FreeBSD virtual memory subsystem code
vm_kern.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 * Kernel memory management.
65 */
66
67#include <sys/cdefs.h>
68__FBSDID("$FreeBSD$");
69
70#include "opt_vm.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/asan.h>
75#include <sys/domainset.h>
76#include <sys/eventhandler.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/malloc.h>
80#include <sys/proc.h>
81#include <sys/rwlock.h>
82#include <sys/sysctl.h>
83#include <sys/vmem.h>
84#include <sys/vmmeter.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/vm_domainset.h>
89#include <vm/vm_kern.h>
90#include <vm/pmap.h>
91#include <vm/vm_map.h>
92#include <vm/vm_object.h>
93#include <vm/vm_page.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_pagequeue.h>
96#include <vm/vm_phys.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_extern.h>
99#include <vm/uma.h>
100
104
105const void *zero_region;
106CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
107
108/* NB: Used by kernel debuggers. */
109const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
110
113
114SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
115 SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
116
117SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
118#if defined(__arm__)
119 &vm_max_kernel_address, 0,
120#else
121 SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
122#endif
123 "Max kernel address");
124
125#if VM_NRESERVLEVEL > 0
126#define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
127#else
128/* On non-superpage architectures we want large import sizes. */
129#define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT)
130#endif
131#define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT)
132#define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128)
133
134extern void uma_startup2(void);
135
136/*
137 * kva_alloc:
138 *
139 * Allocate a virtual address range with no underlying object and
140 * no initial mapping to physical memory. Any mapping from this
141 * range to physical memory must be explicitly created prior to
142 * its use, typically with pmap_qenter(). Any attempt to create
143 * a mapping on demand through vm_fault() will result in a panic.
144 */
145vm_offset_t
146kva_alloc(vm_size_t size)
147{
148 vm_offset_t addr;
149
150 size = round_page(size);
151 if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
152 return (0);
153
154 return (addr);
155}
156
157/*
158 * kva_free:
159 *
160 * Release a region of kernel virtual memory allocated
161 * with kva_alloc, and return the physical pages
162 * associated with that region.
163 *
164 * This routine may not block on kernel maps.
165 */
166void
167kva_free(vm_offset_t addr, vm_size_t size)
168{
169
170 size = round_page(size);
171 vmem_free(kernel_arena, addr, size);
172}
173
174static vm_page_t
175kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
176 int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
177 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
178{
179 vm_page_t m;
180 int tries;
181 bool wait, reclaim;
182
184
185 wait = (pflags & VM_ALLOC_WAITOK) != 0;
186 reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
188 pflags |= VM_ALLOC_NOWAIT;
189 for (tries = wait ? 3 : 1;; tries--) {
190 m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
191 npages, low, high, alignment, boundary, memattr);
192 if (m != NULL || tries == 0 || !reclaim)
193 break;
194
195 VM_OBJECT_WUNLOCK(object);
196 if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
197 low, high, alignment, boundary) && wait)
198 vm_wait_domain(domain);
199 VM_OBJECT_WLOCK(object);
200 }
201 return (m);
202}
203
204/*
205 * Allocates a region from the kernel address map and physical pages
206 * within the specified address range to the kernel object. Creates a
207 * wired mapping from this region to these pages, and returns the
208 * region's starting virtual address. The allocated pages are not
209 * necessarily physically contiguous. If M_ZERO is specified through the
210 * given flags, then the pages are zeroed before they are mapped.
