FreeBSD kernel kern code
kern_exit.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/capsicum.h>
49#include <sys/eventhandler.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/malloc.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/procdesc.h>
57#include <sys/jail.h>
58#include <sys/tty.h>
59#include <sys/wait.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <sys/racct.h>
63#include <sys/resourcevar.h>
64#include <sys/sbuf.h>
65#include <sys/signalvar.h>
66#include <sys/sched.h>
67#include <sys/sx.h>
68#include <sys/syscallsubr.h>
69#include <sys/sysctl.h>
70#include <sys/syslog.h>
71#include <sys/ptrace.h>
72#include <sys/acct.h> /* for acct_process() function prototype */
73#include <sys/filedesc.h>
74#include <sys/sdt.h>
75#include <sys/shm.h>
76#include <sys/sem.h>
77#include <sys/sysent.h>
78#include <sys/timers.h>
79#include <sys/umtxvar.h>
80#ifdef KTRACE
81#include <sys/ktrace.h>
82#endif
83
84#include <security/audit/audit.h>
85#include <security/mac/mac_framework.h>
86
87#include <vm/vm.h>
88#include <vm/vm_extern.h>
89#include <vm/vm_param.h>
90#include <vm/pmap.h>
91#include <vm/vm_map.h>
92#include <vm/vm_page.h>
93#include <vm/uma.h>
94
95#ifdef KDTRACE_HOOKS
96#include <sys/dtrace_bsd.h>
97dtrace_execexit_func_t dtrace_fasttrap_exit;
98#endif
99
101SDT_PROBE_DEFINE1(proc, , , exit, "int");
102
104SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN,
106 "Kill ptraced processes when debugger exits");
107
109SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN,
111 "Dequeue SIGCHLD on wait(2) for live process");
112
113struct proc *
115{
116 struct proc *p, *parent;
117
118 sx_assert(&proctree_lock, SX_LOCKED);
119 if ((child->p_treeflag & P_TREE_ORPHANED) == 0)
120 return (child->p_pptr->p_pid == child->p_oppid ?
121 child->p_pptr : child->p_reaper);
122 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
123 /* Cannot use LIST_PREV(), since the list head is not known. */
124 p = __containerof(p->p_orphan.le_prev, struct proc,
125 p_orphan.le_next);
126 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
127 ("missing P_ORPHAN %p", p));
128 }
129 parent = __containerof(p->p_orphan.le_prev, struct proc,
130 p_orphans.lh_first);
131 return (parent);
132}
133
134void
135reaper_abandon_children(struct proc *p, bool exiting)
136{
137 struct proc *p1, *p2, *ptmp;
138
139 sx_assert(&proctree_lock, SX_LOCKED);
140 KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
141 if ((p->p_treeflag & P_TREE_REAPER) == 0)
142 return;
143 p1 = p->p_reaper;
144 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
145 LIST_REMOVE(p2, p_reapsibling);
146 p2->p_reaper = p1;
147 p2->p_reapsubtree = p->p_reapsubtree;
148 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
149 if (exiting && p2->p_pptr == p) {
150 PROC_LOCK(p2);
151 proc_reparent(p2, p1, true);
152 PROC_UNLOCK(p2);
153 }
154 }
155 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
156 p->p_treeflag &= ~P_TREE_REAPER;
157}
158
159static void
160reaper_clear(struct proc *p)
161{
162 struct proc *p1;
163 bool clear;
164
165 sx_assert(&proctree_lock, SX_LOCKED);
166 LIST_REMOVE(p, p_reapsibling);
167 if (p->p_reapsubtree == 1)
168 return;
169 clear = true;
170 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) {
171 if (p1->p_reapsubtree == p->p_reapsubtree) {
172 clear = false;
173 break;
174 }
175 }
176 if (clear)
177 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree);
178}
179
180void
181proc_clear_orphan(struct proc *p)
182{
183 struct proc *p1;
184
185 sx_assert(&proctree_lock, SA_XLOCKED);
186 if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
187 return;
188 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
189 p1 = LIST_NEXT(p, p_orphan);
190 if (p1 != NULL)
191 p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
192 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
193 }
194 LIST_REMOVE(p, p_orphan);
195 p->p_treeflag &= ~P_TREE_ORPHANED;
196}
197
198void
199exit_onexit(struct proc *p)
200{
201 MPASS(p->p_numthreads == 1);
202 umtx_thread_exit(FIRST_THREAD_IN_PROC(p));
203}
204
205/*
206 * exit -- death of process.
207 */
208int
209sys_exit(struct thread *td, struct exit_args *uap)
210{
211
212 exit1(td, uap->rval, 0);
213 __unreachable();
214}
215
216/*
217 * Exit: deallocate address space and other resources, change proc state to
218 * zombie, and unlink proc from allproc and parent's lists. Save exit status
219 * and rusage for wait(). Check for child processes and orphan them.
220 */
221void
222exit1(struct thread *td, int rval, int signo)
223{
224 struct proc *p, *nq, *q, *t;
225 struct thread *tdt;
226 ksiginfo_t *ksi, *ksi1;
227 int signal_parent;
228
229 mtx_assert(&Giant, MA_NOTOWNED);
230 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
231 TSPROCEXIT(td->td_proc->p_pid);
232
233 p = td->td_proc;
234 /*
235 * XXX in case we're rebooting we just let init die in order to
236 * work around an unsolved stack overflow seen very late during
237 * shutdown on sparc64 when the gmirror worker process exists.
238 * XXX what to do now that sparc64 is gone... remove if?
239 */
240 if (p == initproc && rebooting == 0) {
241 printf("init died (signal %d, exit %d)\n", signo, rval);
242 panic("Going nowhere without my init!");
243 }
244
245 /*
246 * Deref SU mp, since the thread does not return to userspace.
247 */
248 td_softdep_cleanup(td);
249
250 /*
251 * MUST abort all other threads before proceeding past here.
252 */
253 PROC_LOCK(p);
254 /*
255 * First check if some other thread or external request got
256 * here before us. If so, act appropriately: exit or suspend.
257 * We must ensure that stop requests are handled before we set
258 * P_WEXIT.
