FreeBSD virtual memory subsystem code
vm_map.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63/*
64 * Virtual memory mapping module.
65 */
66
67#include <sys/cdefs.h>
68__FBSDID("$FreeBSD$");
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/elf.h>
73#include <sys/kernel.h>
74#include <sys/ktr.h>
75#include <sys/lock.h>
76#include <sys/mutex.h>
77#include <sys/proc.h>
78#include <sys/vmmeter.h>
79#include <sys/mman.h>
80#include <sys/vnode.h>
81#include <sys/racct.h>
82#include <sys/resourcevar.h>
83#include <sys/rwlock.h>
84#include <sys/file.h>
85#include <sys/sysctl.h>
86#include <sys/sysent.h>
87#include <sys/shm.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/pmap.h>
92#include <vm/vm_map.h>
93#include <vm/vm_page.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_extern.h>
99#include <vm/vnode_pager.h>
100#include <vm/swap_pager.h>
101#include <vm/uma.h>
102
103/*
104 * Virtual memory maps provide for the mapping, protection,
105 * and sharing of virtual memory objects. In addition,
106 * this module provides for an efficient virtual copy of
107 * memory from one map to another.
108 *
109 * Synchronization is required prior to most operations.
110 *
111 * Maps consist of an ordered doubly-linked list of simple
112 * entries; a self-adjusting binary search tree of these
113 * entries is used to speed up lookups.
114 *
115 * Since portions of maps are specified by start/end addresses,
116 * which may not align with existing map entries, all
117 * routines merely "clip" entries to these start/end values.
118 * [That is, an entry is split into two, bordering at a
119 * start or end value.] Note that these clippings may not
120 * always be necessary (as the two resulting entries are then
121 * not changed); however, the clipping is done for convenience.
122 *
123 * As mentioned above, virtual copy operations are performed
124 * by copying VM object references from one map to
125 * another, and then marking both regions as copy-on-write.
126 */
127
128static struct mtx map_sleep_mtx;
132static int vmspace_zinit(void *mem, int size, int flags);
133static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134 vm_offset_t max);
135static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139 vm_map_entry_t gap_entry);
140static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142#ifdef INVARIANTS
143static void vmspace_zdtor(void *mem, int size, void *arg);
144#endif
145static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147 int cow);
149 vm_offset_t failed_addr);
150
151#define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155/*
156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157 * stable.
158 */
159#define PROC_VMSPACE_LOCK(p) do { } while (0)
160#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162/*
163 * VM_MAP_RANGE_CHECK: [ internal use only ]
164 *
165 * Asserts that the starting and ending region
166 * addresses fall within the valid range of the map.
167 */
168#define VM_MAP_RANGE_CHECK(map, start, end) \
169 { \
170 if (start < vm_map_min(map)) \
171 start = vm_map_min(map); \
172 if (end > vm_map_max(map)) \
173 end = vm_map_max(map); \
174 if (start > end) \
175 start = end; \
176 }
177
178#ifndef UMA_MD_SMALL_ALLOC
179
180/*
181 * Allocate a new slab for kernel map entries. The kernel map may be locked or
182 * unlocked, depending on whether the request is coming from the kernel map or a
183 * submap. This function allocates a virtual address range directly from the
184 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185 * lock and also to avoid triggering allocator recursion in the vmem boundary
186 * tag allocator.
187 */
188static void *
189kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190 int wait)
191{
192 vm_offset_t addr;
193 int error, locked;
194
195 *pflag = UMA_SLAB_PRIV;
196
197 if (!(locked = vm_map_locked(kernel_map)))
200 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 panic("%s: kernel map is exhausted", __func__);
202 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
204 if (error != KERN_SUCCESS)
205 panic("%s: vm_map_insert() failed: %d", __func__, error);
206 if (!locked)
208 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 M_USE_RESERVE | (wait & M_ZERO));
210 if (error == KERN_SUCCESS) {
211 return ((void *)addr);
212 } else {
213 if (!locked)
215 vm_map_delete(kernel_map, addr, bytes);
216 if (!locked)
218 return (NULL);
219 }
220}
221
222static void
223kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224{
225 vm_offset_t addr;
226 int error;
227
228 if ((pflag & UMA_SLAB_PRIV) == 0)
229 /* XXX leaked */
230 return;
231
232 addr = (vm_offset_t)item;
233 kmem_unback(kernel_object, addr, size);
234 error = vm_map_remove(kernel_map, addr, addr + size);
235 KASSERT(error == KERN_SUCCESS,
236 ("%s: vm_map_remove failed: %d", __func__, error));
237}
238
239/*
240 * The worst-case upper bound on the number of kernel map entries that may be
241 * created before the zone must be replenished in _vm_map_unlock().
242 */
243#define KMAPENT_RESERVE 1
244
245#endif /* !UMD_MD_SMALL_ALLOC */
246
247/*
248 * vm_map_startup:
249 *
250 * Initialize the vm_map module. Must be called before any other vm_map
251 * routines.
252 *
253 * User map and entry structures are allocated from the general purpose
254 * memory pool. Kernel maps are statically defined. Kernel map entries
255 * require special handling to avoid recursion; see the comments above
256 * kmapent_alloc() and in vm_map_entry_create().
257 */
258void
260{
261 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263 /*
264 * Disable the use of per-CPU buckets: map entry allocation is
265 * serialized by the kernel map lock.
266 */
267 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
270#ifndef UMA_MD_SMALL_ALLOC
271 /* Reserve an extra map entry for use when replenishing the reserve. */
276#endif
277
278 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281#ifdef INVARIANTS
282 vmspace_zdtor,
283#else
284 NULL,
285#endif
287}
288
289static int
290vmspace_zinit(void *mem, int size, int flags)
291{
292 struct vmspace *vm;
293 vm_map_t map;
294
295 vm = (struct vmspace *)mem;
296 map = &vm->vm_map;
297
298 memset(map, 0, sizeof(*map));
299 mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 MTX_DEF | MTX_DUPOK);
301 sx_init(&map->lock, "vm map (user)");
302 PMAP_LOCK_INIT(vmspace_pmap(vm));
303 return (0);
304}
305
306#ifdef INVARIANTS
307static void
308vmspace_zdtor(void *mem, int size, void *arg)
309{
310 struct vmspace *vm;
311
312 vm = (struct vmspace *)mem;
313 KASSERT(vm->vm_map.nentries == 0,
314 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 KASSERT(vm->vm_map.size == 0,
316 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317}
318#endif /* INVARIANTS */
319
320/*
321 * Allocate a vmspace structure, including a vm_map and pmap,
322 * and initialize those structures. The refcnt is set to 1.
323 */
324struct vmspace *
325vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326{
327 struct vmspace *vm;
328
329 vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 if (!pinit(vmspace_pmap(vm))) {
333 return (NULL);
334 }
335 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 refcount_init(&vm->vm_refcnt, 1);
338 vm->vm_shm = NULL;
339 vm->vm_swrss = 0;
340 vm->vm_tsize = 0;
341 vm->vm_dsize = 0;
342 vm->vm_ssize = 0;
343 vm->vm_taddr = 0;
344 vm->vm_daddr = 0;
345 vm->vm_maxsaddr = 0;
346 return (vm);
347}
348
349#ifdef RACCT
350static void
351vmspace_container_reset(struct proc *p)
352{
353
354 PROC_LOCK(p);
355 racct_set(p, RACCT_DATA, 0);
356 racct_set(p, RACCT_STACK, 0);
357 racct_set(p, RACCT_RSS, 0);
358 racct_set(p, RACCT_MEMLOCK, 0);
359 racct_set(p, RACCT_VMEM, 0);
360 PROC_UNLOCK(p);
361}
362#endif
363
364static inline void
366{
367
368 CTR1(KTR_VM, "vmspace_free: %p", vm);
369
370 /*
371 * Make sure any SysV shm is freed, it might not have been in
372 * exit1().
373 */
374 shmexit(vm);
375
376 /*
377 * Lock the map, to wait out all other references to it.
378 * Delete all of the mappings and pages they hold, then call
379 * the pmap module to reclaim anything left.
380 */
381 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 vm_map_max(&vm->vm_map));
383
385 vm->vm_map.pmap = NULL;
387}
388
389void
391{
392
393 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 "vmspace_free() called");
395
396 if (refcount_release(&vm->vm_refcnt))
397 vmspace_dofree(vm);
398}
399
400void
401vmspace_exitfree(struct proc *p)
402{
403 struct vmspace *vm;
404
406 vm = p->p_vmspace;
407 p->p_vmspace = NULL;
409 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 vmspace_free(vm);
411}
412
413void
414vmspace_exit(struct thread *td)
415{
416 struct vmspace *vm;
417 struct proc *p;
418 bool released;
419
420 p = td->td_proc;
421 vm = p->p_vmspace;
422
423 /*
424 * Prepare to release the vmspace reference. The thread that releases
425 * the last reference is responsible for tearing down the vmspace.
426 * However, threads not releasing the final reference must switch to the
427 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 * deactivation does not modify a freed vmspace.
429 */
430 refcount_acquire(&vmspace0.vm_refcnt);
431 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 if (p->p_vmspace != &vmspace0) {
434 p->p_vmspace = &vmspace0;
436 pmap_activate(td);
437 }
438 released = refcount_release(&vm->vm_refcnt);
439 }
440 if (released) {
441 /*
442 * pmap_remove_pages() expects the pmap to be active, so switch
443 * back first if necessary.
444 */
445 if (p->p_vmspace != vm) {
447 p->p_vmspace = vm;
449 pmap_activate(td);
450 }
453 p->p_vmspace = &vmspace0;
455 pmap_activate(td);
456 vmspace_dofree(vm);
457 }
458#ifdef RACCT
459 if (racct_enable)
460 vmspace_container_reset(p);
461#endif
462}
463
464/* Acquire reference to vmspace owned by another process. */
465
466struct vmspace *
467vmspace_acquire_ref(struct proc *p)
468{
469 struct vmspace *vm;
470
472 vm = p->p_vmspace;
473 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
475 return (NULL);
476 }
477 if (vm != p->p_vmspace) {
479 vmspace_free(vm);
480 return (NULL);
481 }
483 return (vm);
484}
485
486/*
487 * Switch between vmspaces in an AIO kernel process.