211 */
212static vm_offset_t
213kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
214 vm_paddr_t high, vm_memattr_t memattr)
215{
216 vmem_t *vmem;
217 vm_object_t object;
218 vm_offset_t addr, i, offset;
219 vm_page_t m;
220 vm_size_t asize;
221 int pflags;
222 vm_prot_t prot;
223
224 object = kernel_object;
225 asize = round_page(size);
226 vmem = vm_dom[domain].vmd_kernel_arena;
227 if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
228 return (0);
229 offset = addr - VM_MIN_KERNEL_ADDRESS;
230 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
231 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
232 VM_OBJECT_WLOCK(object);
233 for (i = 0; i < asize; i += PAGE_SIZE) {
234 m = kmem_alloc_contig_pages(object, atop(offset + i),
235 domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
236 if (m == NULL) {
237 VM_OBJECT_WUNLOCK(object);
238 kmem_unback(object, addr, i);
239 vmem_free(vmem, addr, asize);
240 return (0);
241 }
242 KASSERT(vm_page_domain(m) == domain,
243 ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
244 vm_page_domain(m), domain));
245 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
247 vm_page_valid(m);
248 pmap_enter(kernel_pmap, addr + i, m, prot,
249 prot | PMAP_ENTER_WIRED, 0);
250 }
251 VM_OBJECT_WUNLOCK(object);
252 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
253 return (addr);
254}
255
256vm_offset_t
257kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
258 vm_memattr_t memattr)
259{
260
261 return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
262 high, memattr));
263}
264
265vm_offset_t
266kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
267 vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
268{
269 struct vm_domainset_iter di;
270 vm_offset_t addr;
271 int domain;
272
273 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
274 do {
275 addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
276 memattr);
277 if (addr != 0)
278 break;
279 } while (vm_domainset_iter_policy(&di, &domain) == 0);
280
281 return (addr);
282}
283
284/*
285 * Allocates a region from the kernel address map and physically
286 * contiguous pages within the specified address range to the kernel
287 * object. Creates a wired mapping from this region to these pages, and
288 * returns the region's starting virtual address. If M_ZERO is specified
289 * through the given flags, then the pages are zeroed before they are
290 * mapped.
291 */
292static vm_offset_t
293kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
294 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
295 vm_memattr_t memattr)
296{
297 vmem_t *vmem;
298 vm_object_t object;
299 vm_offset_t addr, offset, tmp;
300 vm_page_t end_m, m;
301 vm_size_t asize;
302 u_long npages;
303 int pflags;
304
305 object = kernel_object;
306 asize = round_page(size);
307 vmem = vm_dom[domain].vmd_kernel_arena;
308 if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
309 return (0);
310 offset = addr - VM_MIN_KERNEL_ADDRESS;
311 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
312 npages = atop(asize);
313 VM_OBJECT_WLOCK(object);
314 m = kmem_alloc_contig_pages(object, atop(offset), domain,
315 pflags, npages, low, high, alignment, boundary, memattr);
316 if (m == NULL) {
317 VM_OBJECT_WUNLOCK(object);
318 vmem_free(vmem, addr, asize);
319 return (0);
320 }
321 KASSERT(vm_page_domain(m) == domain,
322 ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
323 vm_page_domain(m), domain));
324 end_m = m + npages;
325 tmp = addr;
326 for (; m < end_m; m++) {
327 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
329 vm_page_valid(m);
330 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
332 tmp += PAGE_SIZE;
333 }
334 VM_OBJECT_WUNLOCK(object);
335 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
336 return (addr);
337}
338
339vm_offset_t
340kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
341 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
342{
343
344 return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
345 high, alignment, boundary, memattr));
346}
347
348vm_offset_t
349kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
350 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
351 vm_memattr_t memattr)
352{
353 struct vm_domainset_iter di;
354 vm_offset_t addr;
355 int domain;
356
357 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
358 do {
359 addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
360 alignment, boundary, memattr);
361 if (addr != 0)
362 break;
363 } while (vm_domainset_iter_policy(&di, &domain) == 0);
364
365 return (addr);
366}
367
368/*
369 * kmem_subinit:
370 *
371 * Initializes a map to manage a subrange
372 * of the kernel virtual address space.
373 *
374 * Arguments are as follows:
375 *
376 * parent Map to take range from
377 * min, max Returned endpoints of map
378 * size Size of range to find
379 * superpage_align Request that min is superpage aligned
380 */
381void
382kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
383 vm_size_t size, bool superpage_align)
384{
385 int ret;
386
387 size = round_page(size);
388
389 *min = vm_map_min(parent);
390 ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
393 if (ret != KERN_SUCCESS)
394 panic("kmem_subinit: bad status return of %d", ret);
395 *max = *min + size;
396 vm_map_init(map, vm_map_pmap(parent), *min, *max);
397 if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
398 panic("kmem_subinit: unable to change range to submap");
399}
400
401/*
402 * kmem_malloc_domain:
403 *
404 * Allocate wired-down pages in the kernel's address space.
