130 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3131 mp->mnt_lazyvnodelistsize--;
3132 }
3133 mtx_unlock(&mp->mnt_listmtx);
3134}
3135
3136/*
3137 * This routine is only meant to be called from vgonel prior to dooming
3138 * the vnode.
3139 */
3140static void
3141vunlazy_gone(struct vnode *vp)
3142{
3143 struct mount *mp;
3144
3145 ASSERT_VOP_ELOCKED(vp, __func__);
3146 ASSERT_VI_LOCKED(vp, __func__);
3147 VNPASS(!VN_IS_DOOMED(vp), vp);
3148
3149 if (vp->v_mflag & VMP_LAZYLIST) {
3150 mp = vp->v_mount;
3151 mtx_lock(&mp->mnt_listmtx);
3152 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3153 vp->v_mflag &= ~VMP_LAZYLIST;
3154 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3155 mp->mnt_lazyvnodelistsize--;
3156 mtx_unlock(&mp->mnt_listmtx);
3157 }
3158}
3159
3160static void
3161vdefer_inactive(struct vnode *vp)
3162{
3163
3164 ASSERT_VI_LOCKED(vp, __func__);
3165 VNASSERT(vp->v_holdcnt > 0, vp,
3166 ("%s: vnode without hold count", __func__));
3167 if (VN_IS_DOOMED(vp)) {
3168 vdropl(vp);
3169 return;
3170 }
3171 if (vp->v_iflag & VI_DEFINACT) {
3172 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3173 vdropl(vp);
3174 return;
3175 }
3176 if (vp->v_usecount > 0) {
3177 vp->v_iflag &= ~VI_OWEINACT;
3178 vdropl(vp);
3179 return;
3180 }
3181 vlazy(vp);
3182 vp->v_iflag |= VI_DEFINACT;
3183 VI_UNLOCK(vp);
3184 counter_u64_add(deferred_inact, 1);
3185}
3186
3187static void
3189{
3190
3191 VI_LOCK(vp);
3192 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3193 vdropl(vp);
3194 return;
3195 }
3196 vdefer_inactive(vp);
3197}
3198
3200
3201/*
3202 * Handle ->v_usecount transitioning to 0.
3203 *
3204 * By releasing the last usecount we take ownership of the hold count which
3205 * provides liveness of the vnode, meaning we have to vdrop.
3206 *
3207 * For all vnodes we may need to perform inactive processing. It requires an
3208 * exclusive lock on the vnode, while it is legal to call here with only a
3209 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3210 * inactive processing gets deferred to the syncer.
3211 *
3212 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3213 * on the lock being held all the way until VOP_INACTIVE. This in particular
3214 * happens with UFS which adds half-constructed vnodes to the hash, where they
3215 * can be found by other code.
3216 */
3217static void
3218vput_final(struct vnode *vp, enum vput_op func)
3219{
3220 int error;
3221 bool want_unlock;
3222
3223 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3224 VNPASS(vp->v_holdcnt > 0, vp);
3225
3226 VI_LOCK(vp);
3227
3228 /*
3229 * By the time we got here someone else might have transitioned
3230 * the count back to > 0.
3231 */
3232 if (vp->v_usecount > 0)
3233 goto out;
3234
3235 /*
3236 * If the vnode is doomed vgone already performed inactive processing
3237 * (if needed).
3238 */
3239 if (VN_IS_DOOMED(vp))
3240 goto out;
3241
3242 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3243 goto out;
3244
3245 if (vp->v_iflag & VI_DOINGINACT)
3246 goto out;
3247
3248 /*
3249 * Locking operations here will drop the interlock and possibly the
3250 * vnode lock, opening a window where the vnode can get doomed all the
3251 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3252 * perform inactive.
3253 */
3254 vp->v_iflag |= VI_OWEINACT;
3255 want_unlock = false;
3256 error = 0;
3257 switch (func) {
3258 case VRELE:
3259 switch (VOP_ISLOCKED(vp)) {
3260 case LK_EXCLUSIVE:
3261 break;
3262 case LK_EXCLOTHER:
3263 case 0:
3264 want_unlock = true;
3265 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3266 VI_LOCK(vp);
3267 break;
3268 default:
3269 /*
3270 * The lock has at least one sharer, but we have no way
3271 * to conclude whether this is us. Play it safe and
3272 * defer processing.
3273 */
3274 error = EAGAIN;
3275 break;
3276 }
3277 break;
3278 case VPUT:
3279 want_unlock = true;
3280 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3281 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3282 LK_NOWAIT);
3283 VI_LOCK(vp);
3284 }
3285 break;
3286 case VUNREF:
3287 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3288 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3289 VI_LOCK(vp);
3290 }
3291 break;
3292 }
3293 if (error == 0) {
3294 if (func == VUNREF) {
3295 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3296 ("recursive vunref"));
3297 vp->v_vflag |= VV_UNREF;
3298 }
3299 for (;;) {
3300 error = vinactive(vp);
3301 if (want_unlock)
3302 VOP_UNLOCK(vp);
3303 if (error != ERELOOKUP || !want_unlock)
3304 break;
3305 VOP_LOCK(vp, LK_EXCLUSIVE);
3306 }
3307 if (func == VUNREF)
3308 vp->v_vflag &= ~VV_UNREF;
3309 vdropl(vp);
3310 } else {
3311 vdefer_inactive(vp);
3312 }
3313 return;
3314out:
3315 if (func == VPUT)
3316 VOP_UNLOCK(vp);
3317 vdropl(vp);
3318}
3319
3320/*
3321 * Decrement ->v_usecount for a vnode.
3322 *
3323 * Releasing the last use count requires additional processing, see vput_final
3324 * above for details.
3325 *
3326 * Comment above each variant denotes lock state on entry and exit.
3327 */
3328
3329/*
3330 * in: any
3331 * out: same as passed in
3332 */
3333void
3334vrele(struct vnode *vp)
3335{
3336
3337 ASSERT_VI_UNLOCKED(vp, __func__);
3338 if (!refcount_release(&vp->v_usecount))
3339 return;
3340 vput_final(vp, VRELE);
3341}
3342
3343/*
3344 * in: locked
3345 * out: unlocked
3346 */
3347void
3348vput(struct vnode *vp)
3349{
3350
3351 ASSERT_VOP_LOCKED(vp, __func__);
3352 ASSERT_VI_UNLOCKED(vp, __func__);
3353 if (!refcount_release(&vp->v_usecount)) {
3354 VOP_UNLOCK(vp);
3355 return;
3356 }
3357 vput_final(vp, VPUT);
3358}
3359
3360/*
3361 * in: locked
3362 * out: locked
3363 */
3364void
3365vunref(struct vnode *vp)
3366{
3367
3368 ASSERT_VOP_LOCKED(vp, __func__);
3369 ASSERT_VI_UNLOCKED(vp, __func__);
3370 if (!refcount_release(&vp->v_usecount))
3371 return;
3372 vput_final(vp, VUNREF);
3373}
3374
3375void
3376vhold(struct vnode *vp)
3377{
3378 int old;
3379
3380 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3381 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3382 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3383 ("%s: wrong hold count %d", __func__, old));
3384 if (old == 0)
3386}
3387
3388void
3389vholdnz(struct vnode *vp)
3390{
3391
3392 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3393#ifdef INVARIANTS
3394 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3395 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3396 ("%s: wrong hold count %d", __func__, old));
3397#else
3398 atomic_add_int(&vp->v_holdcnt, 1);
3399#endif
3400}
3401
3402/*
3403 * Grab a hold count unless the vnode is freed.
3404 *
3405 * Only use this routine if vfs smr is the only protection you have against
3406 * freeing the vnode.
3407 *
3408 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3409 * is not set. After the flag is set the vnode becomes immutable to anyone but
3410 * the thread which managed to set the flag.
3411 *
3412 * It may be tempting to replace the loop with:
3413 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3414 * if (count & VHOLD_NO_SMR) {
3415 * backpedal and error out;
3416 * }
3417 *
3418 * However, while this is more performant, it hinders debugging by eliminating
3419 * the previously mentioned invariant.
3420 */
3421bool
3422vhold_smr(struct vnode *vp)
3423{
3424 int count;
3425
3426 VFS_SMR_ASSERT_ENTERED();
3427
3428 count = atomic_load_int(&vp->v_holdcnt);
3429 for (;;) {
3430 if (count & VHOLD_NO_SMR) {
3431 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3432 ("non-zero hold count with flags %d\n", count));
3433 return (false);
3434 }
3435 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3436 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3437 if (count == 0)
3439 return (true);
3440 }
3441 }
3442}
3443
3444/*
3445 * Hold a free vnode for recycling.
3446 *
3447 * Note: vnode_init references this comment.
3448 *
3449 * Attempts to recycle only need the global vnode list lock and have no use for
3450 * SMR.
3451 *
3452 * However, vnodes get inserted into the global list before they get fully
3453 * initialized and stay there until UMA decides to free the memory. This in
3454 * particular means the target can be found before it becomes usable and after
3455 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3456 * VHOLD_NO_SMR.
3457 *
3458 * Note: the vnode may gain more references after we transition the count 0->1.
3459 */
3460static bool
3461vhold_recycle_free(struct vnode *vp)
3462{
3463 int count;
3464
3465 mtx_assert(&vnode_list_mtx, MA_OWNED);
3466
3467 count = atomic_load_int(&vp->v_holdcnt);
3468 for (;;) {
3469 if (count & VHOLD_NO_SMR) {
3470 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3471 ("non-zero hold count with flags %d\n", count));
3472 return (false);
3473 }
3474 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3475 if (count > 0) {
3476 return (false);
3477 }
3478 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3480 return (true);
3481 }
3482 }
3483}
3484
3485static void __noinline
3486vdbatch_process(struct vdbatch *vd)
3487{
3488 struct vnode *vp;
3489 int i;
3490
3491 mtx_assert(&vd->lock, MA_OWNED);
3492 MPASS(curthread->td_pinned > 0);
3493 MPASS(vd->index == VDBATCH_SIZE);
3494
3495 mtx_lock(&vnode_list_mtx);
3496 critical_enter();
3497 freevnodes += vd->freevnodes;
3498 for (i = 0; i < VDBATCH_SIZE; i++) {
3499 vp = vd->tab[i];
3500 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3501 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3502 MPASS(vp->v_dbatchcpu != NOCPU);
3503 vp->v_dbatchcpu = NOCPU;
3504 }
3505 mtx_unlock(&vnode_list_mtx);
3506 vd->freevnodes = 0;
3507 bzero(vd->tab, sizeof(vd->tab));
3508 vd->index = 0;
3509 critical_exit();
3510}
3511
3512static void
3513vdbatch_enqueue(struct vnode *vp)
3514{
3515 struct vdbatch *vd;
3516
3517 ASSERT_VI_LOCKED(vp, __func__);
3518 VNASSERT(!VN_IS_DOOMED(vp), vp,
3519 ("%s: deferring requeue of a doomed vnode", __func__));
3520
3521 if (vp->v_dbatchcpu != NOCPU) {
3522 VI_UNLOCK(vp);
3523 return;
3524 }
3525
3526 sched_pin();
3527 vd = DPCPU_PTR(vd);
3528 mtx_lock(&vd->lock);
3529 MPASS(vd->index < VDBATCH_SIZE);
3530 MPASS(vd->tab[vd->index] == NULL);
3531 /*
3532 * A hack: we depend on being pinned so that we know what to put in
3533 * ->v_dbatchcpu.
3534 */
3535 vp->v_dbatchcpu = curcpu;
3536 vd->tab[vd->index] = vp;
3537 vd->index++;
3538 VI_UNLOCK(vp);
3539 if (vd->index == VDBATCH_SIZE)
3540 vdbatch_process(vd);
3541 mtx_unlock(&vd->lock);
3542 sched_unpin();
3543}
3544
3545/*
3546 * This routine must only be called for vnodes which are about to be
3547 * deallocated. Supporting dequeue for arbitrary vndoes would require
3548 * validating that the locked batch matches.
3549 */
3550static void
3551vdbatch_dequeue(struct vnode *vp)
3552{
3553 struct vdbatch *vd;
3554 int i;
3555 short cpu;
3556
3557 VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3558 ("%s: called for a used vnode\n", __func__));
3559
3560 cpu = vp->v_dbatchcpu;
3561 if (cpu == NOCPU)
3562 return;
3563
3564 vd = DPCPU_ID_PTR(cpu, vd);
3565 mtx_lock(&vd->lock);
3566 for (i = 0; i < vd->index; i++) {
3567 if (vd->tab[i] != vp)
3568 continue;
3569 vp->v_dbatchcpu = NOCPU;
3570 vd->index--;
3571 vd->tab[i] = vd->tab[vd->index];
3572 vd->tab[vd->index] = NULL;
3573 break;
3574 }
3575 mtx_unlock(&vd->lock);
3576 /*
3577 * Either we dequeued the vnode above or the target CPU beat us to it.
3578 */
3579 MPASS(vp->v_dbatchcpu == NOCPU);
3580}
3581
3582/*
3583 * Drop the hold count of the vnode. If this is the last reference to
3584 * the vnode we place it on the free list unless it has been vgone'd
3585 * (marked VIRF_DOOMED) in which case we will free it.
3586 *
3587 * Because the vnode vm object keeps a hold reference on the vnode if
3588 * there is at least one resident non-cached page, the vnode cannot
3589 * leave the active list without the page cleanup done.
3590 */
3591static void __noinline
3592vdropl_final(struct vnode *vp)
3593{
3594
3595 ASSERT_VI_LOCKED(vp, __func__);
3596 VNPASS(VN_IS_DOOMED(vp), vp);
3597 /*
3598 * Set the VHOLD_NO_SMR flag.
3599 *
3600 * We may be racing against vhold_smr. If they win we can just pretend
3601 * we never got this far, they will vdrop later.
3602 */
3603 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3605 VI_UNLOCK(vp);
3606 /*
3607 * We lost the aforementioned race. Any subsequent access is
3608 * invalid as they might have managed to vdropl on their own.
3609 */
3610 return;
3611 }
3612 /*
3613 * Don't bump freevnodes as this one is going away.
3614 */
3615 freevnode(vp);
3616}
3617
3618void
3619vdrop(struct vnode *vp)
3620{
3621
3622 ASSERT_VI_UNLOCKED(vp, __func__);
3623 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3624 if (refcount_release_if_not_last(&vp->v_holdcnt))
3625 return;
3626 VI_LOCK(vp);
3627 vdropl(vp);
3628}
3629
3630static void __always_inline
3631vdropl_impl(struct vnode *vp, bool enqueue)
3632{
3633
3634 ASSERT_VI_LOCKED(vp, __func__);
3635 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3636 if (!refcount_release(&vp->v_holdcnt)) {
3637 VI_UNLOCK(vp);
3638 return;
3639 }
3640 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3641 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3642 if (VN_IS_DOOMED(vp)) {
3643 vdropl_final(vp);
3644 return;
3645 }
3646
3648 if (vp->v_mflag & VMP_LAZYLIST) {
3649 vunlazy(vp);
3650 }
3651 /*
3652 * Also unlocks the interlock. We can't assert on it as we
3653 * released our hold and by now the vnode might have been
3654 * freed.
3655 */
3656 vdbatch_enqueue(vp);
3657}
3658
3659void
3660vdropl(struct vnode *vp)
3661{
3662
3663 vdropl_impl(vp, true);
3664}
3665
3666/*
3667 * vdrop a vnode when recycling
3668 *
3669 * This is a special case routine only to be used when recycling, differs from
3670 * regular vdrop by not requeieing the vnode on LRU.
3671 *
3672 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3673 * e.g., frozen writes on the filesystem), filling the batch and causing it to
3674 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3675 * loop which can last for as long as writes are frozen.
3676 */
3677static void
3678vdropl_recycle(struct vnode *vp)
3679{
3680
3681 vdropl_impl(vp, false);
3682}
3683
3684static void
3685vdrop_recycle(struct vnode *vp)
3686{
3687
3688 VI_LOCK(vp);
3689 vdropl_recycle(vp);
3690}
3691
3692/*
3693 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3694 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
3695 */
3696static int
3697vinactivef(struct vnode *vp)
3698{
3699 struct vm_object *obj;
3700 int error;
3701
3702 ASSERT_VOP_ELOCKED(vp, "vinactive");
3703 ASSERT_VI_LOCKED(vp, "vinactive");
3704 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3705 ("vinactive: recursed on VI_DOINGINACT"));
3706 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3707 vp->v_iflag |= VI_DOINGINACT;
3708 vp->v_iflag &= ~VI_OWEINACT;
3709 VI_UNLOCK(vp);
3710 /*
3711 * Before moving off the active list, we must be sure that any
3712 * modified pages are converted into the vnode's dirty
3713 * buffers, since these will no longer be checked once the
3714 * vnode is on the inactive list.
3715 *
3716 * The write-out of the dirty pages is asynchronous. At the
3717 * point that VOP_INACTIVE() is called, there could still be
3718 * pending I/O and dirty pages in the object.