488 *
489 * The new vmspace is either the vmspace of a user process obtained
490 * from an active AIO request or the initial vmspace of the AIO kernel
491 * process (when it is idling). Because user processes will block to
492 * drain any active AIO requests before proceeding in exit() or
493 * execve(), the reference count for vmspaces from AIO requests can
494 * never be 0. Similarly, AIO kernel processes hold an extra
495 * reference on their initial vmspace for the life of the process. As
496 * a result, the 'newvm' vmspace always has a non-zero reference
497 * count. This permits an additional reference on 'newvm' to be
498 * acquired via a simple atomic increment rather than the loop in
499 * vmspace_acquire_ref() above.
500 */
501void
503{
504 struct vmspace *oldvm;
505
506 /* XXX: Need some way to assert that this is an aio daemon. */
507
508 KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 ("vmspace_switch_aio: newvm unreferenced"));
510
511 oldvm = curproc->p_vmspace;
512 if (oldvm == newvm)
513 return;
514
515 /*
516 * Point to the new address space and refer to it.
517 */
518 curproc->p_vmspace = newvm;
519 refcount_acquire(&newvm->vm_refcnt);
520
521 /* Activate the new mapping. */
522 pmap_activate(curthread);
523
524 vmspace_free(oldvm);
525}
526
527void
528_vm_map_lock(vm_map_t map, const char *file, int line)
529{
530
531 if (map->system_map)
532 mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 else
534 sx_xlock_(&map->lock, file, line);
535 map->timestamp++;
536}
537
538void
540{
541 vm_object_t object;
542 struct vnode *vp;
543 bool vp_held;
544
545 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 return;
547 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 ("Submap with execs"));
549 object = entry->object.vm_object;
550 KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 if ((object->flags & OBJ_ANON) != 0)
552 object = object->handle;
553 else
554 KASSERT(object->backing_object == NULL,
555 ("non-anon object %p shadows", object));
556 KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 entry, entry->object.vm_object));
558
559 /*
560 * Mostly, we do not lock the backing object. It is
561 * referenced by the entry we are processing, so it cannot go
562 * away.
563 */
564 vm_pager_getvp(object, &vp, &vp_held);
565 if (vp != NULL) {
566 if (add) {
567 VOP_SET_TEXT_CHECKED(vp);
568 } else {
569 vn_lock(vp, LK_SHARED | LK_RETRY);
570 VOP_UNSET_TEXT_CHECKED(vp);
571 VOP_UNLOCK(vp);
572 }
573 if (vp_held)
574 vdrop(vp);
575 }
576}
577
578/*
579 * Use a different name for this vm_map_entry field when it's use
580 * is not consistent with its use as part of an ordered search tree.
581 */
582#define defer_next right
583
584static void
586{
587 struct thread *td;
588 vm_map_entry_t entry, next;
589 vm_object_t object;
590
591 td = curthread;
592 entry = td->td_map_def_user;
593 td->td_map_def_user = NULL;
594 while (entry != NULL) {
595 next = entry->defer_next;
596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 /*
601 * Decrement the object's writemappings and
602 * possibly the vnode's v_writecount.
603 */
604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 ("Submap with writecount"));
606 object = entry->object.vm_object;
607 KASSERT(object != NULL, ("No object for writecount"));
608 vm_pager_release_writecount(object, entry->start,
609 entry->end);
610 }
611 vm_map_entry_set_vnode_text(entry, false);
612 vm_map_entry_deallocate(entry, FALSE);
613 entry = next;
614 }
615}
616
617#ifdef INVARIANTS
618static void
619_vm_map_assert_locked(vm_map_t map, const char *file, int line)
620{
621
622 if (map->system_map)
623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 else
625 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626}
627
628#define VM_MAP_ASSERT_LOCKED(map) \
629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632#ifdef DIAGNOSTIC
633static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634#else
635static int enable_vmmap_check = VMMAP_CHECK_NONE;
636#endif
637SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638 &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642#define VM_MAP_ASSERT_CONSISTENT(map) \
643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644#ifdef DIAGNOSTIC
645#define VM_MAP_UNLOCK_CONSISTENT(map) do { \
646 if (map->nupdates > map->nentries) { \
647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \
648 map->nupdates = 0; \
649 } \
650} while (0)
651#else
652#define VM_MAP_UNLOCK_CONSISTENT(map)
653#endif
654#else
655#define VM_MAP_ASSERT_LOCKED(map)
656#define VM_MAP_ASSERT_CONSISTENT(map)
657#define VM_MAP_UNLOCK_CONSISTENT(map)
658#endif /* INVARIANTS */
659
660void
661_vm_map_unlock(vm_map_t map, const char *file, int line)
662{
663
665 if (map->system_map) {
666#ifndef UMA_MD_SMALL_ALLOC
667 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
669 map->flags &= ~MAP_REPLENISH;
670 }
671#endif
672 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 } else {
674 sx_xunlock_(&map->lock, file, line);
676 }
677}
678
679void
680_vm_map_lock_read(vm_map_t map, const char *file, int line)
681{
682
683 if (map->system_map)
684 mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 else
686 sx_slock_(&map->lock, file, line);
687}
688
689void
690_vm_map_unlock_read(vm_map_t map, const char *file, int line)
691{
692
693 if (map->system_map) {
694 KASSERT((map->flags & MAP_REPLENISH) == 0,
695 ("%s: MAP_REPLENISH leaked", __func__));
696 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 } else {
698 sx_sunlock_(&map->lock, file, line);
700 }
701}
702
703int
704_vm_map_trylock(vm_map_t map, const char *file, int line)
705{
706 int error;
707
708 error = map->system_map ?
709 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 !sx_try_xlock_(&map->lock, file, line);
711 if (error == 0)
712 map->timestamp++;
713 return (error == 0);
714}
715
716int
717_vm_map_trylock_read(vm_map_t map, const char *file, int line)
718{
719 int error;
720
721 error = map->system_map ?
722 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 !sx_try_slock_(&map->lock, file, line);
724 return (error == 0);
725}
726
727/*
728 * _vm_map_lock_upgrade: [ internal use only ]
729 *
730 * Tries to upgrade a read (shared) lock on the specified map to a write
731 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a
732 * non-zero value if the upgrade fails. If the upgrade fails, the map is
733 * returned without a read or write lock held.
734 *
735 * Requires that the map be read locked.
736 */
737int
738_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739{
740 unsigned int last_timestamp;
741
742 if (map->system_map) {
743 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 } else {
745 if (!sx_try_upgrade_(&map->lock, file, line)) {
746 last_timestamp = map->timestamp;
747 sx_sunlock_(&map->lock, file, line);
749 /*
750 * If the map's timestamp does not change while the
751 * map is unlocked, then the upgrade succeeds.
752 */
753 sx_xlock_(&map->lock, file, line);
754 if (last_timestamp != map->timestamp) {
755 sx_xunlock_(&map->lock, file, line);
756 return (1);
757 }
758 }
759 }
760 map->timestamp++;
761 return (0);
762}
763
764void
765_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766{
767
768 if (map->system_map) {
769 KASSERT((map->flags & MAP_REPLENISH) == 0,
770 ("%s: MAP_REPLENISH leaked", __func__));
771 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 } else {
774 sx_downgrade_(&map->lock, file, line);
775 }
776}
777
778/*
779 * vm_map_locked:
780 *
781 * Returns a non-zero value if the caller holds a write (exclusive) lock
782 * on the specified map and the value "0" otherwise.
783 */
784int
786{
787
788 if (map->system_map)
789 return (mtx_owned(&map->system_mtx));
790 else
791 return (sx_xlocked(&map->lock));
792}
793
794/*
795 * _vm_map_unlock_and_wait:
796 *
797 * Atomically releases the lock on the specified map and puts the calling
798 * thread to sleep. The calling thread will remain asleep until either
799 * vm_map_wakeup() is performed on the map or the specified timeout is
800 * exceeded.
801 *
802 * WARNING! This function does not perform deferred deallocations of
803 * objects and map entries. Therefore, the calling thread is expected to
804 * reacquire the map lock after reawakening and later perform an ordinary
805 * unlock operation, such as vm_map_unlock(), before completing its
806 * operation on the map.
807 */
808int
809_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810{
811
813 mtx_lock(&map_sleep_mtx);
814 if (map->system_map) {
815 KASSERT((map->flags & MAP_REPLENISH) == 0,
816 ("%s: MAP_REPLENISH leaked", __func__));
817 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 } else {
819 sx_xunlock_(&map->lock, file, line);
820 }
821 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 timo));
823}
824
825/*
826 * vm_map_wakeup:
827 *
828 * Awaken any threads that have slept on the map using
829 * vm_map_unlock_and_wait().
830 */
831void
833{
834
835 /*
836 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 * from being performed (and lost) between the map unlock
838 * and the msleep() in _vm_map_unlock_and_wait().
839 */
840 mtx_lock(&map_sleep_mtx);
841 mtx_unlock(&map_sleep_mtx);
842 wakeup(&map->root);
843}
844
845void
847{
848
850 map->busy++;
851}
852
853void
855{
856
858 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
861 wakeup(&map->busy);
862 }
863}
864
865void
867{
868
870 while (map->busy) {
872 if (map->system_map)
873 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 else
875 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 }
877 map->timestamp++;
878}
879
880long
882{
884}
885
886/*
887 * Initialize an existing vm_map structure
888 * such as that in the vmspace structure.
889 */
890static void
891_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892{
893
895 map->needs_wakeup = FALSE;
896 map->system_map = 0;
897 map->pmap = pmap;
898 map->header.end = min;
899 map->header.start = max;
900 map->flags = 0;
901 map->header.left = map->header.right = &map->header;
902 map->root = NULL;
903 map->timestamp = 0;
904 map->busy = 0;
905 map->anon_loc = 0;
906#ifdef DIAGNOSTIC
907 map->nupdates = 0;
908#endif
909}
910
911void
912vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913{
914
915 _vm_map_init(map, pmap, min, max);
916 mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 MTX_DEF | MTX_DUPOK);
918 sx_init(&map->lock, "vm map (user)");
919}
920
921/*
922 * vm_map_entry_dispose: [ internal use only ]
923 *
924 * Inverse of vm_map_entry_create.