405 */
406static vm_offset_t
407kmem_malloc_domain(int domain, vm_size_t size, int flags)
408{
409 vmem_t *arena;
410 vm_offset_t addr;
411 vm_size_t asize;
412 int rv;
413
414 if (__predict_true((flags & M_EXEC) == 0))
415 arena = vm_dom[domain].vmd_kernel_arena;
416 else
417 arena = vm_dom[domain].vmd_kernel_rwx_arena;
418 asize = round_page(size);
419 if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
420 return (0);
421
422 rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
423 if (rv != KERN_SUCCESS) {
424 vmem_free(arena, addr, asize);
425 return (0);
426 }
427 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
428 return (addr);
429}
430
431vm_offset_t
432kmem_malloc(vm_size_t size, int flags)
433{
434
435 return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
436}
437
438vm_offset_t
439kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
440{
441 struct vm_domainset_iter di;
442 vm_offset_t addr;
443 int domain;
444
445 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
446 do {
447 addr = kmem_malloc_domain(domain, size, flags);
448 if (addr != 0)
449 break;
450 } while (vm_domainset_iter_policy(&di, &domain) == 0);
451
452 return (addr);
453}
454
455/*
456 * kmem_back_domain:
457 *
458 * Allocate physical pages from the specified domain for the specified
459 * virtual address range.
460 */
461int
462kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
463 vm_size_t size, int flags)
464{
465 vm_offset_t offset, i;
466 vm_page_t m, mpred;
467 vm_prot_t prot;
468 int pflags;
469
470 KASSERT(object == kernel_object,
471 ("kmem_back_domain: only supports kernel object."));
472
473 offset = addr - VM_MIN_KERNEL_ADDRESS;
474 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
476 if (flags & M_WAITOK)
477 pflags |= VM_ALLOC_WAITFAIL;
478 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
479
480 i = 0;
481 VM_OBJECT_WLOCK(object);
482retry:
483 mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
484 for (; i < size; i += PAGE_SIZE, mpred = m) {
485 m = vm_page_alloc_domain_after(object, atop(offset + i),
486 domain, pflags, mpred);
487
488 /*
489 * Ran out of space, free everything up and return. Don't need
490 * to lock page queues here as we know that the pages we got
491 * aren't on any queues.
492 */
493 if (m == NULL) {
494 if ((flags & M_NOWAIT) == 0)
495 goto retry;
496 VM_OBJECT_WUNLOCK(object);
497 kmem_unback(object, addr, i);
498 return (KERN_NO_SPACE);
499 }
500 KASSERT(vm_page_domain(m) == domain,
501 ("kmem_back_domain: Domain mismatch %d != %d",
502 vm_page_domain(m), domain));
503 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
505 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
506 ("kmem_malloc: page %p is managed", m));
507 vm_page_valid(m);
508 pmap_enter(kernel_pmap, addr + i, m, prot,
509 prot | PMAP_ENTER_WIRED, 0);
510 if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
511 m->oflags |= VPO_KMEM_EXEC;
512 }
513 VM_OBJECT_WUNLOCK(object);
514
515 return (KERN_SUCCESS);
516}
517
518/*
519 * kmem_back:
520 *
521 * Allocate physical pages for the specified virtual address range.
522 */
523int
524kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
525{
526 vm_offset_t end, next, start;
527 int domain, rv;
528
529 KASSERT(object == kernel_object,
530 ("kmem_back: only supports kernel object."));
531
532 for (start = addr, end = addr + size; addr < end; addr = next) {
533 /*
534 * We must ensure that pages backing a given large virtual page
535 * all come from the same physical domain.
