FreeBSD kernel kern code
vfs_cache.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Poul-Henning Kamp of the FreeBSD Project.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD$");
39
40#include "opt_ddb.h"
41#include "opt_ktrace.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/capsicum.h>
46#include <sys/counter.h>
47#include <sys/filedesc.h>
48#include <sys/fnv_hash.h>
49#include <sys/kernel.h>
50#include <sys/ktr.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/fcntl.h>
54#include <sys/jail.h>
55#include <sys/mount.h>
56#include <sys/namei.h>
57#include <sys/proc.h>
58#include <sys/seqc.h>
59#include <sys/sdt.h>
60#include <sys/smr.h>
61#include <sys/smp.h>
62#include <sys/syscallsubr.h>
63#include <sys/sysctl.h>
64#include <sys/sysproto.h>
65#include <sys/vnode.h>
66#include <ck_queue.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70#ifdef INVARIANTS
71#include <machine/_inttypes.h>
72#endif
73
74#include <sys/capsicum.h>
75
76#include <security/audit/audit.h>
77#include <security/mac/mac_framework.h>
78
79#ifdef DDB
80#include <ddb/ddb.h>
81#endif
82
83#include <vm/uma.h>
84
85/*
86 * High level overview of name caching in the VFS layer.
87 *
88 * Originally caching was implemented as part of UFS, later extracted to allow
89 * use by other filesystems. A decision was made to make it optional and
90 * completely detached from the rest of the kernel, which comes with limitations
91 * outlined near the end of this comment block.
92 *
93 * This fundamental choice needs to be revisited. In the meantime, the current
94 * state is described below. Significance of all notable routines is explained
95 * in comments placed above their implementation. Scattered thoroughout the
96 * file are TODO comments indicating shortcomings which can be fixed without
97 * reworking everything (most of the fixes will likely be reusable). Various
98 * details are omitted from this explanation to not clutter the overview, they
99 * have to be checked by reading the code and associated commentary.
100 *
101 * Keep in mind that it's individual path components which are cached, not full
102 * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
103 * one for each name.
104 *
105 * I. Data organization
106 *
107 * Entries are described by "struct namecache" objects and stored in a hash
108 * table. See cache_get_hash for more information.
109 *
110 * "struct vnode" contains pointers to source entries (names which can be found
111 * when traversing through said vnode), destination entries (names of that
112 * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
113 * the parent vnode.
114 *
115 * The (directory vnode; name) tuple reliably determines the target entry if
116 * it exists.
117 *
118 * Since there are no small locks at this time (all are 32 bytes in size on
119 * LP64), the code works around the problem by introducing lock arrays to
120 * protect hash buckets and vnode lists.
121 *
122 * II. Filesystem integration
123 *
124 * Filesystems participating in name caching do the following:
125 * - set vop_lookup routine to vfs_cache_lookup
126 * - set vop_cachedlookup to whatever can perform the lookup if the above fails
127 * - if they support lockless lookup (see below), vop_fplookup_vexec and
128 * vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
129 * mount point
130 * - call cache_purge or cache_vop_* routines to eliminate stale entries as
131 * applicable
132 * - call cache_enter to add entries depending on the MAKEENTRY flag
133 *
134 * With the above in mind, there are 2 entry points when doing lookups:
135 * - ... -> namei -> cache_fplookup -- this is the default
136 * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
137 * should the above fail
138 *
139 * Example code flow how an entry is added:
140 * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
141 * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
142 *
143 * III. Performance considerations
144 *
145 * For lockless case forward lookup avoids any writes to shared areas apart
146 * from the terminal path component. In other words non-modifying lookups of
147 * different files don't suffer any scalability problems in the namecache.
148 * Looking up the same file is limited by VFS and goes beyond the scope of this
149 * file.
150 *
151 * At least on amd64 the single-threaded bottleneck for long paths is hashing
152 * (see cache_get_hash). There are cases where the code issues acquire fence
153 * multiple times, they can be combined on architectures which suffer from it.
154 *
155 * For locked case each encountered vnode has to be referenced and locked in
156 * order to be handed out to the caller (normally that's namei). This
157 * introduces significant hit single-threaded and serialization multi-threaded.
158 *
159 * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
160 * avoids any writes to shared areas to any components.
161 *
162 * Unrelated insertions are partially serialized on updating the global entry
163 * counter and possibly serialized on colliding bucket or vnode locks.
164 *
165 * IV. Observability
166 *
167 * Note not everything has an explicit dtrace probe nor it should have, thus
168 * some of the one-liners below depend on implementation details.
169 *
170 * Examples:
171 *
172 * # Check what lookups failed to be handled in a lockless manner. Column 1 is
173 * # line number, column 2 is status code (see cache_fpl_status)
174 * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
175 *
176 * # Lengths of names added by binary name
177 * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
178 *
179 * # Same as above but only those which exceed 64 characters
180 * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
181 *
182 * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
183 * # path is it
184 * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
185 *
186 * V. Limitations and implementation defects
187 *
188 * - since it is possible there is no entry for an open file, tools like
189 * "procstat" may fail to resolve fd -> vnode -> path to anything
190 * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
191 * shortage) in which case the above problem applies
192 * - hardlinks are not tracked, thus if a vnode is reachable in more than one
193 * way, resolving a name may return a different path than the one used to
194 * open it (even if said path is still valid)
195 * - by default entries are not added for newly created files
196 * - adding an entry may need to evict negative entry first, which happens in 2
197 * distinct places (evicting on lookup, adding in a later VOP) making it
198 * impossible to simply reuse it
199 * - there is a simple scheme to evict negative entries as the cache is approaching
200 * its capacity, but it is very unclear if doing so is a good idea to begin with
201 * - vnodes are subject to being recycled even if target inode is left in memory,
202 * which loses the name cache entries when it perhaps should not. in case of tmpfs
203 * names get duplicated -- kept by filesystem itself and namecache separately
204 * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
205 * now hard to replace with malloc due to dependence on SMR.
206 * - lack of better integration with the kernel also turns nullfs into a layered
207 * filesystem instead of something which can take advantage of caching
208 */
209
210static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
211 "Name cache");
212
214SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
215 "struct vnode *");
216SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
217 "struct vnode *");
218SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
219 "char *");
220SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
221 "const char *");
222SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
223 "struct namecache *", "int", "int");
224SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
225SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
226 "char *", "struct vnode *");
227SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
228SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
229 "struct vnode *", "char *");
230SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
231 "struct vnode *");
232SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
233 "struct vnode *", "char *");
234SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
235 "char *");
236SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
237 "struct componentname *");
238SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
239 "struct componentname *");
240SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
241SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
242SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
243SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
244SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
245 "struct vnode *");
246SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
247 "char *");
248SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
249 "char *");
250SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
251
252SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
253SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
254SDT_PROBE_DECLARE(vfs, namei, lookup, return);
255
256static char __read_frequently cache_fast_lookup_enabled = true;
257
258/*
259 * This structure describes the elements in the cache of recent
260 * names looked up by namei.
261 */
262struct negstate {
263 u_char neg_flag;
264 u_char neg_hit;
265};
266_Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
267 "the state must fit in a union with a pointer without growing it");
268
269struct namecache {
270 LIST_ENTRY(namecache) nc_src; /* source vnode list */
271 TAILQ_ENTRY(namecache) nc_dst; /* destination vnode list */
272 CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
273 struct vnode *nc_dvp; /* vnode of parent of name */
274 union {
275 struct vnode *nu_vp; /* vnode the name refers to */
276 struct negstate nu_neg;/* negative entry state */
278 u_char nc_flag; /* flag bits */
279 u_char nc_nlen; /* length of name */
280 char nc_name[]; /* segment name + nul */
281};
282
283/*
284 * struct namecache_ts repeats struct namecache layout up to the
285 * nc_nlen member.
286 * struct namecache_ts is used in place of struct namecache when time(s) need
287 * to be stored. The nc_dotdottime field is used when a cache entry is mapping
288 * both a non-dotdot directory name plus dotdot for the directory's
289 * parent.
290 *
291 * See below for alignment requirement.
292 */
294 struct timespec nc_time; /* timespec provided by fs */
295 struct timespec nc_dotdottime; /* dotdot timespec provided by fs */
296 int nc_ticks; /* ticks value when entry was added */
299};
300
301TAILQ_HEAD(cache_freebatch, namecache);
302
303/*
304 * At least mips n32 performs 64-bit accesses to timespec as found
305 * in namecache_ts and requires them to be aligned. Since others
306 * may be in the same spot suffer a little bit and enforce the
307 * alignment for everyone. Note this is a nop for 64-bit platforms.
308 */
309#define CACHE_ZONE_ALIGNMENT UMA_ALIGNOF(time_t)
310
311/*
312 * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
313 * 4.4 BSD codebase. Later on struct namecache was tweaked to become
314 * smaller and the value was bumped to retain the total size, but it
315 * was never re-evaluated for suitability. A simple test counting
316 * lengths during package building shows that the value of 45 covers
317 * about 86% of all added entries, reaching 99% at 65.
318 *
319 * Regardless of the above, use of dedicated zones instead of malloc may be
320 * inducing additional waste. This may be hard to address as said zones are
321 * tied to VFS SMR. Even if retaining them, the current split should be
322 * re-evaluated.
323 */
324#ifdef __LP64__
325#define CACHE_PATH_CUTOFF 45
326#define CACHE_LARGE_PAD 6
327#else
328#define CACHE_PATH_CUTOFF 41
329#define CACHE_LARGE_PAD 2
330#endif
331
332#define CACHE_ZONE_SMALL_SIZE (offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
333#define CACHE_ZONE_SMALL_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
334#define CACHE_ZONE_LARGE_SIZE (offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
335#define CACHE_ZONE_LARGE_TS_SIZE (offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
336
341
342#define nc_vp n_un.nu_vp
343#define nc_neg n_un.nu_neg
344
345/*
346 * Flags in namecache.nc_flag
347 */
348#define NCF_WHITE 0x01
349#define NCF_ISDOTDOT 0x02
350#define NCF_TS 0x04
351#define NCF_DTS 0x08
352#define NCF_DVDROP 0x10
353#define NCF_NEGATIVE 0x20
354#define NCF_INVALID 0x40
355#define NCF_WIP 0x80
356
357/*
358 * Flags in negstate.neg_flag
359 */
360#define NEG_HOT 0x01
361
362static bool cache_neg_evict_cond(u_long lnumcache);
363
364/*
365 * Mark an entry as invalid.
366 *
367 * This is called before it starts getting deconstructed.
368 */
369static void
371{
372
373 KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
374 ("%s: entry %p already invalid", __func__, ncp));
375 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
376 atomic_thread_fence_rel();
377}
378
379/*
380 * Check whether the entry can be safely used.
381 *
382 * All places which elide locks are supposed to call this after they are
383 * done with reading from an entry.
384 */
385#define cache_ncp_canuse(ncp) ({ \
386 struct namecache *_ncp = (ncp); \
387 u_char _nc_flag; \
388 \
389 atomic_thread_fence_acq(); \
390 _nc_flag = atomic_load_char(&_ncp->nc_flag); \
391 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0); \
392})
393
394/*
395 * Like the above but also checks NCF_WHITE.
396 */
397#define cache_fpl_neg_ncp_canuse(ncp) ({ \
398 struct namecache *_ncp = (ncp); \
399 u_char _nc_flag; \
400 \
401 atomic_thread_fence_acq(); \
402 _nc_flag = atomic_load_char(&_ncp->nc_flag); \
403 __predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0); \
404})
405
407
408static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
409 "Name cache parameters");
410
411static u_int __read_mostly ncsize; /* the size as computed on creation or resizing */
412SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0,
413 "Total namecache capacity");
414
415u_int ncsizefactor = 2;
416SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
417 "Size factor for namecache");
418
419static u_long __read_mostly ncnegfactor = 5; /* ratio of negative entries */
420SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
421 "Ratio of negative namecache entries");
422
423/*
424 * Negative entry % of namecache capacity above which automatic eviction is allowed.
425 *
426 * Check cache_neg_evict_cond for details.
427 */
428static u_int ncnegminpct = 3;
429
430static u_int __read_mostly neg_min; /* the above recomputed against ncsize */
431SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
432 "Negative entry count above which automatic eviction is allowed");
433
434/*
435 * Structures associated with name caching.
436 */
437#define NCHHASH(hash) \
438 (&nchashtbl[(hash) & nchash])
439static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
440static u_long __read_mostly nchash; /* size of hash table */
441SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
442 "Size of namecache hash table");
443static u_long __exclusive_cache_line numneg; /* number of negative entries allocated */
444static u_long __exclusive_cache_line numcache;/* number of cache entries allocated */
445
446struct nchstats nchstats; /* cache effectiveness statistics */
447
448static bool __read_mostly cache_rename_add = true;
449SYSCTL_BOOL(_vfs, OID_AUTO, cache_rename_add, CTLFLAG_RW,
450 &cache_rename_add, 0, "");
451
452static u_int __exclusive_cache_line neg_cycle;
453
454#define ncneghash 3
455#define numneglists (ncneghash + 1)
456
457struct neglist {
458 struct mtx nl_evict_lock;
459 struct mtx nl_lock __aligned(CACHE_LINE_SIZE);
460 TAILQ_HEAD(, namecache) nl_list;
461 TAILQ_HEAD(, namecache) nl_hotlist;
462 u_long nl_hotnum;
463} __aligned(CACHE_LINE_SIZE);
464
465static struct neglist neglists[numneglists];
466
467static inline struct neglist *
469{
470
471 return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
472}
473
474static inline struct negstate *
476{
477
478 MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
479 return (&ncp->nc_neg);
480}
481
482#define numbucketlocks (ncbuckethash + 1)
484static struct mtx_padalign __read_mostly *bucketlocks;
485#define HASH2BUCKETLOCK(hash) \
486 ((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
487
488#define numvnodelocks (ncvnodehash + 1)
491static inline struct mtx *
492VP2VNODELOCK(struct vnode *vp)
493{
494
495 return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
496}
497
498static void
499cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
500{
501 struct namecache_ts *ncp_ts;
502
503 KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
504 (tsp == NULL && ticksp == NULL),
505 ("No NCF_TS"));
506
507 if (tsp == NULL)
508 return;
509
510 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
511 *tsp = ncp_ts->nc_time;
512 *ticksp = ncp_ts->nc_ticks;
513}
514
515#ifdef DEBUG_CACHE
516static int __read_mostly doingcache = 1; /* 1 => enable the cache */
517SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
518 "VFS namecache enabled");
519#endif
520
521/* Export size information to userland */
522SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
523 sizeof(struct namecache), "sizeof(struct namecache)");
524
525/*
526 * The new name cache statistics
527 */
528static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
529 "Name cache statistics");
530
531#define STATNODE_ULONG(name, varname, descr) \
532 SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
533#define STATNODE_COUNTER(name, varname, descr) \
534 static COUNTER_U64_DEFINE_EARLY(varname); \
535 SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
536 descr);
537STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
538STATNODE_ULONG(count, numcache, "Number of cache entries");
539STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
540STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
541STATNODE_COUNTER(dothits, dothits, "Number of '.' hits");
542STATNODE_COUNTER(dotdothis, dotdothits, "Number of '..' hits");
543STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
544STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
545STATNODE_COUNTER(posszaps, numposzaps,
546 "Number of cache hits (positive) we do not want to cache");
547STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
548STATNODE_COUNTER(negzaps, numnegzaps,
549 "Number of cache hits (negative) we do not want to cache");
550STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
551/* These count for vn_getcwd(), too. */
552STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
553STATNODE_COUNTER(fullpathfail1, numfullpathfail1, "Number of fullpath search errors (ENOTDIR)");
554STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
555 "Number of fullpath search errors (VOP_VPTOCNP failures)");
556STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
557STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
558STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
559
560/*
561 * Debug or developer statistics.
562 */
563static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
564 "Name cache debugging");
565#define DEBUGNODE_ULONG(name, varname, descr) \
566 SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
567#define DEBUGNODE_COUNTER(name, varname, descr) \
568 static COUNTER_U64_DEFINE_EARLY(varname); \
569 SYSCTL_COUNTER_U64(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, \
570 descr);
571DEBUGNODE_COUNTER(zap_bucket_relock_success, zap_bucket_relock_success,
572 "Number of successful removals after relocking");
573static long zap_bucket_fail;
579 "Number of times 3-way vnode locking failed");
580
581static void cache_zap_locked(struct namecache *ncp);
582static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
583 char **retbuf, size_t *buflen, size_t addend);
584static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
585 char **retbuf, size_t *buflen);
586static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
587 char **retbuf, size_t *len, size_t addend);
588
589static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
590
591static inline void
593{
594
595 if (vlp != NULL)
596 mtx_assert(vlp, MA_OWNED);
597}
598
599static inline void
601{
602 struct mtx *vlp;
603
604 vlp = VP2VNODELOCK(vp);
606}
607
608/*
609 * Directory vnodes with entries are held for two reasons:
610 * 1. make them less of a target for reclamation in vnlru
611 * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
612 *
613 * It will be feasible to stop doing it altogether if all filesystems start
614 * supporting lockless lookup.
615 */
616static void
617cache_hold_vnode(struct vnode *vp)
618{
619
621 VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
622 vhold(vp);
623 counter_u64_add(numcachehv, 1);
624}
625
626static void
627cache_drop_vnode(struct vnode *vp)
628{
629
630 /*
631 * Called after all locks are dropped, meaning we can't assert
632 * on the state of v_cache_src.
633 */
634 vdrop(vp);
635 counter_u64_add(numcachehv, -1);
636}
637
638/*
639 * UMA zones.
640 */
645
646char *
647cache_symlink_alloc(size_t size, int flags)
648{
649
650 if (size < CACHE_ZONE_SMALL_SIZE) {
651 return (uma_zalloc_smr(cache_zone_small, flags));
652 }
653 if (size < CACHE_ZONE_LARGE_SIZE) {
654 return (uma_zalloc_smr(cache_zone_large, flags));
655 }
656 counter_u64_add(symlinktoobig, 1);
657 SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
658 return (NULL);
659}
660
661void
662cache_symlink_free(char *string, size_t size)
663{
664
665 MPASS(string != NULL);
666 KASSERT(size < CACHE_ZONE_LARGE_SIZE,
667 ("%s: size %zu too big", __func__, size));
668
669 if (size < CACHE_ZONE_SMALL_SIZE) {
670 uma_zfree_smr(cache_zone_small, string);
671 return;
672 }
673 if (size < CACHE_ZONE_LARGE_SIZE) {
674 uma_zfree_smr(cache_zone_large, string);
675 return;
676 }
677 __assert_unreachable();
678}
679
680static struct namecache *
681cache_alloc_uma(int len, bool ts)
682{
683 struct namecache_ts *ncp_ts;
684 struct namecache *ncp;
685
686 if (__predict_false(ts)) {
687 if (len <= CACHE_PATH_CUTOFF)
688 ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
689 else
690 ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
691 ncp = &ncp_ts->nc_nc;
692 } else {
693 if (len <= CACHE_PATH_CUTOFF)
694 ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
695 else
696 ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
697 }
698 return (ncp);
699}
700
701static void
703{
704 struct namecache_ts *ncp_ts;
705
706 if (__predict_false(ncp->nc_flag & NCF_TS)) {
707 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
708 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
709 uma_zfree_smr(cache_zone_small_ts, ncp_ts);
710 else
711 uma_zfree_smr(cache_zone_large_ts, ncp_ts);
712 } else {
713 if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
714 uma_zfree_smr(cache_zone_small, ncp);
715 else
716 uma_zfree_smr(cache_zone_large, ncp);
717 }
718}
719
720static struct namecache *
721cache_alloc(int len, bool ts)
722{
723 u_long lnumcache;
724
725 /*
726 * Avoid blowout in namecache entries.
727 *
728 * Bugs:
729 * 1. filesystems may end up trying to add an already existing entry
730 * (for example this can happen after a cache miss during concurrent
731 * lookup), in which case we will call cache_neg_evict despite not
732 * adding anything.
733 * 2. the routine may fail to free anything and no provisions are made
734 * to make it try harder (see the inside for failure modes)
735 * 3. it only ever looks at negative entries.
736 */
737 lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
738 if (cache_neg_evict_cond(lnumcache)) {
739 lnumcache = atomic_load_long(&numcache);
740 }
741 if (__predict_false(lnumcache >= ncsize)) {
742 atomic_subtract_long(&numcache, 1);
743 counter_u64_add(numdrops, 1);
744 return (NULL);
745 }
746 return (cache_alloc_uma(len, ts));
747}
748
749static void
751{
752
753 MPASS(ncp != NULL);
754 if ((ncp->nc_flag & NCF_DVDROP) != 0) {
755 cache_drop_vnode(ncp->nc_dvp);
756 }
757 cache_free_uma(ncp);
758 atomic_subtract_long(&numcache, 1);
759}
760
761static void
762cache_free_batch(struct cache_freebatch *batch)
763{
764 struct namecache *ncp, *nnp;
765 int i;
766
767 i = 0;
768 if (TAILQ_EMPTY(batch))
769 goto out;
770 TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
771 if ((ncp->nc_flag & NCF_DVDROP) != 0) {
772 cache_drop_vnode(ncp->nc_dvp);
773 }
774 cache_free_uma(ncp);
775 i++;
776 }
777 atomic_subtract_long(&numcache, i);
778out:
779 SDT_PROBE1(vfs, namecache, purge, batch, i);
780}
781
782/*
783 * Hashing.
784 *
785 * The code was made to use FNV in 2001 and this choice needs to be revisited.
786 *
787 * Short summary of the difficulty:
788 * The longest name which can be inserted is NAME_MAX characters in length (or
789 * 255 at the time of writing this comment), while majority of names used in
790 * practice are significantly shorter (mostly below 10). More importantly
791 * majority of lookups performed find names are even shorter than that.
792 *
793 * This poses a problem where hashes which do better than FNV past word size
794 * (or so) tend to come with additional overhead when finalizing the result,
795 * making them noticeably slower for the most commonly used range.
796 *
797 * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
798 *
799 * When looking it up the most time consuming part by a large margin (at least
800 * on amd64) is hashing. Replacing FNV with something which pessimizes short
801 * input would make the slowest part stand out even more.
802 */
803
804/*
805 * TODO: With the value stored we can do better than computing the hash based
806 * on the address.