925 */
926static void
928{
930}
931
932/*
933 * vm_map_entry_create: [ internal use only ]
934 *
935 * Allocates a VM map entry for insertion.
936 * No entry fields are filled in.
937 */
938static vm_map_entry_t
940{
941 vm_map_entry_t new_entry;
942
943#ifndef UMA_MD_SMALL_ALLOC
944 if (map == kernel_map) {
946
947 /*
948 * A new slab of kernel map entries cannot be allocated at this
949 * point because the kernel map has not yet been updated to
950 * reflect the caller's request. Therefore, we allocate a new
951 * map entry, dipping into the reserve if necessary, and set a
952 * flag indicating that the reserve must be replenished before
953 * the map is unlocked.
954 */
955 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 if (new_entry == NULL) {
957 new_entry = uma_zalloc(kmapentzone,
958 M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 kernel_map->flags |= MAP_REPLENISH;
960 }
961 } else
962#endif
963 if (map->system_map) {
964 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 } else {
966 new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 }
968 KASSERT(new_entry != NULL,
969 ("vm_map_entry_create: kernel resources exhausted"));
970 return (new_entry);
971}
972
973/*
974 * vm_map_entry_set_behavior:
975 *
976 * Set the expected access behavior, either normal, random, or
977 * sequential.
978 */
979static inline void
981{
982 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 (behavior & MAP_ENTRY_BEHAV_MASK);
984}
985
986/*
987 * vm_map_entry_max_free_{left,right}:
988 *
989 * Compute the size of the largest free gap between two entries,
990 * one the root of a tree and the other the ancestor of that root
991 * that is the least or greatest ancestor found on the search path.
992 */
993static inline vm_size_t
995{
996
997 return (root->left != left_ancestor ?
998 root->left->max_free : root->start - left_ancestor->end);
999}
1000
1001static inline vm_size_t
1003{
1004
1005 return (root->right != right_ancestor ?
1006 root->right->max_free : right_ancestor->start - root->end);
1007}
1008
1009/*
1010 * vm_map_entry_{pred,succ}:
1011 *
1012 * Find the {predecessor, successor} of the entry by taking one step
1013 * in the appropriate direction and backtracking as much as necessary.
1014 * vm_map_entry_succ is defined in vm_map.h.
1015 */
1016static inline vm_map_entry_t
1018{
1019 vm_map_entry_t prior;
1020
1021 prior = entry->left;
1022 if (prior->right->start < entry->start) {
1023 do
1024 prior = prior->right;
1025 while (prior->right != entry);
1026 }
1027 return (prior);
1028}
1029
1030static inline vm_size_t
1031vm_size_max(vm_size_t a, vm_size_t b)
1032{
1033
1034 return (a > b ? a : b);
1035}
1036
1037#define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \
1038 vm_map_entry_t z; \
1039 vm_size_t max_free; \
1040 \
1041 /* \
1042 * Infer root->right->max_free == root->max_free when \
1043 * y->max_free < root->max_free || root->max_free == 0. \
1044 * Otherwise, look right to find it. \
1045 */ \
1046 y = root->left; \
1047 max_free = root->max_free; \
1048 KASSERT(max_free == vm_size_max( \
1049 vm_map_entry_max_free_left(root, llist), \
1050 vm_map_entry_max_free_right(root, rlist)), \
1051 ("%s: max_free invariant fails", __func__)); \
1052 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \
1053 max_free = vm_map_entry_max_free_right(root, rlist); \
1054 if (y != llist && (test)) { \
1055 /* Rotate right and make y root. */ \
1056 z = y->right; \
1057 if (z != root) { \
1058 root->left = z; \
1059 y->right = root; \
1060 if (max_free < y->max_free) \
1061 root->max_free = max_free = \
1062 vm_size_max(max_free, z->max_free); \
1063 } else if (max_free < y->max_free) \
1064 root->max_free = max_free = \
1065 vm_size_max(max_free, root->start - y->end);\
1066 root = y; \
1067 y = root->left; \
1068 } \
1069 /* Copy right->max_free. Put root on rlist. */ \
1070 root->max_free = max_free; \
1071 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \
1072 ("%s: max_free not copied from right", __func__)); \
1073 root->left = rlist; \
1074 rlist = root; \
1075 root = y != llist ? y : NULL; \
1076} while (0)
1077
1078#define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \
1079 vm_map_entry_t z; \
1080 vm_size_t max_free; \
1081 \
1082 /* \
1083 * Infer root->left->max_free == root->max_free when \
1084 * y->max_free < root->max_free || root->max_free == 0. \
1085 * Otherwise, look left to find it. \
1086 */ \
1087 y = root->right; \
1088 max_free = root->max_free; \
1089 KASSERT(max_free == vm_size_max( \
1090 vm_map_entry_max_free_left(root, llist), \
1091 vm_map_entry_max_free_right(root, rlist)), \
1092 ("%s: max_free invariant fails", __func__)); \
1093 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \
1094 max_free = vm_map_entry_max_free_left(root, llist); \
1095 if (y != rlist && (test)) { \
1096 /* Rotate left and make y root. */ \
1097 z = y->left; \
1098 if (z != root) { \
1099 root->right = z; \
1100 y->left = root; \
1101 if (max_free < y->max_free) \
1102 root->max_free = max_free = \
1103 vm_size_max(max_free, z->max_free); \
1104 } else if (max_free < y->max_free) \
1105 root->max_free = max_free = \
1106 vm_size_max(max_free, y->start - root->end);\
1107 root = y; \
1108 y = root->right; \
1109 } \
1110 /* Copy left->max_free. Put root on llist. */ \
1111 root->max_free = max_free; \
1112 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \
1113 ("%s: max_free not copied from left", __func__)); \
1114 root->right = llist; \
1115 llist = root; \
1116 root = y != rlist ? y : NULL; \
1117} while (0)
1118
1119/*
1120 * Walk down the tree until we find addr or a gap where addr would go, breaking
1121 * off left and right subtrees of nodes less than, or greater than addr. Treat
1122 * subtrees with root->max_free < length as empty trees. llist and rlist are
1123 * the two sides in reverse order (bottom-up), with llist linked by the right
1124 * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125 * lists terminated by &map->header. This function, and the subsequent call to
1126 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127 * values in &map->header.
1128 */
1129static __always_inline vm_map_entry_t
1130vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131 vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132{
1133 vm_map_entry_t left, right, root, y;
1134
1135 left = right = &map->header;
1136 root = map->root;
1137 while (root != NULL && root->max_free >= length) {
1138 KASSERT(left->end <= root->start &&
1139 root->end <= right->start,
1140 ("%s: root not within tree bounds", __func__));
1141 if (addr < root->start) {
1142 SPLAY_LEFT_STEP(root, y, left, right,
1143 y->max_free >= length && addr < y->start);
1144 } else if (addr >= root->end) {
1145 SPLAY_RIGHT_STEP(root, y, left, right,
1146 y->max_free >= length && addr >= y->end);
1147 } else
1148 break;
1149 }
1150 *llist = left;
1151 *rlist = right;
1152 return (root);
1153}
1154
1155static __always_inline void
1157{
1158 vm_map_entry_t hi, right, y;
1159
1160 right = *rlist;
1161 hi = root->right == right ? NULL : root->right;
1162 if (hi == NULL)
1163 return;
1164 do
1165 SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 while (hi != NULL);
1167 *rlist = right;
1168}
1169
1170static __always_inline void
1172{
1173 vm_map_entry_t left, lo, y;
1174
1175 left = *llist;
1176 lo = root->left == left ? NULL : root->left;
1177 if (lo == NULL)
1178 return;
1179 do
1180 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 while (lo != NULL);
1182 *llist = left;
1183}
1184
1185static inline void
1187{
1188 vm_map_entry_t tmp;
1189
1190 tmp = *b;
1191 *b = *a;
1192 *a = tmp;
1193}
1194
1195/*
1196 * Walk back up the two spines, flip the pointers and set max_free. The
1197 * subtrees of the root go at the bottom of llist and rlist.
1198 */
1199static vm_size_t
1201 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202{
1203 do {
1204 /*
1205 * The max_free values of the children of llist are in
1206 * llist->max_free and max_free. Update with the
1207 * max value.
1208 */
1209 llist->max_free = max_free =
1210 vm_size_max(llist->max_free, max_free);
1211 vm_map_entry_swap(&llist->right, &tail);
1212 vm_map_entry_swap(&tail, &llist);
1213 } while (llist != header);
1214 root->left = tail;
1215 return (max_free);
1216}
1217
1218/*
1219 * When llist is known to be the predecessor of root.
1220 */
1221static inline vm_size_t
1223 vm_map_entry_t llist)
1224{
1225 vm_size_t max_free;
1226
1227 max_free = root->start - llist->end;
1228 if (llist != header) {
1229 max_free = vm_map_splay_merge_left_walk(header, root,
1230 root, max_free, llist);
1231 } else {
1232 root->left = header;
1233 header->right = root;
1235 return (max_free);
1236}
1237
1238/*
1239 * When llist may or may not be the predecessor of root.
1240 */
1241static inline vm_size_t
1243 vm_map_entry_t llist)
1244{
1245 vm_size_t max_free;
1246
1247 max_free = vm_map_entry_max_free_left(root, llist);
1248 if (llist != header) {
1249 max_free = vm_map_splay_merge_left_walk(header, root,
1250 root->left == llist ? root : root->left,
1251 max_free, llist);
1252 }
1253 return (max_free);
1254}
1255
1256static vm_size_t
1258 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259{
1260 do {
1261 /*
1262 * The max_free values of the children of rlist are in
1263 * rlist->max_free and max_free. Update with the
1264 * max value.
1265 */
1266 rlist->max_free = max_free =
1267 vm_size_max(rlist->max_free, max_free);
1268 vm_map_entry_swap(&rlist->left, &tail);
1269 vm_map_entry_swap(&tail, &rlist);
1270 } while (rlist != header);
1271 root->right = tail;
1272 return (max_free);
1273}
1274
1275/*
1276 * When rlist is known to be the succecessor of root.