536 */
537 if (vm_ndomains > 1) {
538 domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
539 while (VM_DOMAIN_EMPTY(domain))
540 domain++;
541 next = roundup2(addr + 1, KVA_QUANTUM);
542 if (next > end || next < start)
543 next = end;
544 } else {
545 domain = 0;
546 next = end;
547 }
548 rv = kmem_back_domain(domain, object, addr, next - addr, flags);
549 if (rv != KERN_SUCCESS) {
550 kmem_unback(object, start, addr - start);
551 break;
552 }
553 }
554 return (rv);
555}
556
557/*
558 * kmem_unback:
559 *
560 * Unmap and free the physical pages underlying the specified virtual
561 * address range.
562 *
563 * A physical page must exist within the specified object at each index
564 * that is being unmapped.
565 */
566static struct vmem *
567_kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
568{
569 struct vmem *arena;
570 vm_page_t m, next;
571 vm_offset_t end, offset;
572 int domain;
573
574 KASSERT(object == kernel_object,
575 ("kmem_unback: only supports kernel object."));
576
577 if (size == 0)
578 return (NULL);
579 pmap_remove(kernel_pmap, addr, addr + size);
580 offset = addr - VM_MIN_KERNEL_ADDRESS;
581 end = offset + size;
582 VM_OBJECT_WLOCK(object);
583 m = vm_page_lookup(object, atop(offset));
584 domain = vm_page_domain(m);
585 if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
586 arena = vm_dom[domain].vmd_kernel_arena;
587 else
588 arena = vm_dom[domain].vmd_kernel_rwx_arena;
589 for (; offset < end; offset += PAGE_SIZE, m = next) {
590 next = vm_page_next(m);
593 vm_page_free(m);
594 }
595 VM_OBJECT_WUNLOCK(object);
596
597 return (arena);
598}
599
600void
601kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
602{
603
604 (void)_kmem_unback(object, addr, size);
605}
606
607/*
608 * kmem_free:
609 *
610 * Free memory allocated with kmem_malloc. The size must match the
611 * original allocation.
612 */
613void
614kmem_free(vm_offset_t addr, vm_size_t size)
615{
616 struct vmem *arena;
617
618 size = round_page(size);
619 kasan_mark((void *)addr, size, size, 0);
620 arena = _kmem_unback(kernel_object, addr, size);
621 if (arena != NULL)
622 vmem_free(arena, addr, size);
623}
624
625/*
626 * kmap_alloc_wait:
627 *
628 * Allocates pageable memory from a sub-map of the kernel. If the submap
629 * has no room, the caller sleeps waiting for more memory in the submap.
630 *
631 * This routine may block.
632 */
633vm_offset_t
634kmap_alloc_wait(vm_map_t map, vm_size_t size)
635{
636 vm_offset_t addr;
637
638 size = round_page(size);
639 if (!swap_reserve(size))
640 return (0);
641
642 for (;;) {
643 /*
644 * To make this work for more than one map, use the map's lock
645 * to lock out sleepers/wakers.
646 */
647 vm_map_lock(map);
648 addr = vm_map_findspace(map, vm_map_min(map), size);
649 if (addr + size <= vm_map_max(map))
650 break;
651 /* no space now; see if we can ever get space */
652 if (vm_map_max(map) - vm_map_min(map) < size) {
653 vm_map_unlock(map);
654 swap_release(size);
655 return (0);
656 }
657 map->needs_wakeup = TRUE;
659 }
660 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
662 vm_map_unlock(map);
663 return (addr);
664}
665
666/*
667 * kmap_free_wakeup:
668 *
669 * Returns memory to a submap of the kernel, and wakes up any processes
670 * waiting for memory in that map.
671 */
672void
673kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
674{
675
676 vm_map_lock(map);
677 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
678 if (map->needs_wakeup) {
679 map->needs_wakeup = FALSE;
680 vm_map_wakeup(map);
681 }
682 vm_map_unlock(map);
683}
684
685void
687{
688 vm_offset_t addr, i;
689 vm_page_t m;
690
691 /*
692 * Map a single physical page of zeros to a larger virtual range.
693 * This requires less looping in places that want large amounts of
694 * zeros, while not using much more physical resources.