259 */
261 while (p->p_flag & P_HADTHREADS) {
262 /*
263 * Kill off the other threads. This requires
264 * some co-operation from other parts of the kernel
265 * so it may not be instantaneous. With this state set
266 * any thread entering the kernel from userspace will
267 * thread_exit() in trap(). Any thread attempting to
268 * sleep will return immediately with EINTR or EWOULDBLOCK
269 * which will hopefully force them to back out to userland
270 * freeing resources as they go. Any thread attempting
271 * to return to userland will thread_exit() from userret().
272 * thread_exit() will unsuspend us when the last of the
273 * other threads exits.
274 * If there is already a thread singler after resumption,
275 * calling thread_single will fail; in that case, we just
276 * re-check all suspension request, the thread should
277 * either be suspended there or exit.
278 */
279 if (!thread_single(p, SINGLE_EXIT))
280 /*
281 * All other activity in this process is now
282 * stopped. Threading support has been turned
283 * off.
284 */
285 break;
286 /*
287 * Recheck for new stop or suspend requests which
288 * might appear while process lock was dropped in
289 * thread_single().
290 */
292 }
293 KASSERT(p->p_numthreads == 1,
294 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
295 racct_sub(p, RACCT_NTHR, 1);
296
297 /* Let event handler change exit status */
298 p->p_xexit = rval;
299 p->p_xsig = signo;
300
301 /*
302 * Ignore any pending request to stop due to a stop signal.
303 * Once P_WEXIT is set, future requests will be ignored as
304 * well.
305 */
306 p->p_flag &= ~P_STOPPED_SIG;
307 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
308
309 /* Note that we are exiting. */
310 p->p_flag |= P_WEXIT;
311
312 /*
313 * Wait for any processes that have a hold on our vmspace to
314 * release their reference.
315 */
316 while (p->p_lock > 0)
317 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
318
319 PROC_UNLOCK(p);
320 /* Drain the limit callout while we don't have the proc locked */
321 callout_drain(&p->p_limco);
322
323#ifdef AUDIT
324 /*
325 * The Sun BSM exit token contains two components: an exit status as
326 * passed to exit(), and a return value to indicate what sort of exit
327 * it was. The exit status is WEXITSTATUS(rv), but it's not clear
328 * what the return value is.
329 */
330 AUDIT_ARG_EXIT(rval, 0);
331 AUDIT_SYSCALL_EXIT(0, td);
332#endif
333
334 /* Are we a task leader with peers? */
335 if (p->p_peers != NULL && p == p->p_leader) {
336 mtx_lock(&ppeers_lock);
337 q = p->p_peers;
338 while (q != NULL) {
339 PROC_LOCK(q);
340 kern_psignal(q, SIGKILL);
341 PROC_UNLOCK(q);
342 q = q->p_peers;
343 }
344 while (p->p_peers != NULL)
345 msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
346 mtx_unlock(&ppeers_lock);
347 }
348
349 itimers_exit(p);
350
351 /*
352 * Check if any loadable modules need anything done at process exit.
353 * E.g. SYSV IPC stuff.
354 * Event handler could change exit status.
355 * XXX what if one of these generates an error?
356 */
357 EVENTHANDLER_DIRECT_INVOKE(process_exit, p);
358
359 /*
360 * If parent is waiting for us to exit or exec,
361 * P_PPWAIT is set; we will wakeup the parent below.
362 */
363 PROC_LOCK(p);
364 stopprofclock(p);
365 p->p_ptevents = 0;
366
367 /*
368 * Stop the real interval timer. If the handler is currently
369 * executing, prevent it from rearming itself and let it finish.
370 */
371 if (timevalisset(&p->p_realtimer.it_value) &&
372 _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) {
373 timevalclear(&p->p_realtimer.it_interval);
374 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
375 KASSERT(!timevalisset(&p->p_realtimer.it_value),
376 ("realtime timer is still armed"));
377 }
378
379 PROC_UNLOCK(p);
380
381 if (p->p_sysent->sv_onexit != NULL)
382 p->p_sysent->sv_onexit(p);
383 seltdfini(td);
384
385 /*
386 * Reset any sigio structures pointing to us as a result of
387 * F_SETOWN with our pid. The P_WEXIT flag interlocks with fsetown().
388 */
389 funsetownlst(&p->p_sigiolst);
390
391 /*
392 * Close open files and release open-file table.
393 * This may block!
394 */
395 pdescfree(td);
396 fdescfree(td);
397
398 /*
399 * If this thread tickled GEOM, we need to wait for the giggling to
400 * stop before we return to userland
401 */
402 if (td->td_pflags & TDP_GEOM)
403 g_waitidle();
404
405 /*
406 * Remove ourself from our leader's peer list and wake our leader.
407 */
408 if (p->p_leader->p_peers != NULL) {
409 mtx_lock(&ppeers_lock);
410 if (p->p_leader->p_peers != NULL) {
411 q = p->p_leader;
412 while (q->p_peers != p)
413 q = q->p_peers;
414 q->p_peers = p->p_peers;
415 wakeup(p->p_leader);
416 }
417 mtx_unlock(&ppeers_lock);
418 }
419
421 vmspace_exit(td);
422 (void)acct_process(td);
423
424#ifdef KTRACE
425 ktrprocexit(td);
426#endif
427 /*
428 * Release reference to text vnode etc
429 */
430 if (p->p_textvp != NULL) {
431 vrele(p->p_textvp);
432 p->p_textvp = NULL;
433 }
434 if (p->p_textdvp != NULL) {
435 vrele(p->p_textdvp);
436 p->p_textdvp = NULL;
437 }
438 if (p->p_binname != NULL) {
439 free(p->p_binname, M_PARGS);
440 p->p_binname = NULL;
441 }
442
443 /*
444 * Release our limits structure.
445 */
446 lim_free(p->p_limit);
447 p->p_limit = NULL;
448
449 tidhash_remove(td);
450
451 /*
452 * Call machine-dependent code to release any
453 * machine-dependent resources other than the address space.
454 * The address space is released by "vmspace_exitfree(p)" in
455 * vm_waitproc().
456 */
457 cpu_exit(td);
458
459 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
460
461 /*
462 * Remove from allproc. It still sits in the hash.
463 */
464 sx_xlock(&allproc_lock);
465 LIST_REMOVE(p, p_list);
466
467#ifdef DDB
468 /*
469 * Used by ddb's 'ps' command to find this process via the
470 * pidhash.