1277 */
1278static inline vm_size_t
1280 vm_map_entry_t rlist)
1281{
1282 vm_size_t max_free;
1283
1284 max_free = rlist->start - root->end;
1285 if (rlist != header) {
1286 max_free = vm_map_splay_merge_right_walk(header, root,
1287 root, max_free, rlist);
1288 } else {
1289 root->right = header;
1290 header->left = root;
1292 return (max_free);
1293}
1294
1295/*
1296 * When rlist may or may not be the succecessor of root.
1297 */
1298static inline vm_size_t
1300 vm_map_entry_t rlist)
1301{
1302 vm_size_t max_free;
1303
1304 max_free = vm_map_entry_max_free_right(root, rlist);
1305 if (rlist != header) {
1306 max_free = vm_map_splay_merge_right_walk(header, root,
1307 root->right == rlist ? root : root->right,
1308 max_free, rlist);
1309 }
1310 return (max_free);
1311}
1312
1313/*
1314 * vm_map_splay:
1315 *
1316 * The Sleator and Tarjan top-down splay algorithm with the
1317 * following variation. Max_free must be computed bottom-up, so
1318 * on the downward pass, maintain the left and right spines in
1319 * reverse order. Then, make a second pass up each side to fix
1320 * the pointers and compute max_free. The time bound is O(log n)
1321 * amortized.
1322 *
1323 * The tree is threaded, which means that there are no null pointers.
1324 * When a node has no left child, its left pointer points to its
1325 * predecessor, which the last ancestor on the search path from the root
1326 * where the search branched right. Likewise, when a node has no right
1327 * child, its right pointer points to its successor. The map header node
1328 * is the predecessor of the first map entry, and the successor of the
1329 * last.
1330 *
1331 * The new root is the vm_map_entry containing "addr", or else an
1332 * adjacent entry (lower if possible) if addr is not in the tree.
1333 *
1334 * The map must be locked, and leaves it so.
1335 *
1336 * Returns: the new root.
1337 */
1338static vm_map_entry_t
1339vm_map_splay(vm_map_t map, vm_offset_t addr)
1340{
1341 vm_map_entry_t header, llist, rlist, root;
1342 vm_size_t max_free_left, max_free_right;
1343
1344 header = &map->header;
1345 root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 if (root != NULL) {
1347 max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 } else if (llist != header) {
1350 /*
1351 * Recover the greatest node in the left
1352 * subtree and make it the root.
1353 */
1354 root = llist;
1355 llist = root->right;
1356 max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 } else if (rlist != header) {
1359 /*
1360 * Recover the least node in the right
1361 * subtree and make it the root.
1362 */
1363 root = rlist;
1364 rlist = root->left;
1365 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 } else {
1368 /* There is no root. */
1369 return (NULL);
1370 }
1371 root->max_free = vm_size_max(max_free_left, max_free_right);
1372 map->root = root;
1374 return (root);
1375}
1376
1377/*
1378 * vm_map_entry_{un,}link:
1380 * Insert/remove entries from maps. On linking, if new entry clips
1381 * existing entry, trim existing entry to avoid overlap, and manage
1382 * offsets. On unlinking, merge disappearing entry with neighbor, if
1383 * called for, and manage offsets. Callers should not modify fields in
1384 * entries already mapped.
1385 */
1386static void
1388{
1389 vm_map_entry_t header, llist, rlist, root;
1390 vm_size_t max_free_left, max_free_right;
1391
1392 CTR3(KTR_VM,
1393 "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 map->nentries, entry);
1396 map->nentries++;
1397 header = &map->header;
1398 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 if (root == NULL) {
1400 /*
1401 * The new entry does not overlap any existing entry in the
1402 * map, so it becomes the new root of the map tree.
1403 */
1404 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 } else if (entry->start == root->start) {
1407 /*
1408 * The new entry is a clone of root, with only the end field
1409 * changed. The root entry will be shrunk to abut the new
1410 * entry, and will be the right child of the new root entry in
1411 * the modified map.
1412 */
1413 KASSERT(entry->end < root->end,
1414 ("%s: clip_start not within entry", __func__));
1415 vm_map_splay_findprev(root, &llist);
1416 root->offset += entry->end - root->start;
1417 root->start = entry->end;
1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 max_free_right = root->max_free = vm_size_max(
1420 vm_map_splay_merge_pred(entry, root, entry),
1421 vm_map_splay_merge_right(header, root, rlist));
1422 } else {
1423 /*
1424 * The new entry is a clone of root, with only the start field
1425 * changed. The root entry will be shrunk to abut the new
1426 * entry, and will be the left child of the new root entry in
1427 * the modified map.
1428 */
1429 KASSERT(entry->end == root->end,
1430 ("%s: clip_start not within entry", __func__));
1431 vm_map_splay_findnext(root, &rlist);
1432 entry->offset += entry->start - root->start;
1433 root->end = entry->start;
1434 max_free_left = root->max_free = vm_size_max(
1435 vm_map_splay_merge_left(header, root, llist),
1436 vm_map_splay_merge_succ(entry, root, entry));
1437 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438 }
1439 entry->max_free = vm_size_max(max_free_left, max_free_right);
1440 map->root = entry;
1443
1444enum unlink_merge_type {
1447};
1448
1449static void
1451 enum unlink_merge_type op)
1452{
1453 vm_map_entry_t header, llist, rlist, root;
1454 vm_size_t max_free_left, max_free_right;
1455
1457 header = &map->header;
1458 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459 KASSERT(root != NULL,
1460 ("vm_map_entry_unlink: unlink object not mapped"));
1461
1462 vm_map_splay_findprev(root, &llist);
1463 vm_map_splay_findnext(root, &rlist);
1464 if (op == UNLINK_MERGE_NEXT) {
1465 rlist->start = root->start;
1466 rlist->offset = root->offset;
1467 }
1468 if (llist != header) {
1469 root = llist;
1470 llist = root->right;
1471 max_free_left = vm_map_splay_merge_left(header, root, llist);
1472 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473 } else if (rlist != header) {
1474 root = rlist;
1475 rlist = root->left;
1476 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478 } else {
1479 header->left = header->right = header;
1480 root = NULL;
1481 }
1482 if (root != NULL)
1483 root->max_free = vm_size_max(max_free_left, max_free_right);
1484 map->root = root;
1486 map->nentries--;
1487 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488 map->nentries, entry);
1489}
1490
1491/*
1492 * vm_map_entry_resize:
1493 *
1494 * Resize a vm_map_entry, recompute the amount of free space that
1495 * follows it and propagate that value up the tree.
1496 *
1497 * The map must be locked, and leaves it so.
1498 */
1499static void
1500vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501{
1502 vm_map_entry_t header, llist, rlist, root;
1503
1505 header = &map->header;
1506 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507 KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508 vm_map_splay_findnext(root, &rlist);
1509 entry->end += grow_amount;
1510 root->max_free = vm_size_max(
1511 vm_map_splay_merge_left(header, root, llist),
1512 vm_map_splay_merge_succ(header, root, rlist));
1513 map->root = root;
1515 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516 __func__, map, map->nentries, entry);
1517}
1518
1519/*
1520 * vm_map_lookup_entry: [ internal use only ]
1521 *
1522 * Finds the map entry containing (or
1523 * immediately preceding) the specified address
1524 * in the given map; the entry is returned
1525 * in the "entry" parameter. The boolean
1526 * result indicates whether the address is
1527 * actually contained in the map.
1528 */
1529boolean_t
1531 vm_map_t map,
1532 vm_offset_t address,
1533 vm_map_entry_t *entry) /* OUT */
1534{
1535 vm_map_entry_t cur, header, lbound, ubound;
1536 boolean_t locked;
1537
1538 /*
1539 * If the map is empty, then the map entry immediately preceding
1540 * "address" is the map's header.
1541 */
1542 header = &map->header;
1543 cur = map->root;
1544 if (cur == NULL) {
1545 *entry = header;
1546 return (FALSE);
1547 }
1548 if (address >= cur->start && cur->end > address) {
1549 *entry = cur;
1550 return (TRUE);
1551 }
1552 if ((locked = vm_map_locked(map)) ||
1553 sx_try_upgrade(&map->lock)) {
1554 /*
1555 * Splay requires a write lock on the map. However, it only
1556 * restructures the binary search tree; it does not otherwise
1557 * change the map. Thus, the map's timestamp need not change
1558 * on a temporary upgrade.
1559 */
1560 cur = vm_map_splay(map, address);
1561 if (!locked) {
1563 sx_downgrade(&map->lock);
1564 }
1565
1566 /*
1567 * If "address" is contained within a map entry, the new root
1568 * is that map entry. Otherwise, the new root is a map entry
1569 * immediately before or after "address".
1570 */
1571 if (address < cur->start) {
1572 *entry = header;
1573 return (FALSE);
1574 }
1575 *entry = cur;
1576 return (address < cur->end);
1577 }
1578 /*
1579 * Since the map is only locked for read access, perform a
1580 * standard binary search tree lookup for "address".
1581 */
1582 lbound = ubound = header;
1583 for (;;) {
1584 if (address < cur->start) {
1585 ubound = cur;
1586 cur = cur->left;
1587 if (cur == lbound)
1588 break;
1589 } else if (cur->end <= address) {
1590 lbound = cur;
1591 cur = cur->right;
1592 if (cur == ubound)
1593 break;
1594 } else {
1595 *entry = cur;
1596 return (TRUE);
1597 }
1598 }
1599 *entry = lbound;
1600 return (FALSE);
1601}
1602
1603/*
1604 * vm_map_insert:
1605 *
1606 * Inserts the given whole VM object into the target
1607 * map at the specified address range. The object's
1608 * size should match that of the address range.
1609 *
1610 * Requires that the map be locked, and leaves it so.
1611 *
1612 * If object is non-NULL, ref count must be bumped by caller
1613 * prior to making call to account for the new entry.
1614 */
1615int
1616vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618{
1619 vm_map_entry_t new_entry, next_entry, prev_entry;
1620 struct ucred *cred;
1621 vm_eflags_t protoeflags;
1622 vm_inherit_t inheritance;
1623 u_long bdry;
1624 u_int bidx;
1625
1627 KASSERT(object != kernel_object ||
1628 (cow & MAP_COPY_ON_WRITE) == 0,
1629 ("vm_map_insert: kernel object and COW"));
1630 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 object, cow));
1634 KASSERT((prot & ~max) == 0,
1635 ("prot %#x is not subset of max_prot %#x", prot, max));
1636
1637 /*
1638 * Check that the start and end points are not bogus.