695 */
696 addr = kva_alloc(ZERO_REGION_SIZE);
698 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
699 pmap_qenter(addr + i, &m, 1);
700 pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
701
702 zero_region = (const void *)addr;
703}
704
705/*
706 * Import KVA from the kernel map into the kernel arena.
707 */
708static int
709kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
710{
711 vm_offset_t addr;
712 int result;
713
714 KASSERT((size % KVA_QUANTUM) == 0,
715 ("kva_import: Size %jd is not a multiple of %d",
716 (intmax_t)size, (int)KVA_QUANTUM));
717 addr = vm_map_min(kernel_map);
718 result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
720 if (result != KERN_SUCCESS)
721 return (ENOMEM);
722
723 *addrp = addr;
724
725 return (0);
726}
727
728/*
729 * Import KVA from a parent arena into a per-domain arena. Imports must be
730 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
731 */
732static int
733kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
734{
735
736 KASSERT((size % KVA_QUANTUM) == 0,
737 ("kva_import_domain: Size %jd is not a multiple of %d",
738 (intmax_t)size, (int)KVA_QUANTUM));
739 return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
740 VMEM_ADDR_MAX, flags, addrp));
741}
742
743/*
744 * kmem_init:
745 *
746 * Create the kernel map; insert a mapping covering kernel text,
747 * data, bss, and all space allocated thus far (`boostrap' data). The
748 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
749 * `start' as allocated, and the range between `start' and `end' as free.
750 * Create the kernel vmem arena and its per-domain children.
751 */
752void
753kmem_init(vm_offset_t start, vm_offset_t end)
754{
755 vm_size_t quantum;
756 int domain;
757
758 vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
759 kernel_map->system_map = 1;
761 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
762 (void)vm_map_insert(kernel_map, NULL, 0,
763#ifdef __amd64__
764 KERNBASE,
765#else
766 VM_MIN_KERNEL_ADDRESS,
767#endif
769 /* ... and ending with the completion of the above `insert' */
770
771#ifdef __amd64__
772 /*
773 * Mark KVA used for the page array as allocated. Other platforms
774 * that handle vm_page_array allocation can simply adjust virtual_avail
775 * instead.
776 */
777 (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
778 (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
779 sizeof(struct vm_page)),
781#endif
783
784 /*
785 * Use a large import quantum on NUMA systems. This helps minimize
786 * interleaving of superpages, reducing internal fragmentation within
787 * the per-domain arenas.
788 */
789 if (vm_ndomains > 1 && PMAP_HAS_DMAP)
790 quantum = KVA_NUMA_IMPORT_QUANTUM;
791 else
792 quantum = KVA_QUANTUM;
793
794 /*
795 * Initialize the kernel_arena. This can grow on demand.
796 */
797 vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
798 vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
799
800 for (domain = 0; domain < vm_ndomains; domain++) {
801 /*
802 * Initialize the per-domain arenas. These are used to color
803 * the KVA space in a way that ensures that virtual large pages
804 * are backed by memory from the same physical domain,
805 * maximizing the potential for superpage promotion.
806 */
807 vm_dom[domain].vmd_kernel_arena = vmem_create(
808 "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
809 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
810 kva_import_domain, NULL, kernel_arena, quantum);
811
812 /*
813 * In architectures with superpages, maintain separate arenas
814 * for allocations with permissions that differ from the
815 * "standard" read/write permissions used for kernel memory,
816 * so as not to inhibit superpage promotion.
817 *
818 * Use the base import quantum since this arena is rarely used.
819 */
820#if VM_NRESERVLEVEL > 0
821 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
822 "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
823 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
824 kva_import_domain, (vmem_release_t *)vmem_xfree,
826#else
828 vm_dom[domain].vmd_kernel_arena;
829#endif
830 }
831
832 /*
833 * This must be the very first call so that the virtual address
834 * space used for early allocations is properly marked used in
835 * the map.
836 */
837 uma_startup2();
838}
839
840/*
841 * kmem_bootstrap_free:
842 *
843 * Free pages backing preloaded data (e.g., kernel modules) to the
844 * system. Currently only supported on platforms that create a
845 * vm_phys segment for preloaded data.