471 */
472 p->p_list.le_prev = NULL;
473#endif
474 sx_xunlock(&allproc_lock);
475
476 sx_xlock(&proctree_lock);
477 PROC_LOCK(p);
478 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
479 PROC_UNLOCK(p);
480
481 /*
482 * killjobc() might drop and re-acquire proctree_lock to
483 * revoke control tty if exiting process was a session leader.
484 */
485 killjobc();
486
487 /*
488 * Reparent all children processes:
489 * - traced ones to the original parent (or init if we are that parent)
490 * - the rest to init
491 */
492 q = LIST_FIRST(&p->p_children);
493 if (q != NULL) /* only need this if any child is S_ZOMB */
494 wakeup(q->p_reaper);
495 for (; q != NULL; q = nq) {
496 nq = LIST_NEXT(q, p_sibling);
497 ksi = ksiginfo_alloc(TRUE);
498 PROC_LOCK(q);
499 q->p_sigparent = SIGCHLD;
500
501 if ((q->p_flag & P_TRACED) == 0) {
502 proc_reparent(q, q->p_reaper, true);
503 if (q->p_state == PRS_ZOMBIE) {
504 /*
505 * Inform reaper about the reparented
506 * zombie, since wait(2) has something
507 * new to report. Guarantee queueing
508 * of the SIGCHLD signal, similar to
509 * the _exit() behaviour, by providing
510 * our ksiginfo. Ksi is freed by the
511 * signal delivery.
512 */
513 if (q->p_ksi == NULL) {
514 ksi1 = NULL;
515 } else {
516 ksiginfo_copy(q->p_ksi, ksi);
517 ksi->ksi_flags |= KSI_INS;
518 ksi1 = ksi;
519 ksi = NULL;
520 }
521 PROC_LOCK(q->p_reaper);
522 pksignal(q->p_reaper, SIGCHLD, ksi1);
523 PROC_UNLOCK(q->p_reaper);
524 } else if (q->p_pdeathsig > 0) {
525 /*
526 * The child asked to received a signal
527 * when we exit.
528 */
529 kern_psignal(q, q->p_pdeathsig);
530 }
531 } else {
532 /*
533 * Traced processes are killed by default
534 * since their existence means someone is
535 * screwing up.
536 */
537 t = proc_realparent(q);
538 if (t == p) {
539 proc_reparent(q, q->p_reaper, true);
540 } else {
541 PROC_LOCK(t);
542 proc_reparent(q, t, true);
543 PROC_UNLOCK(t);
544 }
545 /*
546 * Since q was found on our children list, the
547 * proc_reparent() call moved q to the orphan
548 * list due to present P_TRACED flag. Clear
549 * orphan link for q now while q is locked.
550 */
552 q->p_flag &= ~P_TRACED;
553 q->p_flag2 &= ~P2_PTRACE_FSTP;
554 q->p_ptevents = 0;
555 p->p_xthread = NULL;
556 FOREACH_THREAD_IN_PROC(q, tdt) {
557 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
558 TDB_FSTP);
559 tdt->td_xsig = 0;
560 }
562 q->p_flag &= ~P_STOPPED_TRACE;
563 kern_psignal(q, SIGKILL);
564 } else if ((q->p_flag & (P_STOPPED_TRACE |
565 P_STOPPED_SIG)) != 0) {
566 sigqueue_delete_proc(q, SIGTRAP);
568 }
569 }
570 PROC_UNLOCK(q);
571 if (ksi != NULL)
572 ksiginfo_free(ksi);
573 }
574
575 /*
576 * Also get rid of our orphans.
577 */
578 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
579 PROC_LOCK(q);
580 KASSERT(q->p_oppid == p->p_pid,
581 ("orphan %p of %p has unexpected oppid %d", q, p,
582 q->p_oppid));
583 q->p_oppid = q->p_reaper->p_pid;
584
585 /*
586 * If we are the real parent of this process
587 * but it has been reparented to a debugger, then
588 * check if it asked for a signal when we exit.
589 */
590 if (q->p_pdeathsig > 0)
591 kern_psignal(q, q->p_pdeathsig);
592 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
593 q->p_pid);
595 PROC_UNLOCK(q);
596 }
597
598#ifdef KDTRACE_HOOKS
599 if (SDT_PROBES_ENABLED()) {
600 int reason = CLD_EXITED;
601 if (WCOREDUMP(signo))
602 reason = CLD_DUMPED;
603 else if (WIFSIGNALED(signo))
604 reason = CLD_KILLED;
605 SDT_PROBE1(proc, , , exit, reason);
606 }
607#endif
608
609 /* Save exit status. */
610 PROC_LOCK(p);
611 p->p_xthread = td;
612
613 if (p->p_sysent->sv_ontdexit != NULL)
614 p->p_sysent->sv_ontdexit(td);
615
616#ifdef KDTRACE_HOOKS
617 /*
618 * Tell the DTrace fasttrap provider about the exit if it
619 * has declared an interest.
620 */
621 if (dtrace_fasttrap_exit)
622 dtrace_fasttrap_exit(p);
623#endif
624
625 /*
626 * Notify interested parties of our demise.
627 */
628 KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
629
630 /*
631 * If this is a process with a descriptor, we may not need to deliver
632 * a signal to the parent. proctree_lock is held over
633 * procdesc_exit() to serialize concurrent calls to close() and
634 * exit().
635 */
636 signal_parent = 0;
637 if (p->p_procdesc == NULL || procdesc_exit(p)) {
638 /*
639 * Notify parent that we're gone. If parent has the
640 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
641 * notify process 1 instead (and hope it will handle this
642 * situation).
643 */
644 PROC_LOCK(p->p_pptr);
645 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
646 if (p->p_pptr->p_sigacts->ps_flag &
647 (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
648 struct proc *pp;
649
650 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
651 pp = p->p_pptr;
652 PROC_UNLOCK(pp);
653 proc_reparent(p, p->p_reaper, true);
654 p->p_sigparent = SIGCHLD;
655 PROC_LOCK(p->p_pptr);
656
657 /*
658 * Notify parent, so in case he was wait(2)ing or
659 * executing waitpid(2) with our pid, he will
660 * continue.