1639 */
1640 if (start == end || !vm_map_range_valid(map, start, end))
1641 return (KERN_INVALID_ADDRESS);
1642
1643 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1645 return (KERN_PROTECTION_FAILURE);
1646
1647 /*
1648 * Find the entry prior to the proposed starting address; if it's part
1649 * of an existing entry, this range is bogus.
1650 */
1651 if (vm_map_lookup_entry(map, start, &prev_entry))
1652 return (KERN_NO_SPACE);
1653
1654 /*
1655 * Assert that the next entry doesn't overlap the end point.
1656 */
1657 next_entry = vm_map_entry_succ(prev_entry);
1658 if (next_entry->start < end)
1659 return (KERN_NO_SPACE);
1660
1661 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 max != VM_PROT_NONE))
1663 return (KERN_INVALID_ARGUMENT);
1664
1665 protoeflags = 0;
1666 if (cow & MAP_COPY_ON_WRITE)
1667 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 if (cow & MAP_NOFAULT)
1669 protoeflags |= MAP_ENTRY_NOFAULT;
1670 if (cow & MAP_DISABLE_SYNCER)
1671 protoeflags |= MAP_ENTRY_NOSYNC;
1672 if (cow & MAP_DISABLE_COREDUMP)
1673 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 if (cow & MAP_STACK_GROWS_DOWN)
1675 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 if (cow & MAP_STACK_GROWS_UP)
1677 protoeflags |= MAP_ENTRY_GROWS_UP;
1678 if (cow & MAP_WRITECOUNT)
1679 protoeflags |= MAP_ENTRY_WRITECNT;
1680 if (cow & MAP_VN_EXEC)
1681 protoeflags |= MAP_ENTRY_VN_EXEC;
1682 if ((cow & MAP_CREATE_GUARD) != 0)
1683 protoeflags |= MAP_ENTRY_GUARD;
1684 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688 if (cow & MAP_INHERIT_SHARE)
1689 inheritance = VM_INHERIT_SHARE;
1690 else
1691 inheritance = VM_INHERIT_DEFAULT;
1692 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693 /* This magically ignores index 0, for usual page size. */
1694 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1696 if (bidx >= MAXPAGESIZES)
1697 return (KERN_INVALID_ARGUMENT);
1698 bdry = pagesizes[bidx] - 1;
1699 if ((start & bdry) != 0 || (end & bdry) != 0)
1700 return (KERN_INVALID_ARGUMENT);
1701 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702 }
1703
1704 cred = NULL;
1705 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706 goto charged;
1707 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710 return (KERN_RESOURCE_SHORTAGE);
1711 KASSERT(object == NULL ||
1712 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713 object->cred == NULL,
1714 ("overcommit: vm_map_insert o %p", object));
1715 cred = curthread->td_ucred;
1716 }
1717
1718charged:
1719 /* Expand the kernel pmap, if necessary. */
1720 if (map == kernel_map && end > kernel_vm_end)
1721 pmap_growkernel(end);
1722 if (object != NULL) {
1723 /*
1724 * OBJ_ONEMAPPING must be cleared unless this mapping
1725 * is trivially proven to be the only mapping for any
1726 * of the object's pages. (Object granularity
1727 * reference counting is insufficient to recognize
1728 * aliases with precision.)
1729 */
1730 if ((object->flags & OBJ_ANON) != 0) {
1731 VM_OBJECT_WLOCK(object);
1732 if (object->ref_count > 1 || object->shadow_count != 0)
1734 VM_OBJECT_WUNLOCK(object);
1735 }
1736 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737 protoeflags &&
1739 MAP_VN_EXEC)) == 0 &&
1740 prev_entry->end == start && (prev_entry->cred == cred ||
1741 (prev_entry->object.vm_object != NULL &&
1742 prev_entry->object.vm_object->cred == cred)) &&
1744 prev_entry->offset,
1745 (vm_size_t)(prev_entry->end - prev_entry->start),
1746 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748 /*
1749 * We were able to extend the object. Determine if we
1750 * can extend the previous map entry to include the
1751 * new range as well.
1752 */
1753 if (prev_entry->inheritance == inheritance &&
1754 prev_entry->protection == prot &&
1755 prev_entry->max_protection == max &&
1756 prev_entry->wired_count == 0) {
1757 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758 0, ("prev_entry %p has incoherent wiring",
1759 prev_entry));
1760 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761 map->size += end - prev_entry->end;
1762 vm_map_entry_resize(map, prev_entry,
1763 end - prev_entry->end);
1764 vm_map_try_merge_entries(map, prev_entry, next_entry);
1765 return (KERN_SUCCESS);
1766 }
1767
1768 /*
1769 * If we can extend the object but cannot extend the
1770 * map entry, we have to create a new map entry. We
1771 * must bump the ref count on the extended object to
1772 * account for it. object may be NULL.
1773 */
1774 object = prev_entry->object.vm_object;
1775 offset = prev_entry->offset +
1776 (prev_entry->end - prev_entry->start);
1777 vm_object_reference(object);
1778 if (cred != NULL && object != NULL && object->cred != NULL &&
1779 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 /* Object already accounts for this uid. */
1781 cred = NULL;
1782 }
1783 }
1784 if (cred != NULL)
1785 crhold(cred);
1786
1787 /*
1788 * Create a new entry
1789 */
1790 new_entry = vm_map_entry_create(map);
1791 new_entry->start = start;
1792 new_entry->end = end;
1793 new_entry->cred = NULL;
1794
1795 new_entry->eflags = protoeflags;
1796 new_entry->object.vm_object = object;
1797 new_entry->offset = offset;
1798
1799 new_entry->inheritance = inheritance;
1800 new_entry->protection = prot;
1801 new_entry->max_protection = max;
1802 new_entry->wired_count = 0;
1803 new_entry->wiring_thread = NULL;
1805 new_entry->next_read = start;
1806
1807 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 new_entry->cred = cred;
1810
1811 /*
1812 * Insert the new entry into the list
1813 */
1814 vm_map_entry_link(map, new_entry);
1815 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 map->size += new_entry->end - new_entry->start;
1817
1818 /*
1819 * Try to coalesce the new entry with both the previous and next
1820 * entries in the list. Previously, we only attempted to coalesce
1821 * with the previous entry when object is NULL. Here, we handle the
1822 * other cases, which are less common.
1823 */
1824 vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 end - start, cow & MAP_PREFAULT_PARTIAL);
1830 }
1831
1832 return (KERN_SUCCESS);
1833}
1834
1835/*
1836 * vm_map_findspace:
1837 *
1838 * Find the first fit (lowest VM address) for "length" free bytes
1839 * beginning at address >= start in the given map.
1840 *
1841 * In a vm_map_entry, "max_free" is the maximum amount of
1842 * contiguous free space between an entry in its subtree and a
1843 * neighbor of that entry. This allows finding a free region in
1844 * one path down the tree, so O(log n) amortized with splay
1845 * trees.
1846 *
1847 * The map must be locked, and leaves it so.
1848 *
1849 * Returns: starting address if sufficient space,
1850 * vm_map_max(map)-length+1 if insufficient space.
1851 */
1852vm_offset_t
1853vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854{
1855 vm_map_entry_t header, llist, rlist, root, y;
1856 vm_size_t left_length, max_free_left, max_free_right;
1857 vm_offset_t gap_end;
1858
1860
1861 /*
1862 * Request must fit within min/max VM address and must avoid
1863 * address wrap.
1864 */
1865 start = MAX(start, vm_map_min(map));
1866 if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867 return (vm_map_max(map) - length + 1);
1868
1869 /* Empty tree means wide open address space. */
1870 if (map->root == NULL)
1871 return (start);
1872
1873 /*
1874 * After splay_split, if start is within an entry, push it to the start
1875 * of the following gap. If rlist is at the end of the gap containing
1876 * start, save the end of that gap in gap_end to see if the gap is big
1877 * enough; otherwise set gap_end to start skip gap-checking and move
1878 * directly to a search of the right subtree.
1879 */
1880 header = &map->header;
1881 root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882 gap_end = rlist->start;
1883 if (root != NULL) {
1884 start = root->end;
1885 if (root->right != rlist)
1886 gap_end = start;
1887 max_free_left = vm_map_splay_merge_left(header, root, llist);
1888 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889 } else if (rlist != header) {
1890 root = rlist;
1891 rlist = root->left;
1892 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894 } else {
1895 root = llist;
1896 llist = root->right;
1897 max_free_left = vm_map_splay_merge_left(header, root, llist);
1898 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899 }
1900 root->max_free = vm_size_max(max_free_left, max_free_right);
1901 map->root = root;
1903 if (length <= gap_end - start)
1904 return (start);
1905
1906 /* With max_free, can immediately tell if no solution. */
1907 if (root->right == header || length > root->right->max_free)
1908 return (vm_map_max(map) - length + 1);
1909
1910 /*
1911 * Splay for the least large-enough gap in the right subtree.