807 */
808static void
809cache_prehash(struct vnode *vp)
810{
811
812 vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
813}
814
815static uint32_t
816cache_get_hash(char *name, u_char len, struct vnode *dvp)
817{
818
819 return (fnv_32_buf(name, len, dvp->v_nchash));
820}
821
822static uint32_t
824{
825
826 return (dvp->v_nchash);
827}
828
829static uint32_t
830cache_get_hash_iter(char c, uint32_t hash)
831{
832
833 return (fnv_32_buf(&c, 1, hash));
834}
835
836static uint32_t
838{
839
840 return (hash);
841}
842
843static inline struct nchashhead *
845{
846 uint32_t hash;
847
848 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
849 return (NCHHASH(hash));
850}
851
852static inline struct mtx *
854{
855 uint32_t hash;
856
857 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
858 return (HASH2BUCKETLOCK(hash));
859}
860
861#ifdef INVARIANTS
862static void
864{
865 struct mtx *blp;
866
867 blp = NCP2BUCKETLOCK(ncp);
868 mtx_assert(blp, MA_OWNED);
869}
870
871static void
873{
874 struct mtx *blp;
875
876 blp = NCP2BUCKETLOCK(ncp);
877 mtx_assert(blp, MA_NOTOWNED);
878}
879#else
880#define cache_assert_bucket_locked(x) do { } while (0)
881#define cache_assert_bucket_unlocked(x) do { } while (0)
882#endif
883
884#define cache_sort_vnodes(x, y) _cache_sort_vnodes((void **)(x), (void **)(y))
885static void
886_cache_sort_vnodes(void **p1, void **p2)
887{
888 void *tmp;
889
890 MPASS(*p1 != NULL || *p2 != NULL);
891
892 if (*p1 > *p2) {
893 tmp = *p2;
894 *p2 = *p1;
895 *p1 = tmp;
896 }
897}
898
899static void
901{
902 u_int i;
903
904 for (i = 0; i < numbucketlocks; i++)
905 mtx_lock(&bucketlocks[i]);
906}
907
908static void
910{
911 u_int i;
912
913 for (i = 0; i < numbucketlocks; i++)
914 mtx_unlock(&bucketlocks[i]);
915}
916
917static void
919{
920 u_int i;
921
922 for (i = 0; i < numvnodelocks; i++)
923 mtx_lock(&vnodelocks[i]);
924}
925
926static void
928{
929 u_int i;
930
931 for (i = 0; i < numvnodelocks; i++)
932 mtx_unlock(&vnodelocks[i]);
933}
934
935static int
936cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
937{
938
939 cache_sort_vnodes(&vlp1, &vlp2);
940
941 if (vlp1 != NULL) {
942 if (!mtx_trylock(vlp1))
943 return (EAGAIN);
944 }
945 if (!mtx_trylock(vlp2)) {
946 if (vlp1 != NULL)
947 mtx_unlock(vlp1);
948 return (EAGAIN);
949 }
950
951 return (0);
952}
953
954static void
955cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
956{
957
958 MPASS(vlp1 != NULL || vlp2 != NULL);
959 MPASS(vlp1 <= vlp2);
960
961 if (vlp1 != NULL)
962 mtx_lock(vlp1);
963 if (vlp2 != NULL)
964 mtx_lock(vlp2);
965}
966
967static void
968cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
969{
970
971 MPASS(vlp1 != NULL || vlp2 != NULL);
972
973 if (vlp1 != NULL)
974 mtx_unlock(vlp1);
975 if (vlp2 != NULL)
976 mtx_unlock(vlp2);
977}
978
979static int
980sysctl_nchstats(SYSCTL_HANDLER_ARGS)
981{
982 struct nchstats snap;
983
984 if (req->oldptr == NULL)
985 return (SYSCTL_OUT(req, 0, sizeof(snap)));
986
987 snap = nchstats;
988 snap.ncs_goodhits = counter_u64_fetch(numposhits);
989 snap.ncs_neghits = counter_u64_fetch(numneghits);
990 snap.ncs_badhits = counter_u64_fetch(numposzaps) +
991 counter_u64_fetch(numnegzaps);
992 snap.ncs_miss = counter_u64_fetch(nummisszap) +
993 counter_u64_fetch(nummiss);
994
995 return (SYSCTL_OUT(req, &snap, sizeof(snap)));
996}
997SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
998 CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
999 "VFS cache effectiveness statistics");
1000
1001static void
1003{
1004
1005 neg_min = (ncsize * val) / 100;
1006}
1007
1008static int
1009sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1010{
1011 u_int val;
1012 int error;
1013
1014 val = ncnegminpct;
1015 error = sysctl_handle_int(oidp, &val, 0, req);
1016 if (error != 0 || req->newptr == NULL)
1017 return (error);
1018
1019 if (val == ncnegminpct)
1020 return (0);
1021 if (val < 0 || val > 99)
1022 return (EINVAL);
1023 ncnegminpct = val;
1025 return (0);
1026}
1027
1028SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1029 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1030 "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1031
1032#ifdef DEBUG_CACHE
1033/*
1034 * Grab an atomic snapshot of the name cache hash chain lengths
1035 */
1036static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1037 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1038 "hash table stats");
1039
1040static int
1041sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1042{
1043 struct nchashhead *ncpp;
1044 struct namecache *ncp;
1045 int i, error, n_nchash, *cntbuf;
1046
1047retry:
1048 n_nchash = nchash + 1; /* nchash is max index, not count */
1049 if (req->oldptr == NULL)
1050 return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1051 cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1053 if (n_nchash != nchash + 1) {
1055 free(cntbuf, M_TEMP);
1056 goto retry;
1057 }
1058 /* Scan hash tables counting entries */
1059 for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1060 CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1061 cntbuf[i]++;
1063 for (error = 0, i = 0; i < n_nchash; i++)
1064 if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1065 break;
1066 free(cntbuf, M_TEMP);
1067 return (error);
1068}
1069SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1070 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1071 "nchash chain lengths");
1072
1073static int
1074sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1075{
1076 int error;
1077 struct nchashhead *ncpp;
1078 struct namecache *ncp;
1079 int n_nchash;
1080 int count, maxlength, used, pct;
1081
1082 if (!req->oldptr)
1083 return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1084
1086 n_nchash = nchash + 1; /* nchash is max index, not count */
1087 used = 0;
1088 maxlength = 0;
1089
1090 /* Scan hash tables for applicable entries */
1091 for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1092 count = 0;
1093 CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1094 count++;
1095 }
1096 if (count)
1097 used++;
1098 if (maxlength < count)
1099 maxlength = count;
1100 }
1101 n_nchash = nchash + 1;
1103 pct = (used * 100) / (n_nchash / 100);
1104 error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1105 if (error)
1106 return (error);
1107 error = SYSCTL_OUT(req, &used, sizeof(used));
1108 if (error)
1109 return (error);
1110 error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1111 if (error)
1112 return (error);
1113 error = SYSCTL_OUT(req, &pct, sizeof(pct));
1114 if (error)
1115 return (error);
1116 return (0);
1117}
1118SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1119 CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1120 "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1121#endif
1122
1123/*
1124 * Negative entries management
1125 *
1126 * Various workloads create plenty of negative entries and barely use them
1127 * afterwards. Moreover malicious users can keep performing bogus lookups
1128 * adding even more entries. For example "make tinderbox" as of writing this
1129 * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1130 * negative.
1131 *
1132 * As such, a rather aggressive eviction method is needed. The currently
1133 * employed method is a placeholder.
1134 *
1135 * Entries are split over numneglists separate lists, each of which is further
1136 * split into hot and cold entries. Entries get promoted after getting a hit.
1137 * Eviction happens on addition of new entry.
1138 */
1139static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1140 "Name cache negative entry statistics");
1141
1142SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1143 "Number of negative cache entries");
1144
1145static COUNTER_U64_DEFINE_EARLY(neg_created);
1146SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1147 "Number of created negative entries");
1148
1149static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1150SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1151 "Number of evicted negative entries");
1152
1153static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1154SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1155 &neg_evict_skipped_empty,
1156 "Number of times evicting failed due to lack of entries");
1157
1158static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1159SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1160 &neg_evict_skipped_missed,
1161 "Number of times evicting failed due to target entry disappearing");
1162
1163static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1164SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1165 &neg_evict_skipped_contended,
1166 "Number of times evicting failed due to contention");
1167
1168SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1169 "Number of cache hits (negative)");
1170
1171static int
1172sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1173{
1174 int i, out;
1175
1176 out = 0;
1177 for (i = 0; i < numneglists; i++)
1178 out += neglists[i].nl_hotnum;
1179
1180 return (SYSCTL_OUT(req, &out, sizeof(out)));
1181}
1182SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1183 CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1184 "Number of hot negative entries");
1185
1186static void
1188{
1189 struct negstate *ns;
1190
1191 ncp->nc_flag |= NCF_NEGATIVE;
1192 ns = NCP2NEGSTATE(ncp);
1193 ns->neg_flag = 0;
1194 ns->neg_hit = 0;
1195 counter_u64_add(neg_created, 1);
1196}
1197
1198#define CACHE_NEG_PROMOTION_THRESH 2
1199
1200static bool
1202{
1203 struct negstate *ns;
1204 u_char n;
1205
1206 ns = NCP2NEGSTATE(ncp);
1207 n = atomic_load_char(&ns->neg_hit);
1208 for (;;) {
1210 return (false);
1211 if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1212 break;
1213 }
1214 return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1215}
1216
1217/*
1218 * Nothing to do here but it is provided for completeness as some
1219 * cache_neg_hit_prep callers may end up returning without even
1220 * trying to promote.
1221 */
1222#define cache_neg_hit_abort(ncp) do { } while (0)
1223
1224static void
1226{
1227
1228 SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1229 counter_u64_add(numneghits, 1);
1230}
1231
1232/*
1233 * Move a negative entry to the hot list.
1234 */
1235static void
1237{
1238 struct neglist *nl;
1239 struct negstate *ns;
1240
1241 ns = NCP2NEGSTATE(ncp);
1242 nl = NCP2NEGLIST(ncp);
1243 mtx_assert(&nl->nl_lock, MA_OWNED);
1244 if ((ns->neg_flag & NEG_HOT) == 0) {
1245 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1246 TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1247 nl->nl_hotnum++;
1248 ns->neg_flag |= NEG_HOT;
1249 }
1250}
1251
1252/*
1253 * Move a hot negative entry to the cold list.
1254 */
1255static void
1257{
1258 struct neglist *nl;
1259 struct negstate *ns;
1260
1261 ns = NCP2NEGSTATE(ncp);
1262 nl = NCP2NEGLIST(ncp);
1263 mtx_assert(&nl->nl_lock, MA_OWNED);
1264 MPASS(ns->neg_flag & NEG_HOT);
1265 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1266 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1267 nl->nl_hotnum--;
1268 ns->neg_flag &= ~NEG_HOT;
1269 atomic_store_char(&ns->neg_hit, 0);
1270}
1271
1272/*
1273 * Move a negative entry to the hot list if it matches the lookup.
1274 *
1275 * We have to take locks, but they may be contended and in the worst
1276 * case we may need to go off CPU. We don't want to spin within the
1277 * smr section and we can't block with it. Exiting the section means
1278 * the found entry could have been evicted. We are going to look it
1279 * up again.
1280 */
1281static bool
1282cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1283 struct namecache *oncp, uint32_t hash)
1284{
1285 struct namecache *ncp;
1286 struct neglist *nl;
1287 u_char nc_flag;
1288
1289 nl = NCP2NEGLIST(oncp);
1290
1291 mtx_lock(&nl->nl_lock);
1292 /*
1293 * For hash iteration.
1294 */
1295 vfs_smr_enter();
1296
1297 /*
1298 * Avoid all surprises by only succeeding if we got the same entry and
1299 * bailing completely otherwise.
1300 * XXX There are no provisions to keep the vnode around, meaning we may
1301 * end up promoting a negative entry for a *new* vnode and returning
1302 * ENOENT on its account. This is the error we want to return anyway
1303 * and promotion is harmless.
1304 *
1305 * In particular at this point there can be a new ncp which matches the
1306 * search but hashes to a different neglist.
1307 */
1308 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1309 if (ncp == oncp)
1310 break;
1311 }
1312
1313 /*
1314 * No match to begin with.
1315 */
1316 if (__predict_false(ncp == NULL)) {
1317 goto out_abort;
1318 }
1319
1320 /*
1321 * The newly found entry may be something different...
1322 */
1323 if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1324 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1325 goto out_abort;
1326 }
1327
1328 /*
1329 * ... and not even negative.
1330 */
1331 nc_flag = atomic_load_char(&ncp->nc_flag);
1332 if ((nc_flag & NCF_NEGATIVE) == 0) {
1333 goto out_abort;
1334 }
1335
1336 if (!cache_ncp_canuse(ncp)) {
1337 goto out_abort;
1338 }
1339
1342 vfs_smr_exit();
1343 mtx_unlock(&nl->nl_lock);
1344 return (true);
1345out_abort:
1346 vfs_smr_exit();
1347 mtx_unlock(&nl->nl_lock);
1348 return (false);
1349}
1350
1351static void
1353{
1354 struct neglist *nl;
1355
1356 nl = NCP2NEGLIST(ncp);
1357 mtx_lock(&nl->nl_lock);
1359 mtx_unlock(&nl->nl_lock);
1360}
1361
1362static void
1364{
1365 struct neglist *nl;
1366
1367 MPASS(ncp->nc_flag & NCF_NEGATIVE);
1369 nl = NCP2NEGLIST(ncp);
1370 mtx_lock(&nl->nl_lock);
1371 TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1372 mtx_unlock(&nl->nl_lock);
1373 atomic_add_long(&numneg, 1);
1374}
1375
1376static void
1378{
1379 struct neglist *nl;
1380 struct negstate *ns;
1381
1383 nl = NCP2NEGLIST(ncp);
1384 ns = NCP2NEGSTATE(ncp);
1385 mtx_lock(&nl->nl_lock);
1386 if ((ns->neg_flag & NEG_HOT) != 0) {
1387 TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1388 nl->nl_hotnum--;
1389 } else {
1390 TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1391 }
1392 mtx_unlock(&nl->nl_lock);
1393 atomic_subtract_long(&numneg, 1);
1394}
1395
1396static struct neglist *
1398{
1399 struct neglist *nl;
1400 u_int c;
1401
1402 c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1403 nl = &neglists[c % numneglists];
1404 if (!mtx_trylock(&nl->nl_evict_lock)) {
1405 counter_u64_add(neg_evict_skipped_contended, 1);
1406 return (NULL);
1407 }
1408 return (nl);
1409}
1410
1411static struct namecache *
1413{
1414 struct namecache *ncp, *lncp;
1415 struct negstate *ns, *lns;
1416 int i;
1417
1418 mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1419 mtx_assert(&nl->nl_lock, MA_OWNED);
1420 ncp = TAILQ_FIRST(&nl->nl_list);
1421 if (ncp == NULL)
1422 return (NULL);
1423 lncp = ncp;
1424 lns = NCP2NEGSTATE(lncp);
1425 for (i = 1; i < 4; i++) {
1426 ncp = TAILQ_NEXT(ncp, nc_dst);
1427 if (ncp == NULL)
1428 break;
1429 ns = NCP2NEGSTATE(ncp);
1430 if (ns->neg_hit < lns->neg_hit) {
1431 lncp = ncp;
1432 lns = ns;
1433 }
1434 }
1435 return (lncp);
1436}
1437
1438static bool
1440{
1441 struct namecache *ncp, *ncp2;
1442 struct neglist *nl;
1443 struct vnode *dvp;
1444 struct mtx *dvlp;
1445 struct mtx *blp;
1446 uint32_t hash;
1447 u_char nlen;
1448 bool evicted;
1449
1451 if (nl == NULL) {
1452 return (false);
1453 }
1454
1455 mtx_lock(&nl->nl_lock);
1456 ncp = TAILQ_FIRST(&nl->nl_hotlist);
1457 if (ncp != NULL) {
1459 }
1461 if (ncp == NULL) {
1462 counter_u64_add(neg_evict_skipped_empty, 1);
1463 mtx_unlock(&nl->nl_lock);
1464 mtx_unlock(&nl->nl_evict_lock);
1465 return (false);
1466 }
1467 nlen = ncp->nc_nlen;
1468 dvp = ncp->nc_dvp;
1469 hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1470 dvlp = VP2VNODELOCK(dvp);
1471 blp = HASH2BUCKETLOCK(hash);
1472 mtx_unlock(&nl->nl_lock);
1473 mtx_unlock(&nl->nl_evict_lock);
1474 mtx_lock(dvlp);
1475 mtx_lock(blp);
1476 /*
1477 * Note that since all locks were dropped above, the entry may be
1478 * gone or reallocated to be something else.
1479 */
1480 CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1481 if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1482 ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1483 break;
1484 }
1485 if (ncp2 == NULL) {
1486 counter_u64_add(neg_evict_skipped_missed, 1);
1487 ncp = NULL;
1488 evicted = false;
1489 } else {
1490 MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1491 MPASS(blp == NCP2BUCKETLOCK(ncp));
1492 SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1493 ncp->nc_name);
1494 cache_zap_locked(ncp);
1495 counter_u64_add(neg_evicted, 1);
1496 evicted = true;
1497 }
1498 mtx_unlock(blp);
1499 mtx_unlock(dvlp);
1500 if (ncp != NULL)
1501 cache_free(ncp);
1502 return (evicted);
1503}
1504
1505/*
1506 * Maybe evict a negative entry to create more room.
1507 *
1508 * The ncnegfactor parameter limits what fraction of the total count
1509 * can comprise of negative entries. However, if the cache is just
1510 * warming up this leads to excessive evictions. As such, ncnegminpct
1511 * (recomputed to neg_min) dictates whether the above should be
1512 * applied.
1513 *
1514 * Try evicting if the cache is close to full capacity regardless of
1515 * other considerations.
1516 */
1517static bool
1518cache_neg_evict_cond(u_long lnumcache)
1519{
1520 u_long lnumneg;
1521
1522 if (ncsize - 1000 < lnumcache)
1523 goto out_evict;
1524 lnumneg = atomic_load_long(&numneg);
1525 if (lnumneg < neg_min)
1526 return (false);
1527 if (lnumneg * ncnegfactor < lnumcache)
1528 return (false);
1529out_evict:
1530 return (cache_neg_evict());
1531}
1532
1533/*
1534 * cache_zap_locked():
1535 *
1536 * Removes a namecache entry from cache, whether it contains an actual
1537 * pointer to a vnode or if it is just a negative cache entry.
1538 */
1539static void
1541{
1542 struct nchashhead *ncpp;
1543 struct vnode *dvp, *vp;
1544
1545 dvp = ncp->nc_dvp;
1546 vp = ncp->nc_vp;
1547
1548 if (!(ncp->nc_flag & NCF_NEGATIVE))
1552
1554
1555 ncpp = NCP2BUCKET(ncp);
1556 CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1557 if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1558 SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1559 TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1560 if (ncp == vp->v_cache_dd) {
1561 atomic_store_ptr(&vp->v_cache_dd, NULL);
1562 }
1563 } else {
1564 SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1565 cache_neg_remove(ncp);
1566 }
1567 if (ncp->nc_flag & NCF_ISDOTDOT) {
1568 if (ncp == dvp->v_cache_dd) {
1569 atomic_store_ptr(&dvp->v_cache_dd, NULL);
1570 }
1571 } else {
1572 LIST_REMOVE(ncp, nc_src);
1573 if (LIST_EMPTY(&dvp->v_cache_src)) {
1574 ncp->nc_flag |= NCF_DVDROP;
1575 }
1576 }
1577}
1578
1579static void
1580cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1581{
1582 struct mtx *blp;
1583
1584 MPASS(ncp->nc_dvp == vp);
1585 MPASS(ncp->nc_flag & NCF_NEGATIVE);
1587
1588 blp = NCP2BUCKETLOCK(ncp);
1589 mtx_lock(blp);
1590 cache_zap_locked(ncp);
1591 mtx_unlock(blp);
1592}
1593
1594static bool
1595cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1596 struct mtx **vlpp)
1597{
1598 struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1599 struct mtx *blp;
1600
1601 MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1603
1604 if (ncp->nc_flag & NCF_NEGATIVE) {
1605 if (*vlpp != NULL) {
1606 mtx_unlock(*vlpp);
1607 *vlpp = NULL;
1608 }
1610 return (true);
1611 }
1612
1613 pvlp = VP2VNODELOCK(vp);
1614 blp = NCP2BUCKETLOCK(ncp);
1615 vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1616 vlp2 = VP2VNODELOCK(ncp->nc_vp);
1617
1618 if (*vlpp == vlp1 || *vlpp == vlp2) {
1619 to_unlock = *vlpp;
1620 *vlpp = NULL;
1621 } else {
1622 if (*vlpp != NULL) {
1623 mtx_unlock(*vlpp);
1624 *vlpp = NULL;
1625 }
1626 cache_sort_vnodes(&vlp1, &vlp2);
1627 if (vlp1 == pvlp) {
1628 mtx_lock(vlp2);
1629 to_unlock = vlp2;
1630 } else {
1631 if (!mtx_trylock(vlp1))
1632 goto out_relock;
1633 to_unlock = vlp1;
1634 }
1635 }
1636 mtx_lock(blp);
1637 cache_zap_locked(ncp);
1638 mtx_unlock(blp);
1639 if (to_unlock != NULL)
1640 mtx_unlock(to_unlock);
1641 return (true);
1642
1643out_relock:
1644 mtx_unlock(vlp2);
1645 mtx_lock(vlp1);
1646 mtx_lock(vlp2);
1647 MPASS(*vlpp == NULL);
1648 *vlpp = vlp1;
1649 return (false);
1650}
1651
1652/*
1653 * If trylocking failed we can get here. We know enough to take all needed locks
1654 * in the right order and re-lookup the entry.
1655 */
1656static int
1657cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1658 struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1659 struct mtx *blp)
1660{
1661 struct namecache *rncp;
1662
1664
1665 cache_sort_vnodes(&dvlp, &vlp);
1666 cache_lock_vnodes(dvlp, vlp);
1667 mtx_lock(blp);
1668 CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1669 if (rncp == ncp && rncp->nc_dvp == dvp &&
1670 rncp->nc_nlen == cnp->cn_namelen &&
1671 !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1672 break;
1673 }
1674 if (rncp != NULL) {
1675 cache_zap_locked(rncp);
1676 mtx_unlock(blp);
1677 cache_unlock_vnodes(dvlp, vlp);
1678 counter_u64_add(zap_bucket_relock_success, 1);
1679 return (0);
1680 }
1681
1682 mtx_unlock(blp);
1683 cache_unlock_vnodes(dvlp, vlp);
1684 return (EAGAIN);
1685}
1686
1687static int __noinline
1688cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1689 uint32_t hash, struct mtx *blp)
1690{
1691 struct mtx *dvlp, *vlp;
1692 struct vnode *dvp;
1693
1695
1696 dvlp = VP2VNODELOCK(ncp->nc_dvp);
1697 vlp = NULL;
1698 if (!(ncp->nc_flag & NCF_NEGATIVE))
1699 vlp = VP2VNODELOCK(ncp->nc_vp);
1700 if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1701 cache_zap_locked(ncp);
1702 mtx_unlock(blp);
1703 cache_unlock_vnodes(dvlp, vlp);
1704 return (0);
1705 }
1706
1707 dvp = ncp->nc_dvp;
1708 mtx_unlock(blp);
1709 return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1710}
1711
1712static __noinline int
1713cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1714{
1715 struct namecache *ncp;
1716 struct mtx *blp;
1717 struct mtx *dvlp, *dvlp2;
1718 uint32_t hash;
1719 int error;
1720
1721 if (cnp->cn_namelen == 2 &&
1722 cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1723 dvlp = VP2VNODELOCK(dvp);
1724 dvlp2 = NULL;
1725 mtx_lock(dvlp);
1726retry_dotdot:
1727 ncp = dvp->v_cache_dd;
1728 if (ncp == NULL) {
1729 mtx_unlock(dvlp);
1730 if (dvlp2 != NULL)
1731 mtx_unlock(dvlp2);
1732 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1733 return (0);
1734 }
1735 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1736 if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1737 goto retry_dotdot;
1738 MPASS(dvp->v_cache_dd == NULL);
1739 mtx_unlock(dvlp);
1740 if (dvlp2 != NULL)
1741 mtx_unlock(dvlp2);
1742 cache_free(ncp);
1743 } else {
1744 atomic_store_ptr(&dvp->v_cache_dd, NULL);
1745 mtx_unlock(dvlp);
1746 if (dvlp2 != NULL)
1747 mtx_unlock(dvlp2);
1748 }
1749 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1750 return (1);
1751 }
1752
1753 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1754 blp = HASH2BUCKETLOCK(hash);
1755retry:
1756 if (CK_SLIST_EMPTY(NCHHASH(hash)))
1757 goto out_no_entry;
1758
1759 mtx_lock(blp);
1760
1761 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1762 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1763 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1764 break;
1765 }
1766
1767 if (ncp == NULL) {
1768 mtx_unlock(blp);
1769 goto out_no_entry;
1770 }
1771
1772 error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1773 if (__predict_false(error != 0)) {
1775 goto retry;
1776 }
1777 counter_u64_add(numposzaps, 1);
1778 SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1779 cache_free(ncp);
1780 return (1);
1781out_no_entry:
1782 counter_u64_add(nummisszap, 1);
1783 SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1784 return (0);
1785}
1786
1787static int __noinline
1788cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1789 struct timespec *tsp, int *ticksp)
1790{
1791 int ltype;
1792
1793 *vpp = dvp;
1794 counter_u64_add(dothits, 1);
1795 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1796 if (tsp != NULL)
1797 timespecclear(tsp);
1798 if (ticksp != NULL)
1799 *ticksp = ticks;
1800 vrefact(*vpp);
1801 /*
1802 * When we lookup "." we still can be asked to lock it
1803 * differently...