661 */
662 wakeup(pp);
663 } else
664 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
665
666 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) {
667 signal_parent = 1;
668 } else if (p->p_sigparent != 0) {
669 if (p->p_sigparent == SIGCHLD) {
670 signal_parent = 1;
671 } else { /* LINUX thread */
672 signal_parent = 2;
673 }
674 }
675 } else
676 PROC_LOCK(p->p_pptr);
677 sx_xunlock(&proctree_lock);
678
679 if (signal_parent == 1) {
681 } else if (signal_parent == 2) {
682 kern_psignal(p->p_pptr, p->p_sigparent);
683 }
684
685 /* Tell the prison that we are gone. */
686 prison_proc_free(p->p_ucred->cr_prison);
687
688 /*
689 * The state PRS_ZOMBIE prevents other proesses from sending
690 * signal to the process, to avoid memory leak, we free memory
691 * for signal queue at the time when the state is set.
692 */
693 sigqueue_flush(&p->p_sigqueue);
694 sigqueue_flush(&td->td_sigqueue);
695
696 /*
697 * We have to wait until after acquiring all locks before
698 * changing p_state. We need to avoid all possible context
699 * switches (including ones from blocking on a mutex) while
700 * marked as a zombie. We also have to set the zombie state
701 * before we release the parent process' proc lock to avoid
702 * a lost wakeup. So, we first call wakeup, then we grab the
703 * sched lock, update the state, and release the parent process'
704 * proc lock.
705 */
706 wakeup(p->p_pptr);
707 cv_broadcast(&p->p_pwait);
708 sched_exit(p->p_pptr, td);
709 PROC_SLOCK(p);
710 p->p_state = PRS_ZOMBIE;
711 PROC_UNLOCK(p->p_pptr);
712
713 /*
714 * Save our children's rusage information in our exit rusage.
715 */
716 PROC_STATLOCK(p);
717 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
718 PROC_STATUNLOCK(p);
719
720 /*
721 * Make sure the scheduler takes this thread out of its tables etc.
722 * This will also release this thread's reference to the ucred.
723 * Other thread parts to release include pcb bits and such.
724 */
725 thread_exit();
726}
727
728#ifndef _SYS_SYSPROTO_H_
730 char *why;
731 int nargs;
732 void **args;
733};
734#endif
735
736int
737sys_abort2(struct thread *td, struct abort2_args *uap)
738{
739 void *uargs[16];
740 void **uargsp;
741 int error, nargs;
742
743 nargs = uap->nargs;
744 if (nargs < 0 || nargs > nitems(uargs))
745 nargs = -1;
746 uargsp = NULL;
747 if (nargs > 0) {
748 if (uap->args != NULL) {
749 error = copyin(uap->args, uargs,
750 nargs * sizeof(void *));
751 if (error != 0)
752 nargs = -1;
753 else
754 uargsp = uargs;
755 } else
756 nargs = -1;
757 }
758 return (kern_abort2(td, uap->why, nargs, uargsp));
759}
760
761/*
762 * kern_abort2()
763 * Arguments:
764 * why - user pointer to why
765 * nargs - number of arguments copied or -1 if an error occured in copying
766 * args - pointer to an array of pointers in kernel format
767 */
768int
769kern_abort2(struct thread *td, const char *why, int nargs, void **uargs)
770{
771 struct proc *p = td->td_proc;
772 struct sbuf *sb;
773 int error, i, sig;
774
775 /*
776 * Do it right now so we can log either proper call of abort2(), or
777 * note, that invalid argument was passed. 512 is big enough to
778 * handle 16 arguments' descriptions with additional comments.
779 */
780 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
781 sbuf_clear(sb);
782 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
783 p->p_comm, p->p_pid, td->td_ucred->cr_uid);
784 /*
785 * Since we can't return from abort2(), send SIGKILL in cases, where
786 * abort2() was called improperly
787 */
788 sig = SIGKILL;
789 /* Prevent from DoSes from user-space. */
790 if (nargs == -1)
791 goto out;
792 KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)",
793 nargs));
794 /*
795 * Limit size of 'reason' string to 128. Will fit even when
796 * maximal number of arguments was chosen to be logged.
797 */
798 if (why != NULL) {
799 error = sbuf_copyin(sb, why, 128);
800 if (error < 0)
801 goto out;
802 } else {
803 sbuf_printf(sb, "(null)");
804 }
805 if (nargs > 0) {
806 sbuf_printf(sb, "(");
807 for (i = 0;i < nargs; i++)
808 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
809 sbuf_printf(sb, ")");
810 }
811 /*
812 * Final stage: arguments were proper, string has been
813 * successfully copied from userspace, and copying pointers
814 * from user-space succeed.
815 */
816 sig = SIGABRT;
817out:
818 if (sig == SIGKILL) {
819 sbuf_trim(sb);
820 sbuf_printf(sb, " (Reason text inaccessible)");
821 }
822 sbuf_cat(sb, "\n");
823 sbuf_finish(sb);
824 log(LOG_INFO, "%s", sbuf_data(sb));
825 sbuf_delete(sb);
826 exit1(td, 0, sig);
827 return (0);
828}
829
830#ifdef COMPAT_43
831/*
832 * The dirty work is handled by kern_wait().
833 */
834int
835owait(struct thread *td, struct owait_args *uap __unused)
836{
837 int error, status;
838
839 error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
840 if (error == 0)
841 td->td_retval[1] = status;
842 return (error);
843}
844#endif /* COMPAT_43 */
845
846/*
847 * The dirty work is handled by kern_wait().
848 */
849int
850sys_wait4(struct thread *td, struct wait4_args *uap)
851{
852 struct rusage ru, *rup;
853 int error, status;
854
855 if (uap->rusage != NULL)
856 rup = &ru;
857 else
858 rup = NULL;
859 error = kern_wait(td, uap->pid, &status, uap->options, rup);
860 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
861 error = copyout(&status, uap->status, sizeof(status));
862 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
863 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
864 return (error);
865}
866
867int
868sys_wait6(struct thread *td, struct wait6_args *uap)
869{
870 struct __wrusage wru, *wrup;
871 siginfo_t si, *sip;
872 idtype_t idtype;
873 id_t id;
874 int error, status;
875
876 idtype = uap->idtype;
877 id = uap->id;
878
879 if (uap->wrusage != NULL)
880 wrup = &wru;
881 else
882 wrup = NULL;
883
884 if (uap->info != NULL) {
885 sip = &si;
886 bzero(sip, sizeof(*sip));
887 } else
888 sip = NULL;
889
890 /*
891 * We expect all callers of wait6() to know about WEXITED and
892 * WTRAPPED.