1912 */
1913 llist = rlist = header;
1914 for (left_length = 0;;
1915 left_length = vm_map_entry_max_free_left(root, llist)) {
1916 if (length <= left_length)
1917 SPLAY_LEFT_STEP(root, y, llist, rlist,
1918 length <= vm_map_entry_max_free_left(y, llist));
1919 else
1920 SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921 length > vm_map_entry_max_free_left(y, root));
1922 if (root == NULL)
1923 break;
1924 }
1925 root = llist;
1926 llist = root->right;
1927 max_free_left = vm_map_splay_merge_left(header, root, llist);
1928 if (rlist == header) {
1929 root->max_free = vm_size_max(max_free_left,
1930 vm_map_splay_merge_succ(header, root, rlist));
1931 } else {
1932 y = rlist;
1933 rlist = y->left;
1934 y->max_free = vm_size_max(
1935 vm_map_splay_merge_pred(root, y, root),
1936 vm_map_splay_merge_right(header, y, rlist));
1937 root->max_free = vm_size_max(max_free_left, y->max_free);
1938 }
1939 map->root = root;
1941 return (root->end);
1942}
1943
1944int
1945vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947 vm_prot_t max, int cow)
1948{
1949 vm_offset_t end;
1950 int result;
1951
1952 end = start + length;
1953 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954 object == NULL,
1955 ("vm_map_fixed: non-NULL backing object for stack"));
1956 vm_map_lock(map);
1957 VM_MAP_RANGE_CHECK(map, start, end);
1958 if ((cow & MAP_CHECK_EXCL) == 0) {
1959 result = vm_map_delete(map, start, end);
1960 if (result != KERN_SUCCESS)
1961 goto out;
1962 }
1963 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965 prot, max, cow);
1966 } else {
1967 result = vm_map_insert(map, object, offset, start, end,
1968 prot, max, cow);
1969 }
1970out:
1972 return (result);
1973}
1974
1975static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977
1978static int cluster_anon = 1;
1979SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980 &cluster_anon, 0,
1981 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982
1983static bool
1984clustering_anon_allowed(vm_offset_t addr)
1985{
1986
1987 switch (cluster_anon) {
1988 case 0:
1989 return (false);
1990 case 1:
1991 return (addr == 0);
1992 case 2:
1993 default:
1994 return (true);
1995 }
1996}
1997
1998static long aslr_restarts;
1999SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000 &aslr_restarts, 0,
2001 "Number of aslr failures");
2002
2003/*
2004 * Searches for the specified amount of free space in the given map with the
2005 * specified alignment. Performs an address-ordered, first-fit search from
2006 * the given address "*addr", with an optional upper bound "max_addr". If the
2007 * parameter "alignment" is zero, then the alignment is computed from the
2008 * given (object, offset) pair so as to enable the greatest possible use of
2009 * superpage mappings. Returns KERN_SUCCESS and the address of the free space
2010 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE.
2011 *
2012 * The map must be locked. Initially, there must be at least "length" bytes
2013 * of free space at the given address.
2014 */
2015static int
2016vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018 vm_offset_t alignment)
2019{
2020 vm_offset_t aligned_addr, free_addr;
2021
2023 free_addr = *addr;
2024 KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025 ("caller failed to provide space %#jx at address %p",
2026 (uintmax_t)length, (void *)free_addr));
2027 for (;;) {
2028 /*
2029 * At the start of every iteration, the free space at address
2030 * "*addr" is at least "length" bytes.
2031 */
2032 if (alignment == 0)
2033 pmap_align_superpage(object, offset, addr, length);
2034 else
2035 *addr = roundup2(*addr, alignment);
2036 aligned_addr = *addr;
2037 if (aligned_addr == free_addr) {
2038 /*
2039 * Alignment did not change "*addr", so "*addr" must
2040 * still provide sufficient free space.
2041 */
2042 return (KERN_SUCCESS);
2043 }
2044
2045 /*
2046 * Test for address wrap on "*addr". A wrapped "*addr" could
2047 * be a valid address, in which case vm_map_findspace() cannot
2048 * be relied upon to fail.
2049 */
2050 if (aligned_addr < free_addr)
2051 return (KERN_NO_SPACE);
2052 *addr = vm_map_findspace(map, aligned_addr, length);
2053 if (*addr + length > vm_map_max(map) ||
2054 (max_addr != 0 && *addr + length > max_addr))
2055 return (KERN_NO_SPACE);
2056 free_addr = *addr;
2057 if (free_addr == aligned_addr) {
2058 /*
2059 * If a successful call to vm_map_findspace() did not
2060 * change "*addr", then "*addr" must still be aligned
2061 * and provide sufficient free space.
2062 */
2063 return (KERN_SUCCESS);
2064 }
2065 }
2066}
2067
2068int
2069vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070 vm_offset_t max_addr, vm_offset_t alignment)
2071{
2072 /* XXXKIB ASLR eh ? */
2073 *addr = vm_map_findspace(map, *addr, length);
2074 if (*addr + length > vm_map_max(map) ||
2075 (max_addr != 0 && *addr + length > max_addr))
2076 return (KERN_NO_SPACE);
2077 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078 alignment));
2079}
2080
2081/*
2082 * vm_map_find finds an unallocated region in the target address
2083 * map with the given length. The search is defined to be
2084 * first-fit from the specified address; the region found is
2085 * returned in the same parameter.
2086 *
2087 * If object is non-NULL, ref count must be bumped by caller
2088 * prior to making call to account for the new entry.
2089 */
2090int
2091vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092 vm_offset_t *addr, /* IN/OUT */
2093 vm_size_t length, vm_offset_t max_addr, int find_space,
2094 vm_prot_t prot, vm_prot_t max, int cow)
2095{
2096 vm_offset_t alignment, curr_min_addr, min_addr;
2097 int gap, pidx, rv, try;
2098 bool cluster, en_aslr, update_anon;
2099
2100 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101 object == NULL,
2102 ("vm_map_find: non-NULL backing object for stack"));
2103 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106 (object->flags & OBJ_COLORED) == 0))
2107 find_space = VMFS_ANY_SPACE;
2108 if (find_space >> 8 != 0) {
2109 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110 alignment = (vm_offset_t)1 << (find_space >> 8);
2111 } else
2112 alignment = 0;
2113 en_aslr = (map->flags & MAP_ASLR) != 0;
2114 update_anon = cluster = clustering_anon_allowed(*addr) &&
2115 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116 find_space != VMFS_NO_SPACE && object == NULL &&
2118 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119 curr_min_addr = min_addr = *addr;
2120 if (en_aslr && min_addr == 0 && !cluster &&
2121 find_space != VMFS_NO_SPACE &&
2122 (map->flags & MAP_ASLR_IGNSTART) != 0)
2123 curr_min_addr = min_addr = vm_map_min(map);
2124 try = 0;
2125 vm_map_lock(map);
2126 if (cluster) {
2127 curr_min_addr = map->anon_loc;
2128 if (curr_min_addr == 0)
2129 cluster = false;
2130 }
2131 if (find_space != VMFS_NO_SPACE) {
2132 KASSERT(find_space == VMFS_ANY_SPACE ||
2133 find_space == VMFS_OPTIMAL_SPACE ||
2134 find_space == VMFS_SUPER_SPACE ||
2135 alignment != 0, ("unexpected VMFS flag"));
2136again:
2137 /*
2138 * When creating an anonymous mapping, try clustering
2139 * with an existing anonymous mapping first.
2140 *
2141 * We make up to two attempts to find address space
2142 * for a given find_space value. The first attempt may
2143 * apply randomization or may cluster with an existing
2144 * anonymous mapping. If this first attempt fails,
2145 * perform a first-fit search of the available address
2146 * space.
2147 *
2148 * If all tries failed, and find_space is
2149 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150 * Again enable clustering and randomization.
2151 */
2152 try++;
2153 MPASS(try <= 2);
2154
2155 if (try == 2) {
2156 /*
2157 * Second try: we failed either to find a
2158 * suitable region for randomizing the
2159 * allocation, or to cluster with an existing
2160 * mapping. Retry with free run.
2161 */
2162 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163 vm_map_min(map) : min_addr;
2164 atomic_add_long(&aslr_restarts, 1);
2165 }
2166
2167 if (try == 1 && en_aslr && !cluster) {
2168 /*
2169 * Find space for allocation, including
2170 * gap needed for later randomization.
2171 */
2172 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173 (find_space == VMFS_SUPER_SPACE || find_space ==
2174 VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2178 *addr = vm_map_findspace(map, curr_min_addr,
2179 length + gap * pagesizes[pidx]);
2180 if (*addr + length + gap * pagesizes[pidx] >
2181 vm_map_max(map))
2182 goto again;
2183 /* And randomize the start address. */
2184 *addr += (arc4random() % gap) * pagesizes[pidx];
2185 if (max_addr != 0 && *addr + length > max_addr)
2186 goto again;
2187 } else {
2188 *addr = vm_map_findspace(map, curr_min_addr, length);
2189 if (*addr + length > vm_map_max(map) ||
2190 (max_addr != 0 && *addr + length > max_addr)) {
2191 if (cluster) {
2192 cluster = false;
2193 MPASS(try == 1);
2194 goto again;
2195 }
2196 rv = KERN_NO_SPACE;
2197 goto done;
2198 }
2199 }
2200
2201 if (find_space != VMFS_ANY_SPACE &&
2202 (rv = vm_map_alignspace(map, object, offset, addr, length,
2203 max_addr, alignment)) != KERN_SUCCESS) {
2204 if (find_space == VMFS_OPTIMAL_SPACE) {
2205 find_space = VMFS_ANY_SPACE;
2206 curr_min_addr = min_addr;
2207 cluster = update_anon;
2208 try = 0;
2209 goto again;
2210 }
2211 goto done;
2212 }
2213 } else if ((cow & MAP_REMAP) != 0) {
2214 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2216 goto done;
2217 }
2218 rv = vm_map_delete(map, *addr, *addr + length);
2219 if (rv != KERN_SUCCESS)
2220 goto done;
2221 }
2222 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224 max, cow);
2225 } else {
2226 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227 prot, max, cow);
2228 }
2229 if (rv == KERN_SUCCESS && update_anon)
2230 map->anon_loc = *addr + length;
2231done:
2232 vm_map_unlock(map);
2233 return (rv);
2234}
2235
2236/*
2237 * vm_map_find_min() is a variant of vm_map_find() that takes an
2238 * additional parameter (min_addr) and treats the given address
2239 * (*addr) differently. Specifically, it treats *addr as a hint
2240 * and not as the minimum address where the mapping is created.
2242 * This function works in two phases. First, it tries to
2243 * allocate above the hint. If that fails and the hint is
2244 * greater than min_addr, it performs a second pass, replacing
2245 * the hint with min_addr as the minimum address for the
2246 * allocation.
2247 */
2248int
2249vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252 int cow)
2253{
2254 vm_offset_t hint;
2255 int rv;
2256
2257 hint = *addr;
2258 for (;;) {
2259 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2260 find_space, prot, max, cow);
2261 if (rv == KERN_SUCCESS || min_addr >= hint)
2262 return (rv);
2263 *addr = hint = min_addr;
2264 }
2265}
2266
2268 * A map entry with any of the following flags set must not be merged with
2269 * another entry.