3719 */
3720 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3721 vm_object_mightbedirty(obj)) {
3722 VM_OBJECT_WLOCK(obj);
3723 vm_object_page_clean(obj, 0, 0, 0);
3724 VM_OBJECT_WUNLOCK(obj);
3725 }
3726 error = VOP_INACTIVE(vp);
3727 VI_LOCK(vp);
3728 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3729 ("vinactive: lost VI_DOINGINACT"));
3730 vp->v_iflag &= ~VI_DOINGINACT;
3731 return (error);
3732}
3733
3734int
3735vinactive(struct vnode *vp)
3736{
3737
3738 ASSERT_VOP_ELOCKED(vp, "vinactive");
3739 ASSERT_VI_LOCKED(vp, "vinactive");
3740 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3741
3742 if ((vp->v_iflag & VI_OWEINACT) == 0)
3743 return (0);
3744 if (vp->v_iflag & VI_DOINGINACT)
3745 return (0);
3746 if (vp->v_usecount > 0) {
3747 vp->v_iflag &= ~VI_OWEINACT;
3748 return (0);
3749 }
3750 return (vinactivef(vp));
3751}
3752
3753/*
3754 * Remove any vnodes in the vnode table belonging to mount point mp.
3755 *
3756 * If FORCECLOSE is not specified, there should not be any active ones,
3757 * return error if any are found (nb: this is a user error, not a
3758 * system error). If FORCECLOSE is specified, detach any active vnodes
3759 * that are found.
3760 *
3761 * If WRITECLOSE is set, only flush out regular file vnodes open for
3762 * writing.
3763 *
3764 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3765 *
3766 * `rootrefs' specifies the base reference count for the root vnode
3767 * of this filesystem. The root vnode is considered busy if its
3768 * v_usecount exceeds this value. On a successful return, vflush(, td)
3769 * will call vrele() on the root vnode exactly rootrefs times.
3770 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3771 * be zero.
3772 */
3773#ifdef DIAGNOSTIC
3774static int busyprt = 0; /* print out busy vnodes */
3775SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3776#endif
3777
3778int
3779vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3780{
3781 struct vnode *vp, *mvp, *rootvp = NULL;
3782 struct vattr vattr;
3783 int busy = 0, error;
3784
3785 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3786 rootrefs, flags);
3787 if (rootrefs > 0) {
3788 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3789 ("vflush: bad args"));
3790 /*
3791 * Get the filesystem root vnode. We can vput() it
3792 * immediately, since with rootrefs > 0, it won't go away.
3793 */
3794 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3795 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3796 __func__, error);
3797 return (error);
3798 }
3799 vput(rootvp);
3800 }
3801loop:
3802 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3803 vholdl(vp);
3804 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3805 if (error) {
3806 vdrop(vp);
3807 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3808 goto loop;
3809 }
3810 /*
3811 * Skip over a vnodes marked VV_SYSTEM.
3812 */
3813 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3814 VOP_UNLOCK(vp);
3815 vdrop(vp);
3816 continue;
3817 }
3818 /*
3819 * If WRITECLOSE is set, flush out unlinked but still open
3820 * files (even if open only for reading) and regular file
3821 * vnodes open for writing.
3822 */
3823 if (flags & WRITECLOSE) {
3824 if (vp->v_object != NULL) {
3825 VM_OBJECT_WLOCK(vp->v_object);
3826 vm_object_page_clean(vp->v_object, 0, 0, 0);
3827 VM_OBJECT_WUNLOCK(vp->v_object);
3828 }
3829 do {
3830 error = VOP_FSYNC(vp, MNT_WAIT, td);
3831 } while (error == ERELOOKUP);
3832 if (error != 0) {
3833 VOP_UNLOCK(vp);
3834 vdrop(vp);
3835 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3836 return (error);
3837 }
3838 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3839 VI_LOCK(vp);
3840
3841 if ((vp->v_type == VNON ||
3842 (error == 0 && vattr.va_nlink > 0)) &&
3843 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3844 VOP_UNLOCK(vp);
3845 vdropl(vp);
3846 continue;
3847 }
3848 } else
3849 VI_LOCK(vp);
3850 /*
3851 * With v_usecount == 0, all we need to do is clear out the
3852 * vnode data structures and we are done.
3853 *
3854 * If FORCECLOSE is set, forcibly close the vnode.
3855 */
3856 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3857 vgonel(vp);
3858 } else {
3859 busy++;
3860#ifdef DIAGNOSTIC
3861 if (busyprt)
3862 vn_printf(vp, "vflush: busy vnode ");
3863#endif
3864 }
3865 VOP_UNLOCK(vp);
3866 vdropl(vp);
3867 }
3868 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3869 /*
3870 * If just the root vnode is busy, and if its refcount
3871 * is equal to `rootrefs', then go ahead and kill it.
3872 */
3873 VI_LOCK(rootvp);
3874 KASSERT(busy > 0, ("vflush: not busy"));
3875 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3876 ("vflush: usecount %d < rootrefs %d",
3877 rootvp->v_usecount, rootrefs));
3878 if (busy == 1 && rootvp->v_usecount == rootrefs) {
3879 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3880 vgone(rootvp);
3881 VOP_UNLOCK(rootvp);
3882 busy = 0;
3883 } else
3884 VI_UNLOCK(rootvp);
3885 }
3886 if (busy) {
3887 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3888 busy);
3889 return (EBUSY);
3890 }
3891 for (; rootrefs > 0; rootrefs--)
3892 vrele(rootvp);
3893 return (0);
3894}
3895
3896/*
3897 * Recycle an unused vnode to the front of the free list.
3898 */
3899int
3900vrecycle(struct vnode *vp)
3901{
3902 int recycled;
3903
3904 VI_LOCK(vp);
3905 recycled = vrecyclel(vp);
3906 VI_UNLOCK(vp);
3907 return (recycled);
3908}
3909
3910/*
3911 * vrecycle, with the vp interlock held.
3912 */
3913int
3914vrecyclel(struct vnode *vp)
3915{
3916 int recycled;
3917
3918 ASSERT_VOP_ELOCKED(vp, __func__);
3919 ASSERT_VI_LOCKED(vp, __func__);
3920 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3921 recycled = 0;
3922 if (vp->v_usecount == 0) {
3923 recycled = 1;
3924 vgonel(vp);
3925 }
3926 return (recycled);
3927}
3928
3929/*
3930 * Eliminate all activity associated with a vnode
3931 * in preparation for reuse.
3932 */
3933void
3934vgone(struct vnode *vp)
3935{
3936 VI_LOCK(vp);
3937 vgonel(vp);
3938 VI_UNLOCK(vp);
3939}
3940
3941/*
3942 * Notify upper mounts about reclaimed or unlinked vnode.
3943 */
3944void
3945vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3946{
3947 struct mount *mp;
3948 struct mount_upper_node *ump;
3949
3950 mp = atomic_load_ptr(&vp->v_mount);
3951 if (mp == NULL)
3952 return;
3953 if (TAILQ_EMPTY(&mp->mnt_notify))
3954 return;
3955
3956 MNT_ILOCK(mp);
3957 mp->mnt_upper_pending++;
3958 KASSERT(mp->mnt_upper_pending > 0,
3959 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3960 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3961 MNT_IUNLOCK(mp);
3962 switch (event) {
3963 case VFS_NOTIFY_UPPER_RECLAIM:
3964 VFS_RECLAIM_LOWERVP(ump->mp, vp);
3965 break;
3966 case VFS_NOTIFY_UPPER_UNLINK:
3967 VFS_UNLINK_LOWERVP(ump->mp, vp);
3968 break;
3969 }
3970 MNT_ILOCK(mp);
3971 }
3972 mp->mnt_upper_pending--;
3973 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3974 mp->mnt_upper_pending == 0) {
3975 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3976 wakeup(&mp->mnt_uppers);
3977 }
3978 MNT_IUNLOCK(mp);
3979}
3980
3981/*
3982 * vgone, with the vp interlock held.
3983 */
3984static void
3985vgonel(struct vnode *vp)
3986{
3987 struct thread *td;
3988 struct mount *mp;
3989 vm_object_t object;
3990 bool active, doinginact, oweinact;
3991
3992 ASSERT_VOP_ELOCKED(vp, "vgonel");
3993 ASSERT_VI_LOCKED(vp, "vgonel");
3994 VNASSERT(vp->v_holdcnt, vp,
3995 ("vgonel: vp %p has no reference.", vp));
3996 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3997 td = curthread;
3998
3999 /*
4000 * Don't vgonel if we're already doomed.
4001 */
4002 if (VN_IS_DOOMED(vp))
4003 return;
4004 /*
4005 * Paired with freevnode.
4006 */
4008 vunlazy_gone(vp);
4009 vn_irflag_set_locked(vp, VIRF_DOOMED);
4010
4011 /*
4012 * Check to see if the vnode is in use. If so, we have to
4013 * call VOP_CLOSE() and VOP_INACTIVE().
4014 *
4015 * It could be that VOP_INACTIVE() requested reclamation, in
4016 * which case we should avoid recursion, so check
4017 * VI_DOINGINACT. This is not precise but good enough.
4018 */
4019 active = vp->v_usecount > 0;
4020 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4021 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4022
4023 /*
4024 * If we need to do inactive VI_OWEINACT will be set.
4025 */
4026 if (vp->v_iflag & VI_DEFINACT) {
4027 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4028 vp->v_iflag &= ~VI_DEFINACT;
4029 vdropl(vp);
4030 } else {
4031 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4032 VI_UNLOCK(vp);
4033 }
4035 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4036
4037 /*
4038 * If purging an active vnode, it must be closed and
4039 * deactivated before being reclaimed.
4040 */
4041 if (active)
4042 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4043 if (!doinginact) {
4044 do {
4045 if (oweinact || active) {
4046 VI_LOCK(vp);
4047 vinactivef(vp);
4048 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4049 VI_UNLOCK(vp);
4050 }
4051 } while (oweinact);
4052 }
4053 if (vp->v_type == VSOCK)
4054 vfs_unp_reclaim(vp);
4055
4056 /*
4057 * Clean out any buffers associated with the vnode.
4058 * If the flush fails, just toss the buffers.
4059 */
4060 mp = NULL;
4061 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4062 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4063 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4064 while (vinvalbuf(vp, 0, 0, 0) != 0)
4065 ;
4066 }
4067
4068 BO_LOCK(&vp->v_bufobj);
4069 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4070 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4071 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4072 vp->v_bufobj.bo_clean.bv_cnt == 0,
4073 ("vp %p bufobj not invalidated", vp));
4074
4075 /*
4076 * For VMIO bufobj, BO_DEAD is set later, or in
4077 * vm_object_terminate() after the object's page queue is
4078 * flushed.
4079 */
4080 object = vp->v_bufobj.bo_object;
4081 if (object == NULL)
4082 vp->v_bufobj.bo_flag |= BO_DEAD;
4083 BO_UNLOCK(&vp->v_bufobj);
4084
4085 /*
4086 * Handle the VM part. Tmpfs handles v_object on its own (the
4087 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4088 * should not touch the object borrowed from the lower vnode
4089 * (the handle check).
4090 */
4091 if (object != NULL && object->type == OBJT_VNODE &&
4092 object->handle == vp)
4093 vnode_destroy_vobject(vp);
4094
4095 /*
4096 * Reclaim the vnode.
4097 */
4098 if (VOP_RECLAIM(vp))
4099 panic("vgone: cannot reclaim");
4100 if (mp != NULL)
4102 VNASSERT(vp->v_object == NULL, vp,
4103 ("vop_reclaim left v_object vp=%p", vp));
4104 /*
4105 * Clear the advisory locks and wake up waiting threads.
4106 */
4107 (void)VOP_ADVLOCKPURGE(vp);
4108 vp->v_lockf = NULL;
4109 /*
4110 * Delete from old mount point vnode list.
4111 */
4112 delmntque(vp);
4113 /*
4114 * Done with purge, reset to the standard lock and invalidate
4115 * the vnode.
4116 */
4117 VI_LOCK(vp);
4118 vp->v_vnlock = &vp->v_lock;
4119 vp->v_op = &dead_vnodeops;
4120 vp->v_type = VBAD;
4121}
4122
4123/*
4124 * Print out a description of a vnode.
4125 */
4126static const char * const typename[] =
4127{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4128 "VMARKER"};
4129
4130_Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4131 "new hold count flag not added to vn_printf");
4132
4133void
4134vn_printf(struct vnode *vp, const char *fmt, ...)
4135{
4136 va_list ap;
4137 char buf[256], buf2[16];
4138 u_long flags;
4139 u_int holdcnt;
4140 short irflag;
4141
4142 va_start(ap, fmt);
4143 vprintf(fmt, ap);
4144 va_end(ap);
4145 printf("%p: ", (void *)vp);
4146 printf("type %s\n", typename[vp->v_type]);
4147 holdcnt = atomic_load_int(&vp->v_holdcnt);
4148 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4149 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4150 vp->v_seqc_users);
4151 switch (vp->v_type) {
4152 case VDIR:
4153 printf(" mountedhere %p\n", vp->v_mountedhere);
4154 break;
4155 case VCHR:
4156 printf(" rdev %p\n", vp->v_rdev);
4157 break;
4158 case VSOCK:
4159 printf(" socket %p\n", vp->v_unpcb);
4160 break;
4161 case VFIFO:
4162 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4163 break;
4164 default:
4165 printf("\n");
4166 break;
4167 }
4168 buf[0] = '\0';
4169 buf[1] = '\0';
4170 if (holdcnt & VHOLD_NO_SMR)
4171 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4172 printf(" hold count flags (%s)\n", buf + 1);
4173
4174 buf[0] = '\0';
4175 buf[1] = '\0';
4176 irflag = vn_irflag_read(vp);
4177 if (irflag & VIRF_DOOMED)
4178 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4179 if (irflag & VIRF_PGREAD)
4180 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4181 if (irflag & VIRF_MOUNTPOINT)
4182 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4183 if (irflag & VIRF_TEXT_REF)
4184 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4185 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4186 if (flags != 0) {
4187 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4188 strlcat(buf, buf2, sizeof(buf));
4189 }
4190 if (vp->v_vflag & VV_ROOT)
4191 strlcat(buf, "|VV_ROOT", sizeof(buf));
4192 if (vp->v_vflag & VV_ISTTY)
4193 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4194 if (vp->v_vflag & VV_NOSYNC)
4195 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4196 if (vp->v_vflag & VV_ETERNALDEV)
4197 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4198 if (vp->v_vflag & VV_CACHEDLABEL)
4199 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4200 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4201 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4202 if (vp->v_vflag & VV_COPYONWRITE)
4203 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4204 if (vp->v_vflag & VV_SYSTEM)
4205 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4206 if (vp->v_vflag & VV_PROCDEP)
4207 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4208 if (vp->v_vflag & VV_DELETED)
4209 strlcat(buf, "|VV_DELETED", sizeof(buf));
4210 if (vp->v_vflag & VV_MD)
4211 strlcat(buf, "|VV_MD", sizeof(buf));
4212 if (vp->v_vflag & VV_FORCEINSMQ)
4213 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4214 if (vp->v_vflag & VV_READLINK)
4215 strlcat(buf, "|VV_READLINK", sizeof(buf));
4216 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4217 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4218 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4219 if (flags != 0) {
4220 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4221 strlcat(buf, buf2, sizeof(buf));
4222 }
4223 if (vp->v_iflag & VI_MOUNT)
4224 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4225 if (vp->v_iflag & VI_DOINGINACT)
4226 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4227 if (vp->v_iflag & VI_OWEINACT)
4228 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4229 if (vp->v_iflag & VI_DEFINACT)
4230 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4231 if (vp->v_iflag & VI_FOPENING)
4232 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4233 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4234 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4235 if (flags != 0) {
4236 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4237 strlcat(buf, buf2, sizeof(buf));
4238 }
4239 if (vp->v_mflag & VMP_LAZYLIST)
4240 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4241 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4242 if (flags != 0) {
4243 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4244 strlcat(buf, buf2, sizeof(buf));
4245 }
4246 printf(" flags (%s)", buf + 1);
4247 if (mtx_owned(VI_MTX(vp)))
4248 printf(" VI_LOCKed");
4249 printf("\n");
4250 if (vp->v_object != NULL)
4251 printf(" v_object %p ref %d pages %d "
4252 "cleanbuf %d dirtybuf %d\n",
4253 vp->v_object, vp->v_object->ref_count,
4254 vp->v_object->resident_page_count,
4255 vp->v_bufobj.bo_clean.bv_cnt,
4256 vp->v_bufobj.bo_dirty.bv_cnt);
4257 printf(" ");
4258 lockmgr_printinfo(vp->v_vnlock);
4259 if (vp->v_data != NULL)
4260 VOP_PRINT(vp);
4261}
4262
4263#ifdef DDB
4264/*
4265 * List all of the locked vnodes in the system.
4266 * Called when debugging the kernel.
4267 */
4268DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4269{
4270 struct mount *mp;
4271 struct vnode *vp;
4272
4273 /*
4274 * Note: because this is DDB, we can't obey the locking semantics
4275 * for these structures, which means we could catch an inconsistent
4276 * state and dereference a nasty pointer. Not much to be done
4277 * about that.
4278 */
4279 db_printf("Locked vnodes\n");
4280 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4281 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4282 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4283 vn_printf(vp, "vnode ");
4284 }
4285 }
4286}
4287
4288/*
4289 * Show details about the given vnode.