846 */
847void
848kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
849{
850#if defined(__i386__) || defined(__amd64__)
851 struct vm_domain *vmd;
852 vm_offset_t end, va;
853 vm_paddr_t pa;
854 vm_page_t m;
855
856 end = trunc_page(start + size);
857 start = round_page(start);
858
859#ifdef __amd64__
860 /*
861 * Preloaded files do not have execute permissions by default on amd64.
862 * Restore the default permissions to ensure that the direct map alias
863 * is updated.
864 */
865 pmap_change_prot(start, end - start, VM_PROT_RW);
866#endif
867 for (va = start; va < end; va += PAGE_SIZE) {
868 pa = pmap_kextract(va);
869 m = PHYS_TO_VM_PAGE(pa);
870
871 vmd = vm_pagequeue_domain(m);
873 vm_phys_free_pages(m, 0);
875
876 vm_domain_freecnt_inc(vmd, 1);
877 vm_cnt.v_page_count++;
878 }
879 pmap_remove(kernel_pmap, start, end);
880 (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
881#endif
882}
883
884/*
885 * Allow userspace to directly trigger the VM drain routine for testing
886 * purposes.
887 */
888static int
889debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
890{
891 int error, i;
892
893 i = 0;
894 error = sysctl_handle_int(oidp, &i, 0, req);
895 if (error != 0)
896 return (error);
897 if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
898 return (EINVAL);
899 if (i != 0)
900 EVENTHANDLER_INVOKE(vm_lowmem, i);
901 return (0);
902}
903SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
904 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
905 "set to trigger vm_lowmem event with given flags");
906
907static int
908debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
909{
910 int error, i;
911
912 i = 0;
913 error = sysctl_handle_int(oidp, &i, 0, req);
914 if (error != 0 || req->newptr == NULL)
915 return (error);
916 if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
918 return (EINVAL);
919 uma_reclaim(i);
920 return (0);
921}
922SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
923 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
924 "set to generate request to reclaim uma caches");
925
926static int
927debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
928{
929 int domain, error, request;
930
931 request = 0;
932 error = sysctl_handle_int(oidp, &request, 0, req);
933 if (error != 0 || req->newptr == NULL)
934 return (error);
935
936 domain = request >> 4;
937 request &= 0xf;
938 if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
939 request != UMA_RECLAIM_DRAIN_CPU)
940 return (EINVAL);
941 if (domain < 0 || domain >= vm_ndomains)
942 return (EINVAL);
943 uma_reclaim_domain(request, domain);
944 return (0);
945}
947 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
949 "");
void pmap_zero_page(vm_page_t)
void pmap_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t)
int pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind)
void pmap_qenter(vm_offset_t, vm_page_t *, int)
void pmap_remove(pmap_t, vm_offset_t, vm_offset_t)
#define PMAP_ENTER_WIRED
Definition: pmap.h:108
struct vmem * vmd_kernel_rwx_arena
Definition: vm_pagequeue.h:247
struct vmem * vmd_kernel_arena
Definition: vm_pagequeue.h:246
Definition: vm_map.h:197
vm_size_t size
Definition: vm_map.h:202
vm_flags_t flags
Definition: vm_map.h:206
u_char needs_wakeup
Definition: vm_map.h:204
struct vm_radix rtree
Definition: vm_object.h:106
bool swap_reserve(vm_ooffset_t incr)
Definition: swap_pager.c:255
void swap_release(vm_ooffset_t decr)
Definition: swap_pager.c:346
#define UMA_RECLAIM_DRAIN
Definition: uma.h:429
void uma_reclaim(int req)
Definition: uma_core.c:5207
#define UMA_RECLAIM_TRIM
Definition: uma.h:431
#define UMA_RECLAIM_DRAIN_CPU
Definition: uma.h:430
void uma_reclaim_domain(int req, int domain)
Definition: uma_core.c:5213
#define VM_PROT_RW
Definition: vm.h:88
u_char vm_prot_t
Definition: vm.h:76
#define VM_PROT_EXECUTE
Definition: vm.h:81