2270 */
2271#define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2272 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2273
2274static bool
2276{
2277
2278 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2279 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2280 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2281 prev, entry));
2282 return (prev->end == entry->start &&
2283 prev->object.vm_object == entry->object.vm_object &&
2284 (prev->object.vm_object == NULL ||
2285 prev->offset + (prev->end - prev->start) == entry->offset) &&
2286 prev->eflags == entry->eflags &&
2287 prev->protection == entry->protection &&
2288 prev->max_protection == entry->max_protection &&
2289 prev->inheritance == entry->inheritance &&
2290 prev->wired_count == entry->wired_count &&
2291 prev->cred == entry->cred);
2292}
2293
2294static void
2296{
2297
2298 /*
2299 * If the backing object is a vnode object, vm_object_deallocate()
2300 * calls vrele(). However, vrele() does not lock the vnode because
2301 * the vnode has additional references. Thus, the map lock can be
2302 * kept without causing a lock-order reversal with the vnode lock.
2303 *
2304 * Since we count the number of virtual page mappings in
2305 * object->un_pager.vnp.writemappings, the writemappings value
2306 * should not be adjusted when the entry is disposed of.
2307 */
2308 if (entry->object.vm_object != NULL)
2310 if (entry->cred != NULL)
2311 crfree(entry->cred);
2312 vm_map_entry_dispose(map, entry);
2313}
2314
2315/*
2316 * vm_map_try_merge_entries:
2318 * Compare the given map entry to its predecessor, and merge its precessor
2319 * into it if possible. The entry remains valid, and may be extended.
2320 * The predecessor may be deleted.
2321 *
2322 * The map must be locked.
2323 */
2324void
2326 vm_map_entry_t entry)
2327{
2328
2330 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2331 vm_map_mergeable_neighbors(prev_entry, entry)) {
2332 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2333 vm_map_merged_neighbor_dispose(map, prev_entry);
2334 }
2336
2337/*
2338 * vm_map_entry_back:
2339 *
2340 * Allocate an object to back a map entry.
2341 */
2342static inline void
2344{
2345 vm_object_t object;
2346
2347 KASSERT(entry->object.vm_object == NULL,
2348 ("map entry %p has backing object", entry));
2349 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2350 ("map entry %p is a submap", entry));
2351 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2352 entry->cred, entry->end - entry->start);
2353 entry->object.vm_object = object;
2354 entry->offset = 0;
2355 entry->cred = NULL;
2356}
2358/*
2359 * vm_map_entry_charge_object
2360 *
2361 * If there is no object backing this entry, create one. Otherwise, if
2362 * the entry has cred, give it to the backing object.
2363 */
2364static inline void
2366{
2367
2369 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2370 ("map entry %p is a submap", entry));
2371 if (entry->object.vm_object == NULL && !map->system_map &&
2372 (entry->eflags & MAP_ENTRY_GUARD) == 0)
2373 vm_map_entry_back(entry);
2374 else if (entry->object.vm_object != NULL &&
2375 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2376 entry->cred != NULL) {
2378 KASSERT(entry->object.vm_object->cred == NULL,
2379 ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2380 entry->object.vm_object->cred = entry->cred;
2381 entry->object.vm_object->charge = entry->end - entry->start;
2383 entry->cred = NULL;
2384 }
2386
2387/*
2388 * vm_map_entry_clone
2389 *
2390 * Create a duplicate map entry for clipping.
2391 */
2392static vm_map_entry_t
2394{
2395 vm_map_entry_t new_entry;
2396
2398
2399 /*
2400 * Create a backing object now, if none exists, so that more individual
2401 * objects won't be created after the map entry is split.
2402 */
2403 vm_map_entry_charge_object(map, entry);
2404
2405 /* Clone the entry. */
2406 new_entry = vm_map_entry_create(map);
2407 *new_entry = *entry;
2408 if (new_entry->cred != NULL)
2409 crhold(entry->cred);
2410 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2412 vm_map_entry_set_vnode_text(new_entry, true);
2413 /*
2414 * The object->un_pager.vnp.writemappings for the object of
2415 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The
2416 * virtual pages are re-distributed among the clipped entries,
2417 * so the sum is left the same.
2418 */
2419 }
2420 return (new_entry);
2421}
2422
2424 * vm_map_clip_start: [ internal use only ]
2425 *
2426 * Asserts that the given entry begins at or after
2427 * the specified address; if necessary,
2428 * it splits the entry into two.
2429 */
2430static int
2431vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2432{
2433 vm_map_entry_t new_entry;
2434 int bdry_idx;
2435
2436 if (!map->system_map)
2437 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2438 "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2439 (uintmax_t)startaddr);
2440
2441 if (startaddr <= entry->start)
2442 return (KERN_SUCCESS);
2443
2445 KASSERT(entry->end > startaddr && entry->start < startaddr,
2446 ("%s: invalid clip of entry %p", __func__, entry));
2447
2448 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2450 if (bdry_idx != 0) {
2451 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2452 return (KERN_INVALID_ARGUMENT);
2453 }
2454
2455 new_entry = vm_map_entry_clone(map, entry);
2456
2457 /*
2458 * Split off the front portion. Insert the new entry BEFORE this one,
2459 * so that this entry has the specified starting address.
2460 */
2461 new_entry->end = startaddr;
2462 vm_map_entry_link(map, new_entry);
2463 return (KERN_SUCCESS);
2464}
2465
2467 * vm_map_lookup_clip_start:
2468 *
2469 * Find the entry at or just after 'start', and clip it if 'start' is in
2470 * the interior of the entry. Return entry after 'start', and in
2471 * prev_entry set the entry before 'start'.
2472 */
2473static int
2474vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2475 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2476{
2477 vm_map_entry_t entry;
2478 int rv;
2479
2480 if (!map->system_map)
2481 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2482 "%s: map %p start 0x%jx prev %p", __func__, map,
2483 (uintmax_t)start, prev_entry);
2484
2485 if (vm_map_lookup_entry(map, start, prev_entry)) {
2486 entry = *prev_entry;
2487 rv = vm_map_clip_start(map, entry, start);
2488 if (rv != KERN_SUCCESS)
2489 return (rv);
2490 *prev_entry = vm_map_entry_pred(entry);
2491 } else
2492 entry = vm_map_entry_succ(*prev_entry);
2493 *res_entry = entry;
2494 return (KERN_SUCCESS);
2495}
2496
2498 * vm_map_clip_end: [ internal use only ]
2499 *
2500 * Asserts that the given entry ends at or before
2501 * the specified address; if necessary,
2502 * it splits the entry into two.
2503 */
2504static int
2505vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2506{
2507 vm_map_entry_t new_entry;
2508 int bdry_idx;
2509
2510 if (!map->system_map)
2511 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2512 "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2513 (uintmax_t)endaddr);
2514
2515 if (endaddr >= entry->end)
2516 return (KERN_SUCCESS);
2517
2519 KASSERT(entry->start < endaddr && entry->end > endaddr,
2520 ("%s: invalid clip of entry %p", __func__, entry));
2521
2522 bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2524 if (bdry_idx != 0) {
2525 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2526 return (KERN_INVALID_ARGUMENT);
2527 }
2528
2529 new_entry = vm_map_entry_clone(map, entry);
2530
2531 /*
2532 * Split off the back portion. Insert the new entry AFTER this one,
2533 * so that this entry has the specified ending address.
2534 */
2535 new_entry->start = endaddr;
2536 vm_map_entry_link(map, new_entry);
2537
2538 return (KERN_SUCCESS);
2539}
2540
2541/*
2542 * vm_map_submap: [ kernel use only ]
2543 *
2544 * Mark the given range as handled by a subordinate map.
2545 *
2546 * This range must have been created with vm_map_find,
2547 * and no other operations may have been performed on this
2548 * range prior to calling vm_map_submap.
2549 *
2550 * Only a limited number of operations can be performed
2551 * within this rage after calling vm_map_submap:
2552 * vm_fault
2553 * [Don't try vm_map_copy!]
2554 *
2555 * To remove a submapping, one must first remove the
2556 * range from the superior map, and then destroy the
2557 * submap (if desired). [Better yet, don't try it.]
2558 */
2559int
2561 vm_map_t map,
2562 vm_offset_t start,
2563 vm_offset_t end,
2564 vm_map_t submap)
2565{
2566 vm_map_entry_t entry;
2567 int result;
2568
2569 result = KERN_INVALID_ARGUMENT;
2570
2571 vm_map_lock(submap);
2572 submap->flags |= MAP_IS_SUB_MAP;
2573 vm_map_unlock(submap);
2574
2575 vm_map_lock(map);
2576 VM_MAP_RANGE_CHECK(map, start, end);
2577 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2578 (entry->eflags & MAP_ENTRY_COW) == 0 &&
2579 entry->object.vm_object == NULL) {
2580 result = vm_map_clip_start(map, entry, start);
2581 if (result != KERN_SUCCESS)
2582 goto unlock;
2583 result = vm_map_clip_end(map, entry, end);
2584 if (result != KERN_SUCCESS)
2585 goto unlock;
2586 entry->object.sub_map = submap;
2587 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2588 result = KERN_SUCCESS;
2589 }
2590unlock:
2591 vm_map_unlock(map);
2592
2593 if (result != KERN_SUCCESS) {
2594 vm_map_lock(submap);
2595 submap->flags &= ~MAP_IS_SUB_MAP;
2597 }
2598 return (result);
2599}
2600
2601/*
2602 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2603 */
2604#define MAX_INIT_PT 96
2605
2606/*
2607 * vm_map_pmap_enter:
2608 *
2609 * Preload the specified map's pmap with mappings to the specified
2610 * object's memory-resident pages. No further physical pages are
2611 * allocated, and no further virtual pages are retrieved from secondary
2612 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
2613 * limited number of page mappings are created at the low-end of the
2614 * specified address range. (For this purpose, a superpage mapping
2615 * counts as one page mapping.) Otherwise, all resident pages within
2616 * the specified address range are mapped.