4290 */
4291DB_SHOW_COMMAND(vnode, db_show_vnode)
4292{
4293 struct vnode *vp;
4294
4295 if (!have_addr)
4296 return;
4297 vp = (struct vnode *)addr;
4298 vn_printf(vp, "vnode ");
4299}
4300
4301/*
4302 * Show details about the given mount point.
4303 */
4304DB_SHOW_COMMAND(mount, db_show_mount)
4305{
4306 struct mount *mp;
4307 struct vfsopt *opt;
4308 struct statfs *sp;
4309 struct vnode *vp;
4310 char buf[512];
4311 uint64_t mflags;
4312 u_int flags;
4313
4314 if (!have_addr) {
4315 /* No address given, print short info about all mount points. */
4316 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4317 db_printf("%p %s on %s (%s)\n", mp,
4318 mp->mnt_stat.f_mntfromname,
4319 mp->mnt_stat.f_mntonname,
4320 mp->mnt_stat.f_fstypename);
4321 if (db_pager_quit)
4322 break;
4323 }
4324 db_printf("\nMore info: show mount <addr>\n");
4325 return;
4326 }
4327
4328 mp = (struct mount *)addr;
4329 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4330 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4331
4332 buf[0] = '\0';
4333 mflags = mp->mnt_flag;
4334#define MNT_FLAG(flag) do { \
4335 if (mflags & (flag)) { \
4336 if (buf[0] != '\0') \
4337 strlcat(buf, ", ", sizeof(buf)); \
4338 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4339 mflags &= ~(flag); \
4340 } \
4341} while (0)
4342 MNT_FLAG(MNT_RDONLY);
4343 MNT_FLAG(MNT_SYNCHRONOUS);
4344 MNT_FLAG(MNT_NOEXEC);
4345 MNT_FLAG(MNT_NOSUID);
4346 MNT_FLAG(MNT_NFS4ACLS);
4347 MNT_FLAG(MNT_UNION);
4348 MNT_FLAG(MNT_ASYNC);
4349 MNT_FLAG(MNT_SUIDDIR);
4350 MNT_FLAG(MNT_SOFTDEP);
4351 MNT_FLAG(MNT_NOSYMFOLLOW);
4352 MNT_FLAG(MNT_GJOURNAL);
4353 MNT_FLAG(MNT_MULTILABEL);
4354 MNT_FLAG(MNT_ACLS);
4355 MNT_FLAG(MNT_NOATIME);
4356 MNT_FLAG(MNT_NOCLUSTERR);
4357 MNT_FLAG(MNT_NOCLUSTERW);
4358 MNT_FLAG(MNT_SUJ);
4359 MNT_FLAG(MNT_EXRDONLY);
4360 MNT_FLAG(MNT_EXPORTED);
4361 MNT_FLAG(MNT_DEFEXPORTED);
4362 MNT_FLAG(MNT_EXPORTANON);
4363 MNT_FLAG(MNT_EXKERB);
4364 MNT_FLAG(MNT_EXPUBLIC);
4365 MNT_FLAG(MNT_LOCAL);
4366 MNT_FLAG(MNT_QUOTA);
4367 MNT_FLAG(MNT_ROOTFS);
4368 MNT_FLAG(MNT_USER);
4369 MNT_FLAG(MNT_IGNORE);
4370 MNT_FLAG(MNT_UPDATE);
4371 MNT_FLAG(MNT_DELEXPORT);
4372 MNT_FLAG(MNT_RELOAD);
4373 MNT_FLAG(MNT_FORCE);
4374 MNT_FLAG(MNT_SNAPSHOT);
4375 MNT_FLAG(MNT_BYFSID);
4376#undef MNT_FLAG
4377 if (mflags != 0) {
4378 if (buf[0] != '\0')
4379 strlcat(buf, ", ", sizeof(buf));
4380 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4381 "0x%016jx", mflags);
4382 }
4383 db_printf(" mnt_flag = %s\n", buf);
4384
4385 buf[0] = '\0';
4386 flags = mp->mnt_kern_flag;
4387#define MNT_KERN_FLAG(flag) do { \
4388 if (flags & (flag)) { \
4389 if (buf[0] != '\0') \
4390 strlcat(buf, ", ", sizeof(buf)); \
4391 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4392 flags &= ~(flag); \
4393 } \
4394} while (0)
4395 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4396 MNT_KERN_FLAG(MNTK_ASYNC);
4397 MNT_KERN_FLAG(MNTK_SOFTDEP);
4398 MNT_KERN_FLAG(MNTK_NOMSYNC);
4399 MNT_KERN_FLAG(MNTK_DRAINING);
4400 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4401 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4402 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4403 MNT_KERN_FLAG(MNTK_NO_IOPF);
4404 MNT_KERN_FLAG(MNTK_RECURSE);
4405 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4406 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4407 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4408 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4409 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4410 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4411 MNT_KERN_FLAG(MNTK_NOASYNC);
4412 MNT_KERN_FLAG(MNTK_UNMOUNT);
4413 MNT_KERN_FLAG(MNTK_MWAIT);
4414 MNT_KERN_FLAG(MNTK_SUSPEND);
4415 MNT_KERN_FLAG(MNTK_SUSPEND2);
4416 MNT_KERN_FLAG(MNTK_SUSPENDED);
4417 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4418 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4419#undef MNT_KERN_FLAG
4420 if (flags != 0) {
4421 if (buf[0] != '\0')
4422 strlcat(buf, ", ", sizeof(buf));
4423 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4424 "0x%08x", flags);
4425 }
4426 db_printf(" mnt_kern_flag = %s\n", buf);
4427
4428 db_printf(" mnt_opt = ");
4429 opt = TAILQ_FIRST(mp->mnt_opt);
4430 if (opt != NULL) {
4431 db_printf("%s", opt->name);
4432 opt = TAILQ_NEXT(opt, link);
4433 while (opt != NULL) {
4434 db_printf(", %s", opt->name);
4435 opt = TAILQ_NEXT(opt, link);
4436 }
4437 }
4438 db_printf("\n");
4439
4440 sp = &mp->mnt_stat;
4441 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4442 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4443 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4444 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4445 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4446 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4447 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4448 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4449 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4450 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4451 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4452 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4453
4454 db_printf(" mnt_cred = { uid=%u ruid=%u",
4455 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4456 if (jailed(mp->mnt_cred))
4457 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4458 db_printf(" }\n");
4459 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4460 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4461 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4462 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4463 db_printf(" mnt_lazyvnodelistsize = %d\n",
4464 mp->mnt_lazyvnodelistsize);
4465 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4466 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4467 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4468 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4469 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4470 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4471 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4472 db_printf(" mnt_secondary_accwrites = %d\n",
4473 mp->mnt_secondary_accwrites);
4474 db_printf(" mnt_gjprovider = %s\n",
4475 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4476 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4477
4478 db_printf("\n\nList of active vnodes\n");
4479 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4480 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4481 vn_printf(vp, "vnode ");
4482 if (db_pager_quit)
4483 break;
4484 }
4485 }
4486 db_printf("\n\nList of inactive vnodes\n");
4487 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4488 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4489 vn_printf(vp, "vnode ");
4490 if (db_pager_quit)
4491 break;
4492 }
4493 }
4494}
4495#endif /* DDB */
4496
4497/*
4498 * Fill in a struct xvfsconf based on a struct vfsconf.
4499 */
4500static int
4501vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4502{
4503 struct xvfsconf xvfsp;
4504
4505 bzero(&xvfsp, sizeof(xvfsp));
4506 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4507 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4508 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4509 xvfsp.vfc_flags = vfsp->vfc_flags;
4510 /*
4511 * These are unused in userland, we keep them
4512 * to not break binary compatibility.
4513 */
4514 xvfsp.vfc_vfsops = NULL;
4515 xvfsp.vfc_next = NULL;
4516 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4517}
4518
4519#ifdef COMPAT_FREEBSD32
4520struct xvfsconf32 {
4521 uint32_t vfc_vfsops;
4522 char vfc_name[MFSNAMELEN];
4523 int32_t vfc_typenum;
4524 int32_t vfc_refcount;
4525 int32_t vfc_flags;
4526 uint32_t vfc_next;
4527};
4528
4529static int
4530vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4531{
4532 struct xvfsconf32 xvfsp;
4533
4534 bzero(&xvfsp, sizeof(xvfsp));
4535 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4536 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4537 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4538 xvfsp.vfc_flags = vfsp->vfc_flags;
4539 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4540}
4541#endif
4542
4543/*
4544 * Top level filesystem related information gathering.
4545 */
4546static int
4547sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4548{
4549 struct vfsconf *vfsp;
4550 int error;
4551
4552 error = 0;
4553 vfsconf_slock();
4554 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4555#ifdef COMPAT_FREEBSD32
4556 if (req->flags & SCTL_MASK32)
4557 error = vfsconf2x32(req, vfsp);
4558 else
4559#endif
4560 error = vfsconf2x(req, vfsp);
4561 if (error)
4562 break;
4563 }
4564 vfsconf_sunlock();
4565 return (error);
4566}
4567
4568SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4569 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4570 "S,xvfsconf", "List of all configured filesystems");
4571
4572#ifndef BURN_BRIDGES
4573static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4574
4575static int
4576vfs_sysctl(SYSCTL_HANDLER_ARGS)
4577{
4578 int *name = (int *)arg1 - 1; /* XXX */
4579 u_int namelen = arg2 + 1; /* XXX */
4580 struct vfsconf *vfsp;
4581
4582 log(LOG_WARNING, "userland calling deprecated sysctl, "
4583 "please rebuild world\n");
4584
4585#if 1 || defined(COMPAT_PRELITE2)
4586 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4587 if (namelen == 1)
4588 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4589#endif
4590
4591 switch (name[1]) {
4592 case VFS_MAXTYPENUM:
4593 if (namelen != 2)
4594 return (ENOTDIR);
4595 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4596 case VFS_CONF:
4597 if (namelen != 3)
4598 return (ENOTDIR); /* overloaded */
4599 vfsconf_slock();
4600 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4601 if (vfsp->vfc_typenum == name[2])
4602 break;
4603 }
4604 vfsconf_sunlock();
4605 if (vfsp == NULL)
4606 return (EOPNOTSUPP);
4607#ifdef COMPAT_FREEBSD32
4608 if (req->flags & SCTL_MASK32)
4609 return (vfsconf2x32(req, vfsp));
4610 else
4611#endif
4612 return (vfsconf2x(req, vfsp));
4613 }
4614 return (EOPNOTSUPP);
4615}
4616
4617static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4618 CTLFLAG_MPSAFE, vfs_sysctl,
4619 "Generic filesystem");
4620
4621#if 1 || defined(COMPAT_PRELITE2)
4622
4623static int
4624sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4625{
4626 int error;
4627 struct vfsconf *vfsp;
4628 struct ovfsconf ovfs;
4629
4630 vfsconf_slock();
4631 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4632 bzero(&ovfs, sizeof(ovfs));
4633 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
4634 strcpy(ovfs.vfc_name, vfsp->vfc_name);
4635 ovfs.vfc_index = vfsp->vfc_typenum;
4636 ovfs.vfc_refcount = vfsp->vfc_refcount;
4637 ovfs.vfc_flags = vfsp->vfc_flags;
4638 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4639 if (error != 0) {
4640 vfsconf_sunlock();
4641 return (error);
4642 }
4643 }
4644 vfsconf_sunlock();
4645 return (0);
4646}
4647
4648#endif /* 1 || COMPAT_PRELITE2 */
4649#endif /* !BURN_BRIDGES */
4650
4651#define KINFO_VNODESLOP 10
4652#ifdef notyet
4653/*
4654 * Dump vnode list (via sysctl).
4655 */
4656/* ARGSUSED */
4657static int
4658sysctl_vnode(SYSCTL_HANDLER_ARGS)
4659{
4660 struct xvnode *xvn;
4661 struct mount *mp;
4662 struct vnode *vp;
4663 int error, len, n;
4664
4665 /*
4666 * Stale numvnodes access is not fatal here.
4667 */
4668 req->lock = 0;
4669 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4670 if (!req->oldptr)
4671 /* Make an estimate */
4672 return (SYSCTL_OUT(req, 0, len));
4673
4674 error = sysctl_wire_old_buffer(req, 0);
4675 if (error != 0)
4676 return (error);
4677 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4678 n = 0;
4679 mtx_lock(&mountlist_mtx);
4680 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4681 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4682 continue;
4683 MNT_ILOCK(mp);
4684 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4685 if (n == len)
4686 break;
4687 vref(vp);
4688 xvn[n].xv_size = sizeof *xvn;
4689 xvn[n].xv_vnode = vp;
4690 xvn[n].xv_id = 0; /* XXX compat */
4691#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4692 XV_COPY(usecount);
4693 XV_COPY(writecount);
4694 XV_COPY(holdcnt);
4695 XV_COPY(mount);
4696 XV_COPY(numoutput);
4697 XV_COPY(type);
4698#undef XV_COPY
4699 xvn[n].xv_flag = vp->v_vflag;
4700
4701 switch (vp->v_type) {
4702 case VREG:
4703 case VDIR:
4704 case VLNK:
4705 break;
4706 case VBLK:
4707 case VCHR:
4708 if (vp->v_rdev == NULL) {
4709 vrele(vp);
4710 continue;
4711 }
4712 xvn[n].xv_dev = dev2udev(vp->v_rdev);
4713 break;
4714 case VSOCK:
4715 xvn[n].xv_socket = vp->v_socket;
4716 break;
4717 case VFIFO:
4718 xvn[n].xv_fifo = vp->v_fifoinfo;
4719 break;
4720 case VNON:
4721 case VBAD:
4722 default:
4723 /* shouldn't happen? */
4724 vrele(vp);
4725 continue;
4726 }
4727 vrele(vp);
4728 ++n;
4729 }
4730 MNT_IUNLOCK(mp);
4731 mtx_lock(&mountlist_mtx);
4732 vfs_unbusy(mp);
4733 if (n == len)
4734 break;
4735 }
4736 mtx_unlock(&mountlist_mtx);
4737
4738 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4739 free(xvn, M_TEMP);
4740 return (error);
4741}
4742
4743SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4744 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4745 "");
4746#endif
4747
4748static void
4749unmount_or_warn(struct mount *mp)
4750{
4751 int error;
4752
4753 error = dounmount(mp, MNT_FORCE, curthread);
4754 if (error != 0) {
4755 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4756 if (error == EBUSY)
4757 printf("BUSY)\n");
4758 else
4759 printf("%d)\n", error);
4760 }
4761}
4762
4763/*
4764 * Unmount all filesystems. The list is traversed in reverse order
4765 * of mounting to avoid dependencies.
4766 */
4767void
4769{
4770 struct mount *mp, *tmp;
4771
4772 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4773
4774 /*
4775 * Since this only runs when rebooting, it is not interlocked.
4776 */
4777 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4778 vfs_ref(mp);
4779
4780 /*
4781 * Forcibly unmounting "/dev" before "/" would prevent clean
4782 * unmount of the latter.
4783 */
4784 if (mp == rootdevmp)
4785 continue;
4786
4787 unmount_or_warn(mp);
4788 }
4789
4790 if (rootdevmp != NULL)
4792}
4793
4794static void
4795vfs_deferred_inactive(struct vnode *vp, int lkflags)
4796{
4797
4798 ASSERT_VI_LOCKED(vp, __func__);
4799 VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4800 if ((vp->v_iflag & VI_OWEINACT) == 0) {
4801 vdropl(vp);
4802 return;
4803 }
4804 if (vn_lock(vp, lkflags) == 0) {
4805 VI_LOCK(vp);
4806 vinactive(vp);
4807 VOP_UNLOCK(vp);
4808 vdropl(vp);
4809 return;
4810 }
4812}
4813
4814static int
4815vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4816{
4817
4818 return (vp->v_iflag & VI_DEFINACT);
4819}
4820
4821static void __noinline
4822vfs_periodic_inactive(struct mount *mp, int flags)
4823{
4824 struct vnode *vp, *mvp;
4825 int lkflags;
4826
4827 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4828 if (flags != MNT_WAIT)
4829 lkflags |= LK_NOWAIT;
4830
4831 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4832 if ((vp->v_iflag & VI_DEFINACT) == 0) {
4833 VI_UNLOCK(vp);
4834 continue;
4835 }
4836 vp->v_iflag &= ~VI_DEFINACT;
4837 vfs_deferred_inactive(vp, lkflags);
4838 }
4839}
4840
4841static inline bool
4842vfs_want_msync(struct vnode *vp)
4843{
4844 struct vm_object *obj;
4845
4846 /*
4847 * This test may be performed without any locks held.
4848 * We rely on vm_object's type stability.