1804 */
1805 ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1806 if (ltype != VOP_ISLOCKED(*vpp)) {
1807 if (ltype == LK_EXCLUSIVE) {
1808 vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1809 if (VN_IS_DOOMED((*vpp))) {
1810 /* forced unmount */
1811 vrele(*vpp);
1812 *vpp = NULL;
1813 return (ENOENT);
1814 }
1815 } else
1816 vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1817 }
1818 return (-1);
1819}
1820
1821static int __noinline
1822cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1823 struct timespec *tsp, int *ticksp)
1824{
1825 struct namecache_ts *ncp_ts;
1826 struct namecache *ncp;
1827 struct mtx *dvlp;
1828 enum vgetstate vs;
1829 int error, ltype;
1830 bool whiteout;
1831
1832 MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1833
1834 if ((cnp->cn_flags & MAKEENTRY) == 0) {
1835 cache_remove_cnp(dvp, cnp);
1836 return (0);
1837 }
1838
1839 counter_u64_add(dotdothits, 1);
1840retry:
1841 dvlp = VP2VNODELOCK(dvp);
1842 mtx_lock(dvlp);
1843 ncp = dvp->v_cache_dd;
1844 if (ncp == NULL) {
1845 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1846 mtx_unlock(dvlp);
1847 return (0);
1848 }
1849 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1850 if (ncp->nc_flag & NCF_NEGATIVE)
1851 *vpp = NULL;
1852 else
1853 *vpp = ncp->nc_vp;
1854 } else
1855 *vpp = ncp->nc_dvp;
1856 if (*vpp == NULL)
1857 goto negative_success;
1858 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1859 cache_out_ts(ncp, tsp, ticksp);
1860 if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1861 NCF_DTS && tsp != NULL) {
1862 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1863 *tsp = ncp_ts->nc_dotdottime;
1864 }
1865
1866 MPASS(dvp != *vpp);
1867 ltype = VOP_ISLOCKED(dvp);
1868 VOP_UNLOCK(dvp);
1869 vs = vget_prep(*vpp);
1870 mtx_unlock(dvlp);
1871 error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1872 vn_lock(dvp, ltype | LK_RETRY);
1873 if (VN_IS_DOOMED(dvp)) {
1874 if (error == 0)
1875 vput(*vpp);
1876 *vpp = NULL;
1877 return (ENOENT);
1878 }
1879 if (error) {
1880 *vpp = NULL;
1881 goto retry;
1882 }
1883 return (-1);
1884negative_success:
1885 if (__predict_false(cnp->cn_nameiop == CREATE)) {
1886 if (cnp->cn_flags & ISLASTCN) {
1887 counter_u64_add(numnegzaps, 1);
1889 mtx_unlock(dvlp);
1890 cache_free(ncp);
1891 return (0);
1892 }
1893 }
1894
1895 whiteout = (ncp->nc_flag & NCF_WHITE);
1896 cache_out_ts(ncp, tsp, ticksp);
1897 if (cache_neg_hit_prep(ncp))
1898 cache_neg_promote(ncp);
1899 else
1901 mtx_unlock(dvlp);
1902 if (whiteout)
1903 cnp->cn_flags |= ISWHITEOUT;
1904 return (ENOENT);
1905}
1906
1945static int __noinline
1946cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1947 struct timespec *tsp, int *ticksp)
1948{
1949 struct namecache *ncp;
1950 struct mtx *blp;
1951 uint32_t hash;
1952 enum vgetstate vs;
1953 int error;
1954 bool whiteout;
1955
1956 MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1957 MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1958
1959retry:
1960 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1961 blp = HASH2BUCKETLOCK(hash);
1962 mtx_lock(blp);
1963
1964 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1965 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1966 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1967 break;
1968 }
1969
1970 if (__predict_false(ncp == NULL)) {
1971 mtx_unlock(blp);
1972 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1973 counter_u64_add(nummiss, 1);
1974 return (0);
1975 }
1976
1977 if (ncp->nc_flag & NCF_NEGATIVE)
1978 goto negative_success;
1979
1980 counter_u64_add(numposhits, 1);
1981 *vpp = ncp->nc_vp;
1982 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
1983 cache_out_ts(ncp, tsp, ticksp);
1984 MPASS(dvp != *vpp);
1985 vs = vget_prep(*vpp);
1986 mtx_unlock(blp);
1987 error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1988 if (error) {
1989 *vpp = NULL;
1990 goto retry;
1991 }
1992 return (-1);
1993negative_success:
1994 /*
1995 * We don't get here with regular lookup apart from corner cases.
1996 */
1997 if (__predict_true(cnp->cn_nameiop == CREATE)) {
1998 if (cnp->cn_flags & ISLASTCN) {
1999 counter_u64_add(numnegzaps, 1);
2000 error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2001 if (__predict_false(error != 0)) {
2003 goto retry;
2004 }
2005 cache_free(ncp);
2006 return (0);
2007 }
2008 }
2009
2010 whiteout = (ncp->nc_flag & NCF_WHITE);
2011 cache_out_ts(ncp, tsp, ticksp);
2012 if (cache_neg_hit_prep(ncp))
2013 cache_neg_promote(ncp);
2014 else
2016 mtx_unlock(blp);
2017 if (whiteout)
2018 cnp->cn_flags |= ISWHITEOUT;
2019 return (ENOENT);
2020}
2021
2022int
2023cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2024 struct timespec *tsp, int *ticksp)
2025{
2026 struct namecache *ncp;
2027 uint32_t hash;
2028 enum vgetstate vs;
2029 int error;
2030 bool whiteout, neg_promote;
2031 u_short nc_flag;
2032
2033 MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2034
2035#ifdef DEBUG_CACHE
2036 if (__predict_false(!doingcache)) {
2037 cnp->cn_flags &= ~MAKEENTRY;
2038 return (0);
2039 }
2040#endif
2041
2042 if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2043 if (cnp->cn_namelen == 1)
2044 return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2045 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2046 return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2047 }
2048
2049 MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2050
2051 if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2052 cache_remove_cnp(dvp, cnp);
2053 return (0);
2054 }
2055
2056 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2057 vfs_smr_enter();
2058
2059 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2060 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2061 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2062 break;
2063 }
2064
2065 if (__predict_false(ncp == NULL)) {
2066 vfs_smr_exit();
2067 SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2068 counter_u64_add(nummiss, 1);
2069 return (0);
2070 }
2071
2072 nc_flag = atomic_load_char(&ncp->nc_flag);
2073 if (nc_flag & NCF_NEGATIVE)
2074 goto negative_success;
2075
2076 counter_u64_add(numposhits, 1);
2077 *vpp = ncp->nc_vp;
2078 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2079 cache_out_ts(ncp, tsp, ticksp);
2080 MPASS(dvp != *vpp);
2081 if (!cache_ncp_canuse(ncp)) {
2082 vfs_smr_exit();
2083 *vpp = NULL;
2084 goto out_fallback;
2085 }
2086 vs = vget_prep_smr(*vpp);
2087 vfs_smr_exit();
2088 if (__predict_false(vs == VGET_NONE)) {
2089 *vpp = NULL;
2090 goto out_fallback;
2091 }
2092 error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2093 if (error) {
2094 *vpp = NULL;
2095 goto out_fallback;
2096 }
2097 return (-1);
2098negative_success:
2099 if (cnp->cn_nameiop == CREATE) {
2100 if (cnp->cn_flags & ISLASTCN) {
2101 vfs_smr_exit();
2102 goto out_fallback;
2103 }
2104 }
2105
2106 cache_out_ts(ncp, tsp, ticksp);
2107 whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2108 neg_promote = cache_neg_hit_prep(ncp);
2109 if (!cache_ncp_canuse(ncp)) {
2111 vfs_smr_exit();
2112 goto out_fallback;
2113 }
2114 if (neg_promote) {
2115 vfs_smr_exit();
2116 if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2117 goto out_fallback;
2118 } else {
2120 vfs_smr_exit();
2121 }
2122 if (whiteout)
2123 cnp->cn_flags |= ISWHITEOUT;
2124 return (ENOENT);
2125out_fallback:
2126 return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2127}
2128
2130 struct mtx *vlp[3];
2131 struct mtx *blp[2];
2132};
2133CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2134CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2135
2136static inline void
2138{
2139
2140 bzero(cel, sizeof(*cel));
2141}
2142
2143static void
2144cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2145 struct vnode *dvp)
2146{
2147 struct mtx *vlp1, *vlp2;
2148
2149 MPASS(cel->vlp[0] == NULL);
2150 MPASS(cel->vlp[1] == NULL);
2151 MPASS(cel->vlp[2] == NULL);
2152
2153 MPASS(vp != NULL || dvp != NULL);
2154
2155 vlp1 = VP2VNODELOCK(vp);
2156 vlp2 = VP2VNODELOCK(dvp);
2157 cache_sort_vnodes(&vlp1, &vlp2);
2158
2159 if (vlp1 != NULL) {
2160 mtx_lock(vlp1);
2161 cel->vlp[0] = vlp1;
2162 }
2163 mtx_lock(vlp2);
2164 cel->vlp[1] = vlp2;
2165}
2166
2167static void
2169{
2170
2171 MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2172
2173 if (cel->vlp[0] != NULL)
2174 mtx_unlock(cel->vlp[0]);
2175 if (cel->vlp[1] != NULL)
2176 mtx_unlock(cel->vlp[1]);
2177 if (cel->vlp[2] != NULL)
2178 mtx_unlock(cel->vlp[2]);
2179}
2180
2181static bool
2182cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2183{
2184 struct mtx *vlp;
2185 bool ret;
2186
2189 MPASS(cel->vlp[2] == NULL);
2190
2191 MPASS(vp != NULL);
2192 vlp = VP2VNODELOCK(vp);
2193
2194 ret = true;
2195 if (vlp >= cel->vlp[1]) {
2196 mtx_lock(vlp);
2197 } else {
2198 if (mtx_trylock(vlp))
2199 goto out;
2202 if (vlp < cel->vlp[0]) {
2203 mtx_lock(vlp);
2204 mtx_lock(cel->vlp[0]);
2205 mtx_lock(cel->vlp[1]);
2206 } else {
2207 if (cel->vlp[0] != NULL)
2208 mtx_lock(cel->vlp[0]);
2209 mtx_lock(vlp);
2210 mtx_lock(cel->vlp[1]);
2211 }
2212 ret = false;
2213 }
2214out:
2215 cel->vlp[2] = vlp;
2216 return (ret);
2217}
2218
2219static void
2220cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2221 struct mtx *blp2)
2222{
2223
2224 MPASS(cel->blp[0] == NULL);
2225 MPASS(cel->blp[1] == NULL);
2226
2227 cache_sort_vnodes(&blp1, &blp2);
2228
2229 if (blp1 != NULL) {
2230 mtx_lock(blp1);
2231 cel->blp[0] = blp1;
2232 }
2233 mtx_lock(blp2);
2234 cel->blp[1] = blp2;
2235}
2236
2237static void
2239{
2240
2241 if (cel->blp[0] != NULL)
2242 mtx_unlock(cel->blp[0]);
2243 mtx_unlock(cel->blp[1]);
2244}
2245
2246/*
2247 * Lock part of the cache affected by the insertion.
2248 *
2249 * This means vnodelocks for dvp, vp and the relevant bucketlock.
2250 * However, insertion can result in removal of an old entry. In this
2251 * case we have an additional vnode and bucketlock pair to lock.
2252 *
2253 * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2254 * preserving the locking order (smaller address first).
2255 */
2256static void
2257cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2258 uint32_t hash)
2259{
2260 struct namecache *ncp;
2261 struct mtx *blps[2];
2262 u_char nc_flag;
2263
2264 blps[0] = HASH2BUCKETLOCK(hash);
2265 for (;;) {
2266 blps[1] = NULL;
2267 cache_lock_vnodes_cel(cel, dvp, vp);
2268 if (vp == NULL || vp->v_type != VDIR)
2269 break;
2270 ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2271 if (ncp == NULL)
2272 break;
2273 nc_flag = atomic_load_char(&ncp->nc_flag);
2274 if ((nc_flag & NCF_ISDOTDOT) == 0)
2275 break;
2276 MPASS(ncp->nc_dvp == vp);
2277 blps[1] = NCP2BUCKETLOCK(ncp);
2278 if ((nc_flag & NCF_NEGATIVE) != 0)
2279 break;
2280 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2281 break;
2282 /*
2283 * All vnodes got re-locked. Re-validate the state and if
2284 * nothing changed we are done. Otherwise restart.
2285 */
2286 if (ncp == vp->v_cache_dd &&
2287 (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2288 blps[1] == NCP2BUCKETLOCK(ncp) &&
2289 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2290 break;
2292 cel->vlp[0] = NULL;
2293 cel->vlp[1] = NULL;
2294 cel->vlp[2] = NULL;
2295 }
2296 cache_lock_buckets_cel(cel, blps[0], blps[1]);
2297}
2298
2299static void
2300cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2301 uint32_t hash)
2302{
2303 struct namecache *ncp;
2304 struct mtx *blps[2];
2305 u_char nc_flag;
2306
2307 blps[0] = HASH2BUCKETLOCK(hash);
2308 for (;;) {
2309 blps[1] = NULL;
2310 cache_lock_vnodes_cel(cel, dvp, vp);
2311 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2312 if (ncp == NULL)
2313 break;
2314 nc_flag = atomic_load_char(&ncp->nc_flag);
2315 if ((nc_flag & NCF_ISDOTDOT) == 0)
2316 break;
2317 MPASS(ncp->nc_dvp == dvp);
2318 blps[1] = NCP2BUCKETLOCK(ncp);
2319 if ((nc_flag & NCF_NEGATIVE) != 0)
2320 break;
2321 if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2322 break;
2323 if (ncp == dvp->v_cache_dd &&
2324 (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2325 blps[1] == NCP2BUCKETLOCK(ncp) &&
2326 VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2327 break;
2329 cel->vlp[0] = NULL;
2330 cel->vlp[1] = NULL;
2331 cel->vlp[2] = NULL;
2332 }
2333 cache_lock_buckets_cel(cel, blps[0], blps[1]);
2334}
2335
2336static void
2338{
2339
2342}
2343
2344static void __noinline
2345cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2346 struct componentname *cnp)
2347{
2348 struct celockstate cel;
2349 struct namecache *ncp;
2350 uint32_t hash;
2351 int len;
2352
2353 if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2354 return;
2355 len = cnp->cn_namelen;
2357 hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2358 cache_enter_lock_dd(&cel, dvp, vp, hash);
2359 ncp = dvp->v_cache_dd;
2360 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2361 KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2362 cache_zap_locked(ncp);
2363 } else {
2364 ncp = NULL;
2365 }
2366 atomic_store_ptr(&dvp->v_cache_dd, NULL);
2367 cache_enter_unlock(&cel);
2368 if (ncp != NULL)
2369 cache_free(ncp);
2370}
2371
2372/*
2373 * Add an entry to the cache.
2374 */
2375void
2376cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2377 struct timespec *tsp, struct timespec *dtsp)
2378{
2379 struct celockstate cel;
2380 struct namecache *ncp, *n2, *ndd;
2381 struct namecache_ts *ncp_ts;
2382 struct nchashhead *ncpp;
2383 uint32_t hash;
2384 int flag;
2385 int len;
2386
2387 KASSERT(cnp->cn_namelen <= NAME_MAX,
2388 ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2389 NAME_MAX));
2390 VNPASS(!VN_IS_DOOMED(dvp), dvp);
2391 VNPASS(dvp->v_type != VNON, dvp);
2392 if (vp != NULL) {
2393 VNPASS(!VN_IS_DOOMED(vp), vp);
2394 VNPASS(vp->v_type != VNON, vp);
2395 }
2396 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2397 KASSERT(dvp == vp,
2398 ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2399 dvp, vp));
2400 } else {
2401 KASSERT(dvp != vp,
2402 ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2403 cnp->cn_nameptr, dvp));
2404 }
2405
2406#ifdef DEBUG_CACHE
2407 if (__predict_false(!doingcache))
2408 return;
2409#endif
2410
2411 flag = 0;
2412 if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2413 if (cnp->cn_namelen == 1)
2414 return;
2415 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2416 cache_enter_dotdot_prep(dvp, vp, cnp);
2418 }
2419 }
2420
2421 ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2422 if (ncp == NULL)
2423 return;
2424
2426 ndd = NULL;
2427 ncp_ts = NULL;
2428
2429 /*
2430 * Calculate the hash key and setup as much of the new
2431 * namecache entry as possible before acquiring the lock.
2432 */
2433 ncp->nc_flag = flag | NCF_WIP;
2434 ncp->nc_vp = vp;
2435 if (vp == NULL)
2436 cache_neg_init(ncp);
2437 ncp->nc_dvp = dvp;
2438 if (tsp != NULL) {
2439 ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2440 ncp_ts->nc_time = *tsp;
2441 ncp_ts->nc_ticks = ticks;
2442 ncp_ts->nc_nc.nc_flag |= NCF_TS;
2443 if (dtsp != NULL) {
2444 ncp_ts->nc_dotdottime = *dtsp;
2445 ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2446 }
2447 }
2448 len = ncp->nc_nlen = cnp->cn_namelen;
2449 hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2450 memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2451 ncp->nc_name[len] = '\0';
2452 cache_enter_lock(&cel, dvp, vp, hash);
2453
2454 /*
2455 * See if this vnode or negative entry is already in the cache
2456 * with this name. This can happen with concurrent lookups of
2457 * the same path name.
2458 */
2459 ncpp = NCHHASH(hash);
2460 CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2461 if (n2->nc_dvp == dvp &&
2462 n2->nc_nlen == cnp->cn_namelen &&
2463 !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2464 MPASS(cache_ncp_canuse(n2));
2465 if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2466 KASSERT(vp == NULL,
2467 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2468 __func__, NULL, vp, cnp->cn_nameptr));
2469 else
2470 KASSERT(n2->nc_vp == vp,
2471 ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2472 __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2473 /*
2474 * Entries are supposed to be immutable unless in the
2475 * process of getting destroyed. Accommodating for
2476 * changing timestamps is possible but not worth it.
2477 * This should be harmless in terms of correctness, in
2478 * the worst case resulting in an earlier expiration.
2479 * Alternatively, the found entry can be replaced
2480 * altogether.
2481 */
2482 MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2483#if 0
2484 if (tsp != NULL) {
2485 KASSERT((n2->nc_flag & NCF_TS) != 0,
2486 ("no NCF_TS"));
2487 n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2488 n2_ts->nc_time = ncp_ts->nc_time;
2489 n2_ts->nc_ticks = ncp_ts->nc_ticks;
2490 if (dtsp != NULL) {
2491 n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2492 n2_ts->nc_nc.nc_flag |= NCF_DTS;
2493 }
2494 }
2495#endif
2496 SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2497 vp);
2498 goto out_unlock_free;
2499 }
2500 }
2501
2502 if (flag == NCF_ISDOTDOT) {
2503 /*
2504 * See if we are trying to add .. entry, but some other lookup
2505 * has populated v_cache_dd pointer already.
2506 */
2507 if (dvp->v_cache_dd != NULL)
2508 goto out_unlock_free;
2509 KASSERT(vp == NULL || vp->v_type == VDIR,
2510 ("wrong vnode type %p", vp));
2511 atomic_thread_fence_rel();
2512 atomic_store_ptr(&dvp->v_cache_dd, ncp);
2513 }
2514
2515 if (vp != NULL) {
2516 if (flag != NCF_ISDOTDOT) {
2517 /*
2518 * For this case, the cache entry maps both the
2519 * directory name in it and the name ".." for the
2520 * directory's parent.
2521 */
2522 if ((ndd = vp->v_cache_dd) != NULL) {
2523 if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2524 cache_zap_locked(ndd);
2525 else
2526 ndd = NULL;
2527 }
2528 atomic_thread_fence_rel();
2529 atomic_store_ptr(&vp->v_cache_dd, ncp);
2530 } else if (vp->v_type != VDIR) {
2531 if (vp->v_cache_dd != NULL) {
2532 atomic_store_ptr(&vp->v_cache_dd, NULL);
2533 }
2534 }
2535 }
2536
2537 if (flag != NCF_ISDOTDOT) {
2538 if (LIST_EMPTY(&dvp->v_cache_src)) {
2539 cache_hold_vnode(dvp);
2540 }
2541 LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2542 }
2543
2544 /*
2545 * If the entry is "negative", we place it into the
2546 * "negative" cache queue, otherwise, we place it into the
2547 * destination vnode's cache entries queue.
2548 */
2549 if (vp != NULL) {
2550 TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2551 SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2552 vp);
2553 } else {
2554 if (cnp->cn_flags & ISWHITEOUT)
2555 atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2556 cache_neg_insert(ncp);
2557 SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2558 ncp->nc_name);
2559 }
2560
2561 /*
2562 * Insert the new namecache entry into the appropriate chain
2563 * within the cache entries table.
2564 */
2565 CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2566
2567 atomic_thread_fence_rel();
2568 /*
2569 * Mark the entry as fully constructed.
2570 * It is immutable past this point until its removal.
2571 */
2572 atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2573
2574 cache_enter_unlock(&cel);
2575 if (ndd != NULL)
2576 cache_free(ndd);
2577 return;
2578out_unlock_free:
2579 cache_enter_unlock(&cel);
2580 cache_free(ncp);
2581 return;
2582}
2583
2584/*
2585 * A variant of the above accepting flags.
2586 *
2587 * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2588 *
2589 * TODO: this routine is a hack. It blindly removes the old entry, even if it
2590 * happens to match and it is doing it in an inefficient manner. It was added
2591 * to accomodate NFS which runs into a case where the target for a given name
2592 * may change from under it. Note this does nothing to solve the following
2593 * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2594 * the same [dvp, cnp]. It may be argued that code doing this is broken.
2595 */
2596void
2597cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2598 struct timespec *tsp, struct timespec *dtsp, int flags)
2599{
2600
2601 MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2602
2603 if (flags & VFS_CACHE_DROPOLD)
2604 cache_remove_cnp(dvp, cnp);
2605 cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2606}
2607
2608static u_int
2610{
2611 u_int res;
2612
2613 for (res = 1; res <= val; res <<= 1)
2614 continue;
2615
2616 return (res);
2617}
2618
2619static struct nchashhead *
2620nchinittbl(u_long elements, u_long *hashmask)
2621{
2622 struct nchashhead *hashtbl;
2623 u_long hashsize, i;
2624
2625 hashsize = cache_roundup_2(elements) / 2;
2626
2627 hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2628 for (i = 0; i < hashsize; i++)
2629 CK_SLIST_INIT(&hashtbl[i]);
2630 *hashmask = hashsize - 1;
2631 return (hashtbl);
2632}
2633
2634static void
2635ncfreetbl(struct nchashhead *hashtbl)
2636{
2637
2638 free(hashtbl, M_VFSCACHE);
2639}
2640
2641/*
2642 * Name cache initialization, from vfs_init() when we are booting
2643 */
2644static void
2645nchinit(void *dummy __unused)
2646{
2647 u_int i;
2648
2649 cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2650 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2651 cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2652 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2653 cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2654 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2655 cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2656 NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2657
2658 VFS_SMR_ZONE_SET(cache_zone_small);
2659 VFS_SMR_ZONE_SET(cache_zone_small_ts);
2660 VFS_SMR_ZONE_SET(cache_zone_large);
2661 VFS_SMR_ZONE_SET(cache_zone_large_ts);
2662
2665 nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2667 if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2668 ncbuckethash = 7;
2669 if (ncbuckethash > nchash)
2670 ncbuckethash = nchash;
2671 bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2672 M_WAITOK | M_ZERO);
2673 for (i = 0; i < numbucketlocks; i++)
2674 mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2676 vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2677 M_WAITOK | M_ZERO);
2678 for (i = 0; i < numvnodelocks; i++)
2679 mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2680
2681 for (i = 0; i < numneglists; i++) {
2682 mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2683 mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2684 TAILQ_INIT(&neglists[i].nl_list);
2685 TAILQ_INIT(&neglists[i].nl_hotlist);
2686 }
2687}
2688SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2689
2690void
2691cache_vnode_init(struct vnode *vp)
2692{
2693
2694 LIST_INIT(&vp->v_cache_src);
2695 TAILQ_INIT(&vp->v_cache_dst);
2696 vp->v_cache_dd = NULL;
2697 cache_prehash(vp);
2698}
2699
2700/*
2701 * Induce transient cache misses for lockless operation in cache_lookup() by
2702 * using a temporary hash table.
2703 *
2704 * This will force a fs lookup.
2705 *
2706 * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2707 * to observe all CPUs not performing the lookup.
2708 */
2709static void
2710cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2711{
2712
2713 MPASS(temphash < nchash);
2714 /*
2715 * Change the size. The new size is smaller and can safely be used
2716 * against the existing table. All lookups which now hash wrong will
2717 * result in a cache miss, which all callers are supposed to know how
2718 * to handle.
2719 */
2720 atomic_store_long(&nchash, temphash);
2721 atomic_thread_fence_rel();
2722 vfs_smr_synchronize();
2723 /*
2724 * At this point everyone sees the updated hash value, but they still
2725 * see the old table.
2726 */
2727 atomic_store_ptr(&nchashtbl, temptbl);
2728 atomic_thread_fence_rel();
2729 vfs_smr_synchronize();
2730 /*
2731 * At this point everyone sees the updated table pointer and size pair.
2732 */
2733}
2734
2735/*
2736 * Set the new hash table.
2737 *
2738 * Similarly to cache_changesize_set_temp(), this has to synchronize against
2739 * lockless operation in cache_lookup().
2740 */
2741static void
2742cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2743{
2744
2745 MPASS(nchash < new_hash);
2746 /*
2747 * Change the pointer first. This wont result in out of bounds access
2748 * since the temporary table is guaranteed to be smaller.
2749 */
2750 atomic_store_ptr(&nchashtbl, new_tbl);
2751 atomic_thread_fence_rel();
2752 vfs_smr_synchronize();
2753 /*
2754 * At this point everyone sees the updated pointer value, but they
2755 * still see the old size.