893 */
894 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
895
896 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
897 error = copyout(&status, uap->status, sizeof(status));
898 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
899 error = copyout(&wru, uap->wrusage, sizeof(wru));
900 if (uap->info != NULL && error == 0)
901 error = copyout(&si, uap->info, sizeof(si));
902 return (error);
903}
904
905/*
906 * Reap the remains of a zombie process and optionally return status and
907 * rusage. Asserts and will release both the proctree_lock and the process
908 * lock as part of its work.
909 */
910void
911proc_reap(struct thread *td, struct proc *p, int *status, int options)
912{
913 struct proc *q, *t;
914
915 sx_assert(&proctree_lock, SA_XLOCKED);
916 PROC_LOCK_ASSERT(p, MA_OWNED);
917 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
918
919 mtx_spin_wait_unlocked(&p->p_slock);
920
921 q = td->td_proc;
922
923 if (status)
924 *status = KW_EXITCODE(p->p_xexit, p->p_xsig);
925 if (options & WNOWAIT) {
926 /*
927 * Only poll, returning the status. Caller does not wish to
928 * release the proc struct just yet.
929 */
930 PROC_UNLOCK(p);
931 sx_xunlock(&proctree_lock);
932 return;
933 }
934
935 PROC_LOCK(q);
936 sigqueue_take(p->p_ksi);
937 PROC_UNLOCK(q);
938
939 /*
940 * If we got the child via a ptrace 'attach', we need to give it back
941 * to the old parent.
942 */
943 if (p->p_oppid != p->p_pptr->p_pid) {
944 PROC_UNLOCK(p);
945 t = proc_realparent(p);
946 PROC_LOCK(t);
947 PROC_LOCK(p);
948 CTR2(KTR_PTRACE,
949 "wait: traced child %d moved back to parent %d", p->p_pid,
950 t->p_pid);
951 proc_reparent(p, t, false);
952 PROC_UNLOCK(p);
953 pksignal(t, SIGCHLD, p->p_ksi);
954 wakeup(t);
955 cv_broadcast(&p->p_pwait);
956 PROC_UNLOCK(t);
957 sx_xunlock(&proctree_lock);
958 return;
959 }
960 PROC_UNLOCK(p);
961
962 /*
963 * Remove other references to this process to ensure we have an
964 * exclusive reference.
965 */
966 sx_xlock(PIDHASHLOCK(p->p_pid));
967 LIST_REMOVE(p, p_hash);
968 sx_xunlock(PIDHASHLOCK(p->p_pid));
969 LIST_REMOVE(p, p_sibling);
971 reaper_clear(p);
972 PROC_LOCK(p);
974 PROC_UNLOCK(p);
975 leavepgrp(p);
976 if (p->p_procdesc != NULL)
977 procdesc_reap(p);
978 sx_xunlock(&proctree_lock);
979
980 proc_id_clear(PROC_ID_PID, p->p_pid);
981
982 PROC_LOCK(p);
983 knlist_detach(p->p_klist);
984 p->p_klist = NULL;
985 PROC_UNLOCK(p);
986
987 /*
988 * Removal from allproc list and process group list paired with
989 * PROC_LOCK which was executed during that time should guarantee
990 * nothing can reach this process anymore. As such further locking
991 * is unnecessary.
992 */
993 p->p_xexit = p->p_xsig = 0; /* XXX: why? */
994
995 PROC_LOCK(q);
996 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
997 PROC_UNLOCK(q);
998
999 /*
1000 * Decrement the count of procs running with this uid.
1001 */
1002 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1003
1004 /*
1005 * Destroy resource accounting information associated with the process.
1006 */
1007#ifdef RACCT
1008 if (racct_enable) {
1009 PROC_LOCK(p);
1010 racct_sub(p, RACCT_NPROC, 1);
1011 PROC_UNLOCK(p);
1012 }
1013#endif
1014 racct_proc_exit(p);
1015
1016 /*
1017 * Free credentials, arguments, and sigacts.
1018 */
1019 proc_unset_cred(p);
1020 pargs_drop(p->p_args);
1021 p->p_args = NULL;
1022 sigacts_free(p->p_sigacts);
1023 p->p_sigacts = NULL;
1024
1025 /*
1026 * Do any thread-system specific cleanups.
1027 */
1028 thread_wait(p);
1029
1030 /*
1031 * Give vm and machine-dependent layer a chance to free anything that
1032 * cpu_exit couldn't release while still running in process context.
1033 */
1034 vm_waitproc(p);
1035#ifdef MAC
1036 mac_proc_destroy(p);
1037#endif
1038
1039 KASSERT(FIRST_THREAD_IN_PROC(p),
1040 ("proc_reap: no residual thread!"));
1041 uma_zfree(proc_zone, p);
1042 atomic_add_int(&nprocs, -1);
1043}
1044
1045static int
1046proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
1047 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
1048 int check_only)
1049{
1050 struct rusage *rup;
1051
1052 sx_assert(&proctree_lock, SA_XLOCKED);
1053
1054 PROC_LOCK(p);
1055
1056 switch (idtype) {
1057 case P_ALL:
1058 if (p->p_procdesc == NULL ||
1059 (p->p_pptr == td->td_proc &&
1060 (p->p_flag & P_TRACED) != 0)) {
1061 break;
1062 }
1063
1064 PROC_UNLOCK(p);
1065 return (0);
1066 case P_PID:
1067 if (p->p_pid != (pid_t)id) {
1068 PROC_UNLOCK(p);
1069 return (0);
1070 }
1071 break;
1072 case P_PGID:
1073 if (p->p_pgid != (pid_t)id) {
1074 PROC_UNLOCK(p);
1075 return (0);
1076 }
1077 break;
1078 case P_SID:
1079 if (p->p_session->s_sid != (pid_t)id) {
1080 PROC_UNLOCK(p);
1081 return (0);
1082 }
1083 break;
1084 case P_UID:
1085 if (p->p_ucred->cr_uid != (uid_t)id) {
1086 PROC_UNLOCK(p);
1087 return (0);
1088 }
1089 break;
1090 case P_GID:
1091 if (p->p_ucred->cr_gid != (gid_t)id) {
1092 PROC_UNLOCK(p);
1093 return (0);
1094 }
1095 break;
1096 case P_JAILID:
1097 if (p->p_ucred->cr_prison->pr_id != (int)id) {
1098 PROC_UNLOCK(p);
1099 return (0);
1100 }
1101 break;
1102 /*
1103 * It seems that the thread structures get zeroed out
1104 * at process exit. This makes it impossible to
1105 * support P_SETID, P_CID or P_CPUID.