4849 */
4850 if (vp->v_vflag & VV_NOSYNC)
4851 return (false);
4852 obj = vp->v_object;
4853 return (obj != NULL && vm_object_mightbedirty(obj));
4854}
4855
4856static int
4857vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4858{
4859
4860 if (vp->v_vflag & VV_NOSYNC)
4861 return (false);
4862 if (vp->v_iflag & VI_DEFINACT)
4863 return (true);
4864 return (vfs_want_msync(vp));
4865}
4866
4867static void __noinline
4869{
4870 struct vnode *vp, *mvp;
4871 struct vm_object *obj;
4872 int lkflags, objflags;
4873 bool seen_defer;
4874
4875 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4876 if (flags != MNT_WAIT) {
4877 lkflags |= LK_NOWAIT;
4878 objflags = OBJPC_NOSYNC;
4879 } else {
4880 objflags = OBJPC_SYNC;
4881 }
4882
4883 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4884 seen_defer = false;
4885 if (vp->v_iflag & VI_DEFINACT) {
4886 vp->v_iflag &= ~VI_DEFINACT;
4887 seen_defer = true;
4888 }
4889 if (!vfs_want_msync(vp)) {
4890 if (seen_defer)
4891 vfs_deferred_inactive(vp, lkflags);
4892 else
4893 VI_UNLOCK(vp);
4894 continue;
4895 }
4896 if (vget(vp, lkflags) == 0) {
4897 obj = vp->v_object;
4898 if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4899 VM_OBJECT_WLOCK(obj);
4900 vm_object_page_clean(obj, 0, 0, objflags);
4901 VM_OBJECT_WUNLOCK(obj);
4902 }
4903 vput(vp);
4904 if (seen_defer)
4905 vdrop(vp);
4906 } else {
4907 if (seen_defer)
4909 }
4910 }
4911}
4912
4913void
4914vfs_periodic(struct mount *mp, int flags)
4915{
4916
4917 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4918
4919 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4921 else
4923}
4924
4925static void
4926destroy_vpollinfo_free(struct vpollinfo *vi)
4927{
4928
4929 knlist_destroy(&vi->vpi_selinfo.si_note);
4930 mtx_destroy(&vi->vpi_lock);
4931 free(vi, M_VNODEPOLL);
4932}
4933
4934static void
4935destroy_vpollinfo(struct vpollinfo *vi)
4936{
4937
4938 knlist_clear(&vi->vpi_selinfo.si_note, 1);
4939 seldrain(&vi->vpi_selinfo);
4941}
4942
4943/*
4944 * Initialize per-vnode helper structure to hold poll-related state.
4945 */
4946void
4947v_addpollinfo(struct vnode *vp)
4948{
4949 struct vpollinfo *vi;
4950
4951 if (vp->v_pollinfo != NULL)
4952 return;
4953 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4954 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4955 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4957 VI_LOCK(vp);
4958 if (vp->v_pollinfo != NULL) {
4959 VI_UNLOCK(vp);
4961 return;
4962 }
4963 vp->v_pollinfo = vi;
4964 VI_UNLOCK(vp);
4965}
4966
4967/*
4968 * Record a process's interest in events which might happen to
4969 * a vnode. Because poll uses the historic select-style interface
4970 * internally, this routine serves as both the ``check for any
4971 * pending events'' and the ``record my interest in future events''
4972 * functions. (These are done together, while the lock is held,
4973 * to avoid race conditions.)
4974 */
4975int
4976vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4977{
4978
4979 v_addpollinfo(vp);
4980 mtx_lock(&vp->v_pollinfo->vpi_lock);
4981 if (vp->v_pollinfo->vpi_revents & events) {
4982 /*
4983 * This leaves events we are not interested
4984 * in available for the other process which
4985 * which presumably had requested them
4986 * (otherwise they would never have been
4987 * recorded).
4988 */
4989 events &= vp->v_pollinfo->vpi_revents;
4990 vp->v_pollinfo->vpi_revents &= ~events;
4991
4992 mtx_unlock(&vp->v_pollinfo->vpi_lock);
4993 return (events);
4994 }
4995 vp->v_pollinfo->vpi_events |= events;
4996 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4997 mtx_unlock(&vp->v_pollinfo->vpi_lock);
4998 return (0);
4999}
5000
5001/*
5002 * Routine to create and manage a filesystem syncer vnode.
5003 */
5004#define sync_close ((int (*)(struct vop_close_args *))nullop)
5005static int sync_fsync(struct vop_fsync_args *);
5006static int sync_inactive(struct vop_inactive_args *);
5007static int sync_reclaim(struct vop_reclaim_args *);
5008
5009static struct vop_vector sync_vnodeops = {
5010 .vop_bypass = VOP_EOPNOTSUPP,
5011 .vop_close = sync_close, /* close */
5012 .vop_fsync = sync_fsync, /* fsync */
5013 .vop_inactive = sync_inactive, /* inactive */
5014 .vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5015 .vop_reclaim = sync_reclaim, /* reclaim */
5016 .vop_lock1 = vop_stdlock, /* lock */
5017 .vop_unlock = vop_stdunlock, /* unlock */
5018 .vop_islocked = vop_stdislocked, /* islocked */
5019};
5021
5022/*
5023 * Create a new filesystem syncer vnode for the specified mount point.
5024 */
5025void
5026vfs_allocate_syncvnode(struct mount *mp)
5027{
5028 struct vnode *vp;
5029 struct bufobj *bo;
5030 static long start, incr, next;
5031 int error;
5032
5033 /* Allocate a new vnode */
5034 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5035 if (error != 0)
5036 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5037 vp->v_type = VNON;
5038 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5039 vp->v_vflag |= VV_FORCEINSMQ;
5040 error = insmntque1(vp, mp);
5041 if (error != 0)
5042 panic("vfs_allocate_syncvnode: insmntque() failed");
5043 vp->v_vflag &= ~VV_FORCEINSMQ;
5044 VOP_UNLOCK(vp);
5045 /*
5046 * Place the vnode onto the syncer worklist. We attempt to
5047 * scatter them about on the list so that they will go off
5048 * at evenly distributed times even if all the filesystems
5049 * are mounted at once.
5050 */
5051 next += incr;
5052 if (next == 0 || next > syncer_maxdelay) {
5053 start /= 2;
5054 incr /= 2;
5055 if (start == 0) {
5056 start = syncer_maxdelay / 2;
5057 incr = syncer_maxdelay;
5058 }
5059 next = start;
5060 }
5061 bo = &vp->v_bufobj;
5062 BO_LOCK(bo);
5063 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5064 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5065 mtx_lock(&sync_mtx);
5067 if (mp->mnt_syncer == NULL) {
5068 mp->mnt_syncer = vp;
5069 vp = NULL;
5070 }
5071 mtx_unlock(&sync_mtx);
5072 BO_UNLOCK(bo);
5073 if (vp != NULL) {
5074 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5075 vgone(vp);
5076 vput(vp);
5077 }
5078}
5079
5080void
5082{
5083 struct vnode *vp;
5084
5085 mtx_lock(&sync_mtx);
5086 vp = mp->mnt_syncer;
5087 if (vp != NULL)
5088 mp->mnt_syncer = NULL;
5089 mtx_unlock(&sync_mtx);
5090 if (vp != NULL)
5091 vrele(vp);
5092}
5093
5094/*
5095 * Do a lazy sync of the filesystem.
5096 */
5097static int
5098sync_fsync(struct vop_fsync_args *ap)
5099{
5100 struct vnode *syncvp = ap->a_vp;
5101 struct mount *mp = syncvp->v_mount;
5102 int error, save;
5103 struct bufobj *bo;
5104
5105 /*
5106 * We only need to do something if this is a lazy evaluation.
5107 */
5108 if (ap->a_waitfor != MNT_LAZY)
5109 return (0);
5110
5111 /*
5112 * Move ourselves to the back of the sync list.
5113 */
5114 bo = &syncvp->v_bufobj;
5115 BO_LOCK(bo);
5116 vn_syncer_add_to_worklist(bo, syncdelay);
5117 BO_UNLOCK(bo);
5118
5119 /*
5120 * Walk the list of vnodes pushing all that are dirty and
5121 * not already on the sync list.
5122 */
5123 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5124 return (0);
5125 VOP_UNLOCK(syncvp);
5126 save = curthread_pflags_set(TDP_SYNCIO);
5127 /*
5128 * The filesystem at hand may be idle with free vnodes stored in the
5129 * batch. Return them instead of letting them stay there indefinitely.
5130 */
5131 vfs_periodic(mp, MNT_NOWAIT);
5132 error = VFS_SYNC(mp, MNT_LAZY);
5133 curthread_pflags_restore(save);
5134 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5135 vfs_unbusy(mp);
5136 return (error);
5137}
5138
5139/*
5140 * The syncer vnode is no referenced.
5141 */
5142static int
5143sync_inactive(struct vop_inactive_args *ap)
5144{
5145
5146 vgone(ap->a_vp);
5147 return (0);
5148}
5149
5150/*
5151 * The syncer vnode is no longer needed and is being decommissioned.
5152 *
5153 * Modifications to the worklist must be protected by sync_mtx.
5154 */
5155static int
5156sync_reclaim(struct vop_reclaim_args *ap)
5157{
5158 struct vnode *vp = ap->a_vp;
5159 struct bufobj *bo;
5160
5161 bo = &vp->v_bufobj;
5162 BO_LOCK(bo);
5163 mtx_lock(&sync_mtx);
5164 if (vp->v_mount->mnt_syncer == vp)
5165 vp->v_mount->mnt_syncer = NULL;
5166 if (bo->bo_flag & BO_ONWORKLST) {
5167 LIST_REMOVE(bo, bo_synclist);
5170 bo->bo_flag &= ~BO_ONWORKLST;
5171 }
5172 mtx_unlock(&sync_mtx);
5173 BO_UNLOCK(bo);
5174
5175 return (0);
5176}
5177
5178int
5179vn_need_pageq_flush(struct vnode *vp)
5180{
5181 struct vm_object *obj;
5182
5183 obj = vp->v_object;
5184 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5185 vm_object_mightbedirty(obj));
5186}
5187
5188/*
5189 * Check if vnode represents a disk device
5190 */
5191bool
5192vn_isdisk_error(struct vnode *vp, int *errp)
5193{
5194 int error;
5195
5196 if (vp->v_type != VCHR) {
5197 error = ENOTBLK;
5198 goto out;
5199 }
5200 error = 0;
5201 dev_lock();
5202 if (vp->v_rdev == NULL)
5203 error = ENXIO;
5204 else if (vp->v_rdev->si_devsw == NULL)
5205 error = ENXIO;
5206 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5207 error = ENOTBLK;
5208 dev_unlock();
5209out:
5210 *errp = error;
5211 return (error == 0);
5212}
5213
5214bool
5215vn_isdisk(struct vnode *vp)
5216{
5217 int error;
5218
5219 return (vn_isdisk_error(vp, &error));
5220}
5221
5222/*
5223 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5224 * the comment above cache_fplookup for details.
5225 */
5226int
5227vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5228{
5229 int error;
5230
5231 VFS_SMR_ASSERT_ENTERED();
5232
5233 /* Check the owner. */
5234 if (cred->cr_uid == file_uid) {
5235 if (file_mode & S_IXUSR)
5236 return (0);
5237 goto out_error;
5238 }
5239
5240 /* Otherwise, check the groups (first match) */
5241 if (groupmember(file_gid, cred)) {
5242 if (file_mode & S_IXGRP)
5243 return (0);
5244 goto out_error;
5245 }
5246
5247 /* Otherwise, check everyone else. */
5248 if (file_mode & S_IXOTH)
5249 return (0);
5250out_error:
5251 /*
5252 * Permission check failed, but it is possible denial will get overwritten
5253 * (e.g., when root is traversing through a 700 directory owned by someone
5254 * else).
5255 *
5256 * vaccess() calls priv_check_cred which in turn can descent into MAC
5257 * modules overriding this result. It's quite unclear what semantics
5258 * are allowed for them to operate, thus for safety we don't call them
5259 * from within the SMR section. This also means if any such modules
5260 * are present, we have to let the regular lookup decide.
5261 */
5263 switch (error) {
5264 case 0:
5265 return (0);
5266 case EAGAIN:
5267 /*
5268 * MAC modules present.
5269 */
5270 return (EAGAIN);
5271 case EPERM:
5272 return (EACCES);
5273 default:
5274 return (error);
5275 }
5276}
5277
5278/*
5279 * Common filesystem object access control check routine. Accepts a
5280 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5281 * Returns 0 on success, or an errno on failure.
5282 */
5283int
5284vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5285 accmode_t accmode, struct ucred *cred)
5286{
5287 accmode_t dac_granted;
5288 accmode_t priv_granted;
5289
5290 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5291 ("invalid bit in accmode"));
5292 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5293 ("VAPPEND without VWRITE"));
5294
5295 /*
5296 * Look for a normal, non-privileged way to access the file/directory
5297 * as requested. If it exists, go with that.
5298 */
5299
5300 dac_granted = 0;
5301
5302 /* Check the owner. */
5303 if (cred->cr_uid == file_uid) {
5304 dac_granted |= VADMIN;
5305 if (file_mode & S_IXUSR)
5306 dac_granted |= VEXEC;
5307 if (file_mode & S_IRUSR)
5308 dac_granted |= VREAD;
5309 if (file_mode & S_IWUSR)
5310 dac_granted |= (VWRITE | VAPPEND);
5311
5312 if ((accmode & dac_granted) == accmode)
5313 return (0);
5314
5315 goto privcheck;
5316 }
5317
5318 /* Otherwise, check the groups (first match) */
5319 if (groupmember(file_gid, cred)) {
5320 if (file_mode & S_IXGRP)
5321 dac_granted |= VEXEC;
5322 if (file_mode & S_IRGRP)
5323 dac_granted |= VREAD;
5324 if (file_mode & S_IWGRP)
5325 dac_granted |= (VWRITE | VAPPEND);
5326
5327 if ((accmode & dac_granted) == accmode)
5328 return (0);
5329
5330 goto privcheck;
5331 }
5332
5333 /* Otherwise, check everyone else. */
5334 if (file_mode & S_IXOTH)
5335 dac_granted |= VEXEC;
5336 if (file_mode & S_IROTH)
5337 dac_granted |= VREAD;
5338 if (file_mode & S_IWOTH)
5339 dac_granted |= (VWRITE | VAPPEND);
5340 if ((accmode & dac_granted) == accmode)
5341 return (0);
5342
5343privcheck:
5344 /*
5345 * Build a privilege mask to determine if the set of privileges
5346 * satisfies the requirements when combined with the granted mask
5347 * from above. For each privilege, if the privilege is required,
5348 * bitwise or the request type onto the priv_granted mask.
5349 */
5350 priv_granted = 0;
5351
5352 if (type == VDIR) {
5353 /*
5354 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5355 * requests, instead of PRIV_VFS_EXEC.
5356 */
5357 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5358 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5359 priv_granted |= VEXEC;
5360 } else {
5361 /*
5362 * Ensure that at least one execute bit is on. Otherwise,
5363 * a privileged user will always succeed, and we don't want
5364 * this to happen unless the file really is executable.
5365 */
5366 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5367 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5368 !priv_check_cred(cred, PRIV_VFS_EXEC))
5369 priv_granted |= VEXEC;
5370 }
5371
5372 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5373 !priv_check_cred(cred, PRIV_VFS_READ))
5374 priv_granted |= VREAD;
5375
5376 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5377 !priv_check_cred(cred, PRIV_VFS_WRITE))
5378 priv_granted |= (VWRITE | VAPPEND);
5379
5380 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5381 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5382 priv_granted |= VADMIN;
5383
5384 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5385 return (0);
5386 }
5387
5388 return ((accmode & VADMIN) ? EPERM : EACCES);
5389}
5390
5391/*
5392 * Credential check based on process requesting service, and per-attribute
5393 * permissions.
5394 */
5395int
5396extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5397 struct thread *td, accmode_t accmode)
5398{
5399
5400 /*
5401 * Kernel-invoked always succeeds.
5402 */
5403 if (cred == NOCRED)
5404 return (0);
5405
5406 /*
5407 * Do not allow privileged processes in jail to directly manipulate
5408 * system attributes.