2756 */
2757 atomic_store_long(&nchash, new_hash);
2758 atomic_thread_fence_rel();
2759 vfs_smr_synchronize();
2760 /*
2761 * At this point everyone sees the updated table pointer and size pair.
2762 */
2763}
2764
2765void
2766cache_changesize(u_long newmaxvnodes)
2767{
2768 struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2769 u_long new_nchash, old_nchash, temphash;
2770 struct namecache *ncp;
2771 uint32_t hash;
2772 u_long newncsize;
2773 int i;
2774
2775 newncsize = newmaxvnodes * ncsizefactor;
2776 newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2777 if (newmaxvnodes < numbucketlocks)
2778 newmaxvnodes = numbucketlocks;
2779
2780 new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2781 /* If same hash table size, nothing to do */
2782 if (nchash == new_nchash) {
2783 ncfreetbl(new_nchashtbl);
2784 return;
2785 }
2786
2787 temptbl = nchinittbl(1, &temphash);
2788
2789 /*
2790 * Move everything from the old hash table to the new table.
2791 * None of the namecache entries in the table can be removed
2792 * because to do so, they have to be removed from the hash table.
2793 */
2796 old_nchashtbl = nchashtbl;
2797 old_nchash = nchash;
2798 cache_changesize_set_temp(temptbl, temphash);
2799 for (i = 0; i <= old_nchash; i++) {
2800 while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2801 hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2802 ncp->nc_dvp);
2803 CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2804 CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2805 }
2806 }
2807 ncsize = newncsize;
2809 cache_changesize_set_new(new_nchashtbl, new_nchash);
2812 ncfreetbl(old_nchashtbl);
2813 ncfreetbl(temptbl);
2814}
2815
2816/*
2817 * Remove all entries from and to a particular vnode.
2818 */
2819static void
2820cache_purge_impl(struct vnode *vp)
2821{
2822 struct cache_freebatch batch;
2823 struct namecache *ncp;
2824 struct mtx *vlp, *vlp2;
2825
2826 TAILQ_INIT(&batch);
2827 vlp = VP2VNODELOCK(vp);
2828 vlp2 = NULL;
2829 mtx_lock(vlp);
2830retry:
2831 while (!LIST_EMPTY(&vp->v_cache_src)) {
2832 ncp = LIST_FIRST(&vp->v_cache_src);
2833 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2834 goto retry;
2835 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2836 }
2837 while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2838 ncp = TAILQ_FIRST(&vp->v_cache_dst);
2839 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2840 goto retry;
2841 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2842 }
2843 ncp = vp->v_cache_dd;
2844 if (ncp != NULL) {
2845 KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2846 ("lost dotdot link"));
2847 if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2848 goto retry;
2849 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2850 }
2851 KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2852 mtx_unlock(vlp);
2853 if (vlp2 != NULL)
2854 mtx_unlock(vlp2);
2855 cache_free_batch(&batch);
2856}
2857
2858/*
2859 * Opportunistic check to see if there is anything to do.
2860 */
2861static bool
2862cache_has_entries(struct vnode *vp)
2863{
2864
2865 if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2866 atomic_load_ptr(&vp->v_cache_dd) == NULL)
2867 return (false);
2868 return (true);
2869}
2870
2871void
2872cache_purge(struct vnode *vp)
2873{
2874
2875 SDT_PROBE1(vfs, namecache, purge, done, vp);
2876 if (!cache_has_entries(vp))
2877 return;
2878 cache_purge_impl(vp);
2879}
2880
2881/*
2882 * Only to be used by vgone.
2883 */
2884void
2885cache_purge_vgone(struct vnode *vp)
2886{
2887 struct mtx *vlp;
2888
2889 VNPASS(VN_IS_DOOMED(vp), vp);
2890 if (cache_has_entries(vp)) {
2891 cache_purge_impl(vp);
2892 return;
2893 }
2894
2895 /*
2896 * Serialize against a potential thread doing cache_purge.
2897 */
2898 vlp = VP2VNODELOCK(vp);
2899 mtx_wait_unlocked(vlp);
2900 if (cache_has_entries(vp)) {
2901 cache_purge_impl(vp);
2902 return;
2903 }
2904 return;
2905}
2906
2907/*
2908 * Remove all negative entries for a particular directory vnode.
2909 */
2910void
2911cache_purge_negative(struct vnode *vp)
2912{
2913 struct cache_freebatch batch;
2914 struct namecache *ncp, *nnp;
2915 struct mtx *vlp;
2916
2917 SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2918 if (LIST_EMPTY(&vp->v_cache_src))
2919 return;
2920 TAILQ_INIT(&batch);
2921 vlp = VP2VNODELOCK(vp);
2922 mtx_lock(vlp);
2923 LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2924 if (!(ncp->nc_flag & NCF_NEGATIVE))
2925 continue;
2927 TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2928 }
2929 mtx_unlock(vlp);
2930 cache_free_batch(&batch);
2931}
2932
2933/*
2934 * Entry points for modifying VOP operations.
2935 */
2936void
2937cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2938 struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2939{
2940
2941 ASSERT_VOP_IN_SEQC(fdvp);
2942 ASSERT_VOP_IN_SEQC(fvp);
2943 ASSERT_VOP_IN_SEQC(tdvp);
2944 if (tvp != NULL)
2945 ASSERT_VOP_IN_SEQC(tvp);
2946
2947 cache_purge(fvp);
2948 if (tvp != NULL) {
2949 cache_purge(tvp);
2950 KASSERT(!cache_remove_cnp(tdvp, tcnp),
2951 ("%s: lingering negative entry", __func__));
2952 } else {
2953 cache_remove_cnp(tdvp, tcnp);
2954 }
2955
2956 /*
2957 * TODO
2958 *
2959 * Historically renaming was always purging all revelang entries,
2960 * but that's quite wasteful. In particular turns out that in many cases
2961 * the target file is immediately accessed after rename, inducing a cache
2962 * miss.
2963 *
2964 * Recode this to reduce relocking and reuse the existing entry (if any)
2965 * instead of just removing it above and allocating a new one here.
2966 */
2967 if (cache_rename_add) {
2968 cache_enter(tdvp, fvp, tcnp);
2969 }
2970}
2971
2972void
2973cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2974{
2975
2976 ASSERT_VOP_IN_SEQC(dvp);
2977 ASSERT_VOP_IN_SEQC(vp);
2978 cache_purge(vp);
2979}
2980
2981#ifdef INVARIANTS
2982/*
2983 * Validate that if an entry exists it matches.
2984 */
2985void
2986cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2987{
2988 struct namecache *ncp;
2989 struct mtx *blp;
2990 uint32_t hash;
2991
2992 hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2993 if (CK_SLIST_EMPTY(NCHHASH(hash)))
2994 return;
2995 blp = HASH2BUCKETLOCK(hash);
2996 mtx_lock(blp);
2997 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2998 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2999 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3000 if (ncp->nc_vp != vp)
3001 panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3002 __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3003 }
3004 }
3005 mtx_unlock(blp);
3006}
3007#endif
3008
3009/*
3010 * Flush all entries referencing a particular filesystem.
3011 */
3012void
3013cache_purgevfs(struct mount *mp)
3014{
3015 struct vnode *vp, *mvp;
3016 size_t visited, purged;
3017
3018 visited = purged = 0;
3019 /*
3020 * Somewhat wasteful iteration over all vnodes. Would be better to
3021 * support filtering and avoid the interlock to begin with.
3022 */
3023 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3024 visited++;
3025 if (!cache_has_entries(vp)) {
3026 VI_UNLOCK(vp);
3027 continue;
3028 }
3029 vholdl(vp);
3030 VI_UNLOCK(vp);
3031 cache_purge(vp);
3032 purged++;
3033 vdrop(vp);
3034 }
3035
3036 SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3037}
3038
3039/*
3040 * Perform canonical checks and cache lookup and pass on to filesystem
3041 * through the vop_cachedlookup only if needed.
3042 */
3043
3044int
3045vfs_cache_lookup(struct vop_lookup_args *ap)
3046{
3047 struct vnode *dvp;
3048 int error;
3049 struct vnode **vpp = ap->a_vpp;
3050 struct componentname *cnp = ap->a_cnp;
3051 int flags = cnp->cn_flags;
3052
3053 *vpp = NULL;
3054 dvp = ap->a_dvp;
3055
3056 if (dvp->v_type != VDIR)
3057 return (ENOTDIR);
3058
3059 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3060 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3061 return (EROFS);
3062
3063 error = vn_dir_check_exec(dvp, cnp);
3064 if (error != 0)
3065 return (error);
3066
3067 error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3068 if (error == 0)
3069 return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3070 if (error == -1)
3071 return (0);
3072 return (error);
3073}
3074
3075/* Implementation of the getcwd syscall. */
3076int
3077sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3078{
3079 char *buf, *retbuf;
3080 size_t buflen;
3081 int error;
3082
3083 buflen = uap->buflen;
3084 if (__predict_false(buflen < 2))
3085 return (EINVAL);
3086 if (buflen > MAXPATHLEN)
3087 buflen = MAXPATHLEN;
3088
3089 buf = uma_zalloc(namei_zone, M_WAITOK);
3090 error = vn_getcwd(buf, &retbuf, &buflen);
3091 if (error == 0)
3092 error = copyout(retbuf, uap->buf, buflen);
3093 uma_zfree(namei_zone, buf);
3094 return (error);
3095}
3096
3097int
3098vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3099{
3100 struct pwd *pwd;
3101 int error;
3102
3103 vfs_smr_enter();
3104 pwd = pwd_get_smr();
3105 error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3106 buflen, 0);
3107 VFS_SMR_ASSERT_NOT_ENTERED();
3108 if (error < 0) {
3109 pwd = pwd_hold(curthread);
3110 error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3111 retbuf, buflen);
3112 pwd_drop(pwd);
3113 }
3114
3115#ifdef KTRACE
3116 if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3117 ktrnamei(*retbuf);
3118#endif
3119 return (error);
3120}
3121
3122/*
3123 * Canonicalize a path by walking it forward and back.
3124 *
3125 * BUGS:
3126 * - Nothing guarantees the integrity of the entire chain. Consider the case
3127 * where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3128 * "foo" into "quux" during the backwards walk. The result will be
3129 * "quux/bar/baz/qux", which could not have been obtained by an incremental
3130 * walk in userspace. Moreover, the path we return is inaccessible if the
3131 * calling thread lacks permission to traverse "quux".
3132 */
3133static int
3134kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3135 size_t size, int flags, enum uio_seg pathseg)
3136{
3137 struct nameidata nd;
3138 char *retbuf, *freebuf;
3139 int error;
3140
3141 if (flags != 0)
3142 return (EINVAL);
3143 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | SAVENAME | WANTPARENT | AUDITVNODE1,
3144 pathseg, path, fd, &cap_fstat_rights);
3145 if ((error = namei(&nd)) != 0)
3146 return (error);
3147 error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3148 nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3149 if (error == 0) {
3150 error = copyout(retbuf, buf, size);
3151 free(freebuf, M_TEMP);
3152 }
3153 NDFREE(&nd, 0);
3154 return (error);
3155}
3156
3157int
3158sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3159{
3160
3161 return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3162 uap->flags, UIO_USERSPACE));
3163}
3164
3165/*
3166 * Retrieve the full filesystem path that correspond to a vnode from the name
3167 * cache (if available)
3168 */
3169int
3170vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3171{
3172 struct pwd *pwd;
3173 char *buf;
3174 size_t buflen;
3175 int error;
3176
3177 if (__predict_false(vp == NULL))
3178 return (EINVAL);
3179
3180 buflen = MAXPATHLEN;
3181 buf = malloc(buflen, M_TEMP, M_WAITOK);
3182 vfs_smr_enter();
3183 pwd = pwd_get_smr();
3184 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3185 VFS_SMR_ASSERT_NOT_ENTERED();
3186 if (error < 0) {
3187 pwd = pwd_hold(curthread);
3188 error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3189 pwd_drop(pwd);
3190 }
3191 if (error == 0)
3192 *freebuf = buf;
3193 else
3194 free(buf, M_TEMP);
3195 return (error);
3196}
3197
3198/*
3199 * This function is similar to vn_fullpath, but it attempts to lookup the
3200 * pathname relative to the global root mount point. This is required for the
3201 * auditing sub-system, as audited pathnames must be absolute, relative to the
3202 * global root mount point.
3203 */
3204int
3205vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3206{
3207 char *buf;
3208 size_t buflen;
3209 int error;
3210
3211 if (__predict_false(vp == NULL))
3212 return (EINVAL);
3213 buflen = MAXPATHLEN;
3214 buf = malloc(buflen, M_TEMP, M_WAITOK);
3215 vfs_smr_enter();
3216 error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3217 VFS_SMR_ASSERT_NOT_ENTERED();
3218 if (error < 0) {
3219 error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3220 }
3221 if (error == 0)
3222 *freebuf = buf;
3223 else
3224 free(buf, M_TEMP);
3225 return (error);
3226}
3227
3228static struct namecache *
3229vn_dd_from_dst(struct vnode *vp)
3230{
3231 struct namecache *ncp;
3232
3234 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3235 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3236 return (ncp);
3237 }
3238 return (NULL);
3239}
3240
3241int
3242vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3243{
3244 struct vnode *dvp;
3245 struct namecache *ncp;
3246 struct mtx *vlp;
3247 int error;
3248
3249 vlp = VP2VNODELOCK(*vp);
3250 mtx_lock(vlp);
3251 ncp = (*vp)->v_cache_dd;
3252 if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3253 KASSERT(ncp == vn_dd_from_dst(*vp),
3254 ("%s: mismatch for dd entry (%p != %p)", __func__,
3255 ncp, vn_dd_from_dst(*vp)));
3256 } else {
3257 ncp = vn_dd_from_dst(*vp);
3258 }
3259 if (ncp != NULL) {
3260 if (*buflen < ncp->nc_nlen) {
3261 mtx_unlock(vlp);
3262 vrele(*vp);
3263 counter_u64_add(numfullpathfail4, 1);
3264 error = ENOMEM;
3265 SDT_PROBE3(vfs, namecache, fullpath, return, error,
3266 vp, NULL);
3267 return (error);
3268 }
3269 *buflen -= ncp->nc_nlen;
3270 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3271 SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3272 ncp->nc_name, vp);
3273 dvp = *vp;
3274 *vp = ncp->nc_dvp;
3275 vref(*vp);
3276 mtx_unlock(vlp);
3277 vrele(dvp);
3278 return (0);
3279 }
3280 SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3281
3282 mtx_unlock(vlp);
3283 vn_lock(*vp, LK_SHARED | LK_RETRY);
3284 error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3285 vput(*vp);
3286 if (error) {
3287 counter_u64_add(numfullpathfail2, 1);
3288 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3289 return (error);
3290 }
3291
3292 *vp = dvp;
3293 if (VN_IS_DOOMED(dvp)) {
3294 /* forced unmount */
3295 vrele(dvp);
3296 error = ENOENT;
3297 SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3298 return (error);
3299 }
3300 /*
3301 * *vp has its use count incremented still.
3302 */
3303
3304 return (0);
3305}
3306
3307/*
3308 * Resolve a directory to a pathname.
3309 *
3310 * The name of the directory can always be found in the namecache or fetched
3311 * from the filesystem. There is also guaranteed to be only one parent, meaning
3312 * we can just follow vnodes up until we find the root.
3313 *
3314 * The vnode must be referenced.
3315 */
3316static int
3317vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3318 size_t *len, size_t addend)
3319{
3320#ifdef KDTRACE_HOOKS
3321 struct vnode *startvp = vp;
3322#endif
3323 struct vnode *vp1;
3324 size_t buflen;
3325 int error;
3326 bool slash_prefixed;
3327
3328 VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3329 VNPASS(vp->v_usecount > 0, vp);
3330
3331 buflen = *len;
3332
3333 slash_prefixed = true;
3334 if (addend == 0) {
3335 MPASS(*len >= 2);
3336 buflen--;
3337 buf[buflen] = '\0';
3338 slash_prefixed = false;
3339 }
3340
3341 error = 0;
3342
3343 SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3344 counter_u64_add(numfullpathcalls, 1);
3345 while (vp != rdir && vp != rootvnode) {
3346 /*
3347 * The vp vnode must be already fully constructed,
3348 * since it is either found in namecache or obtained
3349 * from VOP_VPTOCNP(). We may test for VV_ROOT safely
3350 * without obtaining the vnode lock.
3351 */
3352 if ((vp->v_vflag & VV_ROOT) != 0) {
3353 vn_lock(vp, LK_RETRY | LK_SHARED);
3354
3355 /*
3356 * With the vnode locked, check for races with
3357 * unmount, forced or not. Note that we
3358 * already verified that vp is not equal to
3359 * the root vnode, which means that
3360 * mnt_vnodecovered can be NULL only for the
3361 * case of unmount.
3362 */
3363 if (VN_IS_DOOMED(vp) ||
3364 (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3365 vp1->v_mountedhere != vp->v_mount) {
3366 vput(vp);
3367 error = ENOENT;
3368 SDT_PROBE3(vfs, namecache, fullpath, return,
3369 error, vp, NULL);
3370 break;
3371 }
3372
3373 vref(vp1);
3374 vput(vp);
3375 vp = vp1;
3376 continue;
3377 }
3378 if (vp->v_type != VDIR) {
3379 vrele(vp);
3380 counter_u64_add(numfullpathfail1, 1);
3381 error = ENOTDIR;
3382 SDT_PROBE3(vfs, namecache, fullpath, return,
3383 error, vp, NULL);
3384 break;
3385 }
3386 error = vn_vptocnp(&vp, buf, &buflen);
3387 if (error)
3388 break;
3389 if (buflen == 0) {
3390 vrele(vp);
3391 error = ENOMEM;
3392 SDT_PROBE3(vfs, namecache, fullpath, return, error,
3393 startvp, NULL);
3394 break;
3395 }
3396 buf[--buflen] = '/';
3397 slash_prefixed = true;
3398 }
3399 if (error)
3400 return (error);
3401 if (!slash_prefixed) {
3402 if (buflen == 0) {
3403 vrele(vp);
3404 counter_u64_add(numfullpathfail4, 1);
3405 SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3406 startvp, NULL);
3407 return (ENOMEM);
3408 }
3409 buf[--buflen] = '/';
3410 }
3411 counter_u64_add(numfullpathfound, 1);
3412 vrele(vp);
3413
3414 *retbuf = buf + buflen;
3415 SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3416 *len -= buflen;
3417 *len += addend;
3418 return (0);
3419}
3420
3421/*
3422 * Resolve an arbitrary vnode to a pathname.
3423 *
3424 * Note 2 caveats:
3425 * - hardlinks are not tracked, thus if the vnode is not a directory this can
3426 * resolve to a different path than the one used to find it
3427 * - namecache is not mandatory, meaning names are not guaranteed to be added
3428 * (in which case resolving fails)
3429 */
3430static void __inline
3431cache_rev_failed_impl(int *reason, int line)
3432{
3433
3434 *reason = line;
3435}
3436#define cache_rev_failed(var) cache_rev_failed_impl((var), __LINE__)
3437
3438static int
3439vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3440 char **retbuf, size_t *buflen, size_t addend)
3441{
3442#ifdef KDTRACE_HOOKS
3443 struct vnode *startvp = vp;
3444#endif
3445 struct vnode *tvp;
3446 struct mount *mp;
3447 struct namecache *ncp;
3448 size_t orig_buflen;
3449 int reason;
3450 int error;
3451#ifdef KDTRACE_HOOKS
3452 int i;
3453#endif
3454 seqc_t vp_seqc, tvp_seqc;
3455 u_char nc_flag;
3456
3457 VFS_SMR_ASSERT_ENTERED();
3458
3459 if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3460 vfs_smr_exit();
3461 return (-1);
3462 }
3463
3464 orig_buflen = *buflen;
3465
3466 if (addend == 0) {
3467 MPASS(*buflen >= 2);
3468 *buflen -= 1;
3469 buf[*buflen] = '\0';
3470 }
3471
3472 if (vp == rdir || vp == rootvnode) {
3473 if (addend == 0) {
3474 *buflen -= 1;
3475 buf[*buflen] = '/';
3476 }
3477 goto out_ok;
3478 }
3479
3480#ifdef KDTRACE_HOOKS
3481 i = 0;
3482#endif
3483 error = -1;
3484 ncp = NULL; /* for sdt probe down below */
3485 vp_seqc = vn_seqc_read_any(vp);
3486 if (seqc_in_modify(vp_seqc)) {
3487 cache_rev_failed(&reason);
3488 goto out_abort;
3489 }
3490
3491 for (;;) {
3492#ifdef KDTRACE_HOOKS
3493 i++;
3494#endif
3495 if ((vp->v_vflag & VV_ROOT) != 0) {
3496 mp = atomic_load_ptr(&vp->v_mount);
3497 if (mp == NULL) {
3498 cache_rev_failed(&reason);
3499 goto out_abort;
3500 }
3501 tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3502 tvp_seqc = vn_seqc_read_any(tvp);
3503 if (seqc_in_modify(tvp_seqc)) {
3504 cache_rev_failed(&reason);
3505 goto out_abort;
3506 }
3507 if (!vn_seqc_consistent(vp, vp_seqc)) {
3508 cache_rev_failed(&reason);
3509 goto out_abort;
3510 }
3511 vp = tvp;
3512 vp_seqc = tvp_seqc;
3513 continue;
3514 }
3515 ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3516 if (ncp == NULL) {
3517 cache_rev_failed(&reason);
3518 goto out_abort;
3519 }
3520 nc_flag = atomic_load_char(&ncp->nc_flag);
3521 if ((nc_flag & NCF_ISDOTDOT) != 0) {
3522 cache_rev_failed(&reason);
3523 goto out_abort;
3524 }
3525 if (ncp->nc_nlen >= *buflen) {
3526 cache_rev_failed(&reason);
3527 error = ENOMEM;
3528 goto out_abort;
3529 }
3530 *buflen -= ncp->nc_nlen;
3531 memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3532 *buflen -= 1;
3533 buf[*buflen] = '/';
3534 tvp = ncp->nc_dvp;
3535 tvp_seqc = vn_seqc_read_any(tvp);
3536 if (seqc_in_modify(tvp_seqc)) {
3537 cache_rev_failed(&reason);
3538 goto out_abort;
3539 }
3540 if (!vn_seqc_consistent(vp, vp_seqc)) {
3541 cache_rev_failed(&reason);
3542 goto out_abort;
3543 }
3544 /*
3545 * Acquire fence provided by vn_seqc_read_any above.
3546 */
3547 if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3548 cache_rev_failed(&reason);
3549 goto out_abort;
3550 }
3551 if (!cache_ncp_canuse(ncp)) {
3552 cache_rev_failed(&reason);
3553 goto out_abort;
3554 }
3555 vp = tvp;
3556 vp_seqc = tvp_seqc;
3557 if (vp == rdir || vp == rootvnode)
3558 break;
3559 }
3560out_ok:
3561 vfs_smr_exit();
3562 *retbuf = buf + *buflen;
3563 *buflen = orig_buflen - *buflen + addend;
3564 SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3565 return (0);
3566
3567out_abort:
3568 *buflen = orig_buflen;
3569 SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3570 vfs_smr_exit();
3571 return (error);
3572}
3573
3574static int
3575vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3576 size_t *buflen)
3577{
3578 size_t orig_buflen, addend;
3579 int error;
3580
3581 if (*buflen < 2)
3582 return (EINVAL);
3583
3584 orig_buflen = *buflen;
3585
3586 vref(vp);
3587 addend = 0;
3588 if (vp->v_type != VDIR) {
3589 *buflen -= 1;
3590 buf[*buflen] = '\0';
3591 error = vn_vptocnp(&vp, buf, buflen);
3592 if (error)
3593 return (error);
3594 if (*buflen == 0) {
3595 vrele(vp);
3596 return (ENOMEM);
3597 }
3598 *buflen -= 1;
3599 buf[*buflen] = '/';
3600 addend = orig_buflen - *buflen;
3601 }
3602
3603 return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3604}
3605
3606/*
3607 * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3608 *
3609 * Since the namecache does not track hardlinks, the caller is
3610 * expected to first look up the target vnode with SAVENAME |
3611 * WANTPARENT flags passed to namei to get dvp and vp.