1106 */
1107 default:
1108 PROC_UNLOCK(p);
1109 return (0);
1110 }
1111
1112 if (p_canwait(td, p)) {
1113 PROC_UNLOCK(p);
1114 return (0);
1115 }
1116
1117 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1118 PROC_UNLOCK(p);
1119 return (0);
1120 }
1121
1122 /*
1123 * This special case handles a kthread spawned by linux_clone
1124 * (see linux_misc.c). The linux_wait4 and linux_waitpid
1125 * functions need to be able to distinguish between waiting
1126 * on a process and waiting on a thread. It is a thread if
1127 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1128 * signifies we want to wait for threads and not processes.
1129 */
1130 if ((p->p_sigparent != SIGCHLD) ^
1131 ((options & WLINUXCLONE) != 0)) {
1132 PROC_UNLOCK(p);
1133 return (0);
1134 }
1135
1136 if (siginfo != NULL) {
1137 bzero(siginfo, sizeof(*siginfo));
1138 siginfo->si_errno = 0;
1139
1140 /*
1141 * SUSv4 requires that the si_signo value is always
1142 * SIGCHLD. Obey it despite the rfork(2) interface
1143 * allows to request other signal for child exit
1144 * notification.
1145 */
1146 siginfo->si_signo = SIGCHLD;
1147
1148 /*
1149 * This is still a rough estimate. We will fix the
1150 * cases TRAPPED, STOPPED, and CONTINUED later.
1151 */
1152 if (WCOREDUMP(p->p_xsig)) {
1153 siginfo->si_code = CLD_DUMPED;
1154 siginfo->si_status = WTERMSIG(p->p_xsig);
1155 } else if (WIFSIGNALED(p->p_xsig)) {
1156 siginfo->si_code = CLD_KILLED;
1157 siginfo->si_status = WTERMSIG(p->p_xsig);
1158 } else {
1159 siginfo->si_code = CLD_EXITED;
1160 siginfo->si_status = p->p_xexit;
1161 }
1162
1163 siginfo->si_pid = p->p_pid;
1164 siginfo->si_uid = p->p_ucred->cr_uid;
1165
1166 /*
1167 * The si_addr field would be useful additional
1168 * detail, but apparently the PC value may be lost
1169 * when we reach this point. bzero() above sets
1170 * siginfo->si_addr to NULL.
1171 */
1172 }
1173
1174 /*
1175 * There should be no reason to limit resources usage info to
1176 * exited processes only. A snapshot about any resources used
1177 * by a stopped process may be exactly what is needed.
1178 */
1179 if (wrusage != NULL) {
1180 rup = &wrusage->wru_self;
1181 *rup = p->p_ru;
1182 PROC_STATLOCK(p);
1183 calcru(p, &rup->ru_utime, &rup->ru_stime);
1184 PROC_STATUNLOCK(p);
1185
1186 rup = &wrusage->wru_children;
1187 *rup = p->p_stats->p_cru;
1188 calccru(p, &rup->ru_utime, &rup->ru_stime);
1189 }
1190
1191 if (p->p_state == PRS_ZOMBIE && !check_only) {
1192 proc_reap(td, p, status, options);
1193 return (-1);
1194 }
1195 return (1);
1196}
1197
1198int
1199kern_wait(struct thread *td, pid_t pid, int *status, int options,
1200 struct rusage *rusage)
1201{
1202 struct __wrusage wru, *wrup;
1203 idtype_t idtype;
1204 id_t id;
1205 int ret;
1206
1207 /*
1208 * Translate the special pid values into the (idtype, pid)
1209 * pair for kern_wait6. The WAIT_MYPGRP case is handled by
1210 * kern_wait6() on its own.
1211 */
1212 if (pid == WAIT_ANY) {
1213 idtype = P_ALL;
1214 id = 0;
1215 } else if (pid < 0) {
1216 idtype = P_PGID;
1217 id = (id_t)-pid;
1218 } else {
1219 idtype = P_PID;
1220 id = (id_t)pid;
1221 }
1222
1223 if (rusage != NULL)
1224 wrup = &wru;
1225 else
1226 wrup = NULL;
1227
1228 /*
1229 * For backward compatibility we implicitly add flags WEXITED
1230 * and WTRAPPED here.
1231 */
1232 options |= WEXITED | WTRAPPED;
1233 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1234 if (rusage != NULL)
1235 *rusage = wru.wru_self;
1236 return (ret);
1237}
1238
1239static void
1240report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo,
1241 int *status, int options, int si_code)
1242{
1243 bool cont;
1244
1245 PROC_LOCK_ASSERT(p, MA_OWNED);
1246 sx_assert(&proctree_lock, SA_XLOCKED);
1247 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED ||
1248 si_code == CLD_CONTINUED);
1249
1250 cont = si_code == CLD_CONTINUED;
1251 if ((options & WNOWAIT) == 0) {
1252 if (cont)
1253 p->p_flag &= ~P_CONTINUED;
1254 else
1255 p->p_flag |= P_WAITED;
1257 (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) {
1258 PROC_LOCK(td->td_proc);
1259 sigqueue_take(p->p_ksi);
1260 PROC_UNLOCK(td->td_proc);
1261 }
1262 }
1263 sx_xunlock(&proctree_lock);
1264 if (siginfo != NULL) {
1265 siginfo->si_code = si_code;
1266 siginfo->si_status = cont ? SIGCONT : p->p_xsig;
1267 }
1268 if (status != NULL)
1269 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig);
1270 PROC_UNLOCK(p);
1271 td->td_retval[0] = p->p_pid;
1272}
1273
1274int
1275kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1276 int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1277{
1278 struct proc *p, *q;
1279 pid_t pid;
1280 int error, nfound, ret;
1281 bool report;
1282
1283 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */
1284 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */
1285 AUDIT_ARG_VALUE(options);
1286
1287 q = td->td_proc;
1288
1289 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1290 PROC_LOCK(q);
1291 id = (id_t)q->p_pgid;
1292 PROC_UNLOCK(q);
1293 idtype = P_PGID;
1294 }
1295
1296 /* If we don't know the option, just return. */
1297 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1298 WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1299 return (EINVAL);
1300 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1301 /*
1302 * We will be unable to find any matching processes,
1303 * because there are no known events to look for.