5409 */
5410 switch (attrnamespace) {
5411 case EXTATTR_NAMESPACE_SYSTEM:
5412 /* Potentially should be: return (EPERM); */
5413 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5414 case EXTATTR_NAMESPACE_USER:
5415 return (VOP_ACCESS(vp, accmode, cred, td));
5416 default:
5417 return (EPERM);
5418 }
5419}
5420
5421#ifdef DEBUG_VFS_LOCKS
5422int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */
5423SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5424 "Drop into debugger on lock violation");
5425
5426int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */
5427SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5428 0, "Check for interlock across VOPs");
5429
5430int vfs_badlock_print = 1; /* Print lock violations. */
5431SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5432 0, "Print lock violations");
5433
5434int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */
5435SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5436 0, "Print vnode details on lock violations");
5437
5438#ifdef KDB
5439int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */
5440SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5441 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5442#endif
5443
5444static void
5445vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5446{
5447
5448#ifdef KDB
5449 if (vfs_badlock_backtrace)
5450 kdb_backtrace();
5451#endif
5452 if (vfs_badlock_vnode)
5453 vn_printf(vp, "vnode ");
5454 if (vfs_badlock_print)
5455 printf("%s: %p %s\n", str, (void *)vp, msg);
5456 if (vfs_badlock_ddb)
5457 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5458}
5459
5460void
5461assert_vi_locked(struct vnode *vp, const char *str)
5462{
5463
5464 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5465 vfs_badlock("interlock is not locked but should be", str, vp);
5466}
5467
5468void
5469assert_vi_unlocked(struct vnode *vp, const char *str)
5470{
5471
5472 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5473 vfs_badlock("interlock is locked but should not be", str, vp);
5474}
5475
5476void
5477assert_vop_locked(struct vnode *vp, const char *str)
5478{
5479 int locked;
5480
5481 if (KERNEL_PANICKED() || vp == NULL)
5482 return;
5483
5484 locked = VOP_ISLOCKED(vp);
5485 if (locked == 0 || locked == LK_EXCLOTHER)
5486 vfs_badlock("is not locked but should be", str, vp);
5487}
5488
5489void
5490assert_vop_unlocked(struct vnode *vp, const char *str)
5491{
5492 if (KERNEL_PANICKED() || vp == NULL)
5493 return;
5494
5495 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5496 vfs_badlock("is locked but should not be", str, vp);
5497}
5498
5499void
5500assert_vop_elocked(struct vnode *vp, const char *str)
5501{
5502 if (KERNEL_PANICKED() || vp == NULL)
5503 return;
5504
5505 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5506 vfs_badlock("is not exclusive locked but should be", str, vp);
5507}
5508#endif /* DEBUG_VFS_LOCKS */
5509
5510void
5511vop_rename_fail(struct vop_rename_args *ap)
5512{
5513
5514 if (ap->a_tvp != NULL)
5515 vput(ap->a_tvp);
5516 if (ap->a_tdvp == ap->a_tvp)
5517 vrele(ap->a_tdvp);
5518 else
5519 vput(ap->a_tdvp);
5520 vrele(ap->a_fdvp);
5521 vrele(ap->a_fvp);
5522}
5523
5524void
5526{
5527 struct vop_rename_args *a = ap;
5528
5529#ifdef DEBUG_VFS_LOCKS
5530 if (a->a_tvp)
5531 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5532 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5533 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5534 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5535
5536 /* Check the source (from). */
5537 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5538 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5539 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5540 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5541 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5542
5543 /* Check the target. */
5544 if (a->a_tvp)
5545 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5546 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5547#endif
5548 /*
5549 * It may be tempting to add vn_seqc_write_begin/end calls here and
5550 * in vop_rename_post but that's not going to work out since some
5551 * filesystems relookup vnodes mid-rename. This is probably a bug.
5552 *
5553 * For now filesystems are expected to do the relevant calls after they
5554 * decide what vnodes to operate on.
5555 */
5556 if (a->a_tdvp != a->a_fdvp)
5557 vhold(a->a_fdvp);
5558 if (a->a_tvp != a->a_fvp)
5559 vhold(a->a_fvp);
5560 vhold(a->a_tdvp);
5561 if (a->a_tvp)
5562 vhold(a->a_tvp);
5563}
5564
5565#ifdef DEBUG_VFS_LOCKS
5566void
5567vop_fplookup_vexec_debugpre(void *ap __unused)
5568{
5569
5570 VFS_SMR_ASSERT_ENTERED();
5571}
5572
5573void
5574vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5575{
5576
5577 VFS_SMR_ASSERT_ENTERED();
5578}
5579
5580void
5581vop_fplookup_symlink_debugpre(void *ap __unused)
5582{
5583
5584 VFS_SMR_ASSERT_ENTERED();
5585}
5586
5587void
5588vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5589{
5590
5591 VFS_SMR_ASSERT_ENTERED();
5592}
5593
5594static void
5595vop_fsync_debugprepost(struct vnode *vp, const char *name)
5596{
5597 if (vp->v_type == VCHR)
5598 ;
5599 else if (MNT_EXTENDED_SHARED(vp->v_mount))
5600 ASSERT_VOP_LOCKED(vp, name);
5601 else
5602 ASSERT_VOP_ELOCKED(vp, name);
5603}
5604
5605void
5606vop_fsync_debugpre(void *a)
5607{
5608 struct vop_fsync_args *ap;
5609
5610 ap = a;
5611 vop_fsync_debugprepost(ap->a_vp, "fsync");
5612}
5613
5614void
5615vop_fsync_debugpost(void *a, int rc __unused)
5616{
5617 struct vop_fsync_args *ap;
5618
5619 ap = a;
5620 vop_fsync_debugprepost(ap->a_vp, "fsync");
5621}
5622
5623void
5624vop_fdatasync_debugpre(void *a)
5625{
5626 struct vop_fdatasync_args *ap;
5627
5628 ap = a;
5629 vop_fsync_debugprepost(ap->a_vp, "fsync");
5630}
5631
5632void
5633vop_fdatasync_debugpost(void *a, int rc __unused)
5634{
5635 struct vop_fdatasync_args *ap;
5636
5637 ap = a;
5638 vop_fsync_debugprepost(ap->a_vp, "fsync");
5639}
5640
5641void
5642vop_strategy_debugpre(void *ap)
5643{
5644 struct vop_strategy_args *a;
5645 struct buf *bp;
5646
5647 a = ap;
5648 bp = a->a_bp;
5649
5650 /*
5651 * Cluster ops lock their component buffers but not the IO container.
5652 */
5653 if ((bp->b_flags & B_CLUSTER) != 0)
5654 return;
5655
5656 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5657 if (vfs_badlock_print)
5658 printf(
5659 "VOP_STRATEGY: bp is not locked but should be\n");
5660 if (vfs_badlock_ddb)
5661 kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5662 }
5663}
5664
5665void
5666vop_lock_debugpre(void *ap)
5667{
5668 struct vop_lock1_args *a = ap;
5669
5670 if ((a->a_flags & LK_INTERLOCK) == 0)
5671 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5672 else
5673 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5674}
5675
5676void
5677vop_lock_debugpost(void *ap, int rc)
5678{
5679 struct vop_lock1_args *a = ap;
5680
5681 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5682 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5683 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5684}
5685
5686void
5687vop_unlock_debugpre(void *ap)
5688{
5689 struct vop_unlock_args *a = ap;
5690
5691 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5692}
5693
5694void
5695vop_need_inactive_debugpre(void *ap)
5696{
5697 struct vop_need_inactive_args *a = ap;
5698
5699 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5700}
5701
5702void
5703vop_need_inactive_debugpost(void *ap, int rc)
5704{
5705 struct vop_need_inactive_args *a = ap;
5706
5707 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5708}
5709#endif
5710
5711void
5713{
5714 struct vop_create_args *a;
5715 struct vnode *dvp;
5716
5717 a = ap;
5718 dvp = a->a_dvp;
5720}
5721
5722void
5723vop_create_post(void *ap, int rc)
5724{
5725 struct vop_create_args *a;
5726 struct vnode *dvp;
5727
5728 a = ap;
5729 dvp = a->a_dvp;
5730 vn_seqc_write_end(dvp);
5731 if (!rc)
5732 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5733}
5734
5735void
5737{
5738 struct vop_whiteout_args *a;
5739 struct vnode *dvp;
5740
5741 a = ap;
5742 dvp = a->a_dvp;
5744}
5745
5746void
5747vop_whiteout_post(void *ap, int rc)
5748{
5749 struct vop_whiteout_args *a;
5750 struct vnode *dvp;
5751
5752 a = ap;
5753 dvp = a->a_dvp;
5754 vn_seqc_write_end(dvp);
5755}
5756
5757void
5759{
5760 struct vop_deleteextattr_args *a;
5761 struct vnode *vp;
5762
5763 a = ap;
5764 vp = a->a_vp;
5766}
5767
5768void
5769vop_deleteextattr_post(void *ap, int rc)
5770{
5771 struct vop_deleteextattr_args *a;
5772 struct vnode *vp;
5773
5774 a = ap;
5775 vp = a->a_vp;
5777 if (!rc)
5778 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5779}
5780
5781void
5783{
5784 struct vop_link_args *a;
5785 struct vnode *vp, *tdvp;
5786
5787 a = ap;
5788 vp = a->a_vp;
5789 tdvp = a->a_tdvp;
5791 vn_seqc_write_begin(tdvp);
5792}
5793
5794void
5795vop_link_post(void *ap, int rc)
5796{
5797 struct vop_link_args *a;
5798 struct vnode *vp, *tdvp;
5799
5800 a = ap;
5801 vp = a->a_vp;
5802 tdvp = a->a_tdvp;
5804 vn_seqc_write_end(tdvp);
5805 if (!rc) {
5806 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5807 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5808 }
5809}
5810
5811void
5813{
5814 struct vop_mkdir_args *a;
5815 struct vnode *dvp;
5816
5817 a = ap;
5818 dvp = a->a_dvp;
5820}
5821
5822void
5823vop_mkdir_post(void *ap, int rc)
5824{
5825 struct vop_mkdir_args *a;
5826 struct vnode *dvp;
5827
5828 a = ap;
5829 dvp = a->a_dvp;
5830 vn_seqc_write_end(dvp);
5831 if (!rc)
5832 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5833}
5834
5835#ifdef DEBUG_VFS_LOCKS
5836void
5837vop_mkdir_debugpost(void *ap, int rc)
5838{
5839 struct vop_mkdir_args *a;
5840
5841 a = ap;
5842 if (!rc)
5843 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5844}
5845#endif
5846
5847void
5849{
5850 struct vop_mknod_args *a;
5851 struct vnode *dvp;
5852
5853 a = ap;
5854 dvp = a->a_dvp;
5856}
5857
5858void
5859vop_mknod_post(void *ap, int rc)
5860{
5861 struct vop_mknod_args *a;
5862 struct vnode *dvp;
5863
5864 a = ap;
5865 dvp = a->a_dvp;
5866 vn_seqc_write_end(dvp);
5867 if (!rc)
5868 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5869}
5870
5871void
5872vop_reclaim_post(void *ap, int rc)
5873{
5874 struct vop_reclaim_args *a;
5875 struct vnode *vp;
5876
5877 a = ap;
5878 vp = a->a_vp;
5879 ASSERT_VOP_IN_SEQC(vp);
5880 if (!rc)
5881 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5882}
5883
5884void
5886{
5887 struct vop_remove_args *a;
5888 struct vnode *dvp, *vp;
5889
5890 a = ap;
5891 dvp = a->a_dvp;
5892 vp = a->a_vp;
5895}
5896
5897void
5898vop_remove_post(void *ap, int rc)
5899{
5900 struct vop_remove_args *a;
5901 struct vnode *dvp, *vp;
5902
5903 a = ap;
5904 dvp = a->a_dvp;
5905 vp = a->a_vp;
5906 vn_seqc_write_end(dvp);
5908 if (!rc) {
5909 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5910 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5911 }
5912}
5913
5914void
5915vop_rename_post(void *ap, int rc)
5916{
5917 struct vop_rename_args *a = ap;
5918 long hint;
5919
5920 if (!rc) {
5921 hint = NOTE_WRITE;
5922 if (a->a_fdvp == a->a_tdvp) {
5923 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5924 hint |= NOTE_LINK;
5925 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5926 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5927 } else {
5928 hint |= NOTE_EXTEND;
5929 if (a->a_fvp->v_type == VDIR)
5930 hint |= NOTE_LINK;
5931 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5932
5933 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5934 a->a_tvp->v_type == VDIR)
5935 hint &= ~NOTE_LINK;
5936 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5937 }
5938
5939 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5940 if (a->a_tvp)
5941 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5942 }
5943 if (a->a_tdvp != a->a_fdvp)
5944 vdrop(a->a_fdvp);
5945 if (a->a_tvp != a->a_fvp)
5946 vdrop(a->a_fvp);
5947 vdrop(a->a_tdvp);
5948 if (a->a_tvp)
5949 vdrop(a->a_tvp);
5950}
5951
5952void
5954{
5955 struct vop_rmdir_args *a;
5956 struct vnode *dvp, *vp;
5957
5958 a = ap;
5959 dvp = a->a_dvp;
5960 vp = a->a_vp;
5963}
5964
5965void
5966vop_rmdir_post(void *ap, int rc)
5967{
5968 struct vop_rmdir_args *a;
5969 struct vnode *dvp, *vp;
5970
5971 a = ap;
5972 dvp = a->a_dvp;
5973 vp = a->a_vp;
5974 vn_seqc_write_end(dvp);
5976 if (!rc) {
5977 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5978 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5979 }
5980}
5981
5982void
5984{
5985 struct vop_setattr_args *a;
5986 struct vnode *vp;
5987
5988 a = ap;
5989 vp = a->a_vp;
5991}
5992
5993void
5994vop_setattr_post(void *ap, int rc)
5995{
5996 struct vop_setattr_args *a;
5997 struct vnode *vp;
5998
5999 a = ap;
6000 vp = a->a_vp;
6002 if (!rc)
6003 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6004}
6005
6006void
6008{
6009 struct vop_setacl_args *a;
6010 struct vnode *vp;
6011
6012 a = ap;
6013 vp = a->a_vp;
6015}
6016
6017void
6018vop_setacl_post(void *ap, int rc __unused)
6019{
6020 struct vop_setacl_args *a;
6021 struct vnode *vp;
6022
6023 a = ap;
6024 vp = a->a_vp;
6026}
6027
6028void
6030{
6031 struct vop_setextattr_args *a;
6032 struct vnode *vp;
6033
6034 a = ap;
6035 vp = a->a_vp;
6037}
6038
6039void
6040vop_setextattr_post(void *ap, int rc)
6041{
6042 struct vop_setextattr_args *a;
6043 struct vnode *vp;
6044
6045 a = ap;
6046 vp = a->a_vp;
6048 if (!rc)
6049 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6050}
6051
6052void
6054{
6055 struct vop_symlink_args *a;
6056 struct vnode *dvp;
6057
6058 a = ap;
6059 dvp = a->a_dvp;
6061}
6062
6063void
6064vop_symlink_post(void *ap, int rc)
6065{
6066 struct vop_symlink_args *a;
6067 struct vnode *dvp;
6068
6069 a = ap;
6070 dvp = a->a_dvp;
6071 vn_seqc_write_end(dvp);
6072 if (!rc)
6073 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6074}
6075
6076void
6077vop_open_post(void *ap, int rc)
6078{
6079 struct vop_open_args *a = ap;
6080
6081 if (!rc)
6082 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6083}
6084
6085void
6086vop_close_post(void *ap, int rc)
6087{
6088 struct vop_close_args *a = ap;
6089
6090 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6091 !VN_IS_DOOMED(a->a_vp))) {
6092 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6093 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6094 }
6095}
6096
6097void
6098vop_read_post(void *ap, int rc)
6099{
6100 struct vop_read_args *a = ap;
6101
6102 if (!rc)
6103 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6104}
6105
6106void
6107vop_read_pgcache_post(void *ap, int rc)
6108{
6109 struct vop_read_pgcache_args *a = ap;
6110
6111 if (!rc)
6112 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6113}
6114
6115void
6116vop_readdir_post(void *ap, int rc)
6117{
6118 struct vop_readdir_args *a = ap;
6119
6120 if (!rc)
6121 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6122}
6123
6124static struct knlist fs_knlist;
6125
6126static void
6128{
6129 knlist_init_mtx(&fs_knlist, NULL);
6130}
6131/* XXX - correct order? */
6132SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6133
6134void
6135vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6136{
6137
6138 KNOTE_UNLOCKED(&fs_knlist, event);
6139}
6140
6141static int filt_fsattach(struct knote *kn);
6142static void filt_fsdetach(struct knote *kn);
6143static int filt_fsevent(struct knote *kn, long hint);
6144
6145struct filterops fs_filtops = {
6146 .f_isfd = 0,
6147 .f_attach = filt_fsattach,
6148 .f_detach = filt_fsdetach,
6149 .f_event = filt_fsevent
6150};
6151
6152static int
6154{
6155
6156 kn->kn_flags |= EV_CLEAR;
6157 knlist_add(&fs_knlist, kn, 0);
6158 return (0);
6159}
6160
6161static void
6163{
6164
6165 knlist_remove(&fs_knlist, kn, 0);
6166}
6167
6168static int
6169filt_fsevent(struct knote *kn, long hint)
6170{
6171
6172 kn->kn_fflags |= kn->kn_sfflags & hint;
6173
6174 return (kn->kn_fflags != 0);
6175}
6176
6177static int
6178sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6179{
6180 struct vfsidctl vc;
6181 int error;
6182 struct mount *mp;
6183
6184 error = SYSCTL_IN(req, &vc, sizeof(vc));
6185 if (error)
6186 return (error);
6187 if (vc.vc_vers != VFS_CTL_VERS1)
6188 return (EINVAL);
6189 mp = vfs_getvfs(&vc.vc_fsid);
6190 if (mp == NULL)
6191 return (ENOENT);
6192 /* ensure that a specific sysctl goes to the right filesystem. */
6193 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6194 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6195 vfs_rel(mp);
6196 return (EINVAL);
6197 }
6198 VCTLTOREQ(&vc, req);
6199 error = VFS_SYSCTL(mp, vc.vc_op, req);
6200 vfs_rel(mp);
6201 return (error);
6202}
6203
6204SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6205 NULL, 0, sysctl_vfs_ctl, "",
6206 "Sysctl by fsid");
6207
6208/*
6209 * Function to initialize a va_filerev field sensibly.
6210 * XXX: Wouldn't a random number make a lot more sense ??