3612 *
3613 * Then we have 2 cases:
3614 * - if the found vnode is a directory, the path can be constructed just by
3615 * following names up the chain
3616 * - otherwise we populate the buffer with the saved name and start resolving
3617 * from the parent
3618 */
3619int
3620vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3621 const char *hrdl_name, size_t hrdl_name_length,
3622 char **retbuf, char **freebuf, size_t *buflen)
3623{
3624 char *buf, *tmpbuf;
3625 struct pwd *pwd;
3626 size_t addend;
3627 int error;
3628 enum vtype type;
3629
3630 if (*buflen < 2)
3631 return (EINVAL);
3632 if (*buflen > MAXPATHLEN)
3633 *buflen = MAXPATHLEN;
3634
3635 buf = malloc(*buflen, M_TEMP, M_WAITOK);
3636
3637 addend = 0;
3638
3639 /*
3640 * Check for VBAD to work around the vp_crossmp bug in lookup().
3641 *
3642 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3643 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3644 * If the type is VDIR (like in this very case) we can skip looking
3645 * at ni_dvp in the first place. However, since vnodes get passed here
3646 * unlocked the target may transition to doomed state (type == VBAD)
3647 * before we get to evaluate the condition. If this happens, we will
3648 * populate part of the buffer and descend to vn_fullpath_dir with
3649 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3650 *
3651 * This should be atomic_load(&vp->v_type) but it is illegal to take
3652 * an address of a bit field, even if said field is sized to char.
3653 * Work around the problem by reading the value into a full-sized enum
3654 * and then re-reading it with atomic_load which will still prevent
3655 * the compiler from re-reading down the road.
3656 */
3657 type = vp->v_type;
3658 type = atomic_load_int(&type);
3659 if (type == VBAD) {
3660 error = ENOENT;
3661 goto out_bad;
3662 }
3663 if (type != VDIR) {
3664 addend = hrdl_name_length + 2;
3665 if (*buflen < addend) {
3666 error = ENOMEM;
3667 goto out_bad;
3668 }
3669 *buflen -= addend;
3670 tmpbuf = buf + *buflen;
3671 tmpbuf[0] = '/';
3672 memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3673 tmpbuf[addend - 1] = '\0';
3674 vp = dvp;
3675 }
3676
3677 vfs_smr_enter();
3678 pwd = pwd_get_smr();
3679 error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3680 addend);
3681 VFS_SMR_ASSERT_NOT_ENTERED();
3682 if (error < 0) {
3683 pwd = pwd_hold(curthread);
3684 vref(vp);
3685 error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3686 addend);
3687 pwd_drop(pwd);
3688 }
3689 if (error != 0)
3690 goto out_bad;
3691
3692 *freebuf = buf;
3693
3694 return (0);
3695out_bad:
3696 free(buf, M_TEMP);
3697 return (error);
3698}
3699
3700struct vnode *
3701vn_dir_dd_ino(struct vnode *vp)
3702{
3703 struct namecache *ncp;
3704 struct vnode *ddvp;
3705 struct mtx *vlp;
3706 enum vgetstate vs;
3707
3708 ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3709 vlp = VP2VNODELOCK(vp);
3710 mtx_lock(vlp);
3711 TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3712 if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3713 continue;
3714 ddvp = ncp->nc_dvp;
3715 vs = vget_prep(ddvp);
3716 mtx_unlock(vlp);
3717 if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3718 return (NULL);
3719 return (ddvp);
3720 }
3721 mtx_unlock(vlp);
3722 return (NULL);
3723}
3724
3725int
3726vn_commname(struct vnode *vp, char *buf, u_int buflen)
3727{
3728 struct namecache *ncp;
3729 struct mtx *vlp;
3730 int l;
3731
3732 vlp = VP2VNODELOCK(vp);
3733 mtx_lock(vlp);
3734 TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3735 if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3736 break;
3737 if (ncp == NULL) {
3738 mtx_unlock(vlp);
3739 return (ENOENT);
3740 }
3741 l = min(ncp->nc_nlen, buflen - 1);
3742 memcpy(buf, ncp->nc_name, l);
3743 mtx_unlock(vlp);
3744 buf[l] = '\0';
3745 return (0);
3746}
3747
3748/*
3749 * This function updates path string to vnode's full global path
3750 * and checks the size of the new path string against the pathlen argument.
3751 *
3752 * Requires a locked, referenced vnode.
3753 * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3754 *
3755 * If vp is a directory, the call to vn_fullpath_global() always succeeds
3756 * because it falls back to the ".." lookup if the namecache lookup fails.
3757 */
3758int
3759vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3760 u_int pathlen)
3761{
3762 struct nameidata nd;
3763 struct vnode *vp1;
3764 char *rpath, *fbuf;
3765 int error;
3766
3767 ASSERT_VOP_ELOCKED(vp, __func__);
3768
3769 /* Construct global filesystem path from vp. */
3770 VOP_UNLOCK(vp);
3771 error = vn_fullpath_global(vp, &rpath, &fbuf);
3772
3773 if (error != 0) {
3774 vrele(vp);
3775 return (error);
3776 }
3777
3778 if (strlen(rpath) >= pathlen) {
3779 vrele(vp);
3780 error = ENAMETOOLONG;
3781 goto out;
3782 }
3783
3784 /*
3785 * Re-lookup the vnode by path to detect a possible rename.
3786 * As a side effect, the vnode is relocked.
3787 * If vnode was renamed, return ENOENT.
3788 */
3789 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3790 error = namei(&nd);
3791 if (error != 0) {
3792 vrele(vp);
3793 goto out;
3794 }
3795 NDFREE(&nd, NDF_ONLY_PNBUF);
3796 vp1 = nd.ni_vp;
3797 vrele(vp);
3798 if (vp1 == vp)
3799 strcpy(path, rpath);
3800 else {
3801 vput(vp1);
3802 error = ENOENT;
3803 }
3804
3805out:
3806 free(fbuf, M_TEMP);
3807 return (error);
3808}
3809
3810#ifdef DDB
3811static void
3812db_print_vpath(struct vnode *vp)
3813{
3814
3815 while (vp != NULL) {
3816 db_printf("%p: ", vp);
3817 if (vp == rootvnode) {
3818 db_printf("/");
3819 vp = NULL;
3820 } else {
3821 if (vp->v_vflag & VV_ROOT) {
3822 db_printf("<mount point>");
3823 vp = vp->v_mount->mnt_vnodecovered;
3824 } else {
3825 struct namecache *ncp;
3826 char *ncn;
3827 int i;
3828
3829 ncp = TAILQ_FIRST(&vp->v_cache_dst);
3830 if (ncp != NULL) {
3831 ncn = ncp->nc_name;
3832 for (i = 0; i < ncp->nc_nlen; i++)
3833 db_printf("%c", *ncn++);
3834 vp = ncp->nc_dvp;
3835 } else {
3836 vp = NULL;
3837 }
3838 }
3839 }
3840 db_printf("\n");
3841 }
3842
3843 return;
3844}
3845
3846DB_SHOW_COMMAND(vpath, db_show_vpath)
3847{
3848 struct vnode *vp;
3849
3850 if (!have_addr) {
3851 db_printf("usage: show vpath <struct vnode *>\n");
3852 return;
3853 }
3854
3855 vp = (struct vnode *)addr;
3856 db_print_vpath(vp);
3857}
3858
3859#endif
3860
3861static int cache_fast_lookup = 1;
3862
3863#define CACHE_FPL_FAILED -2020
3864
3865void
3867{
3868 int lookup_flag;
3869 int mac_on;
3870
3871#ifdef MAC
3872 mac_on = mac_vnode_check_lookup_enabled();
3873 mac_on |= mac_vnode_check_readlink_enabled();
3874#else
3875 mac_on = 0;
3876#endif
3877
3878 lookup_flag = atomic_load_int(&cache_fast_lookup);
3879 if (lookup_flag && !mac_on) {
3880 atomic_store_char(&cache_fast_lookup_enabled, true);
3881 } else {
3882 atomic_store_char(&cache_fast_lookup_enabled, false);
3883 }
3884}
3885
3886static int
3888{
3889 int error, old;
3890
3891 old = atomic_load_int(&cache_fast_lookup);
3892 error = sysctl_handle_int(oidp, arg1, arg2, req);
3893 if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
3895 return (error);
3896}
3897SYSCTL_PROC(_vfs, OID_AUTO, cache_fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
3899
3900/*
3901 * Components of nameidata (or objects it can point to) which may
3902 * need restoring in case fast path lookup fails.
3903 */
3907};
3908
3910#ifdef INVARIANTS
3911 char *cn_nameptr;
3912 size_t ni_pathlen;
3913#endif
3914};
3915
3916#ifdef INVARIANTS
3917struct cache_fpl_debug {
3918 size_t ni_pathlen;
3919};
3920#endif
3921
3923 struct nameidata *ndp;
3924 struct componentname *cnp;
3925 char *nulchar;
3926 struct vnode *dvp;
3927 struct vnode *tvp;
3928 seqc_t dvp_seqc;
3929 seqc_t tvp_seqc;
3930 uint32_t hash;
3933 int line;
3934 enum cache_fpl_status status:8;
3938 struct pwd **pwd;
3939#ifdef INVARIANTS
3940 struct cache_fpl_debug debug;
3941#endif
3942};
3943
3944static bool cache_fplookup_mp_supported(struct mount *mp);
3945static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
3946static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
3947static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
3948static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
3949static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
3950static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
3951static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
3952static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
3953static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
3954
3955static void
3956cache_fpl_cleanup_cnp(struct componentname *cnp)
3957{
3958
3959 uma_zfree(namei_zone, cnp->cn_pnbuf);
3960#ifdef DIAGNOSTIC
3961 cnp->cn_pnbuf = NULL;
3962 cnp->cn_nameptr = NULL;
3963#endif
3964}
3965
3966static struct vnode *
3968{
3969 struct nameidata *ndp;
3970 struct componentname *cnp;
3971
3972 ndp = fpl->ndp;
3973 cnp = fpl->cnp;
3974
3975 MPASS(*(cnp->cn_nameptr) == '/');
3976 cnp->cn_nameptr++;
3978
3979 if (__predict_false(*(cnp->cn_nameptr) == '/')) {
3980 do {
3981 cnp->cn_nameptr++;
3983 } while (*(cnp->cn_nameptr) == '/');
3984 }
3985
3986 return (ndp->ni_rootdir);
3987}
3988
3989static void
3991{
3992
3993 fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
3994 fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
3995}
3996
3997static void
3999{
4000
4001#ifdef INVARIANTS
4002 fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4003 fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4004#endif
4005}
4006
4007static void
4009{
4010
4011 fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4012#ifdef INVARIANTS
4013 fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4014#endif
4015}
4016
4017static void
4019{
4020
4022 /*
4023 * It is 0 on entry by API contract.
4024 */
4025 fpl->ndp->ni_resflags = 0;
4026 fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4027 fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4028}
4029
4030#ifdef INVARIANTS
4031#define cache_fpl_smr_assert_entered(fpl) ({ \
4032 struct cache_fpl *_fpl = (fpl); \
4033 MPASS(_fpl->in_smr == true); \
4034 VFS_SMR_ASSERT_ENTERED(); \
4035})
4036#define cache_fpl_smr_assert_not_entered(fpl) ({ \
4037 struct cache_fpl *_fpl = (fpl); \
4038 MPASS(_fpl->in_smr == false); \
4039 VFS_SMR_ASSERT_NOT_ENTERED(); \
4040})
4041static void
4043{
4044
4045 switch (fpl->status) {
4046 case CACHE_FPL_STATUS_UNSET:
4047 __assert_unreachable();
4048 break;
4049 case CACHE_FPL_STATUS_DESTROYED:
4050 case CACHE_FPL_STATUS_ABORTED:
4051 case CACHE_FPL_STATUS_PARTIAL:
4052 case CACHE_FPL_STATUS_HANDLED:
4053 break;
4054 }
4055}
4056#else
4057#define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4058#define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4059#define cache_fpl_assert_status(fpl) do { } while (0)
4060#endif
4061
4062#define cache_fpl_smr_enter_initial(fpl) ({ \
4063 struct cache_fpl *_fpl = (fpl); \
4064 vfs_smr_enter(); \
4065 _fpl->in_smr = true; \
4066})
4067
4068#define cache_fpl_smr_enter(fpl) ({ \
4069 struct cache_fpl *_fpl = (fpl); \
4070 MPASS(_fpl->in_smr == false); \
4071 vfs_smr_enter(); \
4072 _fpl->in_smr = true; \
4073})
4074
4075#define cache_fpl_smr_exit(fpl) ({ \
4076 struct cache_fpl *_fpl = (fpl); \
4077 MPASS(_fpl->in_smr == true); \
4078 vfs_smr_exit(); \
4079 _fpl->in_smr = false; \
4080})
4081
4082static int
4084{
4085
4086 if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4087 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4088 ("%s: converting to abort from %d at %d, set at %d\n",
4089 __func__, fpl->status, line, fpl->line));
4090 }
4092 fpl->status = CACHE_FPL_STATUS_ABORTED;
4093 fpl->line = line;
4094 return (CACHE_FPL_FAILED);
4095}
4096
4097#define cache_fpl_aborted_early(x) cache_fpl_aborted_early_impl((x), __LINE__)
4098
4099static int __noinline
4100cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4101{
4102 struct nameidata *ndp;
4103 struct componentname *cnp;
4104
4105 ndp = fpl->ndp;
4106 cnp = fpl->cnp;
4107
4108 if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4109 KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4110 ("%s: converting to abort from %d at %d, set at %d\n",
4111 __func__, fpl->status, line, fpl->line));
4112 }
4113 fpl->status = CACHE_FPL_STATUS_ABORTED;
4114 fpl->line = line;
4115 if (fpl->in_smr)
4116 cache_fpl_smr_exit(fpl);
4118 /*
4119 * Resolving symlinks overwrites data passed by the caller.
4120 * Let namei know.
4121 */
4122 if (ndp->ni_loopcnt > 0) {
4123 fpl->status = CACHE_FPL_STATUS_DESTROYED;
4125 }
4126 return (CACHE_FPL_FAILED);
4127}
4128
4129#define cache_fpl_aborted(x) cache_fpl_aborted_impl((x), __LINE__)
4130
4131static int __noinline
4132cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4133{
4134
4135 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4136 ("%s: setting to partial at %d, but already set to %d at %d\n",
4137 __func__, line, fpl->status, fpl->line));
4139 fpl->status = CACHE_FPL_STATUS_PARTIAL;
4140 fpl->line = line;
4141 return (cache_fplookup_partial_setup(fpl));
4142}
4143
4144#define cache_fpl_partial(x) cache_fpl_partial_impl((x), __LINE__)
4145
4146static int
4147cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4148{
4149
4150 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4151 ("%s: setting to handled at %d, but already set to %d at %d\n",
4152 __func__, line, fpl->status, fpl->line));
4154 fpl->status = CACHE_FPL_STATUS_HANDLED;
4155 fpl->line = line;
4156 return (0);
4157}
4158
4159#define cache_fpl_handled(x) cache_fpl_handled_impl((x), __LINE__)
4160
4161static int
4162cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4163{
4164
4165 KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4166 ("%s: setting to handled at %d, but already set to %d at %d\n",
4167 __func__, line, fpl->status, fpl->line));
4168 MPASS(error != 0);
4169 MPASS(error != CACHE_FPL_FAILED);
4171 fpl->status = CACHE_FPL_STATUS_HANDLED;
4172 fpl->line = line;
4173 fpl->dvp = NULL;
4174 fpl->tvp = NULL;
4175 fpl->savename = false;
4176 return (error);
4177}
4178
4179#define cache_fpl_handled_error(x, e) cache_fpl_handled_error_impl((x), (e), __LINE__)
4180
4181static bool
4183{
4184
4185 return (fpl->status != CACHE_FPL_STATUS_UNSET);
4186}
4187
4188#define CACHE_FPL_SUPPORTED_CN_FLAGS \
4189 (NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4190 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | SAVENAME | SAVESTART | \
4191 WILLBEDIR | ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | \
4192 OPENREAD | OPENWRITE)
4193
4194#define CACHE_FPL_INTERNAL_CN_FLAGS \
4195 (ISDOTDOT | MAKEENTRY | ISLASTCN)
4196
4198 "supported and internal flags overlap");
4199
4200static bool
4201cache_fpl_islastcn(struct nameidata *ndp)
4202{
4203
4204 return (*ndp->ni_next == 0);
4205}
4206
4207static bool
4209{
4210
4211 MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4212 return (*(fpl->nulchar - 1) == '/');
4213}
4214
4215static bool
4216cache_fpl_isdotdot(struct componentname *cnp)
4217{
4218
4219 if (cnp->cn_namelen == 2 &&
4220 cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4221 return (true);
4222 return (false);
4223}
4224
4225static bool
4227{
4228 struct nameidata *ndp;
4229 struct componentname *cnp;
4230 struct thread *td;
4231
4232 ndp = fpl->ndp;
4233 cnp = fpl->cnp;
4234 td = curthread;
4235
4236 if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4238 return (false);
4239 }
4240 if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4242 return (false);
4243 }
4244 if (IN_CAPABILITY_MODE(td)) {
4246 return (false);
4247 }
4248 if (AUDITING_TD(td)) {
4250 return (false);
4251 }
4252 if (ndp->ni_startdir != NULL) {
4254 return (false);
4255 }
4256 return (true);
4257}
4258
4259static int __noinline
4260cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4261{
4262 struct nameidata *ndp;
4263 struct componentname *cnp;
4264 int error;
4265 bool fsearch;
4266
4267 ndp = fpl->ndp;
4268 cnp = fpl->cnp;
4269
4270 error = fgetvp_lookup_smr(ndp->ni_dirfd, ndp, vpp, &fsearch);
4271 if (__predict_false(error != 0)) {
4272 return (cache_fpl_aborted(fpl));
4273 }
4274 fpl->fsearch = fsearch;
4275 if ((*vpp)->v_type != VDIR) {
4276 if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4277 cache_fpl_smr_exit(fpl);
4278 return (cache_fpl_handled_error(fpl, ENOTDIR));
4279 }
4280 }
4281 return (0);
4282}
4283
4284static int __noinline
4286 uint32_t hash)
4287{
4288 struct componentname *cnp;
4289 struct vnode *dvp;
4290
4291 cnp = fpl->cnp;
4292 dvp = fpl->dvp;
4293
4294 cache_fpl_smr_exit(fpl);
4295 if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4296 return (cache_fpl_handled_error(fpl, ENOENT));
4297 else
4298 return (cache_fpl_aborted(fpl));
4299}
4300
4301/*
4302 * The target vnode is not supported, prepare for the slow path to take over.
4303 */
4304static int __noinline
4306{
4307 struct nameidata *ndp;
4308 struct componentname *cnp;
4309 enum vgetstate dvs;
4310 struct vnode *dvp;
4311 struct pwd *pwd;
4312 seqc_t dvp_seqc;
4313
4314 ndp = fpl->ndp;
4315 cnp = fpl->cnp;
4316 pwd = *(fpl->pwd);
4317 dvp = fpl->dvp;
4318 dvp_seqc = fpl->dvp_seqc;
4319
4320 if (!pwd_hold_smr(pwd)) {
4321 return (cache_fpl_aborted(fpl));
4322 }
4323
4324 /*
4325 * Note that seqc is checked before the vnode is locked, so by
4326 * the time regular lookup gets to it it may have moved.
4327 *
4328 * Ultimately this does not affect correctness, any lookup errors
4329 * are userspace racing with itself. It is guaranteed that any
4330 * path which ultimately gets found could also have been found
4331 * by regular lookup going all the way in absence of concurrent
4332 * modifications.
4333 */
4334 dvs = vget_prep_smr(dvp);
4335 cache_fpl_smr_exit(fpl);
4336 if (__predict_false(dvs == VGET_NONE)) {
4337 pwd_drop(pwd);
4338 return (cache_fpl_aborted(fpl));
4339 }
4340
4341 vget_finish_ref(dvp, dvs);
4342 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4343 vrele(dvp);
4344 pwd_drop(pwd);
4345 return (cache_fpl_aborted(fpl));
4346 }
4347
4349#ifdef INVARIANTS
4350 if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4351 panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4352 cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4353 }
4354#endif
4355
4356 ndp->ni_startdir = dvp;
4357 cnp->cn_flags |= MAKEENTRY;
4358 if (cache_fpl_islastcn(ndp))
4359 cnp->cn_flags |= ISLASTCN;
4360 if (cache_fpl_isdotdot(cnp))
4361 cnp->cn_flags |= ISDOTDOT;
4362
4363 /*
4364 * Skip potential extra slashes parsing did not take care of.
4365 * cache_fplookup_skip_slashes explains the mechanism.
4366 */
4367 if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4368 do {
4369 cnp->cn_nameptr++;
4371 } while (*(cnp->cn_nameptr) == '/');
4372 }
4373
4374 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4375#ifdef INVARIANTS
4376 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4377 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4378 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4379 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4380 }
4381#endif
4382 return (0);
4383}
4384
4385static int
4386cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4387{
4388 struct componentname *cnp;
4389 struct vnode *tvp;
4390 seqc_t tvp_seqc;
4391 int error, lkflags;
4392
4393 cnp = fpl->cnp;
4394 tvp = fpl->tvp;
4395 tvp_seqc = fpl->tvp_seqc;
4396
4397 if ((cnp->cn_flags & LOCKLEAF) != 0) {
4398 lkflags = LK_SHARED;
4399 if ((cnp->cn_flags & LOCKSHARED) == 0)
4400 lkflags = LK_EXCLUSIVE;
4401 error = vget_finish(tvp, lkflags, tvs);
4402 if (__predict_false(error != 0)) {
4403 return (cache_fpl_aborted(fpl));
4404 }
4405 } else {
4406 vget_finish_ref(tvp, tvs);
4407 }
4408
4409 if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4410 if ((cnp->cn_flags & LOCKLEAF) != 0)
4411 vput(tvp);
4412 else
4413 vrele(tvp);
4414 return (cache_fpl_aborted(fpl));
4415 }
4416
4417 return (cache_fpl_handled(fpl));
4418}
4419
4420/*
4421 * They want to possibly modify the state of the namecache.
4422 */
4423static int __noinline
4425{
4426 struct nameidata *ndp;
4427 struct componentname *cnp;
4428 enum vgetstate dvs;
4429 struct vnode *dvp, *tvp;
4430 struct mount *mp;
4431 seqc_t dvp_seqc;
4432 int error;
4433 bool docache;
4434
4435 ndp = fpl->ndp;
4436 cnp = fpl->cnp;
4437 dvp = fpl->dvp;
4438 dvp_seqc = fpl->dvp_seqc;
4439
4440 MPASS(*(cnp->cn_nameptr) != '/');
4441 MPASS(cache_fpl_islastcn(ndp));
4442 if ((cnp->cn_flags & LOCKPARENT) == 0)
4443 MPASS((cnp->cn_flags & WANTPARENT) != 0);
4444 MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4445 MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4446 cnp->cn_nameiop == RENAME);
4447 MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4448 MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4449
4450 docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4451 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4452 docache = false;
4453
4454 /*
4455 * Regular lookup nulifies the slash, which we don't do here.
4456 * Don't take chances with filesystem routines seeing it for
4457 * the last entry.
4458 */
4459 if (cache_fpl_istrailingslash(fpl)) {
4460 return (cache_fpl_partial(fpl));
4461 }
4462
4463 mp = atomic_load_ptr(&dvp->v_mount);
4464 if (__predict_false(mp == NULL)) {
4465 return (cache_fpl_aborted(fpl));
4466 }
4467
4468 if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4469 cache_fpl_smr_exit(fpl);
4470 /*
4471 * Original code keeps not checking for CREATE which
4472 * might be a bug. For now let the old lookup decide.
4473 */
4474 if (cnp->cn_nameiop == CREATE) {
4475 return (cache_fpl_aborted(fpl));
4476 }
4477 return (cache_fpl_handled_error(fpl, EROFS));
4478 }
4479
4480 if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4481 cache_fpl_smr_exit(fpl);
4482 return (cache_fpl_handled_error(fpl, EEXIST));
4483 }
4484
4485 /*
4486 * Secure access to dvp; check cache_fplookup_partial_setup for
4487 * reasoning.
4488 *
4489 * XXX At least UFS requires its lookup routine to be called for
4490 * the last path component, which leads to some level of complication
4491 * and inefficiency:
4492 * - the target routine always locks the target vnode, but our caller
4493 * may not need it locked
4494 * - some of the VOP machinery asserts that the parent is locked, which
4495 * once more may be not required
4496 *
4497 * TODO: add a flag for filesystems which don't need this.