1304 * Prefer to return error instead of blocking
1305 * indefinitely.
1306 */
1307 return (EINVAL);
1308 }
1309
1310loop:
1311 if (q->p_flag & P_STATCHILD) {
1312 PROC_LOCK(q);
1313 q->p_flag &= ~P_STATCHILD;
1314 PROC_UNLOCK(q);
1315 }
1316 sx_xlock(&proctree_lock);
1317loop_locked:
1318 nfound = 0;
1319 LIST_FOREACH(p, &q->p_children, p_sibling) {
1320 pid = p->p_pid;
1321 ret = proc_to_reap(td, p, idtype, id, status, options,
1322 wrusage, siginfo, 0);
1323 if (ret == 0)
1324 continue;
1325 else if (ret != 1) {
1326 td->td_retval[0] = pid;
1327 return (0);
1328 }
1329
1330 nfound++;
1331 PROC_LOCK_ASSERT(p, MA_OWNED);
1332
1333 if ((options & WTRAPPED) != 0 &&
1334 (p->p_flag & P_TRACED) != 0) {
1335 PROC_SLOCK(p);
1336 report =
1337 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) &&
1338 p->p_suspcount == p->p_numthreads &&
1339 (p->p_flag & P_WAITED) == 0);
1340 PROC_SUNLOCK(p);
1341 if (report) {
1342 CTR4(KTR_PTRACE,
1343 "wait: returning trapped pid %d status %#x "
1344 "(xstat %d) xthread %d",
1345 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1346 p->p_xthread != NULL ?
1347 p->p_xthread->td_tid : -1);
1348 report_alive_proc(td, p, siginfo, status,
1349 options, CLD_TRAPPED);
1350 return (0);
1351 }
1352 }
1353 if ((options & WUNTRACED) != 0 &&
1354 (p->p_flag & P_STOPPED_SIG) != 0) {
1355 PROC_SLOCK(p);
1356 report = (p->p_suspcount == p->p_numthreads &&
1357 ((p->p_flag & P_WAITED) == 0));
1358 PROC_SUNLOCK(p);
1359 if (report) {
1360 report_alive_proc(td, p, siginfo, status,
1361 options, CLD_STOPPED);
1362 return (0);
1363 }
1364 }
1365 if ((options & WCONTINUED) != 0 &&
1366 (p->p_flag & P_CONTINUED) != 0) {
1367 report_alive_proc(td, p, siginfo, status, options,
1368 CLD_CONTINUED);
1369 return (0);
1370 }
1371 PROC_UNLOCK(p);
1372 }
1373
1374 /*
1375 * Look in the orphans list too, to allow the parent to
1376 * collect it's child exit status even if child is being
1377 * debugged.
1378 *
1379 * Debugger detaches from the parent upon successful
1380 * switch-over from parent to child. At this point due to
1381 * re-parenting the parent loses the child to debugger and a
1382 * wait4(2) call would report that it has no children to wait
1383 * for. By maintaining a list of orphans we allow the parent
1384 * to successfully wait until the child becomes a zombie.
1385 */
1386 if (nfound == 0) {
1387 LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1388 ret = proc_to_reap(td, p, idtype, id, NULL, options,
1389 NULL, NULL, 1);
1390 if (ret != 0) {
1391 KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1392 (int)td->td_retval[0]));
1393 PROC_UNLOCK(p);
1394 nfound++;
1395 break;
1396 }
1397 }
1398 }
1399 if (nfound == 0) {
1400 sx_xunlock(&proctree_lock);
1401 return (ECHILD);
1402 }
1403 if (options & WNOHANG) {
1404 sx_xunlock(&proctree_lock);
1405 td->td_retval[0] = 0;
1406 return (0);
1407 }
1408 PROC_LOCK(q);
1409 if (q->p_flag & P_STATCHILD) {
1410 q->p_flag &= ~P_STATCHILD;
1411 PROC_UNLOCK(q);
1412 goto loop_locked;
1413 }
1414 sx_xunlock(&proctree_lock);
1415 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0);
1416 if (error)
1417 return (error);
1418 goto loop;
1419}
1420
1421void
1422proc_add_orphan(struct proc *child, struct proc *parent)
1423{
1424
1425 sx_assert(&proctree_lock, SX_XLOCKED);
1426 KASSERT((child->p_flag & P_TRACED) != 0,
1427 ("proc_add_orphan: not traced"));
1428
1429 if (LIST_EMPTY(&parent->p_orphans)) {
1430 child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1431 LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan);
1432 } else {
1433 LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans),
1434 child, p_orphan);
1435 }
1436 child->p_treeflag |= P_TREE_ORPHANED;
1437}
1438
1439/*
1440 * Make process 'parent' the new parent of process 'child'.
1441 * Must be called with an exclusive hold of proctree lock.