#define VM_PROT_READ
Definition: vm.h:79
int vm_ndomains
Definition: vm_phys.c:81
#define VM_PROT_ALL
Definition: vm.h:87
void vm_domainset_iter_policy_init(struct vm_domainset_iter *di, struct domainset *ds, int *domain, int *flags)
Definition: vm_domainset.c:347
int vm_domainset_iter_policy(struct vm_domainset_iter *di, int *domain)
Definition: vm_domainset.c:340
static int debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
Definition: vm_kern.c:908
u_int exec_map_entry_size
Definition: vm_kern.c:111
struct vm_map pipe_map_store
Definition: vm_kern.c:103
const u_long vm_maxuser_address
Definition: vm_kern.c:109
void uma_startup2(void)
Definition: uma_core.c:3162
vm_offset_t kva_alloc(vm_size_t size)
Definition: vm_kern.c:146
void kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max, vm_size_t size, bool superpage_align)
Definition: vm_kern.c:382
static vm_offset_t kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
Definition: vm_kern.c:213
struct vm_map exec_map_store
Definition: vm_kern.c:102
#define KVA_QUANTUM
Definition: vm_kern.c:131
struct vm_map kernel_map_store
Definition: vm_kern.c:101
CTASSERT((ZERO_REGION_SIZE &PAGE_MASK)==0)
static int debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
Definition: vm_kern.c:889
vm_offset_t kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
Definition: vm_kern.c:340
vm_offset_t kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
Definition: vm_kern.c:257
static int debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
Definition: vm_kern.c:927
void kva_free(vm_offset_t addr, vm_size_t size)
Definition: vm_kern.c:167
u_int exec_map_entries
Definition: vm_kern.c:112
static vm_offset_t kmem_malloc_domain(int domain, vm_size_t size, int flags)
Definition: vm_kern.c:407
__FBSDID("$FreeBSD$")
void kmem_free(vm_offset_t addr, vm_size_t size)
Definition: vm_kern.c:614
vm_offset_t kmem_malloc(vm_size_t size, int flags)
Definition: vm_kern.c:432
static struct vmem * _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
Definition: vm_kern.c:567
void kmem_init(vm_offset_t start, vm_offset_t end)
Definition: vm_kern.c:753
#define KVA_QUANTUM_SHIFT
Definition: vm_kern.c:129
vm_offset_t kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
Definition: vm_kern.c:349
void kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
Definition: vm_kern.c:673
static vm_offset_t kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
Definition: vm_kern.c:293
vm_offset_t kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
Definition: vm_kern.c:439
vm_offset_t kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
Definition: vm_kern.c:266
void kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
Definition: vm_kern.c:848
static vm_page_t kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain, int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
Definition: vm_kern.c:175
vm_offset_t kmap_alloc_wait(vm_map_t map, vm_size_t size)
Definition: vm_kern.c:634
void kmem_init_zero_region(void)
Definition: vm_kern.c:686
SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags")
int kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
Definition: vm_kern.c:462
const void * zero_region
Definition: vm_kern.c:105
#define KVA_NUMA_IMPORT_QUANTUM
Definition: vm_kern.c:132
static int kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
Definition: vm_kern.c:709
SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address")
void kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
Definition: vm_kern.c:601
static int kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
Definition: vm_kern.c:733
int kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
Definition: vm_kern.c:524
struct vmem * kernel_arena
#define kernel_map
Definition: vm_kern.h:70
void vm_map_wakeup(vm_map_t map)
Definition: vm_map.c:832
void vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
Definition: vm_map.c:912
int vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:1608
int vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:2083
vm_offset_t vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
Definition: vm_map.c:1845
int vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
Definition: vm_map.c:3893
int vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
Definition: vm_map.c:2552
#define MAP_ACC_CHARGED
Definition: vm_map.h:373
#define MAP_NOFAULT
Definition: vm_map.h:361
static __inline vm_offset_t vm_map_max(const struct vm_map *map)
Definition: vm_map.h:237
static __inline pmap_t vm_map_pmap(vm_map_t map)
Definition: vm_map.h:251
#define VMFS_ANY_SPACE
Definition: vm_map.h:405
#define vm_map_lock(map)
Definition: vm_map.h:339
#define VMFS_SUPER_SPACE
Definition: vm_map.h:407
static __inline vm_offset_t vm_map_min(const struct vm_map *map)
Definition: vm_map.h:244
#define vm_map_unlock_and_wait(map, timo)
Definition: vm_map.h:341
#define MAP_ACC_NO_CHARGE
Definition: vm_map.h:374
#define vm_map_unlock(map)
Definition: vm_map.h:340
struct vmmeter __read_mostly vm_cnt
Definition: vm_meter.c:61
#define kernel_object
Definition: vm_object.h:245
#define VM_OBJECT_WLOCK(object)
Definition: vm_object.h:270
#define VM_OBJECT_WUNLOCK(object)
Definition: vm_object.h:274
#define VM_OBJECT_ASSERT_WLOCKED(object)
Definition: vm_object.h:252
vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa)
Definition: vm_page.c:1221
vm_page_t vm_page_alloc_noobj(int req)
Definition: vm_page.c:2428
vm_page_t vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
Definition: vm_page.c:1627
vm_page_t vm_page_array
Definition: vm_page.c:155
long vm_page_array_size
Definition: vm_page.c:156
void vm_page_valid(vm_page_t m)
Definition: vm_page.c:5453
vm_page_t vm_page_next(vm_page_t m)
Definition: vm_page.c:1725
vm_page_t vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
Definition: vm_page.c:2220
bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
Definition: vm_page.c:3024
bool vm_page_unwire_noq(vm_page_t m)
Definition: vm_page.c:4101
struct vm_domain vm_dom[MAXMEMDOM]
Definition: vm_page.c:117
void vm_wait_domain(int domain)
Definition: vm_page.c:3284
void vm_page_free(vm_page_t m)
Definition: vm_page.c:1326
vm_page_t vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, int req, vm_page_t mpred)
Definition: vm_page.c:2003
#define PG_ZERO
Definition: vm_page.h:461
#define VPO_UNMANAGED
Definition: vm_page.h:296
#define VM_ALLOC_WAITOK
Definition: vm_page.h:539
#define VM_ALLOC_NORECLAIM
Definition: vm_page.h:543
#define VM_ALLOC_WAITFAIL
Definition: vm_page.h:540
static int vm_page_domain(vm_page_t m)
Definition: vm_page.h:1004
#define VM_ALLOC_WIRED
Definition: vm_page.h:541
#define vm_page_xbusy_claim(m)
Definition: vm_page.h:798
#define VM_ALLOC_ZERO
Definition: vm_page.h:542
#define VM_ALLOC_NOWAIT
Definition: vm_page.h:551
#define VPO_KMEM_EXEC
Definition: vm_page.h:294
#define VM_LOW_KMEM
Definition: vm_pageout.h:88
#define VM_LOW_PAGES
Definition: vm_pageout.h:89
#define vm_domain_free_unlock(d)
Definition: vm_pagequeue.h:320
static struct vm_domain * vm_pagequeue_domain(vm_page_t m)
Definition: vm_pagequeue.h:389
#define vm_domain_free_lock(d)
Definition: vm_pagequeue.h:314
static void vm_domain_freecnt_inc(struct vm_domain *vmd, int adj)
Definition: vm_pagequeue.h:450
struct vmem * vmd_kernel_rwx_arena
Definition: vm_pagequeue.h:9
struct vmem * vmd_kernel_arena
Definition: vm_pagequeue.h:8
#define VM_DOMAIN_EMPTY(n)
Definition: vm_pagequeue.h:302
#define KERN_SUCCESS
Definition: vm_param.h:107
#define KERN_NO_SPACE
Definition: vm_param.h:110
void vm_phys_free_pages(vm_page_t m, int order)
Definition: vm_phys.c:1097
vm_page_t vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
Definition: vm_radix.c:646