4498 */
4499 dvs = vget_prep_smr(dvp);
4500 cache_fpl_smr_exit(fpl);
4501 if (__predict_false(dvs == VGET_NONE)) {
4502 return (cache_fpl_aborted(fpl));
4503 }
4504
4505 vget_finish_ref(dvp, dvs);
4506 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4507 vrele(dvp);
4508 return (cache_fpl_aborted(fpl));
4509 }
4510
4511 error = vn_lock(dvp, LK_EXCLUSIVE);
4512 if (__predict_false(error != 0)) {
4513 vrele(dvp);
4514 return (cache_fpl_aborted(fpl));
4515 }
4516
4517 tvp = NULL;
4518 cnp->cn_flags |= ISLASTCN;
4519 if (docache)
4520 cnp->cn_flags |= MAKEENTRY;
4521 if (cache_fpl_isdotdot(cnp))
4522 cnp->cn_flags |= ISDOTDOT;
4523 cnp->cn_lkflags = LK_EXCLUSIVE;
4524 error = VOP_LOOKUP(dvp, &tvp, cnp);
4525 switch (error) {
4526 case EJUSTRETURN:
4527 case 0:
4528 break;
4529 case ENOTDIR:
4530 case ENOENT:
4531 vput(dvp);
4532 return (cache_fpl_handled_error(fpl, error));
4533 default:
4534 vput(dvp);
4535 return (cache_fpl_aborted(fpl));
4536 }
4537
4538 fpl->tvp = tvp;
4539 fpl->savename = (cnp->cn_flags & SAVENAME) != 0;
4540
4541 if (tvp == NULL) {
4542 if ((cnp->cn_flags & SAVESTART) != 0) {
4543 ndp->ni_startdir = dvp;
4544 vrefact(ndp->ni_startdir);
4545 cnp->cn_flags |= SAVENAME;
4546 fpl->savename = true;
4547 }
4548 MPASS(error == EJUSTRETURN);
4549 if ((cnp->cn_flags & LOCKPARENT) == 0) {
4550 VOP_UNLOCK(dvp);
4551 }
4552 return (cache_fpl_handled(fpl));
4553 }
4554
4555 /*
4556 * There are very hairy corner cases concerning various flag combinations
4557 * and locking state. In particular here we only hold one lock instead of
4558 * two.
4559 *
4560 * Skip the complexity as it is of no significance for normal workloads.
4561 */
4562 if (__predict_false(tvp == dvp)) {
4563 vput(dvp);
4564 vrele(tvp);
4565 return (cache_fpl_aborted(fpl));
4566 }
4567
4568 /*
4569 * If they want the symlink itself we are fine, but if they want to
4570 * follow it regular lookup has to be engaged.
4571 */
4572 if (tvp->v_type == VLNK) {
4573 if ((cnp->cn_flags & FOLLOW) != 0) {
4574 vput(dvp);
4575 vput(tvp);
4576 return (cache_fpl_aborted(fpl));
4577 }
4578 }
4579
4580 /*
4581 * Since we expect this to be the terminal vnode it should almost never
4582 * be a mount point.
4583 */
4584 if (__predict_false(cache_fplookup_is_mp(fpl))) {
4585 vput(dvp);
4586 vput(tvp);
4587 return (cache_fpl_aborted(fpl));
4588 }
4589
4590 if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4591 vput(dvp);
4592 vput(tvp);
4593 return (cache_fpl_handled_error(fpl, EEXIST));
4594 }
4595
4596 if ((cnp->cn_flags & LOCKLEAF) == 0) {
4597 VOP_UNLOCK(tvp);
4598 }
4599
4600 if ((cnp->cn_flags & LOCKPARENT) == 0) {
4601 VOP_UNLOCK(dvp);
4602 }
4603
4604 if ((cnp->cn_flags & SAVESTART) != 0) {
4605 ndp->ni_startdir = dvp;
4606 vrefact(ndp->ni_startdir);
4607 cnp->cn_flags |= SAVENAME;
4608 fpl->savename = true;
4609 }
4610
4611 return (cache_fpl_handled(fpl));
4612}
4613
4614static int __noinline
4616{
4617 struct nameidata *ndp;
4618
4619 ndp = fpl->ndp;
4620
4621 if (!cache_fpl_islastcn(ndp)) {
4622 return (cache_fpl_partial(fpl));
4623 }
4624 return (cache_fplookup_final_modifying(fpl));
4625}
4626
4627static int __noinline
4629{
4630 struct componentname *cnp;
4631 enum vgetstate dvs, tvs;
4632 struct vnode *dvp, *tvp;
4633 seqc_t dvp_seqc;
4634 int error;
4635
4636 cnp = fpl->cnp;
4637 dvp = fpl->dvp;
4638 dvp_seqc = fpl->dvp_seqc;
4639 tvp = fpl->tvp;
4640
4641 MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4642
4643 /*
4644 * This is less efficient than it can be for simplicity.
4645 */
4646 dvs = vget_prep_smr(dvp);
4647 if (__predict_false(dvs == VGET_NONE)) {
4648 return (cache_fpl_aborted(fpl));
4649 }
4650 tvs = vget_prep_smr(tvp);
4651 if (__predict_false(tvs == VGET_NONE)) {
4652 cache_fpl_smr_exit(fpl);
4653 vget_abort(dvp, dvs);
4654 return (cache_fpl_aborted(fpl));
4655 }
4656
4657 cache_fpl_smr_exit(fpl);
4658
4659 if ((cnp->cn_flags & LOCKPARENT) != 0) {
4660 error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4661 if (__predict_false(error != 0)) {
4662 vget_abort(tvp, tvs);
4663 return (cache_fpl_aborted(fpl));
4664 }
4665 } else {
4666 vget_finish_ref(dvp, dvs);
4667 }
4668
4669 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4670 vget_abort(tvp, tvs);
4671 if ((cnp->cn_flags & LOCKPARENT) != 0)
4672 vput(dvp);
4673 else
4674 vrele(dvp);
4675 return (cache_fpl_aborted(fpl));
4676 }
4677
4678 error = cache_fplookup_final_child(fpl, tvs);
4679 if (__predict_false(error != 0)) {
4680 MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4681 fpl->status == CACHE_FPL_STATUS_DESTROYED);
4682 if ((cnp->cn_flags & LOCKPARENT) != 0)
4683 vput(dvp);
4684 else
4685 vrele(dvp);
4686 return (error);
4687 }
4688
4689 MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4690 return (0);
4691}
4692
4693static int
4695{
4696 struct componentname *cnp;
4697 enum vgetstate tvs;
4698 struct vnode *dvp, *tvp;
4699 seqc_t dvp_seqc;
4700
4701 cnp = fpl->cnp;
4702 dvp = fpl->dvp;
4703 dvp_seqc = fpl->dvp_seqc;
4704 tvp = fpl->tvp;
4705
4706 MPASS(*(cnp->cn_nameptr) != '/');
4707
4708 if (cnp->cn_nameiop != LOOKUP) {
4709 return (cache_fplookup_final_modifying(fpl));
4710 }
4711
4712 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4713 return (cache_fplookup_final_withparent(fpl));
4714
4715 tvs = vget_prep_smr(tvp);
4716 if (__predict_false(tvs == VGET_NONE)) {
4717 return (cache_fpl_partial(fpl));
4718 }
4719
4720 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4721 cache_fpl_smr_exit(fpl);
4722 vget_abort(tvp, tvs);
4723 return (cache_fpl_aborted(fpl));
4724 }
4725
4726 cache_fpl_smr_exit(fpl);
4727 return (cache_fplookup_final_child(fpl, tvs));
4728}
4729
4730/*
4731 * Comment from locked lookup:
4732 * Check for degenerate name (e.g. / or "") which is a way of talking about a
4733 * directory, e.g. like "/." or ".".
4734 */
4735static int __noinline
4737{
4738 struct componentname *cnp;
4739 struct vnode *dvp;
4740 enum vgetstate dvs;
4741 int error, lkflags;
4742#ifdef INVARIANTS
4743 char *cp;
4744#endif
4745
4746 fpl->tvp = fpl->dvp;
4747 fpl->tvp_seqc = fpl->dvp_seqc;
4748
4749 cnp = fpl->cnp;
4750 dvp = fpl->dvp;
4751
4752#ifdef INVARIANTS
4753 for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4754 KASSERT(*cp == '/',
4755 ("%s: encountered non-slash; string [%s]\n", __func__,
4756 cnp->cn_pnbuf));
4757 }
4758#endif
4759
4760 if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4761 cache_fpl_smr_exit(fpl);
4762 return (cache_fpl_handled_error(fpl, EISDIR));
4763 }
4764
4765 MPASS((cnp->cn_flags & SAVESTART) == 0);
4766
4767 if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4768 return (cache_fplookup_final_withparent(fpl));
4769 }
4770
4771 dvs = vget_prep_smr(dvp);
4772 cache_fpl_smr_exit(fpl);
4773 if (__predict_false(dvs == VGET_NONE)) {
4774 return (cache_fpl_aborted(fpl));
4775 }
4776
4777 if ((cnp->cn_flags & LOCKLEAF) != 0) {
4778 lkflags = LK_SHARED;
4779 if ((cnp->cn_flags & LOCKSHARED) == 0)
4780 lkflags = LK_EXCLUSIVE;
4781 error = vget_finish(dvp, lkflags, dvs);
4782 if (__predict_false(error != 0)) {
4783 return (cache_fpl_aborted(fpl));
4784 }
4785 } else {
4786 vget_finish_ref(dvp, dvs);
4787 }
4788 return (cache_fpl_handled(fpl));
4789}
4790
4791static int __noinline
4793{
4794 struct nameidata *ndp;
4795 struct componentname *cnp;
4796 enum vgetstate tvs;
4797 struct vnode *tvp;
4798 int error, lkflags;
4799
4800 fpl->tvp = fpl->dvp;
4801 fpl->tvp_seqc = fpl->dvp_seqc;
4802
4803 ndp = fpl->ndp;
4804 cnp = fpl->cnp;
4805 tvp = fpl->tvp;
4806
4807 MPASS(*cnp->cn_pnbuf == '\0');
4808
4809 if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4810 cache_fpl_smr_exit(fpl);
4811 return (cache_fpl_handled_error(fpl, ENOENT));
4812 }
4813
4814 MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4815
4816 tvs = vget_prep_smr(tvp);
4817 cache_fpl_smr_exit(fpl);
4818 if (__predict_false(tvs == VGET_NONE)) {
4819 return (cache_fpl_aborted(fpl));
4820 }
4821
4822 if ((cnp->cn_flags & LOCKLEAF) != 0) {
4823 lkflags = LK_SHARED;
4824 if ((cnp->cn_flags & LOCKSHARED) == 0)
4825 lkflags = LK_EXCLUSIVE;
4826 error = vget_finish(tvp, lkflags, tvs);
4827 if (__predict_false(error != 0)) {
4828 return (cache_fpl_aborted(fpl));
4829 }
4830 } else {
4831 vget_finish_ref(tvp, tvs);
4832 }
4833
4834 ndp->ni_resflags |= NIRES_EMPTYPATH;
4835 return (cache_fpl_handled(fpl));
4836}
4837
4838static int __noinline
4840{
4841 struct nameidata *ndp;
4842 struct componentname *cnp;
4843 enum vgetstate dvs;
4844 struct vnode *dvp, *tvp;
4845 seqc_t dvp_seqc;
4846 int error;
4847
4848 ndp = fpl->ndp;
4849 cnp = fpl->cnp;
4850 dvp = fpl->dvp;
4851 dvp_seqc = fpl->dvp_seqc;
4852
4853 MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4854 MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4855 if (cnp->cn_nameiop == LOOKUP)
4856 MPASS((cnp->cn_flags & NOCACHE) == 0);
4857 MPASS(!cache_fpl_isdotdot(cnp));
4858
4859 /*
4860 * Hack: delayed name len checking.
4861 */
4862 if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
4863 cache_fpl_smr_exit(fpl);
4864 return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
4865 }
4866
4867 if (cnp->cn_nameptr[0] == '/') {
4868 return (cache_fplookup_skip_slashes(fpl));
4869 }
4870
4871 if (cnp->cn_pnbuf[0] == '\0') {
4872 return (cache_fplookup_emptypath(fpl));
4873 }
4874
4875 if (cnp->cn_nameptr[0] == '\0') {
4876 if (fpl->tvp == NULL) {
4877 return (cache_fplookup_degenerate(fpl));
4878 }
4879 return (cache_fplookup_trailingslash(fpl));
4880 }
4881
4882 if (cnp->cn_nameiop != LOOKUP) {
4883 fpl->tvp = NULL;
4884 return (cache_fplookup_modifying(fpl));
4885 }
4886
4887 MPASS((cnp->cn_flags & SAVESTART) == 0);
4888
4889 /*
4890 * Only try to fill in the component if it is the last one,
4891 * otherwise not only there may be several to handle but the
4892 * walk may be complicated.
4893 */
4894 if (!cache_fpl_islastcn(ndp)) {
4895 return (cache_fpl_partial(fpl));
4896 }
4897
4898 /*
4899 * Regular lookup nulifies the slash, which we don't do here.
4900 * Don't take chances with filesystem routines seeing it for
4901 * the last entry.
4902 */
4903 if (cache_fpl_istrailingslash(fpl)) {
4904 return (cache_fpl_partial(fpl));
4905 }
4906
4907 /*
4908 * Secure access to dvp; check cache_fplookup_partial_setup for
4909 * reasoning.
4910 */
4911 dvs = vget_prep_smr(dvp);
4912 cache_fpl_smr_exit(fpl);
4913 if (__predict_false(dvs == VGET_NONE)) {
4914 return (cache_fpl_aborted(fpl));
4915 }
4916
4917 vget_finish_ref(dvp, dvs);
4918 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4919 vrele(dvp);
4920 return (cache_fpl_aborted(fpl));
4921 }
4922
4923 error = vn_lock(dvp, LK_SHARED);
4924 if (__predict_false(error != 0)) {
4925 vrele(dvp);
4926 return (cache_fpl_aborted(fpl));
4927 }
4928
4929 tvp = NULL;
4930 /*
4931 * TODO: provide variants which don't require locking either vnode.
4932 */
4933 cnp->cn_flags |= ISLASTCN | MAKEENTRY;
4934 cnp->cn_lkflags = LK_SHARED;
4935 if ((cnp->cn_flags & LOCKSHARED) == 0) {
4936 cnp->cn_lkflags = LK_EXCLUSIVE;
4937 }
4938 error = VOP_LOOKUP(dvp, &tvp, cnp);
4939 switch (error) {
4940 case EJUSTRETURN:
4941 case 0:
4942 break;
4943 case ENOTDIR:
4944 case ENOENT:
4945 vput(dvp);
4946 return (cache_fpl_handled_error(fpl, error));
4947 default:
4948 vput(dvp);
4949 return (cache_fpl_aborted(fpl));
4950 }
4951
4952 fpl->tvp = tvp;
4953 if (!fpl->savename) {
4954 MPASS((cnp->cn_flags & SAVENAME) == 0);
4955 }
4956
4957 if (tvp == NULL) {
4958 MPASS(error == EJUSTRETURN);
4959 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4960 vput(dvp);
4961 } else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4962 VOP_UNLOCK(dvp);
4963 }
4964 return (cache_fpl_handled(fpl));
4965 }
4966
4967 if (tvp->v_type == VLNK) {
4968 if ((cnp->cn_flags & FOLLOW) != 0) {
4969 vput(dvp);
4970 vput(tvp);
4971 return (cache_fpl_aborted(fpl));
4972 }
4973 }
4974
4975 if (__predict_false(cache_fplookup_is_mp(fpl))) {
4976 vput(dvp);
4977 vput(tvp);
4978 return (cache_fpl_aborted(fpl));
4979 }
4980
4981 if ((cnp->cn_flags & LOCKLEAF) == 0) {
4982 VOP_UNLOCK(tvp);
4983 }
4984
4985 if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
4986 vput(dvp);
4987 } else if ((cnp->cn_flags & LOCKPARENT) == 0) {
4988 VOP_UNLOCK(dvp);
4989 }
4990 return (cache_fpl_handled(fpl));
4991}
4992
4993static int __noinline
4995{
4996 int error;
4997
4998 MPASS(!seqc_in_modify(fpl->dvp_seqc));
4999 /*
5000 * Just re-assign the value. seqc will be checked later for the first
5001 * non-dot path component in line and/or before deciding to return the
5002 * vnode.
5003 */
5004 fpl->tvp = fpl->dvp;
5005 fpl->tvp_seqc = fpl->dvp_seqc;
5006
5007 counter_u64_add(dothits, 1);
5008 SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5009
5010 error = 0;
5011 if (cache_fplookup_is_mp(fpl)) {
5012 error = cache_fplookup_cross_mount(fpl);
5013 }
5014 return (error);
5015}
5016
5017static int __noinline
5019{
5020 struct nameidata *ndp;
5021 struct componentname *cnp;
5022 struct namecache *ncp;
5023 struct vnode *dvp;
5024 struct prison *pr;
5025 u_char nc_flag;
5026
5027 ndp = fpl->ndp;
5028 cnp = fpl->cnp;
5029 dvp = fpl->dvp;
5030
5031 MPASS(cache_fpl_isdotdot(cnp));
5032
5033 /*
5034 * XXX this is racy the same way regular lookup is
5035 */
5036 for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5037 pr = pr->pr_parent)
5038 if (dvp == pr->pr_root)
5039 break;
5040
5041 if (dvp == ndp->ni_rootdir ||
5042 dvp == ndp->ni_topdir ||
5043 dvp == rootvnode ||
5044 pr != NULL) {
5045 fpl->tvp = dvp;
5046 fpl->tvp_seqc = vn_seqc_read_any(dvp);
5047 if (seqc_in_modify(fpl->tvp_seqc)) {
5048 return (cache_fpl_aborted(fpl));
5049 }
5050 return (0);
5051 }
5052
5053 if ((dvp->v_vflag & VV_ROOT) != 0) {
5054 /*
5055 * TODO
5056 * The opposite of climb mount is needed here.
5057 */
5058 return (cache_fpl_partial(fpl));
5059 }
5060
5061 ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5062 if (ncp == NULL) {
5063 return (cache_fpl_aborted(fpl));
5064 }
5065
5066 nc_flag = atomic_load_char(&ncp->nc_flag);
5067 if ((nc_flag & NCF_ISDOTDOT) != 0) {
5068 if ((nc_flag & NCF_NEGATIVE) != 0)
5069 return (cache_fpl_aborted(fpl));
5070 fpl->tvp = ncp->nc_vp;
5071 } else {
5072 fpl->tvp = ncp->nc_dvp;
5073 }
5074
5075 fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5076 if (seqc_in_modify(fpl->tvp_seqc)) {
5077 return (cache_fpl_partial(fpl));
5078 }
5079
5080 /*
5081 * Acquire fence provided by vn_seqc_read_any above.
5082 */
5083 if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5084 return (cache_fpl_aborted(fpl));
5085 }
5086
5087 if (!cache_ncp_canuse(ncp)) {
5088 return (cache_fpl_aborted(fpl));
5089 }
5090
5091 counter_u64_add(dotdothits, 1);
5092 return (0);
5093}
5094
5095static int __noinline
5096cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5097{
5098 u_char nc_flag __diagused;
5099 bool neg_promote;
5100
5101#ifdef INVARIANTS
5102 nc_flag = atomic_load_char(&ncp->nc_flag);
5103 MPASS((nc_flag & NCF_NEGATIVE) != 0);
5104#endif
5105 /*
5106 * If they want to create an entry we need to replace this one.
5107 */
5108 if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5109 fpl->tvp = NULL;
5110 return (cache_fplookup_modifying(fpl));
5111 }
5112 neg_promote = cache_neg_hit_prep(ncp);
5113 if (!cache_fpl_neg_ncp_canuse(ncp)) {
5115 return (cache_fpl_partial(fpl));
5116 }
5117 if (neg_promote) {
5118 return (cache_fplookup_negative_promote(fpl, ncp, hash));
5119 }
5121 cache_fpl_smr_exit(fpl);
5122 return (cache_fpl_handled_error(fpl, ENOENT));
5123}
5124
5125/*
5126 * Resolve a symlink. Called by filesystem-specific routines.
5127 *
5128 * Code flow is:
5129 * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5130 */
5131int
5132cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5133{
5134 struct nameidata *ndp;
5135 struct componentname *cnp;
5136 size_t adjust;
5137
5138 ndp = fpl->ndp;
5139 cnp = fpl->cnp;
5140
5141 if (__predict_false(len == 0)) {
5142 return (ENOENT);
5143 }
5144
5145 if (__predict_false(len > MAXPATHLEN - 2)) {
5146 if (cache_fpl_istrailingslash(fpl)) {
5147 return (EAGAIN);
5148 }
5149 }
5150
5151 ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5152#ifdef INVARIANTS
5153 if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5154 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5155 __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5156 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5157 }
5158#endif
5159
5160 if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5161 return (ENAMETOOLONG);
5162 }
5163
5164 if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5165 return (ELOOP);
5166 }
5167
5168 adjust = len;
5169 if (ndp->ni_pathlen > 1) {
5170 bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5171 } else {
5172 if (cache_fpl_istrailingslash(fpl)) {
5173 adjust = len + 1;
5174 cnp->cn_pnbuf[len] = '/';
5175 cnp->cn_pnbuf[len + 1] = '\0';
5176 } else {
5177 cnp->cn_pnbuf[len] = '\0';
5178 }
5179 }
5180 bcopy(string, cnp->cn_pnbuf, len);
5181
5182 ndp->ni_pathlen += adjust;
5183 cache_fpl_pathlen_add(fpl, adjust);
5184 cnp->cn_nameptr = cnp->cn_pnbuf;
5185 fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5186 fpl->tvp = NULL;
5187 return (0);
5188}
5189
5190static int __noinline
5192{
5193 struct mount *mp;
5194 struct nameidata *ndp;
5195 struct componentname *cnp;
5196 struct vnode *dvp, *tvp;
5197 int error;
5198
5199 ndp = fpl->ndp;
5200 cnp = fpl->cnp;
5201 dvp = fpl->dvp;
5202 tvp = fpl->tvp;
5203
5204 if (cache_fpl_islastcn(ndp)) {
5205 if ((cnp->cn_flags & FOLLOW) == 0) {
5206 return (cache_fplookup_final(fpl));
5207 }
5208 }
5209
5210 mp = atomic_load_ptr(&dvp->v_mount);
5211 if (__predict_false(mp == NULL)) {
5212 return (cache_fpl_aborted(fpl));
5213 }
5214
5215 /*
5216 * Note this check races against setting the flag just like regular
5217 * lookup.
5218 */
5219 if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5220 cache_fpl_smr_exit(fpl);
5221 return (cache_fpl_handled_error(fpl, EACCES));
5222 }
5223
5224 error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5225 if (__predict_false(error != 0)) {
5226 switch (error) {
5227 case EAGAIN:
5228 return (cache_fpl_partial(fpl));
5229 case ENOENT:
5230 case ENAMETOOLONG:
5231 case ELOOP:
5232 cache_fpl_smr_exit(fpl);
5233 return (cache_fpl_handled_error(fpl, error));
5234 default:
5235 return (cache_fpl_aborted(fpl));
5236 }
5237 }
5238
5239 if (*(cnp->cn_nameptr) == '/') {
5240 fpl->dvp = cache_fpl_handle_root(fpl);
5241 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5242 if (seqc_in_modify(fpl->dvp_seqc)) {
5243 return (cache_fpl_aborted(fpl));
5244 }
5245 /*
5246 * The main loop assumes that ->dvp points to a vnode belonging
5247 * to a filesystem which can do lockless lookup, but the absolute
5248 * symlink can be wandering off to one which does not.
5249 */
5250 mp = atomic_load_ptr(&fpl->dvp->v_mount);
5251 if (__predict_false(mp == NULL)) {
5252 return (cache_fpl_aborted(fpl));
5253 }
5254 if (!cache_fplookup_mp_supported(mp)) {
5256 return (cache_fpl_partial(fpl));
5257 }
5258 }
5259 return (0);
5260}
5261
5262static int
5264{
5265 struct componentname *cnp;
5266 struct namecache *ncp;
5267 struct vnode *dvp, *tvp;
5268 u_char nc_flag;
5269 uint32_t hash;
5270 int error;
5271
5272 cnp = fpl->cnp;
5273 dvp = fpl->dvp;
5274 hash = fpl->hash;
5275
5276 if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5277 if (cnp->cn_namelen == 1) {
5278 return (cache_fplookup_dot(fpl));
5279 }
5280 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5281 return (cache_fplookup_dotdot(fpl));
5282 }
5283 }
5284
5285 MPASS(!cache_fpl_isdotdot(cnp));
5286
5287 CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5288 if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5289 !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5290 break;
5291 }
5292
5293 if (__predict_false(ncp == NULL)) {
5294 return (cache_fplookup_noentry(fpl));
5295 }
5296
5297 tvp = atomic_load_ptr(&ncp->nc_vp);
5298 nc_flag = atomic_load_char(&ncp->nc_flag);
5299 if ((nc_flag & NCF_NEGATIVE) != 0) {
5300 return (cache_fplookup_neg(fpl, ncp, hash));
5301 }
5302
5303 if (!cache_ncp_canuse(ncp)) {
5304 return (cache_fpl_partial(fpl));
5305 }
5306
5307 fpl->tvp = tvp;
5308 fpl->tvp_seqc = vn_seqc_read_any(tvp);
5309 if (seqc_in_modify(fpl->tvp_seqc)) {
5310 return (cache_fpl_partial(fpl));
5311 }
5312
5313 counter_u64_add(numposhits, 1);
5314 SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5315
5316 error = 0;
5317 if (cache_fplookup_is_mp(fpl)) {
5318 error = cache_fplookup_cross_mount(fpl);
5319 }
5320 return (error);
5321}
5322
5323static bool
5325{
5326
5327 MPASS(mp != NULL);
5328 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5329 return (false);
5330 return (true);
5331}
5332
5333/*
5334 * Walk up the mount stack (if any).