6211 */
6212u_quad_t
6214{
6215 struct bintime bt;
6216
6217 getbinuptime(&bt);
6218 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6219}
6220
6221static int filt_vfsread(struct knote *kn, long hint);
6222static int filt_vfswrite(struct knote *kn, long hint);
6223static int filt_vfsvnode(struct knote *kn, long hint);
6224static void filt_vfsdetach(struct knote *kn);
6225static struct filterops vfsread_filtops = {
6226 .f_isfd = 1,
6227 .f_detach = filt_vfsdetach,
6228 .f_event = filt_vfsread
6229};
6230static struct filterops vfswrite_filtops = {
6231 .f_isfd = 1,
6232 .f_detach = filt_vfsdetach,
6233 .f_event = filt_vfswrite
6234};
6235static struct filterops vfsvnode_filtops = {
6236 .f_isfd = 1,
6237 .f_detach = filt_vfsdetach,
6238 .f_event = filt_vfsvnode
6239};
6240
6241static void
6242vfs_knllock(void *arg)
6243{
6244 struct vnode *vp = arg;
6245
6246 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6247}
6248
6249static void
6251{
6252 struct vnode *vp = arg;
6253
6254 VOP_UNLOCK(vp);
6255}
6256
6257static void
6258vfs_knl_assert_lock(void *arg, int what)
6259{
6260#ifdef DEBUG_VFS_LOCKS
6261 struct vnode *vp = arg;
6262
6263 if (what == LA_LOCKED)
6264 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6265 else
6266 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6267#endif
6268}
6269
6270int
6271vfs_kqfilter(struct vop_kqfilter_args *ap)
6272{
6273 struct vnode *vp = ap->a_vp;
6274 struct knote *kn = ap->a_kn;
6275 struct knlist *knl;
6276
6277 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6278 kn->kn_filter != EVFILT_WRITE),
6279 ("READ/WRITE filter on a FIFO leaked through"));
6280 switch (kn->kn_filter) {
6281 case EVFILT_READ:
6282 kn->kn_fop = &vfsread_filtops;
6283 break;
6284 case EVFILT_WRITE:
6285 kn->kn_fop = &vfswrite_filtops;
6286 break;
6287 case EVFILT_VNODE:
6288 kn->kn_fop = &vfsvnode_filtops;
6289 break;
6290 default:
6291 return (EINVAL);
6292 }
6293
6294 kn->kn_hook = (caddr_t)vp;
6295
6296 v_addpollinfo(vp);
6297 if (vp->v_pollinfo == NULL)
6298 return (ENOMEM);
6299 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6300 vhold(vp);
6301 knlist_add(knl, kn, 0);
6302
6303 return (0);
6304}
6305
6306/*
6307 * Detach knote from vnode
6308 */
6309static void
6311{
6312 struct vnode *vp = (struct vnode *)kn->kn_hook;
6313
6314 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6315 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6316 vdrop(vp);
6317}
6318
6319/*ARGSUSED*/
6320static int
6321filt_vfsread(struct knote *kn, long hint)
6322{
6323 struct vnode *vp = (struct vnode *)kn->kn_hook;
6324 struct vattr va;
6325 int res;
6326
6327 /*
6328 * filesystem is gone, so set the EOF flag and schedule
6329 * the knote for deletion.
6330 */
6331 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6332 VI_LOCK(vp);
6333 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6334 VI_UNLOCK(vp);
6335 return (1);
6336 }
6337
6338 if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6339 return (0);
6340
6341 VI_LOCK(vp);
6342 kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6343 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6344 VI_UNLOCK(vp);
6345 return (res);
6346}
6347
6348/*ARGSUSED*/
6349static int
6350filt_vfswrite(struct knote *kn, long hint)
6351{
6352 struct vnode *vp = (struct vnode *)kn->kn_hook;
6353
6354 VI_LOCK(vp);
6355
6356 /*
6357 * filesystem is gone, so set the EOF flag and schedule
6358 * the knote for deletion.
6359 */
6360 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6361 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6362
6363 kn->kn_data = 0;
6364 VI_UNLOCK(vp);
6365 return (1);
6366}
6367
6368static int
6369filt_vfsvnode(struct knote *kn, long hint)
6370{
6371 struct vnode *vp = (struct vnode *)kn->kn_hook;
6372 int res;
6373
6374 VI_LOCK(vp);
6375 if (kn->kn_sfflags & hint)
6376 kn->kn_fflags |= hint;
6377 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6378 kn->kn_flags |= EV_EOF;
6379 VI_UNLOCK(vp);
6380 return (1);
6381 }
6382 res = (kn->kn_fflags != 0);
6383 VI_UNLOCK(vp);
6384 return (res);
6385}
6386
6387/*
6388 * Returns whether the directory is empty or not.
6389 * If it is empty, the return value is 0; otherwise
6390 * the return value is an error value (which may
6391 * be ENOTEMPTY).
6392 */
6393int
6394vfs_emptydir(struct vnode *vp)
6395{
6396 struct uio uio;
6397 struct iovec iov;
6398 struct dirent *dirent, *dp, *endp;
6399 int error, eof;
6400
6401 error = 0;
6402 eof = 0;
6403
6404 ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6405 VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6406
6407 dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6408 iov.iov_base = dirent;
6409 iov.iov_len = sizeof(struct dirent);
6410
6411 uio.uio_iov = &iov;
6412 uio.uio_iovcnt = 1;
6413 uio.uio_offset = 0;
6414 uio.uio_resid = sizeof(struct dirent);
6415 uio.uio_segflg = UIO_SYSSPACE;
6416 uio.uio_rw = UIO_READ;
6417 uio.uio_td = curthread;
6418
6419 while (eof == 0 && error == 0) {
6420 error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6421 NULL, NULL);
6422 if (error != 0)
6423 break;
6424 endp = (void *)((uint8_t *)dirent +
6425 sizeof(struct dirent) - uio.uio_resid);
6426 for (dp = dirent; dp < endp;
6427 dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6428 if (dp->d_type == DT_WHT)
6429 continue;
6430 if (dp->d_namlen == 0)
6431 continue;
6432 if (dp->d_type != DT_DIR &&
6433 dp->d_type != DT_UNKNOWN) {
6434 error = ENOTEMPTY;
6435 break;
6436 }
6437 if (dp->d_namlen > 2) {
6438 error = ENOTEMPTY;
6439 break;
6440 }
6441 if (dp->d_namlen == 1 &&
6442 dp->d_name[0] != '.') {
6443 error = ENOTEMPTY;
6444 break;
6445 }
6446 if (dp->d_namlen == 2 &&
6447 dp->d_name[1] != '.') {
6448 error = ENOTEMPTY;
6449 break;
6450 }
6451 uio.uio_resid = sizeof(struct dirent);
6452 }
6453 }
6454 free(dirent, M_TEMP);
6455 return (error);
6456}
6457
6458int
6459vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6460{
6461 int error;
6462
6463 if (dp->d_reclen > ap->a_uio->uio_resid)
6464 return (ENAMETOOLONG);
6465 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6466 if (error) {
6467 if (ap->a_ncookies != NULL) {
6468 if (ap->a_cookies != NULL)
6469 free(ap->a_cookies, M_TEMP);
6470 ap->a_cookies = NULL;
6471 *ap->a_ncookies = 0;
6472 }
6473 return (error);
6474 }
6475 if (ap->a_ncookies == NULL)
6476 return (0);
6477
6478 KASSERT(ap->a_cookies,
6479 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6480
6481 *ap->a_cookies = realloc(*ap->a_cookies,
6482 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6483 (*ap->a_cookies)[*ap->a_ncookies] = off;
6484 *ap->a_ncookies += 1;
6485 return (0);
6486}
6487
6488/*
6489 * The purpose of this routine is to remove granularity from accmode_t,
6490 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6491 * VADMIN and VAPPEND.
6492 *
6493 * If it returns 0, the caller is supposed to continue with the usual
6494 * access checks using 'accmode' as modified by this routine. If it
6495 * returns nonzero value, the caller is supposed to return that value
6496 * as errno.
6497 *
6498 * Note that after this routine runs, accmode may be zero.
6499 */
6500int
6502{
6503 /*
6504 * There is no way to specify explicit "deny" rule using
6505 * file mode or POSIX.1e ACLs.
6506 */
6507 if (*accmode & VEXPLICIT_DENY) {
6508 *accmode = 0;
6509 return (0);
6510 }
6511
6512 /*
6513 * None of these can be translated into usual access bits.
6514 * Also, the common case for NFSv4 ACLs is to not contain
6515 * either of these bits. Caller should check for VWRITE
6516 * on the containing directory instead.
6517 */
6518 if (*accmode & (VDELETE_CHILD | VDELETE))
6519 return (EPERM);
6520
6521 if (*accmode & VADMIN_PERMS) {
6522 *accmode &= ~VADMIN_PERMS;
6523 *accmode |= VADMIN;
6524 }
6525
6526 /*
6527 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6528 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6529 */
6530 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6531
6532 return (0);
6533}
6534
6535/*
6536 * Clear out a doomed vnode (if any) and replace it with a new one as long
6537 * as the fs is not being unmounted. Return the root vnode to the caller.
6538 */
6539static int __noinline
6540vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6541{
6542 struct vnode *vp;
6543 int error;
6544
6545restart:
6546 if (mp->mnt_rootvnode != NULL) {
6547 MNT_ILOCK(mp);
6548 vp = mp->mnt_rootvnode;
6549 if (vp != NULL) {
6550 if (!VN_IS_DOOMED(vp)) {
6551 vrefact(vp);
6552 MNT_IUNLOCK(mp);
6553 error = vn_lock(vp, flags);
6554 if (error == 0) {
6555 *vpp = vp;
6556 return (0);
6557 }
6558 vrele(vp);
6559 goto restart;
6560 }
6561 /*
6562 * Clear the old one.
6563 */
6564 mp->mnt_rootvnode = NULL;
6565 }
6566 MNT_IUNLOCK(mp);
6567 if (vp != NULL) {
6569 vrele(vp);
6570 }
6571 }
6572 error = VFS_CACHEDROOT(mp, flags, vpp);
6573 if (error != 0)
6574 return (error);
6575 if (mp->mnt_vfs_ops == 0) {
6576 MNT_ILOCK(mp);
6577 if (mp->mnt_vfs_ops != 0) {
6578 MNT_IUNLOCK(mp);
6579 return (0);
6580 }
6581 if (mp->mnt_rootvnode == NULL) {
6582 vrefact(*vpp);
6583 mp->mnt_rootvnode = *vpp;
6584 } else {
6585 if (mp->mnt_rootvnode != *vpp) {
6586 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6587 panic("%s: mismatch between vnode returned "
6588 " by VFS_CACHEDROOT and the one cached "
6589 " (%p != %p)",
6590 __func__, *vpp, mp->mnt_rootvnode);
6591 }
6592 }
6593 }
6594 MNT_IUNLOCK(mp);
6595 }
6596 return (0);
6597}
6598
6599int
6600vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6601{
6602 struct mount_pcpu *mpcpu;
6603 struct vnode *vp;
6604 int error;
6605
6606 if (!vfs_op_thread_enter(mp, mpcpu))
6607 return (vfs_cache_root_fallback(mp, flags, vpp));
6608 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6609 if (vp == NULL || VN_IS_DOOMED(vp)) {
6610 vfs_op_thread_exit(mp, mpcpu);
6611 return (vfs_cache_root_fallback(mp, flags, vpp));
6612 }
6613 vrefact(vp);
6614 vfs_op_thread_exit(mp, mpcpu);
6615 error = vn_lock(vp, flags);
6616 if (error != 0) {
6617 vrele(vp);
6618 return (vfs_cache_root_fallback(mp, flags, vpp));
6619 }
6620 *vpp = vp;
6621 return (0);
6622}
6623
6624struct vnode *
6625vfs_cache_root_clear(struct mount *mp)
6626{
6627 struct vnode *vp;
6628
6629 /*
6630 * ops > 0 guarantees there is nobody who can see this vnode
6631 */
6632 MPASS(mp->mnt_vfs_ops > 0);
6633 vp = mp->mnt_rootvnode;
6634 if (vp != NULL)
6636 mp->mnt_rootvnode = NULL;
6637 return (vp);
6638}
6639
6640void
6641vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6642{
6643
6644 MPASS(mp->mnt_vfs_ops > 0);
6645 vrefact(vp);
6646 mp->mnt_rootvnode = vp;
6647}
6648
6649/*
6650 * These are helper functions for filesystems to traverse all
6651 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6652 *
6653 * This interface replaces MNT_VNODE_FOREACH.
6654 */
6655
6656struct vnode *
6657__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6658{
6659 struct vnode *vp;
6660
6661 if (should_yield())
6662 kern_yield(PRI_USER);
6663 MNT_ILOCK(mp);
6664 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6665 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6666 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6667 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6668 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6669 continue;
6670 VI_LOCK(vp);
6671 if (VN_IS_DOOMED(vp)) {
6672 VI_UNLOCK(vp);
6673 continue;
6674 }
6675 break;
6676 }
6677 if (vp == NULL) {
6679 /* MNT_IUNLOCK(mp); -- done in above function */
6680 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6681 return (NULL);
6682 }
6683 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6684 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6685 MNT_IUNLOCK(mp);
6686 return (vp);
6687}
6688
6689struct vnode *
6690__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6691{
6692 struct vnode *vp;
6693
6694 *mvp = vn_alloc_marker(mp);
6695 MNT_ILOCK(mp);
6696 MNT_REF(mp);
6697
6698 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6699 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6700 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6701 continue;
6702 VI_LOCK(vp);
6703 if (VN_IS_DOOMED(vp)) {
6704 VI_UNLOCK(vp);
6705 continue;
6706 }
6707 break;
6708 }
6709 if (vp == NULL) {
6710 MNT_REL(mp);
6711 MNT_IUNLOCK(mp);
6712 vn_free_marker(*mvp);
6713 *mvp = NULL;
6714 return (NULL);
6715 }
6716 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6717 MNT_IUNLOCK(mp);
6718 return (vp);
6719}
6720
6721void
6722__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6723{
6724
6725 if (*mvp == NULL) {
6726 MNT_IUNLOCK(mp);
6727 return;
6728 }
6729
6730 mtx_assert(MNT_MTX(mp), MA_OWNED);
6731
6732 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6733 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6734 MNT_REL(mp);
6735 MNT_IUNLOCK(mp);
6736 vn_free_marker(*mvp);
6737 *mvp = NULL;
6738}
6739
6740/*
6741 * These are helper functions for filesystems to traverse their
6742 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6743 */
6744static void
6745mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6746{
6747
6748 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6749
6750 MNT_ILOCK(mp);
6751 MNT_REL(mp);
6752 MNT_IUNLOCK(mp);
6753 vn_free_marker(*mvp);
6754 *mvp = NULL;
6755}
6756
6757/*
6758 * Relock the mp mount vnode list lock with the vp vnode interlock in the
6759 * conventional lock order during mnt_vnode_next_lazy iteration.
6760 *
6761 * On entry, the mount vnode list lock is held and the vnode interlock is not.
6762 * The list lock is dropped and reacquired. On success, both locks are held.
6763 * On failure, the mount vnode list lock is held but the vnode interlock is
6764 * not, and the procedure may have yielded.
6765 */
6766static bool
6767mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6768 struct vnode *vp)
6769{
6770
6771 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6772 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6773 ("%s: bad marker", __func__));
6774 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6775 ("%s: inappropriate vnode", __func__));
6776 ASSERT_VI_UNLOCKED(vp, __func__);
6777 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6778
6779 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6780 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6781
6782 /*
6783 * Note we may be racing against vdrop which transitioned the hold
6784 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6785 * if we are the only user after we get the interlock we will just
6786 * vdrop.
6787 */
6788 vhold(vp);
6789 mtx_unlock(&mp->mnt_listmtx);
6790 VI_LOCK(vp);
6791 if (VN_IS_DOOMED(vp)) {
6792 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6793 goto out_lost;
6794 }
6795 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6796 /*
6797 * There is nothing to do if we are the last user.
6798 */
6799 if (!refcount_release_if_not_last(&vp->v_holdcnt))
6800 goto out_lost;
6801 mtx_lock(&mp->mnt_listmtx);
6802 return (true);
6803out_lost:
6804 vdropl(vp);
6805 maybe_yield();
6806 mtx_lock(&mp->mnt_listmtx);
6807 return (false);
6808}
6809
6810static struct vnode *
6811mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6812 void *cbarg)
6813{
6814 struct vnode *vp;
6815
6816 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6817 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6818restart:
6819 vp = TAILQ_NEXT(*mvp, v_lazylist);
6820 while (vp != NULL) {
6821 if (vp->v_type == VMARKER) {
6822 vp = TAILQ_NEXT(vp, v_lazylist);
6823 continue;
6824 }
6825 /*
6826 * See if we want to process the vnode. Note we may encounter a
6827 * long string of vnodes we don't care about and hog the list
6828 * as a result. Check for it and requeue the marker.
6829 */
6830 VNPASS(!VN_IS_DOOMED(vp), vp);
6831 if (!cb(vp, cbarg)) {
6832 if (!should_yield()) {
6833 vp = TAILQ_NEXT(vp, v_lazylist);
6834 continue;
6835 }
6836 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6837 v_lazylist);
6838 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6839 v_lazylist);
6840 mtx_unlock(&mp->mnt_listmtx);
6841 kern_yield(PRI_USER);
6842 mtx_lock(&mp->mnt_listmtx);
6843 goto restart;
6844 }
6845 /*
6846 * Try-lock because this is the wrong lock order.