1442 */
1443void
1444proc_reparent(struct proc *child, struct proc *parent, bool set_oppid)
1445{
1446
1447 sx_assert(&proctree_lock, SX_XLOCKED);
1448 PROC_LOCK_ASSERT(child, MA_OWNED);
1449 if (child->p_pptr == parent)
1450 return;
1451
1452 PROC_LOCK(child->p_pptr);
1453 sigqueue_take(child->p_ksi);
1454 PROC_UNLOCK(child->p_pptr);
1455 LIST_REMOVE(child, p_sibling);
1456 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1457
1459 if ((child->p_flag & P_TRACED) != 0) {
1460 proc_add_orphan(child, child->p_pptr);
1461 }
1462
1463 child->p_pptr = parent;
1464 if (set_oppid)
1465 child->p_oppid = parent->p_pid;
1466}
device_t parent
Definition: device_if.m:187
struct proc * initproc
Definition: init_main.c:112
int acct_process(struct thread *td)
Definition: kern_acct.c:337
void stopprofclock(struct proc *p)
Definition: kern_clock.c:608
void pdescfree(struct thread *td)
void funsetownlst(struct sigiolst *sigiolst)
void fdescfree(struct thread *td)
void knlist_detach(struct knlist *knl)
Definition: kern_event.c:2597
void exec_free_abi_mappings(struct proc *p)
Definition: kern_exec.c:1097
int sys_wait4(struct thread *td, struct wait4_args *uap)
Definition: kern_exit.c:850
void proc_clear_orphan(struct proc *p)
Definition: kern_exit.c:181
SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN, &kern_kill_on_dbg_exit, 0, "Kill ptraced processes when debugger exits")
void reaper_abandon_children(struct proc *p, bool exiting)
Definition: kern_exit.c:135
int sys_exit(struct thread *td, struct exit_args *uap)
Definition: kern_exit.c:209
SDT_PROBE_DEFINE1(proc,,, exit, "int")
int sys_abort2(struct thread *td, struct abort2_args *uap)
Definition: kern_exit.c:737
int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rusage)
Definition: kern_exit.c:1199
void proc_add_orphan(struct proc *child, struct proc *parent)
Definition: kern_exit.c:1422
void proc_reap(struct thread *td, struct proc *p, int *status, int options)
Definition: kern_exit.c:911
SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN, &kern_wait_dequeue_sigchld, 0, "Dequeue SIGCHLD on wait(2) for live process")
static bool kern_wait_dequeue_sigchld
Definition: kern_exit.c:108
void exit1(struct thread *td, int rval, int signo)
Definition: kern_exit.c:222
void exit_onexit(struct proc *p)
Definition: kern_exit.c:199
int sys_wait6(struct thread *td, struct wait6_args *uap)
Definition: kern_exit.c:868
__FBSDID("$FreeBSD$")
struct proc * proc_realparent(struct proc *child)
Definition: kern_exit.c:114
int kern_abort2(struct thread *td, const char *why, int nargs, void **uargs)
Definition: kern_exit.c:769
static void report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, int *status, int options, int si_code)
Definition: kern_exit.c:1240
static int kern_kill_on_dbg_exit
Definition: kern_exit.c:103
int kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo)
Definition: kern_exit.c:1275
static void reaper_clear(struct proc *p)
Definition: kern_exit.c:160
SDT_PROVIDER_DECLARE(proc)
void proc_reparent(struct proc *child, struct proc *parent, bool set_oppid)
Definition: kern_exit.c:1444
static int proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, int check_only)
Definition: kern_exit.c:1046
int __exclusive_cache_line nprocs
Definition: kern_fork.c:195
void prison_proc_free(struct prison *pr)
Definition: kern_jail.c:2874
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
void mtx_spin_wait_unlocked(struct mtx *m)
Definition: kern_mutex.c:1262
struct mtx __exclusive_cache_line Giant
Definition: kern_mutex.c:181
uma_zone_t proc_zone
Definition: kern_proc.c:138
void killjobc(void)
Definition: kern_proc.c:877
struct sx __exclusive_cache_line proctree_lock
Definition: kern_proc.c:135
void pargs_drop(struct pargs *pa)
Definition: kern_proc.c:1793
struct mtx __exclusive_cache_line ppeers_lock
Definition: kern_proc.c:136
void proc_id_clear(int type, pid_t id)
Definition: kern_proc.c:361
int leavepgrp(struct proc *p)
Definition: kern_proc.c:758
struct sx __exclusive_cache_line allproc_lock
Definition: kern_proc.c:134
int p_canwait(struct thread *td, struct proc *p)
Definition: kern_prot.c:1809
void proc_unset_cred(struct proc *p)
Definition: kern_prot.c:2201
void ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, struct rusage_ext *rux2)
void lim_free(struct plimit *limp)
void calccru(struct proc *p, struct timeval *up, struct timeval *sp)
void calcru(struct proc *p, struct timeval *up, struct timeval *sp)
int chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
int rebooting
void panic(const char *fmt,...)
int pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
Definition: kern_sig.c:2128
void sigqueue_flush(sigqueue_t *sq)
Definition: kern_sig.c:476
void sigacts_free(struct sigacts *ps)
Definition: kern_sig.c:4130
void sigqueue_delete_proc(struct proc *p, int signo)
Definition: kern_sig.c:602
void sigqueue_take(ksiginfo_t *ksi)
Definition: kern_sig.c:380
void childproc_exited(struct proc *p)
Definition: kern_sig.c:3519
void kern_psignal(struct proc *p, int sig)
Definition: kern_sig.c:2117
ksiginfo_t * ksiginfo_alloc(int wait)
Definition: kern_sig.c:291
void ksiginfo_free(ksiginfo_t *ksi)
Definition: kern_sig.c:304
void wakeup(const void *ident)
Definition: kern_synch.c:349
void tidhash_remove(struct thread *td)
Definition: kern_thread.c:1771
void thread_exit(void)
Definition: kern_thread.c:893
int thread_suspend_check(int return_instead)
Definition: kern_thread.c:1365
int thread_single(struct proc *p, int mode)
Definition: kern_thread.c:1188
void thread_wait(struct proc *p)
Definition: kern_thread.c:1006
void itimers_exit(struct proc *p)
Definition: kern_time.c:1835
int _callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
void umtx_thread_exit(struct thread *td)
Definition: kern_umtx.c:4981
device_t child
Definition: msi_if.m:58
void sched_exit(struct proc *p, struct thread *td)
Definition: sched_4bsd.c:762
void ** args
Definition: kern_exit.c:732
char * why
Definition: kern_exit.c:730
int printf(const char *fmt,...)
Definition: subr_prf.c:397
void log(int level, const char *fmt,...)
Definition: subr_prf.c:314
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:833
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:898
int sbuf_printf(struct sbuf *s, const char *fmt,...)
Definition: subr_sbuf.c:739
char * sbuf_data(struct sbuf *s)
Definition: subr_sbuf.c:862
void sbuf_clear(struct sbuf *s)
Definition: subr_sbuf.c:316
int sbuf_copyin(struct sbuf *s, const void *uaddr, size_t len)
Definition: subr_sbuf.c:582
struct sbuf * sbuf_new(struct sbuf *s, char *buf, int length, int flags)
Definition: subr_sbuf.c:196
int sbuf_cat(struct sbuf *s, const char *str)
Definition: subr_sbuf.c:566
int sbuf_trim(struct sbuf *s)
Definition: subr_sbuf.c:799
void seltdfini(struct thread *td)
Definition: sys_generic.c:2020
void procdesc_reap(struct proc *p)
Definition: sys_procdesc.c:331
int procdesc_exit(struct proc *p)
Definition: sys_procdesc.c:287
void ptrace_unsuspend(struct proc *p)
Definition: sys_process.c:746
void vrele(struct vnode *vp)
Definition: vfs_subr.c:3334