5335 *
5336 * Correctness is provided in the following ways:
5337 * - all vnodes are protected from freeing with SMR
5338 * - struct mount objects are type stable making them always safe to access
5339 * - stability of the particular mount is provided by busying it
5340 * - relationship between the vnode which is mounted on and the mount is
5341 * verified with the vnode sequence counter after busying
5342 * - association between root vnode of the mount and the mount is protected
5343 * by busy
5344 *
5345 * From that point on we can read the sequence counter of the root vnode
5346 * and get the next mount on the stack (if any) using the same protection.
5347 *
5348 * By the end of successful walk we are guaranteed the reached state was
5349 * indeed present at least at some point which matches the regular lookup.
5350 */
5351static int __noinline
5353{
5354 struct mount *mp, *prev_mp;
5355 struct mount_pcpu *mpcpu, *prev_mpcpu;
5356 struct vnode *vp;
5357 seqc_t vp_seqc;
5358
5359 vp = fpl->tvp;
5360 vp_seqc = fpl->tvp_seqc;
5361
5362 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5363 mp = atomic_load_ptr(&vp->v_mountedhere);
5364 if (__predict_false(mp == NULL)) {
5365 return (0);
5366 }
5367
5368 prev_mp = NULL;
5369 for (;;) {
5370 if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5371 if (prev_mp != NULL)
5372 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5373 return (cache_fpl_partial(fpl));
5374 }
5375 if (prev_mp != NULL)
5376 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5377 if (!vn_seqc_consistent(vp, vp_seqc)) {
5378 vfs_op_thread_exit_crit(mp, mpcpu);
5379 return (cache_fpl_partial(fpl));
5380 }
5381 if (!cache_fplookup_mp_supported(mp)) {
5382 vfs_op_thread_exit_crit(mp, mpcpu);
5383 return (cache_fpl_partial(fpl));
5384 }
5385 vp = atomic_load_ptr(&mp->mnt_rootvnode);
5386 if (vp == NULL) {
5387 vfs_op_thread_exit_crit(mp, mpcpu);
5388 return (cache_fpl_partial(fpl));
5389 }
5390 vp_seqc = vn_seqc_read_any(vp);
5391 if (seqc_in_modify(vp_seqc)) {
5392 vfs_op_thread_exit_crit(mp, mpcpu);
5393 return (cache_fpl_partial(fpl));
5394 }
5395 prev_mp = mp;
5396 prev_mpcpu = mpcpu;
5397 mp = atomic_load_ptr(&vp->v_mountedhere);
5398 if (mp == NULL)
5399 break;
5400 }
5401
5402 vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5403 fpl->tvp = vp;
5404 fpl->tvp_seqc = vp_seqc;
5405 return (0);
5406}
5407
5408static int __noinline
5410{
5411 struct mount *mp;
5412 struct mount_pcpu *mpcpu;
5413 struct vnode *vp;
5414 seqc_t vp_seqc;
5415
5416 vp = fpl->tvp;
5417 vp_seqc = fpl->tvp_seqc;
5418
5419 VNPASS(vp->v_type == VDIR || vp->v_type == VBAD, vp);
5420 mp = atomic_load_ptr(&vp->v_mountedhere);
5421 if (__predict_false(mp == NULL)) {
5422 return (0);
5423 }
5424
5425 if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5426 return (cache_fpl_partial(fpl));
5427 }
5428 if (!vn_seqc_consistent(vp, vp_seqc)) {
5429 vfs_op_thread_exit_crit(mp, mpcpu);
5430 return (cache_fpl_partial(fpl));
5431 }
5432 if (!cache_fplookup_mp_supported(mp)) {
5433 vfs_op_thread_exit_crit(mp, mpcpu);
5434 return (cache_fpl_partial(fpl));
5435 }
5436 vp = atomic_load_ptr(&mp->mnt_rootvnode);
5437 if (__predict_false(vp == NULL)) {
5438 vfs_op_thread_exit_crit(mp, mpcpu);
5439 return (cache_fpl_partial(fpl));
5440 }
5441 vp_seqc = vn_seqc_read_any(vp);
5442 vfs_op_thread_exit_crit(mp, mpcpu);
5443 if (seqc_in_modify(vp_seqc)) {
5444 return (cache_fpl_partial(fpl));
5445 }
5446 mp = atomic_load_ptr(&vp->v_mountedhere);
5447 if (__predict_false(mp != NULL)) {
5448 /*
5449 * There are possibly more mount points on top.
5450 * Normally this does not happen so for simplicity just start
5451 * over.
5452 */
5453 return (cache_fplookup_climb_mount(fpl));
5454 }
5455
5456 fpl->tvp = vp;
5457 fpl->tvp_seqc = vp_seqc;
5458 return (0);
5459}
5460
5461/*
5462 * Check if a vnode is mounted on.
5463 */
5464static bool
5466{
5467 struct vnode *vp;
5468
5469 vp = fpl->tvp;
5470 return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5471}
5472
5473/*
5474 * Parse the path.
5475 *
5476 * The code was originally copy-pasted from regular lookup and despite
5477 * clean ups leaves performance on the table. Any modifications here
5478 * must take into account that in case off fallback the resulting
5479 * nameidata state has to be compatible with the original.
5480 */
5481
5482/*
5483 * Debug ni_pathlen tracking.
5484 */
5485#ifdef INVARIANTS
5486static void
5487cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5488{
5489
5490 fpl->debug.ni_pathlen += n;
5491 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5492 ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5493}
5494
5495static void
5496cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5497{
5498
5499 fpl->debug.ni_pathlen -= n;
5500 KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5501 ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5502}
5503
5504static void
5506{
5507
5508 cache_fpl_pathlen_add(fpl, 1);
5509}
5510
5511static void
5513{
5514
5515 cache_fpl_pathlen_sub(fpl, 1);
5516}
5517#else
5518static void
5519cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5520{
5521}
5522
5523static void
5524cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5525{
5526}
5527
5528static void
5530{
5531}
5532
5533static void
5535{
5536}
5537#endif
5538
5539static void
5541{
5542 struct nameidata *ndp;
5543 struct componentname *cnp;
5544 struct vnode *dvp;
5545 char *cp;
5546 uint32_t hash;
5547
5548 ndp = fpl->ndp;
5549 cnp = fpl->cnp;
5550 dvp = fpl->dvp;
5551
5552 /*
5553 * Find the end of this path component, it is either / or nul.
5554 *
5555 * Store / as a temporary sentinel so that we only have one character
5556 * to test for. Pathnames tend to be short so this should not be
5557 * resulting in cache misses.
5558 *
5559 * TODO: fix this to be word-sized.
5560 */
5561 MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5562 KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5563 ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5564 __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5565 fpl->nulchar, cnp->cn_pnbuf));
5566 KASSERT(*fpl->nulchar == '\0',
5567 ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5568 cnp->cn_pnbuf));
5569 hash = cache_get_hash_iter_start(dvp);
5570 *fpl->nulchar = '/';
5571 for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5572 KASSERT(*cp != '\0',
5573 ("%s: encountered unexpected nul; string [%s]\n", __func__,
5574 cnp->cn_nameptr));
5575 hash = cache_get_hash_iter(*cp, hash);
5576 continue;
5577 }
5578 *fpl->nulchar = '\0';
5579 fpl->hash = cache_get_hash_iter_finish(hash);
5580
5581 cnp->cn_namelen = cp - cnp->cn_nameptr;
5582 cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5583
5584#ifdef INVARIANTS
5585 /*
5586 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5587 * we are going to fail this lookup with ENAMETOOLONG (see below).
5588 */
5589 if (cnp->cn_namelen <= NAME_MAX) {
5590 if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5591 panic("%s: mismatched hash for [%s] len %ld", __func__,
5592 cnp->cn_nameptr, cnp->cn_namelen);
5593 }
5594 }
5595#endif
5596
5597 /*
5598 * Hack: we have to check if the found path component's length exceeds
5599 * NAME_MAX. However, the condition is very rarely true and check can
5600 * be elided in the common case -- if an entry was found in the cache,
5601 * then it could not have been too long to begin with.
5602 */
5603 ndp->ni_next = cp;
5604}
5605
5606static void
5608{
5609 struct nameidata *ndp;
5610 struct componentname *cnp;
5611
5612 ndp = fpl->ndp;
5613 cnp = fpl->cnp;
5614
5615 cnp->cn_nameptr = ndp->ni_next;
5616 KASSERT(*(cnp->cn_nameptr) == '/',
5617 ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5618 cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5619 cnp->cn_nameptr++;
5621}
5622
5623/*
5624 * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5625 *
5626 * Lockless lookup tries to elide checking for spurious slashes and should they
5627 * be present is guaranteed to fail to find an entry. In this case the caller
5628 * must check if the name starts with a slash and call this routine. It is
5629 * going to fast forward across the spurious slashes and set the state up for
5630 * retry.
5631 */
5632static int __noinline
5634{
5635 struct nameidata *ndp;
5636 struct componentname *cnp;
5637
5638 ndp = fpl->ndp;
5639 cnp = fpl->cnp;
5640
5641 MPASS(*(cnp->cn_nameptr) == '/');
5642 do {
5643 cnp->cn_nameptr++;
5645 } while (*(cnp->cn_nameptr) == '/');
5646
5647 /*
5648 * Go back to one slash so that cache_fplookup_parse_advance has
5649 * something to skip.
5650 */
5651 cnp->cn_nameptr--;
5653
5654 /*
5655 * cache_fplookup_parse_advance starts from ndp->ni_next
5656 */
5657 ndp->ni_next = cnp->cn_nameptr;
5658
5659 /*
5660 * See cache_fplookup_dot.
5661 */
5662 fpl->tvp = fpl->dvp;
5663 fpl->tvp_seqc = fpl->dvp_seqc;
5664
5665 return (0);
5666}
5667
5668/*
5669 * Handle trailing slashes (e.g., "foo/").
5670 *
5671 * If a trailing slash is found the terminal vnode must be a directory.
5672 * Regular lookup shortens the path by nulifying the first trailing slash and
5673 * sets the TRAILINGSLASH flag to denote this took place. There are several
5674 * checks on it performed later.
5675 *
5676 * Similarly to spurious slashes, lockless lookup handles this in a speculative
5677 * manner relying on an invariant that a non-directory vnode will get a miss.
5678 * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5679 *
5680 * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5681 * and denotes this is the last path component, which avoids looping back.
5682 *
5683 * Only plain lookups are supported for now to restrict corner cases to handle.
5684 */
5685static int __noinline
5687{
5688#ifdef INVARIANTS
5689 size_t ni_pathlen;
5690#endif
5691 struct nameidata *ndp;
5692 struct componentname *cnp;
5693 struct namecache *ncp;
5694 struct vnode *tvp;
5695 char *cn_nameptr_orig, *cn_nameptr_slash;
5696 seqc_t tvp_seqc;
5697 u_char nc_flag;
5698
5699 ndp = fpl->ndp;
5700 cnp = fpl->cnp;
5701 tvp = fpl->tvp;
5702 tvp_seqc = fpl->tvp_seqc;
5703
5704 MPASS(fpl->dvp == fpl->tvp);
5705 KASSERT(cache_fpl_istrailingslash(fpl),
5706 ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5707 cnp->cn_pnbuf));
5708 KASSERT(cnp->cn_nameptr[0] == '\0',
5709 ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5710 cnp->cn_pnbuf));
5711 KASSERT(cnp->cn_namelen == 0,
5712 ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5713 cnp->cn_pnbuf));
5714 MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5715
5716 if (cnp->cn_nameiop != LOOKUP) {
5717 return (cache_fpl_aborted(fpl));
5718 }
5719
5720 if (__predict_false(tvp->v_type != VDIR)) {
5721 if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5722 return (cache_fpl_aborted(fpl));
5723 }
5724 cache_fpl_smr_exit(fpl);
5725 return (cache_fpl_handled_error(fpl, ENOTDIR));
5726 }
5727
5728 /*
5729 * Denote the last component.
5730 */
5731 ndp->ni_next = &cnp->cn_nameptr[0];
5732 MPASS(cache_fpl_islastcn(ndp));
5733
5734 /*
5735 * Unwind trailing slashes.
5736 */
5737 cn_nameptr_orig = cnp->cn_nameptr;
5738 while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5739 cnp->cn_nameptr--;
5740 if (cnp->cn_nameptr[0] != '/') {
5741 break;
5742 }
5743 }
5744
5745 /*
5746 * Unwind to the beginning of the path component.
5747 *
5748 * Note the path may or may not have started with a slash.
5749 */
5750 cn_nameptr_slash = cnp->cn_nameptr;
5751 while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5752 cnp->cn_nameptr--;
5753 if (cnp->cn_nameptr[0] == '/') {
5754 break;
5755 }
5756 }
5757 if (cnp->cn_nameptr[0] == '/') {
5758 cnp->cn_nameptr++;
5759 }
5760
5761 cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5762 cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5764
5765#ifdef INVARIANTS
5766 ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5767 if (ni_pathlen != fpl->debug.ni_pathlen) {
5768 panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5769 __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5770 cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5771 }
5772#endif
5773
5774 /*
5775 * If this was a "./" lookup the parent directory is already correct.
5776 */
5777 if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5778 return (0);
5779 }
5780
5781 /*
5782 * Otherwise we need to look it up.
5783 */
5784 tvp = fpl->tvp;
5785 ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5786 if (__predict_false(ncp == NULL)) {
5787 return (cache_fpl_aborted(fpl));
5788 }
5789 nc_flag = atomic_load_char(&ncp->nc_flag);
5790 if ((nc_flag & NCF_ISDOTDOT) != 0) {
5791 return (cache_fpl_aborted(fpl));
5792 }
5793 fpl->dvp = ncp->nc_dvp;
5794 fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5795 if (seqc_in_modify(fpl->dvp_seqc)) {
5796 return (cache_fpl_aborted(fpl));
5797 }
5798 return (0);
5799}
5800
5801/*
5802 * See the API contract for VOP_FPLOOKUP_VEXEC.
5803 */
5804static int __noinline
5806{
5807 struct componentname *cnp;
5808 struct vnode *dvp;
5809 seqc_t dvp_seqc;
5810
5811 cnp = fpl->cnp;
5812 dvp = fpl->dvp;
5813 dvp_seqc = fpl->dvp_seqc;
5814
5815 /*
5816 * Hack: delayed empty path checking.
5817 */
5818 if (cnp->cn_pnbuf[0] == '\0') {
5819 return (cache_fplookup_emptypath(fpl));
5820 }
5821
5822 /*
5823 * TODO: Due to ignoring trailing slashes lookup will perform a
5824 * permission check on the last dir when it should not be doing it. It
5825 * may fail, but said failure should be ignored. It is possible to fix
5826 * it up fully without resorting to regular lookup, but for now just
5827 * abort.
5828 */
5829 if (cache_fpl_istrailingslash(fpl)) {
5830 return (cache_fpl_aborted(fpl));
5831 }
5832
5833 /*
5834 * Hack: delayed degenerate path checking.
5835 */
5836 if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
5837 return (cache_fplookup_degenerate(fpl));
5838 }
5839
5840 /*
5841 * Hack: delayed name len checking.
5842 */
5843 if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5844 cache_fpl_smr_exit(fpl);
5845 return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5846 }
5847
5848 /*
5849 * Hack: they may be looking up foo/bar, where foo is not a directory.
5850 * In such a case we need to return ENOTDIR, but we may happen to get
5851 * here with a different error.
5852 */
5853 if (dvp->v_type != VDIR) {
5854 error = ENOTDIR;
5855 }
5856
5857 /*
5858 * Hack: handle O_SEARCH.
5859 *
5860 * Open Group Base Specifications Issue 7, 2018 edition states:
5861 * <quote>
5862 * If the access mode of the open file description associated with the
5863 * file descriptor is not O_SEARCH, the function shall check whether
5864 * directory searches are permitted using the current permissions of
5865 * the directory underlying the file descriptor. If the access mode is
5866 * O_SEARCH, the function shall not perform the check.
5867 * </quote>
5868 *
5869 * Regular lookup tests for the NOEXECCHECK flag for every path
5870 * component to decide whether to do the permission check. However,
5871 * since most lookups never have the flag (and when they do it is only
5872 * present for the first path component), lockless lookup only acts on
5873 * it if there is a permission problem. Here the flag is represented
5874 * with a boolean so that we don't have to clear it on the way out.
5875 *
5876 * For simplicity this always aborts.
5877 * TODO: check if this is the first lookup and ignore the permission
5878 * problem. Note the flag has to survive fallback (if it happens to be
5879 * performed).
5880 */
5881 if (fpl->fsearch) {
5882 return (cache_fpl_aborted(fpl));
5883 }
5884
5885 switch (error) {
5886 case EAGAIN:
5887 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5888 error = cache_fpl_aborted(fpl);
5889 } else {
5890 cache_fpl_partial(fpl);
5891 }
5892 break;
5893 default:
5894 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5895 error = cache_fpl_aborted(fpl);
5896 } else {
5897 cache_fpl_smr_exit(fpl);
5898 cache_fpl_handled_error(fpl, error);
5899 }
5900 break;
5901 }
5902 return (error);
5903}
5904
5905static int
5906cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
5907{
5908 struct nameidata *ndp;
5909 struct componentname *cnp;
5910 struct mount *mp;
5911 int error;
5912
5913 ndp = fpl->ndp;
5914 cnp = fpl->cnp;
5915
5917
5918 /*
5919 * The vnode at hand is almost always stable, skip checking for it.
5920 * Worst case this postpones the check towards the end of the iteration
5921 * of the main loop.
5922 */
5923 fpl->dvp = dvp;
5924 fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
5925
5926 mp = atomic_load_ptr(&dvp->v_mount);
5927 if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
5928 return (cache_fpl_aborted(fpl));
5929 }
5930
5931 MPASS(fpl->tvp == NULL);
5932
5933 for (;;) {
5935
5936 error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
5937 if (__predict_false(error != 0)) {
5938 error = cache_fplookup_failed_vexec(fpl, error);
5939 break;
5940 }
5941
5942 error = cache_fplookup_next(fpl);
5943 if (__predict_false(cache_fpl_terminated(fpl))) {
5944 break;
5945 }
5946
5947 VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
5948
5949 if (fpl->tvp->v_type == VLNK) {
5950 error = cache_fplookup_symlink(fpl);
5951 if (cache_fpl_terminated(fpl)) {
5952 break;
5953 }
5954 } else {
5955 if (cache_fpl_islastcn(ndp)) {
5956 error = cache_fplookup_final(fpl);
5957 break;
5958 }
5959
5960 if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
5961 error = cache_fpl_aborted(fpl);
5962 break;
5963 }
5964
5965 fpl->dvp = fpl->tvp;
5966 fpl->dvp_seqc = fpl->tvp_seqc;
5968 }
5969
5971 }
5972
5973 return (error);
5974}
5975
5976/*
5977 * Fast path lookup protected with SMR and sequence counters.
5978 *
5979 * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
5980 *
5981 * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
5982 * outlined below.
5983 *
5984 * Traditional vnode lookup conceptually looks like this:
5985 *
5986 * vn_lock(current);
5987 * for (;;) {
5988 * next = find();
5989 * vn_lock(next);
5990 * vn_unlock(current);
5991 * current = next;
5992 * if (last)
5993 * break;
5994 * }
5995 * return (current);
5996 *
5997 * Each jump to the next vnode is safe memory-wise and atomic with respect to
5998 * any modifications thanks to holding respective locks.
5999 *
6000 * The same guarantee can be provided with a combination of safe memory
6001 * reclamation and sequence counters instead. If all operations which affect
6002 * the relationship between the current vnode and the one we are looking for
6003 * also modify the counter, we can verify whether all the conditions held as
6004 * we made the jump. This includes things like permissions, mount points etc.
6005 * Counter modification is provided by enclosing relevant places in
6006 * vn_seqc_write_begin()/end() calls.
6007 *
6008 * Thus this translates to:
6009 *
6010 * vfs_smr_enter();
6011 * dvp_seqc = seqc_read_any(dvp);
6012 * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6013 * abort();
6014 * for (;;) {
6015 * tvp = find();
6016 * tvp_seqc = seqc_read_any(tvp);
6017 * if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6018 * abort();
6019 * if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6020 * abort();
6021 * dvp = tvp; // we know nothing of importance has changed
6022 * dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6023 * if (last)
6024 * break;
6025 * }
6026 * vget(); // secure the vnode
6027 * if (!seqc_consistent(tvp, tvp_seqc) // final check
6028 * abort();
6029 * // at this point we know nothing has changed for any parent<->child pair
6030 * // as they were crossed during the lookup, meaning we matched the guarantee
6031 * // of the locked variant
6032 * return (tvp);
6033 *
6034 * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6035 * - they are called while within vfs_smr protection which they must never exit
6036 * - EAGAIN can be returned to denote checking could not be performed, it is
6037 * always valid to return it
6038 * - if the sequence counter has not changed the result must be valid
6039 * - if the sequence counter has changed both false positives and false negatives
6040 * are permitted (since the result will be rejected later)
6041 * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6042 *
6043 * Caveats to watch out for:
6044 * - vnodes are passed unlocked and unreferenced with nothing stopping
6045 * VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6046 * to use atomic_load_ptr to fetch it.
6047 * - the aforementioned object can also get freed, meaning absent other means it
6048 * should be protected with vfs_smr
6049 * - either safely checking permissions as they are modified or guaranteeing
6050 * their stability is left to the routine
6051 */
6052int
6053cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6054 struct pwd **pwdp)
6055{
6056 struct cache_fpl fpl;
6057 struct pwd *pwd;
6058 struct vnode *dvp;
6059 struct componentname *cnp;
6060 int error;
6061
6062 fpl.status = CACHE_FPL_STATUS_UNSET;
6063 fpl.in_smr = false;
6064 fpl.ndp = ndp;
6065 fpl.cnp = cnp = &ndp->ni_cnd;
6066 MPASS(ndp->ni_lcf == 0);
6067 KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6068 ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6069 cnp->cn_flags));
6070 if ((cnp->cn_flags & SAVESTART) != 0) {
6071 MPASS(cnp->cn_nameiop != LOOKUP);
6072 }
6073 MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6074
6075 if (__predict_false(!cache_can_fplookup(&fpl))) {
6076 *status = fpl.status;
6077 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6078 return (EOPNOTSUPP);
6079 }
6080
6082
6084#ifdef INVARIANTS
6085 fpl.debug.ni_pathlen = ndp->ni_pathlen;
6086#endif
6087 fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6088 fpl.fsearch = false;
6089 fpl.savename = (cnp->cn_flags & SAVENAME) != 0;
6090 fpl.tvp = NULL; /* for degenerate path handling */
6091 fpl.pwd = pwdp;
6092 pwd = pwd_get_smr();
6093 *(fpl.pwd) = pwd;
6094 ndp->ni_rootdir = pwd->pwd_rdir;
6095 ndp->ni_topdir = pwd->pwd_jdir;
6096
6097 if (cnp->cn_pnbuf[0] == '/') {
6098 dvp = cache_fpl_handle_root(&fpl);
6099 MPASS(ndp->ni_resflags == 0);
6100 ndp->ni_resflags = NIRES_ABS;
6101 } else {
6102 if (ndp->ni_dirfd == AT_FDCWD) {
6103 dvp = pwd->pwd_cdir;
6104 } else {
6105 error = cache_fplookup_dirfd(&fpl, &dvp);
6106 if (__predict_false(error != 0)) {
6107 goto out;
6108 }
6109 }
6110 }
6111
6112 SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6113 error = cache_fplookup_impl(dvp, &fpl);
6114out:
6117 *status = fpl.status;
6118 if (SDT_PROBES_ENABLED()) {
6119 SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6120 if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6121 SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6122 ndp);
6123 }
6124
6125 if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6126 MPASS(error != CACHE_FPL_FAILED);
6127 if (error != 0) {
6128 MPASS(fpl.dvp == NULL);
6129 MPASS(fpl.tvp == NULL);
6130 MPASS(fpl.savename == false);
6131 }
6132 ndp->ni_dvp = fpl.dvp;
6133 ndp->ni_vp = fpl.tvp;
6134 if (fpl.savename) {
6135 cnp->cn_flags |= HASBUF;
6136 } else {
6138 }
6139 }
6140 return (error);
6141}
struct timespec * ts
Definition: clock_if.m:39
int * count
Definition: cpufreq_if.m:63
device_property_type_t type
Definition: bus_if.m:941
const char * name
Definition: kern_fail.c:145
SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, CTLFLAG_RWTUN, &__elfN(allow_wx), 0, "Allow pages to be mapped simultaneously writable and executable")
volatile int ticks
Definition: kern_clock.c:380
struct pwd * pwd_hold(struct thread *td)
bool pwd_hold_smr(struct pwd *pwd)
void pwd_drop(struct pwd *pwd)
int fgetvp_lookup_smr(int fd, struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
void mtx_wait_unlocked(struct mtx *m)
Definition: kern_mutex.c:1287
static struct pollrec pr[POLL_LIST_LEN]
Definition: kern_poll.c:261
void panic(const char *fmt,...)