6847 */
6848 if (!VI_TRYLOCK(vp) &&
6849 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6850 goto restart;
6851 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6852 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6853 ("alien vnode on the lazy list %p %p", vp, mp));
6854 VNPASS(vp->v_mount == mp, vp);
6855 VNPASS(!VN_IS_DOOMED(vp), vp);
6856 break;
6857 }
6858 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6859
6860 /* Check if we are done */
6861 if (vp == NULL) {
6862 mtx_unlock(&mp->mnt_listmtx);
6864 return (NULL);
6865 }
6866 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6867 mtx_unlock(&mp->mnt_listmtx);
6868 ASSERT_VI_LOCKED(vp, "lazy iter");
6869 return (vp);
6870}
6871
6872struct vnode *
6873__mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6874 void *cbarg)
6875{
6876
6877 if (should_yield())
6878 kern_yield(PRI_USER);
6879 mtx_lock(&mp->mnt_listmtx);
6880 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6881}
6882
6883struct vnode *
6884__mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6885 void *cbarg)
6886{
6887 struct vnode *vp;
6888
6889 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6890 return (NULL);
6891
6892 *mvp = vn_alloc_marker(mp);
6893 MNT_ILOCK(mp);
6894 MNT_REF(mp);
6895 MNT_IUNLOCK(mp);
6896
6897 mtx_lock(&mp->mnt_listmtx);
6898 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6899 if (vp == NULL) {
6900 mtx_unlock(&mp->mnt_listmtx);
6902 return (NULL);
6903 }
6904 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6905 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6906}
6907
6908void
6909__mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6910{
6911
6912 if (*mvp == NULL)
6913 return;
6914
6915 mtx_lock(&mp->mnt_listmtx);
6916 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6917 mtx_unlock(&mp->mnt_listmtx);
6919}
6920
6921int
6922vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6923{
6924
6925 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6926 cnp->cn_flags &= ~NOEXECCHECK;
6927 return (0);
6928 }
6929
6930 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6931}
6932
6933/*
6934 * Do not use this variant unless you have means other than the hold count
6935 * to prevent the vnode from getting freed.
6936 */
6937void
6939{
6940
6941 ASSERT_VI_LOCKED(vp, __func__);
6942 VNPASS(vp->v_holdcnt > 0, vp);
6943 VNPASS(vp->v_seqc_users >= 0, vp);
6944 vp->v_seqc_users++;
6945 if (vp->v_seqc_users == 1)
6946 seqc_sleepable_write_begin(&vp->v_seqc);
6947}
6948
6949void
6950vn_seqc_write_begin(struct vnode *vp)
6951{
6952
6953 VI_LOCK(vp);
6955 VI_UNLOCK(vp);
6956}
6957
6958void
6960{
6961
6962 ASSERT_VI_LOCKED(vp, __func__);
6963 VNPASS(vp->v_seqc_users > 0, vp);
6964 vp->v_seqc_users--;
6965 if (vp->v_seqc_users == 0)
6966 seqc_sleepable_write_end(&vp->v_seqc);
6967}
6968
6969void
6970vn_seqc_write_end(struct vnode *vp)
6971{
6972
6973 VI_LOCK(vp);
6975 VI_UNLOCK(vp);
6976}
6977
6978/*
6979 * Special case handling for allocating and freeing vnodes.
6980 *
6981 * The counter remains unchanged on free so that a doomed vnode will
6982 * keep testing as in modify as long as it is accessible with SMR.
6983 */
6984static void
6985vn_seqc_init(struct vnode *vp)
6986{
6987
6988 vp->v_seqc = 0;
6989 vp->v_seqc_users = 0;
6990}
6991
6992static void
6993vn_seqc_write_end_free(struct vnode *vp)
6994{
6995
6996 VNPASS(seqc_in_modify(vp->v_seqc), vp);
6997 VNPASS(vp->v_seqc_users == 1, vp);
6998}
6999
7000void
7001vn_irflag_set_locked(struct vnode *vp, short toset)
7002{
7003 short flags;
7004
7005 ASSERT_VI_LOCKED(vp, __func__);
7006 flags = vn_irflag_read(vp);
7007 VNASSERT((flags & toset) == 0, vp,
7008 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7009 __func__, flags, toset));
7010 atomic_store_short(&vp->v_irflag, flags | toset);
7011}
7012
7013void
7014vn_irflag_set(struct vnode *vp, short toset)
7015{
7016
7017 VI_LOCK(vp);
7018 vn_irflag_set_locked(vp, toset);
7019 VI_UNLOCK(vp);
7020}
7021
7022void
7023vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7024{
7025 short flags;
7026
7027 ASSERT_VI_LOCKED(vp, __func__);
7028 flags = vn_irflag_read(vp);
7029 atomic_store_short(&vp->v_irflag, flags | toset);
7030}
7031
7032void
7033vn_irflag_set_cond(struct vnode *vp, short toset)
7034{
7035
7036 VI_LOCK(vp);
7037 vn_irflag_set_cond_locked(vp, toset);
7038 VI_UNLOCK(vp);
7039}
7040
7041void
7042vn_irflag_unset_locked(struct vnode *vp, short tounset)
7043{
7044 short flags;
7045
7046 ASSERT_VI_LOCKED(vp, __func__);
7047 flags = vn_irflag_read(vp);
7048 VNASSERT((flags & tounset) == tounset, vp,
7049 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7050 __func__, flags, tounset));
7051 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7052}
7053
7054void
7055vn_irflag_unset(struct vnode *vp, short tounset)
7056{
7057
7058 VI_LOCK(vp);
7059 vn_irflag_unset_locked(vp, tounset);
7060 VI_UNLOCK(vp);
7061}
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
int bootverbose
Definition: init_main.c:131
static LIST_HEAD(alq)
Definition: kern_alq.c:99
static struct bt_table bt
static u_int busy
void cv_init(struct cv *cvp, const char *desc)
Definition: kern_condvar.c:77
void dev_unlock(void)
Definition: kern_conf.c:135
void knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:2467
void knlist_init(struct knlist *knl, void *lock, void(*kl_lock)(void *), void(*kl_unlock)(void *), void(*kl_assert_lock)(void *, int))
Definition: kern_event.c:2536
void knlist_add(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:2420
void knlist_destroy(struct knlist *knl)
Definition: kern_event.c:2589
void knote(struct knlist *list, long hint, int lockflags)
Definition: kern_event.c:2363
void knlist_init_mtx(struct knlist *knl, struct mtx *lock)
Definition: kern_event.c:2564
int prison_check(struct ucred *cred1, struct ucred *cred2)
Definition: kern_jail.c:3378
int prison_allow(struct ucred *cred, unsigned flag)
Definition: kern_jail.c:2761
int kproc_resume(struct proc *p)
Definition: kern_kthread.c:197
void kproc_suspend_check(struct proc *p)
Definition: kern_kthread.c:215
void kproc_start(const void *udata)
Definition: kern_kthread.c:62
void lockdestroy(struct lock *lk)
Definition: kern_lock.c:511
void lockmgr_printinfo(const struct lock *lk)
Definition: kern_lock.c:1663
void lockinit(struct lock *lk, int pri, const char *wmesg, int timo, int flags)
Definition: kern_lock.c:439
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
u_long vm_kmem_size
Definition: kern_malloc.c:188
void * realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:987
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
int priv_check_cred_vfs_lookup_nomac(struct ucred *cred)
Definition: kern_priv.c:315
int priv_check_cred(struct ucred *cred, int priv)
Definition: kern_priv.c:151
int priv_check(struct thread *td, int priv)
Definition: kern_priv.c:271
int groupmember(gid_t gid, struct ucred *cred)
Definition: kern_prot.c:1272
void rangelock_destroy(struct rangelock *lock)
void rangelock_init(struct rangelock *lock)
void kproc_shutdown(void *arg, int howto)
void panic(const char *fmt,...)
void kern_yield(int prio)
Definition: kern_synch.c:660
int should_yield(void)
Definition: kern_synch.c:645
void maybe_yield(void)
Definition: kern_synch.c:652
void wakeup(const void *ident)
Definition: kern_synch.c:349
int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len)
Definition: kern_sysctl.c:2136
int sysctl_handle_long(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1700
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1644
void getbinuptime(struct bintime *bt)
Definition: kern_tc.c:440
volatile time_t time_uptime
Definition: kern_tc.c:106
volatile time_t time_second
Definition: kern_tc.c:105
void bintime(struct bintime *bt)
Definition: kern_tc.c:415
void getnanotime(struct timespec *tsp)
Definition: kern_tc.c:472
void microtime(struct timeval *tvp)
Definition: kern_tc.c:431
void nanotime(struct timespec *tsp)
Definition: kern_tc.c:422
void *** start
Definition: linker_if.m:98
uint32_t * data
Definition: msi_if.m:90
uint64_t * addr
Definition: msi_if.m:89
struct resource * res
Definition: pic_if.m:98
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:901
accmode_t accmode
Definition: subr_acl_nfs4.c:69
void kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code)
Definition: subr_asan.c:248
__read_mostly cap_rights_t cap_fcntl_rights
counter_u64_t counter_u64_alloc(int flags)
Definition: subr_counter.c:61
void * hashinit(int elements, struct malloc_type *type, u_long *hashmask)
Definition: subr_hash.c:86
void kdb_enter(const char *why, const char *msg)
Definition: subr_kdb.c:498
void kdb_backtrace(void)
Definition: subr_kdb.c:429
int maxproc
Definition: subr_param.c:90
int hz
Definition: subr_param.c:85
int nbuf
Definition: subr_param.c:95
size_t pctrie_node_size(void)
Definition: subr_pctrie.c:336
int pctrie_zone_init(void *mem, int size __unused, int flags __unused)
Definition: subr_pctrie.c:325
int printf(const char *fmt,...)
Definition: subr_prf.c:397
int vprintf(const char *fmt, va_list ap)
Definition: subr_prf.c:410
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:550
void log(int level, const char *fmt,...)
Definition: subr_prf.c:314
#define BUF
Definition: subr_scanf.c:54
uint16_t flags
Definition: subr_stats.c:2
int uiomove(void *cp, int n, struct uio *uio)
Definition: subr_uio.c:195
void seldrain(struct selinfo *sip)
Definition: sys_generic.c:1851
void selrecord(struct thread *selector, struct selinfo *sip)
Definition: sys_generic.c:1869
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy
void vfs_unp_reclaim(struct vnode *vp)
Definition: uipc_usrreq.c:2855
void bremfree(struct buf *bp)
Definition: vfs_bio.c:1869
void bufobj_init(struct bufobj *bo, void *private)
Definition: vfs_bio.c:5125
int bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
Definition: vfs_bio.c:5171
void bawrite(struct buf *bp)
Definition: vfs_bio.c:2580
struct buf_ops buf_ops_bio
Definition: vfs_bio.c:98
void brelse(struct buf *bp)
Definition: vfs_bio.c:2663
void cache_changesize(u_long newmaxvnodes)
Definition: vfs_cache.c:2766
void cache_vnode_init(struct vnode *vp)
Definition: vfs_cache.c:2691
void cache_purge_vgone(struct vnode *vp)
Definition: vfs_cache.c:2885
u_int ncsizefactor
Definition: vfs_cache.c:415
int vop_stdislocked(struct vop_islocked_args *ap)
Definition: vfs_default.c:567
int vop_stdunlock(struct vop_unlock_args *ap)
Definition: vfs_default.c:555
int vop_stdlock(struct vop_lock1_args *ap)
Definition: vfs_default.c:537
int vop_stdneed_inactive(struct vop_need_inactive_args *ap)
Definition: vfs_default.c:1435
int attrnamespace
Definition: vfs_extattr.c:716
void vfs_hash_changesize(u_long newmaxvnodes)
Definition: vfs_hash.c:209
struct vfsconfhead vfsconf
Definition: vfs_init.c:70
int maxvfsconf
Definition: vfs_init.c:64
void() NDFREE(struct nameidata *ndp, const u_int flags)
Definition: vfs_lookup.c:1555
int namei(struct nameidata *ndp)
Definition: vfs_lookup.c:535
struct mtx_padalign __exclusive_cache_line mountlist_mtx
Definition: vfs_mount.c:124
struct mntlist mountlist
Definition: vfs_mount.c:121
void vfs_op_barrier_wait(struct mount *mp)
Definition: vfs_mount.c:1813
int dounmount(struct mount *mp, uint64_t flags, struct thread *td)
Definition: vfs_mount.c:2002
void vfs_rel(struct mount *mp)
Definition: vfs_mount.c:645
void vfs_ref(struct mount *mp)
Definition: vfs_mount.c:527
int vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
Definition: vfs_mount.c:1890
struct mount * rootdevmp
struct vnode * vnlru_alloc_marker(void)
Definition: vfs_subr.c:1364
static int sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:2581
void vop_whiteout_post(void *ap, int rc)
Definition: vfs_subr.c:5747
static __inline void vfs_freevnodes_dec(void)
Definition: vfs_subr.c:1424
static void vdropl_recycle(struct vnode *vp)
Definition: vfs_subr.c:3678
static struct filterops vfswrite_filtops
Definition: vfs_subr.c:6230
static int sync_vnode_count
Definition: vfs_subr.c:297
static void __always_inline vdropl_impl(struct vnode *vp, bool enqueue)
Definition: vfs_subr.c:3631
void vhold(struct vnode *vp)
Definition: vfs_subr.c:3376
int vfs_kqfilter(struct vop_kqfilter_args *ap)
Definition: vfs_subr.c:6271
static void vdefer_inactive_unlocked(struct vnode *vp)
Definition: vfs_subr.c:3188
void vop_symlink_pre(void *ap)
Definition: vfs_subr.c:6053
void vop_rename_fail(struct vop_rename_args *ap)
Definition: vfs_subr.c:5511
static void vn_free_marker(struct vnode *vp)
Definition: vfs_subr.c:515
static struct proc * vnlruproc
Definition: vfs_subr.c:1399
#define KINFO_VNODESLOP
Definition: vfs_subr.c:4651
static struct filterops vfsvnode_filtops
Definition: vfs_subr.c:6235
static int filt_vfsread(struct knote *kn, long hint)
Definition: vfs_subr.c:6321
#define FSID_CACHE_SIZE
void vop_mknod_pre(void *ap)
Definition: vfs_subr.c:5848
static u_long vnlru_read_freevnodes(void)
Definition: vfs_subr.c:1435
struct vnode * __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg)
Definition: vfs_subr.c:6873
static int sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
Definition: vfs_subr.c:2606
int speedup_syncer(void)
Definition: vfs_subr.c:2799
@ SYNCER_SHUTTING_DOWN
Definition: vfs_subr.c:299
@ SYNCER_FINAL_DELAY
Definition: vfs_subr.c:299
@ SYNCER_RUNNING
Definition: vfs_subr.c:299
int getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, struct vnode **vpp)
Definition: vfs_subr.c:1770
void v_addpollinfo(struct vnode *vp)
Definition: vfs_subr.c:4947
static counter_u64_t vnodes_created
Definition: vfs_subr.c:135
enum vgetstate vget_prep_smr(struct vnode *vp)
Definition: vfs_subr.c:2954
struct buf * gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
Definition: vfs_subr.c:2486
static int filt_fsevent(struct knote *kn, long hint)
Definition: vfs_subr.c:6169
int vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
Definition: vfs_subr.c:6922
static int sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:4547
static bool vhold_recycle_free(struct vnode *)
Definition: vfs_subr.c:3461
static int vfs_sysctl(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:4576
static u_long __exclusive_cache_line numvnodes
Definition: vfs_subr.c:130
static int vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
Definition: vfs_subr.c:4501
static struct proc * updateproc
Definition: vfs_subr.c:2596
static struct vnode * mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg)
Definition: vfs_subr.c:6811
static int filt_vfswrite(struct knote *kn, long hint)
Definition: vfs_subr.c:6350
static void vunlazy(struct vnode *vp)
Definition: vfs_subr.c:3112
void bgetvp(struct vnode *vp, struct buf *bp)
Definition: vfs_subr.c:2501
static void __noinline vdbatch_process(struct vdbatch *vd)
Definition: vfs_subr.c:3486
void vfs_unmountall(void)
Definition: vfs_subr.c:4768
void vop_read_post(void *ap, int rc)
Definition: vfs_subr.c:6098
int vrecycle(struct vnode *vp)
Definition: vfs_subr.c:3900
static int sync_inactive(struct vop_inactive_args *)
Definition: vfs_subr.c:5143
void vfs_allocate_syncvnode(struct mount *mp)
Definition: vfs_subr.c:5026
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
#define MAXVNODES_MAX
Definition: vfs_subr.c:497
static int vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
Definition: vfs_subr.c:4857
static struct vop_vector sync_vnodeops
Definition: vfs_subr.c:5009
int vrecyclel(struct vnode *vp)
Definition: vfs_subr.c:3914
int vtruncbuf(struct vnode *vp, off_t length, int blksize)
Definition: vfs_subr.c:2254
#define NC_SZ
Definition: vfs_subr.c:657
#define vnsz2log
Definition: vfs_subr.c:465
SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "Number of vnodes in existence")
static void unmount_or_warn(struct mount *mp)
Definition: vfs_subr.c:4749
void vfs_periodic(struct mount *mp, int flags)
Definition: vfs_subr.c:4914
void vop_readdir_post(void *ap, int rc)
Definition: vfs_subr.c:6116
static void mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
Definition: vfs_subr.c:6745
void vref(struct vnode *vp)
Definition: vfs_subr.c:3065
static int vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
Definition: vfs_subr.c:4815
void vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
Definition: vfs_subr.c:6135
static struct vnode * vn_alloc(struct mount *mp)
Definition: vfs_subr.c:1743
void vop_rmdir_pre(void *ap)
Definition: vfs_subr.c:5953
int bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
Definition: vfs_subr.c:2205
void __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
Definition: vfs_subr.c:6722
#define SYNCER_MAXDELAY
bool vn_isdisk_error(struct vnode *vp, int *errp)
Definition: vfs_subr.c:5192
static void destroy_vpollinfo_free(struct vpollinfo *vi)
Definition: vfs_subr.c:4926
void vn_printf(struct vnode *vp, const char *fmt,...)