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1644
uint64_t * addr
Definition: msi_if.m:89
struct resource * res
Definition: pic_if.m:98
struct nameidata_outer snd_outer
Definition: vfs_cache.c:3932
struct componentname * cnp
Definition: vfs_cache.c:3924
struct vnode * tvp
Definition: vfs_cache.c:3927
seqc_t dvp_seqc
Definition: vfs_cache.c:3928
char * nulchar
Definition: vfs_cache.c:3925
struct nameidata * ndp
Definition: vfs_cache.c:3923
bool fsearch
Definition: vfs_cache.c:3936
bool in_smr
Definition: vfs_cache.c:3935
uint32_t hash
Definition: vfs_cache.c:3930
seqc_t tvp_seqc
Definition: vfs_cache.c:3929
bool savename
Definition: vfs_cache.c:3937
struct vnode * dvp
Definition: vfs_cache.c:3926
struct nameidata_saved snd
Definition: vfs_cache.c:3931
struct pwd ** pwd
Definition: vfs_cache.c:3938
enum cache_fpl_status status
Definition: vfs_cache.c:3934
struct mtx * blp[2]
Definition: vfs_cache.c:2131
struct mtx * vlp[3]
Definition: vfs_cache.c:2130
struct timespec nc_dotdottime
Definition: vfs_cache.c:295
struct namecache nc_nc
Definition: vfs_cache.c:298
struct timespec nc_time
Definition: vfs_cache.c:294
u_char nc_nlen
Definition: vfs_cache.c:279
u_char nc_flag
Definition: vfs_cache.c:278
char nc_name[]
Definition: vfs_cache.c:280
LIST_ENTRY(namecache)
Definition: vfs_cache.c:270
size_t ni_pathlen
Definition: vfs_cache.c:3905
u_char neg_hit
Definition: vfs_cache.c:264
u_char neg_flag
Definition: vfs_cache.c:263
static bool kasan_enabled __read_mostly
Definition: subr_asan.c:95
__read_mostly cap_rights_t cap_fstat_rights
uint64_t counter_u64_fetch(counter_u64_t c)
Definition: subr_counter.c:54
int mp_ncpus
Definition: subr_smp.c:72
uint16_t flags
Definition: subr_stats.c:2
sbintime_t created
Definition: subr_stats.c:9
struct mtx mtx
Definition: uipc_ktls.c:0
static int dummy
static __noinline int cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
Definition: vfs_cache.c:1713
SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created, "Number of created negative entries")
static int __noinline cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp, uint32_t hash, struct mtx *blp)
Definition: vfs_cache.c:1688
static u_long __read_mostly ncnegfactor
Definition: vfs_cache.c:419
static u_int __read_mostly ncsize
Definition: vfs_cache.c:411
SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0, "Ratio of negative namecache entries")
static void cache_hold_vnode(struct vnode *vp)
Definition: vfs_cache.c:617
void cache_purgevfs(struct mount *mp)
Definition: vfs_cache.c:3013
#define NCF_TS
Definition: vfs_cache.c:350
#define CACHE_ZONE_LARGE_SIZE
Definition: vfs_cache.c:334
static int cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
Definition: vfs_cache.c:936
#define cache_fpl_smr_assert_entered(fpl)
Definition: vfs_cache.c:4057
SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU", "VFS cache effectiveness statistics")
#define NCF_NEGATIVE
Definition: vfs_cache.c:353
static void cache_fpl_restore_abort(struct cache_fpl *fpl)
Definition: vfs_cache.c:4018
SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *", "char *")
static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *len, size_t addend)
Definition: vfs_cache.c:3317
#define STATNODE_COUNTER(name, varname, descr)
Definition: vfs_cache.c:533
static struct namecache * cache_alloc_uma(int len, bool ts)
Definition: vfs_cache.c:681
#define NCF_DTS
Definition: vfs_cache.c:351
static uint32_t cache_get_hash(char *name, u_char len, struct vnode *dvp)
Definition: vfs_cache.c:816
static long cache_lock_vnodes_cel_3_failures
Definition: vfs_cache.c:577
static void cache_purge_impl(struct vnode *vp)
Definition: vfs_cache.c:2820
SDT_PROBE_DECLARE(vfs, namei, lookup, entry)
SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *")
static u_int __read_mostly neg_min
Definition: vfs_cache.c:430
#define CACHE_FPL_SUPPORTED_CN_FLAGS
Definition: vfs_cache.c:4188
static void cache_fpl_cleanup_cnp(struct componentname *cnp)
Definition: vfs_cache.c:3956
static int cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
Definition: vfs_cache.c:4162
static void nchinit(void *dummy __unused)
Definition: vfs_cache.c:2645
#define NCHHASH(hash)
Definition: vfs_cache.c:437
void cache_purge_negative(struct vnode *vp)
Definition: vfs_cache.c:2911
static void cache_enter_unlock(struct celockstate *cel)
Definition: vfs_cache.c:2337
static void __noinline cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
Definition: vfs_cache.c:2345
int vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
Definition: vfs_cache.c:3242
static int cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
Definition: vfs_cache.c:5906
static struct mtx * VP2VNODELOCK(struct vnode *vp)
Definition: vfs_cache.c:492
static int cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp, struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash, struct mtx *blp)
Definition: vfs_cache.c:1657
int vn_commname(struct vnode *vp, char *buf, u_int buflen)
Definition: vfs_cache.c:3726
static struct neglist neglists[numneglists]
Definition: vfs_cache.c:465
static bool cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp, struct mtx **vlpp)
Definition: vfs_cache.c:1595
static void cache_fpl_pathlen_inc(struct cache_fpl *fpl)
Definition: vfs_cache.c:5529
void cache_fast_lookup_enabled_recalc(void)
Definition: vfs_cache.c:3866
void cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
Definition: vfs_cache.c:2973
char * cache_symlink_alloc(size_t size, int flags)
Definition: vfs_cache.c:647
static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
Definition: vfs_cache.c:5524
static void cache_fplookup_parse_advance(struct cache_fpl *fpl)
Definition: vfs_cache.c:5607
#define cache_sort_vnodes(x, y)
Definition: vfs_cache.c:884
#define CACHE_ZONE_SMALL_TS_SIZE
Definition: vfs_cache.c:333
#define CACHE_FPL_FAILED
Definition: vfs_cache.c:3863
#define CACHE_ZONE_ALIGNMENT
Definition: vfs_cache.c:309
static void cache_lock_all_vnodes(void)
Definition: vfs_cache.c:918
static void cache_neg_hit_finish(struct namecache *ncp)
Definition: vfs_cache.c:1225
static uint32_t cache_get_hash_iter(char c, uint32_t hash)
Definition: vfs_cache.c:830
static bool cache_fplookup_mp_supported(struct mount *mp)
Definition: vfs_cache.c:5324
static void cache_neg_demote_locked(struct namecache *ncp)
Definition: vfs_cache.c:1256
static int __noinline cache_fplookup_final_withparent(struct cache_fpl *fpl)
Definition: vfs_cache.c:4628
static struct mtx __read_mostly * vnodelocks
Definition: vfs_cache.c:490
static long zap_bucket_fail2
Definition: vfs_cache.c:575
__aligned(CACHE_LINE_SIZE)
static void cache_neg_insert(struct namecache *ncp)
Definition: vfs_cache.c:1363
void cache_changesize(u_long newmaxvnodes)
Definition: vfs_cache.c:2766
static void cache_fpl_restore_partial(struct cache_fpl *fpl)
Definition: vfs_cache.c:4008
static void cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
Definition: vfs_cache.c:3990
#define NCF_DVDROP
Definition: vfs_cache.c:352
void cache_vnode_init(struct vnode *vp)
Definition: vfs_cache.c:2691
static void cache_recalc_neg_min(u_int val)
Definition: vfs_cache.c:1002
#define CACHE_PATH_CUTOFF
Definition: vfs_cache.c:328
static uma_zone_t __read_mostly cache_zone_small
Definition: vfs_cache.c:641
static struct namecache * vn_dd_from_dst(struct vnode *vp)
Definition: vfs_cache.c:3229
#define cache_fpl_smr_assert_not_entered(fpl)
Definition: vfs_cache.c:4058
static struct neglist * cache_neg_evict_select_list(void)
Definition: vfs_cache.c:1397
static int kern___realpathat(struct thread *td, int fd, const char *path, char *buf, size_t size, int flags, enum uio_seg pathseg)
Definition: vfs_cache.c:3134
static void cache_drop_vnode(struct vnode *vp)
Definition: vfs_cache.c:627
static struct nchashhead * nchinittbl(u_long elements, u_long *hashmask)
Definition: vfs_cache.c:2620
void cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp, int flags)
Definition: vfs_cache.c:2597
#define NCF_WIP
Definition: vfs_cache.c:355
#define cache_fpl_assert_status(fpl)
Definition: vfs_cache.c:4059
static struct namecache * cache_neg_evict_select_entry(struct neglist *nl)
Definition: vfs_cache.c:1412
static int cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
Definition: vfs_cache.c:4386
static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries")
CTASSERT((nitems(((struct celockstate *) 0) ->vlp)==3))
static bool cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp, struct namecache *oncp, uint32_t hash)
Definition: vfs_cache.c:1282
static bool cache_neg_hit_prep(struct namecache *ncp)
Definition: vfs_cache.c:1201
static u_int cache_roundup_2(u_int val)
Definition: vfs_cache.c:2609
int vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, u_int pathlen)
Definition: vfs_cache.c:3759
static void cache_celockstate_init(struct celockstate *cel)
Definition: vfs_cache.c:2137
#define cache_fpl_aborted_early(x)
Definition: vfs_cache.c:4097
int sys___getcwd(struct thread *td, struct __getcwd_args *uap)
Definition: vfs_cache.c:3077
static struct nchashhead * NCP2BUCKET(struct namecache *ncp)
Definition: vfs_cache.c:844
static int __noinline cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
Definition: vfs_cache.c:4260
static int __noinline cache_fplookup_dot(struct cache_fpl *fpl)
Definition: vfs_cache.c:4994
static void cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp, struct vnode *dvp)
Definition: vfs_cache.c:2144
#define numbucketlocks
Definition: vfs_cache.c:482
static void cache_fpl_checkpoint(struct cache_fpl *fpl)
Definition: vfs_cache.c:3998
static uma_zone_t __read_mostly cache_zone_small_ts
Definition: vfs_cache.c:642
#define cache_fpl_handled_error(x, e)
Definition: vfs_cache.c:4179
#define NEG_HOT
Definition: vfs_cache.c:360
static void cache_free_batch(struct cache_freebatch *batch)
Definition: vfs_cache.c:762
#define ncneghash
static int __noinline cache_fplookup_degenerate(struct cache_fpl *fpl)
Definition: vfs_cache.c:4736
static bool cache_fpl_islastcn(struct nameidata *ndp)
Definition: vfs_cache.c:4201
int vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
Definition: vfs_cache.c:3205
static uint32_t cache_get_hash_iter_start(struct vnode *dvp)
Definition: vfs_cache.c:823
static bool cache_fplookup_is_mp(struct cache_fpl *fpl)
Definition: vfs_cache.c:5465
static int __noinline cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp)
Definition: vfs_cache.c:1822
static void cache_free(struct namecache *ncp)
Definition: vfs_cache.c:750
#define numneglists
static int sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
Definition: vfs_cache.c:1172
#define DEBUGNODE_ULONG(name, varname, descr)
Definition: vfs_cache.c:565
static u_int __read_mostly ncbuckethash
Definition: vfs_cache.c:483
SDT_PROVIDER_DECLARE(vfs)
static int cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
Definition: vfs_cache.c:4147
static void cache_neg_promote(struct namecache *ncp)
Definition: vfs_cache.c:1352
static int __noinline cache_fplookup_noentry(struct cache_fpl *fpl)
Definition: vfs_cache.c:4839
static struct mtx * NCP2BUCKETLOCK(struct namecache *ncp)
Definition: vfs_cache.c:853
static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen)
Definition: vfs_cache.c:3575
int vfs_cache_lookup(struct vop_lookup_args *ap)
Definition: vfs_cache.c:3045
#define cache_fpl_handled(x)
Definition: vfs_cache.c:4159
static bool cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
Definition: vfs_cache.c:2182
#define STATNODE_ULONG(name, varname, descr)
Definition: vfs_cache.c:531
static void cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
Definition: vfs_cache.c:968
#define cache_ncp_canuse(ncp)
Definition: vfs_cache.c:385
static bool cache_fpl_terminated(struct cache_fpl *fpl)
Definition: vfs_cache.c:4182
static void cache_lock_all_buckets(void)
Definition: vfs_cache.c:900
static int sysctl_negminpct(SYSCTL_HANDLER_ARGS)
Definition: vfs_cache.c:1009
TAILQ_HEAD(cache_freebatch, namecache)
int sys___realpathat(struct thread *td, struct __realpathat_args *uap)
Definition: vfs_cache.c:3158
#define DEBUGNODE_COUNTER(name, varname, descr)
Definition: vfs_cache.c:567
static void cache_fpl_pathlen_dec(struct cache_fpl *fpl)
Definition: vfs_cache.c:5534
static bool cache_has_entries(struct vnode *vp)
Definition: vfs_cache.c:2862
#define cache_fpl_smr_exit(fpl)
Definition: vfs_cache.c:4075
static struct mtx_padalign __read_mostly * bucketlocks
Definition: vfs_cache.c:484
#define numvnodelocks
Definition: vfs_cache.c:488
static void cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
Definition: vfs_cache.c:955
#define CACHE_FPL_INTERNAL_CN_FLAGS
Definition: vfs_cache.c:4194
static void cache_assert_vlp_locked(struct mtx *vlp)
Definition: vfs_cache.c:592
__FBSDID("$FreeBSD$")
static int __noinline cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
Definition: vfs_cache.c:5805
static int sysctl_nchstats(SYSCTL_HANDLER_ARGS)
Definition: vfs_cache.c:980
static void cache_zap_locked(struct namecache *ncp)
Definition: vfs_cache.c:1540
static int cache_fplookup_trailingslash(struct cache_fpl *fpl)
Definition: vfs_cache.c:5686
_Static_assert(sizeof(struct negstate)<=sizeof(struct vnode *), "the state must fit in a union with a pointer without growing it")
int cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp)
Definition: vfs_cache.c:2023
static uma_zone_t __read_mostly cache_zone_large
Definition: vfs_cache.c:643
void cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp, struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
Definition: vfs_cache.c:2937
static struct namecache * cache_alloc(int len, bool ts)
Definition: vfs_cache.c:721
#define CACHE_NEG_PROMOTION_THRESH
Definition: vfs_cache.c:1198
static long zap_bucket_fail
Definition: vfs_cache.c:573
static void cache_free_uma(struct namecache *ncp)
Definition: vfs_cache.c:702
static int __noinline cache_fplookup_final_modifying(struct cache_fpl *fpl)
Definition: vfs_cache.c:4424
static void cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, uint32_t hash)
Definition: vfs_cache.c:2257
static void cache_assert_vnode_locked(struct vnode *vp)
Definition: vfs_cache.c:600
static void cache_prehash(struct vnode *vp)
Definition: vfs_cache.c:809
int vn_getcwd(char *buf, char **retbuf, size_t *buflen)
Definition: vfs_cache.c:3098
static void cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
Definition: vfs_cache.c:499
static void cache_neg_promote_locked(struct namecache *ncp)
Definition: vfs_cache.c:1236
static int cache_fplookup_next(struct cache_fpl *fpl)
Definition: vfs_cache.c:5263
static COUNTER_U64_DEFINE_EARLY(neg_created)
#define NCF_WHITE
Definition: vfs_cache.c:348
static void cache_fplookup_parse(struct cache_fpl *fpl)
Definition: vfs_cache.c:5540
#define cache_fpl_partial(x)
Definition: vfs_cache.c:4144
static void cache_ncp_invalidate(struct namecache *ncp)
Definition: vfs_cache.c:370
static bool cache_fpl_isdotdot(struct componentname *cnp)
Definition: vfs_cache.c:4216
static int cache_fplookup_cross_mount(struct cache_fpl *fpl)
Definition: vfs_cache.c:5409
SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *", "struct namecache *", "int", "int")
#define cache_neg_hit_abort(ncp)
Definition: vfs_cache.c:1222
static void cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
Definition: vfs_cache.c:2710
static u_int ncnegminpct
Definition: vfs_cache.c:428
static struct negstate * NCP2NEGSTATE(struct namecache *ncp)
Definition: vfs_cache.c:475
static void cache_unlock_vnodes_cel(struct celockstate *cel)
Definition: vfs_cache.c:2168
int vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
Definition: vfs_cache.c:3170
#define cache_assert_bucket_locked(x)
Definition: vfs_cache.c:880
static int __noinline cache_fplookup_dotdot(struct cache_fpl *fpl)
Definition: vfs_cache.c:5018
SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RW, &ncsize, 0, "Total namecache capacity")
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *", "struct vnode *")
int cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status, struct pwd **pwdp)
Definition: vfs_cache.c:6053
static int syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
Definition: vfs_cache.c:3887
static uma_zone_t __read_mostly cache_zone_large_ts
Definition: vfs_cache.c:644
static int cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
Definition: vfs_cache.c:4083
static int __noinline cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
Definition: vfs_cache.c:4100
void cache_purge_vgone(struct vnode *vp)
Definition: vfs_cache.c:2885
#define HASH2BUCKETLOCK(hash)
Definition: vfs_cache.c:485
void cache_purge(struct vnode *vp)
Definition: vfs_cache.c:2872
static struct neglist * NCP2NEGLIST(struct namecache *ncp)
Definition: vfs_cache.c:468
static void cache_unlock_buckets_cel(struct celockstate *cel)
Definition: vfs_cache.c:2238
static void cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
Definition: vfs_cache.c:1580
#define cache_fpl_smr_enter_initial(fpl)
Definition: vfs_cache.c:4062
static bool cache_neg_evict_cond(u_long lnumcache)
Definition: vfs_cache.c:1518
static int __noinline cache_fplookup_emptypath(struct cache_fpl *fpl)
Definition: vfs_cache.c:4792
static int cache_fplookup_skip_slashes(struct cache_fpl *fpl)
Definition: vfs_cache.c:5633
static int __noinline cache_fplookup_symlink(struct cache_fpl *fpl)
Definition: vfs_cache.c:5191
static char __read_frequently cache_fast_lookup_enabled
Definition: vfs_cache.c:256
SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, sizeof(struct namecache), "sizeof(struct namecache)")
static uint32_t cache_get_hash_iter_finish(uint32_t hash)
Definition: vfs_cache.c:837
void cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp)
Definition: vfs_cache.c:2376
static int __noinline cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp)
Definition: vfs_cache.c:1788
static void ncfreetbl(struct nchashhead *hashtbl)
Definition: vfs_cache.c:2635
static bool cache_neg_evict(void)
Definition: vfs_cache.c:1439
static void cache_neg_remove(struct namecache *ncp)
Definition: vfs_cache.c:1377
#define CACHE_ZONE_SMALL_SIZE
Definition: vfs_cache.c:332
VFS_SMR_DECLARE
Definition: vfs_cache.c:406
static int __noinline cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
Definition: vfs_cache.c:4132
void cache_symlink_free(char *string, size_t size)
Definition: vfs_cache.c:662
static bool cache_can_fplookup(struct cache_fpl *fpl)
Definition: vfs_cache.c:4226
static void cache_neg_init(struct namecache *ncp)
Definition: vfs_cache.c:1187
static int cache_fast_lookup
Definition: vfs_cache.c:3861
static int __noinline cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp, uint32_t hash)
Definition: vfs_cache.c:4285
static void cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1, struct mtx *blp2)
Definition: vfs_cache.c:2220
static int cache_fplookup_partial_setup(struct cache_fpl *fpl)
Definition: vfs_cache.c:4305
static void cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
Definition: vfs_cache.c:2742
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL)
static int __noinline cache_fplookup_modifying(struct cache_fpl *fpl)
Definition: vfs_cache.c:4615
int vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp, const char *hrdl_name, size_t hrdl_name_length, char **retbuf, char **freebuf, size_t *buflen)
Definition: vfs_cache.c:3620
#define cache_fpl_aborted(x)
Definition: vfs_cache.c:4129
#define CACHE_ZONE_LARGE_TS_SIZE
Definition: vfs_cache.c:335
static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
Definition: vfs_cache.c:5519
static int __noinline cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp)
Definition: vfs_cache.c:1946
static __read_mostly CK_SLIST_HEAD(nchashhead, namecache)
Definition: vfs_cache.c:439
static int __noinline cache_fplookup_climb_mount(struct cache_fpl *fpl)
Definition: vfs_cache.c:5352
#define NCF_INVALID
Definition: vfs_cache.c:354
#define NCF_ISDOTDOT
Definition: vfs_cache.c:349
static void cache_unlock_all_buckets(void)
Definition: vfs_cache.c:909
#define cache_fpl_neg_ncp_canuse(ncp)
Definition: vfs_cache.c:397
static int __noinline cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
Definition: vfs_cache.c:5096
static struct vnode * cache_fpl_handle_root(struct cache_fpl *fpl)
Definition: vfs_cache.c:3967
static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW|CTLFLAG_MPSAFE, 0, "Name cache")
int cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
Definition: vfs_cache.c:5132
struct vnode * vn_dir_dd_ino(struct vnode *vp)
Definition: vfs_cache.c:3701
static void cache_unlock_all_vnodes(void)
Definition: vfs_cache.c:927
static void __inline cache_rev_failed_impl(int *reason, int line)
Definition: vfs_cache.c:3431
u_int ncsizefactor
Definition: vfs_cache.c:415
static int cache_fplookup_final(struct cache_fpl *fpl)
Definition: vfs_cache.c:4694
static void _cache_sort_vnodes(void **p1, void **p2)
Definition: vfs_cache.c:886
static void cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp, uint32_t hash)
Definition: vfs_cache.c:2300
#define cache_rev_failed(var)
Definition: vfs_cache.c:3436
static bool cache_fpl_istrailingslash(struct cache_fpl *fpl)
Definition: vfs_cache.c:4208
static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf, size_t *buflen, size_t addend)
Definition: vfs_cache.c:3439
static u_int __read_mostly ncvnodehash
Definition: vfs_cache.c:489
#define cache_assert_bucket_unlocked(x)
Definition: vfs_cache.c:881
const char * path
Definition: vfs_extattr.c:715
uma_zone_t namei_zone
Definition: vfs_lookup.c:84
void() NDFREE(struct nameidata *ndp, const u_int flags)
Definition: vfs_lookup.c:1555
int namei(struct nameidata *ndp)
Definition: vfs_lookup.c:535
struct vnode * rootvnode
void vhold(struct vnode *vp)
Definition: vfs_subr.c:3376
enum vgetstate vget_prep_smr(struct vnode *vp)
Definition: vfs_subr.c:2954
int vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
Definition: vfs_subr.c:6922
void vref(struct vnode *vp)
Definition: vfs_subr.c:3065
void vget_finish_ref(struct vnode *vp, enum vgetstate vs)
Definition: vfs_subr.c:3036
u_long desiredvnodes
Definition: vfs_subr.c:303
int vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
Definition: vfs_subr.c:3011
void vget_abort(struct vnode *vp, enum vgetstate vs)
Definition: vfs_subr.c:2986
void vrefact(struct vnode *vp)
Definition: vfs_subr.c:3075
enum vgetstate vget_prep(struct vnode *vp)
Definition: vfs_subr.c:2972
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334
void vput(struct vnode *vp)
Definition: vfs_subr.c:3348
void vdrop(struct vnode *vp)
Definition: vfs_subr.c:3619
struct stat * buf
int fd
int flag