Definition: vfs_subr.c:4134
static int sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:348
void syncer_suspend(void)
Definition: vfs_subr.c:2833
void vop_rename_post(void *ap, int rc)
Definition: vfs_subr.c:5915
void vop_link_post(void *ap, int rc)
Definition: vfs_subr.c:5795
#define NFS_NCLNODE_SZ
Definition: vfs_subr.c:656
static int sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:425
static void vfs_knllock(void *arg)
Definition: vfs_subr.c:6242
static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, daddr_t startlbn, daddr_t endlbn)
Definition: vfs_subr.c:2336
static bool vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
Definition: vfs_subr.c:1474
static void __noinline vdropl_final(struct vnode *vp)
Definition: vfs_subr.c:3592
static int sync_fsync(struct vop_fsync_args *)
Definition: vfs_subr.c:5098
static struct filterops vfsread_filtops
Definition: vfs_subr.c:6225
void vop_remove_pre(void *ap)
Definition: vfs_subr.c:5885
void vn_irflag_set(struct vnode *vp, short toset)
Definition: vfs_subr.c:7014
void vget_finish_ref(struct vnode *vp, enum vgetstate vs)
Definition: vfs_subr.c:3036
void vnlru_free_marker(struct vnode *mvp)
Definition: vfs_subr.c:1376
static struct vnode * vn_alloc_marker(struct mount *mp)
Definition: vfs_subr.c:503
void getnewvnode_drop_reserve(void)
Definition: vfs_subr.c:1866
vput_op
Definition: vfs_subr.c:3199
@ VRELE
Definition: vfs_subr.c:3199
@ VPUT
Definition: vfs_subr.c:3199
@ VUNREF
Definition: vfs_subr.c:3199
void vop_link_pre(void *ap)
Definition: vfs_subr.c:5782
static u_long vstir
Definition: vfs_subr.c:307
static int __noinline vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
Definition: vfs_subr.c:6540
static int filt_fsattach(struct knote *kn)
Definition: vfs_subr.c:6153
void vn_irflag_unset_locked(struct vnode *vp, short tounset)
Definition: vfs_subr.c:7042
void vn_seqc_write_begin(struct vnode *vp)
Definition: vfs_subr.c:6950
enum vtype iftovt_tab[16]
Definition: vfs_subr.c:143
void vop_setacl_post(void *ap, int rc __unused)
Definition: vfs_subr.c:6018
u_long desiredvnodes
Definition: vfs_subr.c:303
void brelvp(struct buf *bp)
Definition: vfs_subr.c:2526
void vn_irflag_set_cond(struct vnode *vp, short toset)
Definition: vfs_subr.c:7033
void vn_irflag_set_cond_locked(struct vnode *vp, short toset)
Definition: vfs_subr.c:7023
static void vdbatch_dequeue(struct vnode *vp)
Definition: vfs_subr.c:3551
int vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
Definition: vfs_subr.c:3011
int vn_pollrecord(struct vnode *vp, struct thread *td, int events)
Definition: vfs_subr.c:4976
void vop_deleteextattr_post(void *ap, int rc)
Definition: vfs_subr.c:5769
static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker")
u_quad_t init_va_filerev(void)
Definition: vfs_subr.c:6213
int insmntque(struct vnode *vp, struct mount *mp)
Definition: vfs_subr.c:2018
void vop_mkdir_pre(void *ap)
Definition: vfs_subr.c:5812
void vop_whiteout_pre(void *ap)
Definition: vfs_subr.c:5736
static void vdrop_recycle(struct vnode *vp)
Definition: vfs_subr.c:3685
#define sync_close
Definition: vfs_subr.c:5004
static u_long vlowat
Definition: vfs_subr.c:306
static void delmntque(struct vnode *vp)
Definition: vfs_subr.c:1940
static int max_vnlru_free
Definition: vfs_subr.c:1262
void __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
Definition: vfs_subr.c:6909
void vfs_unbusy(struct mount *mp)
Definition: vfs_subr.c:850
static volatile int vsmalltrigger
Definition: vfs_subr.c:308
static int vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
Definition: vfs_subr.c:1146
void v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, int blksize)
Definition: vfs_subr.c:2313
void vop_mknod_post(void *ap, int rc)
Definition: vfs_subr.c:5859
static void vunlazy_gone(struct vnode *vp)
Definition: vfs_subr.c:3141
void vget_abort(struct vnode *vp, enum vgetstate vs)
Definition: vfs_subr.c:2986
int vn_need_pageq_flush(struct vnode *vp)
Definition: vfs_subr.c:5179
static void __noinline vfs_periodic_inactive(struct mount *mp, int flags)
Definition: vfs_subr.c:4822
static void vnlru_proc(void)
Definition: vfs_subr.c:1502
void vop_setextattr_post(void *ap, int rc)
Definition: vfs_subr.c:6040
static void __noinline vfs_periodic_msync_inactive(struct mount *mp, int flags)
Definition: vfs_subr.c:4868
int vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
Definition: vfs_subr.c:3779
static void filt_vfsdetach(struct knote *kn)
Definition: vfs_subr.c:6310
void vop_deleteextattr_pre(void *ap)
Definition: vfs_subr.c:5758
void vfs_cache_root_set(struct mount *mp, struct vnode *vp)
Definition: vfs_subr.c:6641
void vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
Definition: vfs_subr.c:1352
struct vnode * __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
Definition: vfs_subr.c:6657
void vop_setattr_post(void *ap, int rc)
Definition: vfs_subr.c:5994
static int vinactivef(struct vnode *vp)
Definition: vfs_subr.c:3697
static int vnlru_nowhere
Definition: vfs_subr.c:373
int vinactive(struct vnode *vp)
Definition: vfs_subr.c:3735
void vop_setacl_pre(void *ap)
Definition: vfs_subr.c:6007
static void vfs_knl_assert_lock(void *arg, int what)
Definition: vfs_subr.c:6258
void vn_irflag_set_locked(struct vnode *vp, short toset)
Definition: vfs_subr.c:7001
static void vnode_fini(void *mem, int size)
Definition: vfs_subr.c:620
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, "Number of vnodes created by getnewvnode")
__FBSDID("$FreeBSD$")
static int syncer_worklist_len
Definition: vfs_subr.c:298
int vfs_suser(struct mount *mp, struct thread *td)
Definition: vfs_subr.c:965
void vrefact(struct vnode *vp)
Definition: vfs_subr.c:3075
static int sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:378
static void vdefer_inactive(struct vnode *vp)
Definition: vfs_subr.c:3161
static __inline void vfs_freevnodes_inc(void)
Definition: vfs_subr.c:1413
int vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
Definition: vfs_subr.c:6459
static void destroy_vpollinfo(struct vpollinfo *vi)
Definition: vfs_subr.c:4935
void vop_rename_pre(void *ap)
Definition: vfs_subr.c:5525
enum vgetstate vget_prep(struct vnode *vp)
Definition: vfs_subr.c:2972
static int vnlruproc_sig
Definition: vfs_subr.c:1400
static struct vnode *__noinline vn_alloc_hard(struct mount *mp)
Definition: vfs_subr.c:1697
static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, int slptimeo)
Definition: vfs_subr.c:2136
DPCPU_DEFINE_STATIC(struct vdbatch, vd)
struct filterops fs_filtops
Definition: vfs_subr.c:6145
static u_long vhiwat
Definition: vfs_subr.c:305
void vop_open_post(void *ap, int rc)
Definition: vfs_subr.c:6077
static void buf_trie_free(struct pctrie *ptree, void *node)
Definition: vfs_subr.c:482
static int sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:316
int vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, accmode_t accmode, struct ucred *cred)
Definition: vfs_subr.c:5284
void vgone(struct vnode *vp)
Definition: vfs_subr.c:3934
static enum @14 syncer_state
void vop_setattr_pre(void *ap)
Definition: vfs_subr.c:5983
static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:4624
static int sync_reclaim(struct vop_reclaim_args *)
Definition: vfs_subr.c:5156
#define SYNCER_SHUTDOWN_SPEEDUP
Definition: vfs_subr.c:296
bool vn_isdisk(struct vnode *vp)
Definition: vfs_subr.c:5215
static int filt_vfsvnode(struct knote *kn, long hint)
Definition: vfs_subr.c:6369
void vop_close_post(void *ap, int rc)
Definition: vfs_subr.c:6086
static struct kproc_desc up_kp
Definition: vfs_subr.c:2598
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334
int bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
Definition: vfs_subr.c:2034
void vattr_null(struct vattr *vap)
Definition: vfs_subr.c:1085
static int vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
Definition: vfs_subr.c:1271
static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD|CTLFLAG_SKIP|CTLFLAG_MPSAFE, vfs_sysctl, "Generic filesystem")
static bool mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, struct vnode *vp)
Definition: vfs_subr.c:6767
struct mount * vfs_getvfs(fsid_t *fsid)
Definition: vfs_subr.c:889
static int vtryrecycle(struct vnode *vp)
Definition: vfs_subr.c:1624
_Static_assert(sizeof(struct vnode) >=1UL<< vnsz2log &&sizeof(struct vnode)< 1UL<<(vnsz2log+1), "vnsz2log needs to be updated")
static u_long vn_alloc_cyclecount
Definition: vfs_subr.c:1694
void vfs_timestamp(struct timespec *tsp)
Definition: vfs_subr.c:1058
static void vn_seqc_init(struct vnode *)
Definition: vfs_subr.c:6985
void vn_seqc_write_end_locked(struct vnode *vp)
Definition: vfs_subr.c:6959
void vput(struct vnode *vp)
Definition: vfs_subr.c:3348
static void vnlru_recalc(void)
Definition: vfs_subr.c:1385
struct vnode * vfs_cache_root_clear(struct mount *mp)
Definition: vfs_subr.c:6625
void reassignbuf(struct buf *bp)
Definition: vfs_subr.c:2855
static int insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
Definition: vfs_subr.c:1962
static int timestamp_precision
Definition: vfs_subr.c:1048
struct vnode * __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg)
Definition: vfs_subr.c:6884
int vfs_busy(struct mount *mp, int flags)
Definition: vfs_subr.c:786
@ TSP_USEC
Definition: vfs_subr.c:1046
@ TSP_HZ
Definition: vfs_subr.c:1046
@ TSP_SEC
Definition: vfs_subr.c:1046
@ TSP_NSEC
Definition: vfs_subr.c:1046
static void buf_vlist_remove(struct buf *bp)
Definition: vfs_subr.c:2398
int vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
Definition: vfs_subr.c:2121
void vop_symlink_post(void *ap, int rc)
Definition: vfs_subr.c:6064
static void vntblinit(void *dummy __unused)
Definition: vfs_subr.c:661
bool vhold_smr(struct vnode *vp)
Definition: vfs_subr.c:3422
static void filt_fsdetach(struct knote *kn)
Definition: vfs_subr.c:6162
static void syncer_shutdown(void *arg, int howto)
Definition: vfs_subr.c:2819
static void vnlru_kick(void)
Definition: vfs_subr.c:1491
static bool vfs_want_msync(struct vnode *vp)
Definition: vfs_subr.c:4842
void vholdnz(struct vnode *vp)
Definition: vfs_subr.c:3389
int vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
Definition: vfs_subr.c:5227
static u_long gapvnodes
Definition: vfs_subr.c:304
void vn_irflag_unset(struct vnode *vp, short tounset)
Definition: vfs_subr.c:7055
static TAILQ_HEAD(freelst, vnode)
Definition: vfs_subr.c:155
void vop_reclaim_post(void *ap, int rc)
Definition: vfs_subr.c:5872
static void vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
Definition: vfs_subr.c:2558
static void vdbatch_enqueue(struct vnode *vp)
Definition: vfs_subr.c:3513
static void vn_free(struct vnode *vp)
Definition: vfs_subr.c:1759
int vfs_emptydir(struct vnode *vp)
Definition: vfs_subr.c:6394
static int vnode_init(void *mem, int size, int flags)
Definition: vfs_subr.c:574
void vn_seqc_write_end(struct vnode *vp)
Definition: vfs_subr.c:6970
void vop_create_post(void *ap, int rc)
Definition: vfs_subr.c:5723
SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0, "Number of times the vnlru process ran without success")
static struct kproc_desc vnlru_kp
Definition: vfs_subr.c:1605
static bool vnlru_under(u_long rnumvnodes, u_long limit)
Definition: vfs_subr.c:1457
static void sched_sync(void)
Definition: vfs_subr.c:2657
#define VDBATCH_SIZE
static struct knlist fs_knlist
Definition: vfs_subr.c:6124
struct buf * gbincore(struct bufobj *bo, daddr_t lblkno)
Definition: vfs_subr.c:2468
void vunref(struct vnode *vp)
Definition: vfs_subr.c:3365
void vlazy(struct vnode *vp)
Definition: vfs_subr.c:3088
static int vnlru_free_locked(int count)
Definition: vfs_subr.c:1344
int vttoif_tab[10]
Definition: vfs_subr.c:147
void vop_create_pre(void *ap)
Definition: vfs_subr.c:5712
struct mount * vfs_busyfs(fsid_t *fsid)
Definition: vfs_subr.c:918
static void vfs_deferred_inactive(struct vnode *vp, int lkflags)
Definition: vfs_subr.c:4795
static int first_printf
Definition: vfs_subr.c:2651
PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, buf_trie_smr)
void vfs_getnewfsid(struct mount *mp)
Definition: vfs_subr.c:1013
void vop_setextattr_pre(void *ap)
Definition: vfs_subr.c:6029
#define VNLRU_FREEVNODES_SLOP
Definition: vfs_subr.c:1410
void vop_rmdir_post(void *ap, int rc)
Definition: vfs_subr.c:5966
void vn_seqc_write_begin_locked(struct vnode *vp)
Definition: vfs_subr.c:6938
int extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, struct thread *td, accmode_t accmode)
Definition: vfs_subr.c:5396
static void * buf_trie_alloc(struct pctrie *ptree)
Definition: vfs_subr.c:476
static void vput_final(struct vnode *vp, enum vput_op func)
Definition: vfs_subr.c:3218
void vdrop(struct vnode *vp)
Definition: vfs_subr.c:3619
void vop_remove_post(void *ap, int rc)
Definition: vfs_subr.c:5898
void syncer_resume(void)
Definition: vfs_subr.c:2840
static void __noinline freevnode(struct vnode *vp)
Definition: vfs_subr.c:1878
void vop_mkdir_post(void *ap, int rc)
Definition: vfs_subr.c:5823
void vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
Definition: vfs_subr.c:3945
static void buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
Definition: vfs_subr.c:2427
SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, CTLTYPE_ULONG|CTLFLAG_MPSAFE|CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, "LU", "Target for maximum number of vnodes")
int vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
Definition: vfs_subr.c:6600
void vfs_deallocate_syncvnode(struct mount *mp)
Definition: vfs_subr.c:5081
struct vnode * __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
Definition: vfs_subr.c:6690
void vdropl(struct vnode *vp)
Definition: vfs_subr.c:3660
VFS_VOP_VECTOR_REGISTER(sync_vnodeops)
static void vfs_knlunlock(void *arg)
Definition: vfs_subr.c:6250
static void vn_seqc_write_end_free(struct vnode *vp)
Definition: vfs_subr.c:6993
int vfs_unixify_accmode(accmode_t *accmode)
Definition: vfs_subr.c:6501
static void vfs_event_init(void *arg)
Definition: vfs_subr.c:6127
void getnewvnode_reserve(void)
Definition: vfs_subr.c:1856
static void v_init_counters(struct vnode *)
Definition: vfs_subr.c:2926
int vget(struct vnode *vp, int flags)
Definition: vfs_subr.c:3002
void vop_read_pgcache_post(void *ap, int rc)
Definition: vfs_subr.c:6107
int insmntque1(struct vnode *vp, struct mount *mp)
Definition: vfs_subr.c:2024
static int sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
Definition: vfs_subr.c:6178
static void vgonel(struct vnode *)
Definition: vfs_subr.c:3985
int getvnode(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
struct stat * buf
int fd
void vn_finished_secondary_write(struct mount *mp)
Definition: vfs_vnops.c:2046
int vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
Definition: vfs_vnops.c:1901
int vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
Definition: vfs_vnops.c:1946
void vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
Definition: vfs_vnops.c:2437
void vn_finished_write(struct mount *mp)
Definition: vfs_vnops.c:2009