2617 */
2618static void
2619vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2620 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2621{
2622 vm_offset_t start;
2623 vm_page_t p, p_start;
2624 vm_pindex_t mask, psize, threshold, tmpidx;
2625
2626 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2627 return;
2628 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2629 VM_OBJECT_WLOCK(object);
2630 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631 pmap_object_init_pt(map->pmap, addr, object, pindex,
2632 size);
2633 VM_OBJECT_WUNLOCK(object);
2634 return;
2635 }
2637 } else
2638 VM_OBJECT_RLOCK(object);
2639
2640 psize = atop(size);
2641 if (psize + pindex > object->size) {
2642 if (pindex >= object->size) {
2643 VM_OBJECT_RUNLOCK(object);
2644 return;
2645 }
2646 psize = object->size - pindex;
2647 }
2648
2649 start = 0;
2650 p_start = NULL;
2651 threshold = MAX_INIT_PT;
2652
2653 p = vm_page_find_least(object, pindex);
2654 /*
2655 * Assert: the variable p is either (1) the page with the
2656 * least pindex greater than or equal to the parameter pindex
2657 * or (2) NULL.
2658 */
2659 for (;
2660 p != NULL && (tmpidx = p->pindex - pindex) < psize;
2661 p = TAILQ_NEXT(p, listq)) {
2662 /*
2663 * don't allow an madvise to blow away our really
2664 * free pages allocating pv entries.
2665 */
2666 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2667 vm_page_count_severe()) ||
2668 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2669 tmpidx >= threshold)) {
2670 psize = tmpidx;
2671 break;
2672 }
2673 if (vm_page_all_valid(p)) {
2674 if (p_start == NULL) {
2675 start = addr + ptoa(tmpidx);
2676 p_start = p;
2677 }
2678 /* Jump ahead if a superpage mapping is possible. */
2679 if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2680 (pagesizes[p->psind] - 1)) == 0) {
2681 mask = atop(pagesizes[p->psind]) - 1;
2682 if (tmpidx + mask < psize &&
2683 vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2684 p += mask;
2685 threshold += mask;
2686 }
2687 }
2688 } else if (p_start != NULL) {
2689 pmap_enter_object(map->pmap, start, addr +
2690 ptoa(tmpidx), p_start, prot);
2691 p_start = NULL;
2692 }
2693 }
2694 if (p_start != NULL)
2695 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2696 p_start, prot);
2697 VM_OBJECT_RUNLOCK(object);
2698}
2700/*
2701 * vm_map_protect:
2702 *
2703 * Sets the protection and/or the maximum protection of the
2704 * specified address region in the target map.
2705 */
2706int
2707vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2708 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2709{
2710 vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2711 vm_object_t obj;
2712 struct ucred *cred;
2713 vm_prot_t old_prot;
2714 int rv;
2715
2716 if (start == end)
2717 return (KERN_SUCCESS);
2718
2721 (new_prot & new_maxprot) != new_prot)
2722 return (KERN_OUT_OF_BOUNDS);
2723
2724again:
2725 in_tran = NULL;
2726 vm_map_lock(map);
2727
2728 if ((map->flags & MAP_WXORX) != 0 &&
2729 (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2730 (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2731 VM_PROT_EXECUTE)) {
2732 vm_map_unlock(map);
2733 return (KERN_PROTECTION_FAILURE);
2734 }
2735
2736 /*
2737 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2738 * need to fault pages into the map and will drop the map lock while
2739 * doing so, and the VM object may end up in an inconsistent state if we
2740 * update the protection on the map entry in between faults.
2741 */
2742 vm_map_wait_busy(map);
2743
2744 VM_MAP_RANGE_CHECK(map, start, end);
2745
2746 if (!vm_map_lookup_entry(map, start, &first_entry))
2747 first_entry = vm_map_entry_succ(first_entry);
2748
2749 /*
2750 * Make a first pass to check for protection violations.
2751 */
2752 for (entry = first_entry; entry->start < end;
2753 entry = vm_map_entry_succ(entry)) {
2754 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2755 continue;
2756 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2757 vm_map_unlock(map);
2758 return (KERN_INVALID_ARGUMENT);
2759 }
2760 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2761 new_prot = entry->protection;
2762 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2763 new_maxprot = entry->max_protection;
2764 if ((new_prot & entry->max_protection) != new_prot ||
2765 (new_maxprot & entry->max_protection) != new_maxprot) {
2766 vm_map_unlock(map);
2767 return (KERN_PROTECTION_FAILURE);
2768 }
2769 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2770 in_tran = entry;
2771 }
2772
2773 /*
2774 * Postpone the operation until all in-transition map entries have
2775 * stabilized. An in-transition entry might already have its pages
2776 * wired and wired_count incremented, but not yet have its
2777 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call
2778 * vm_fault_copy_entry() in the final loop below.
2779 */
2780 if (in_tran != NULL) {
2781 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782 vm_map_unlock_and_wait(map, 0);
2783 goto again;
2784 }
2785
2786 /*
2787 * Before changing the protections, try to reserve swap space for any
2788 * private (i.e., copy-on-write) mappings that are transitioning from
2789 * read-only to read/write access. If a reservation fails, break out
2790 * of this loop early and let the next loop simplify the entries, since
2791 * some may now be mergeable.
2792 */
2793 rv = vm_map_clip_start(map, first_entry, start);
2794 if (rv != KERN_SUCCESS) {
2795 vm_map_unlock(map);
2796 return (rv);
2797 }
2798 for (entry = first_entry; entry->start < end;
2799 entry = vm_map_entry_succ(entry)) {
2800 rv = vm_map_clip_end(map, entry, end);
2801 if (rv != KERN_SUCCESS) {
2802 vm_map_unlock(map);
2803 return (rv);
2804 }
2805
2806 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2807 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2808 ENTRY_CHARGED(entry) ||
2809 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2810 continue;
2811
2812 cred = curthread->td_ucred;
2813 obj = entry->object.vm_object;
2814
2815 if (obj == NULL ||
2816 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2817 if (!swap_reserve(entry->end - entry->start)) {
2819 end = entry->end;
2820 break;
2821 }
2822 crhold(cred);
2823 entry->cred = cred;
2824 continue;
2825 }
2826
2827 if (obj->type != OBJT_DEFAULT &&
2828 (obj->flags & OBJ_SWAP) == 0)
2829 continue;
2830 VM_OBJECT_WLOCK(obj);
2831 if (obj->type != OBJT_DEFAULT &&
2832 (obj->flags & OBJ_SWAP) == 0) {
2833 VM_OBJECT_WUNLOCK(obj);
2834 continue;
2835 }
2836
2837 /*
2838 * Charge for the whole object allocation now, since
2839 * we cannot distinguish between non-charged and
2840 * charged clipped mapping of the same object later.
2841 */
2842 KASSERT(obj->charge == 0,
2843 ("vm_map_protect: object %p overcharged (entry %p)",
2844 obj, entry));
2845 if (!swap_reserve(ptoa(obj->size))) {
2846 VM_OBJECT_WUNLOCK(obj);
2848 end = entry->end;
2849 break;
2850 }
2851
2852 crhold(cred);
2853 obj->cred = cred;
2854 obj->charge = ptoa(obj->size);
2855 VM_OBJECT_WUNLOCK(obj);
2856 }
2857
2858 /*
2859 * If enough swap space was available, go back and fix up protections.
2860 * Otherwise, just simplify entries, since some may have been modified.
2861 * [Note that clipping is not necessary the second time.]
2862 */
2863 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2864 entry->start < end;
2865 vm_map_try_merge_entries(map, prev_entry, entry),
2866 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2867 if (rv != KERN_SUCCESS ||
2868 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2869 continue;
2870
2871 old_prot = entry->protection;
2872
2873 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2874 entry->max_protection = new_maxprot;
2875 entry->protection = new_maxprot & old_prot;
2876 }
2877 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2878 entry->protection = new_prot;
2879
2880 /*
2881 * For user wired map entries, the normal lazy evaluation of
2882 * write access upgrades through soft page faults is
2883 * undesirable. Instead, immediately copy any pages that are
2884 * copy-on-write and enable write access in the physical map.
2885 */
2886 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2887 (entry->protection & VM_PROT_WRITE) != 0 &&
2888 (old_prot & VM_PROT_WRITE) == 0)
2889 vm_fault_copy_entry(map, map, entry, entry, NULL);
2890
2891 /*
2892 * When restricting access, update the physical map. Worry
2893 * about copy-on-write here.
2894 */
2895 if ((old_prot & ~entry->protection) != 0) {
2896#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2897 VM_PROT_ALL)
2898 pmap_protect(map->pmap, entry->start,
2899 entry->end,
2900 entry->protection & MASK(entry));
2901#undef MASK
2902 }
2903 }
2904 vm_map_try_merge_entries(map, prev_entry, entry);
2905 vm_map_unlock(map);
2906 return (rv);
2907}
2908
2909/*
2910 * vm_map_madvise:
2911 *
2912 * This routine traverses a processes map handling the madvise
2913 * system call. Advisories are classified as either those effecting
2914 * the vm_map_entry structure, or those effecting the underlying
2915 * objects.
2916 */
2917int
2919 vm_map_t map,
2920 vm_offset_t start,
2921 vm_offset_t end,
2922 int behav)
2923{
2924 vm_map_entry_t entry, prev_entry;
2925 int rv;
2926 bool modify_map;
2927
2928 /*
2929 * Some madvise calls directly modify the vm_map_entry, in which case
2930 * we need to use an exclusive lock on the map and we need to perform
2931 * various clipping operations. Otherwise we only need a read-lock
2932 * on the map.
2933 */
2934 switch(behav) {
2935 case MADV_NORMAL:
2936 case MADV_SEQUENTIAL:
2937 case MADV_RANDOM:
2938 case MADV_NOSYNC:
2939 case MADV_AUTOSYNC:
2940 case MADV_NOCORE:
2941 case MADV_CORE:
2942 if (start == end)
2943 return (0);
2944 modify_map = true;
2945 vm_map_lock(map);
2946 break;
2947 case MADV_WILLNEED:
2948 case MADV_DONTNEED:
2949 case MADV_FREE:
2950 if (start == end)
2951 return (0);
2952 modify_map = false;
2953 vm_map_lock_read(map);
2954 break;
2955 default:
2956 return (EINVAL);
2957 }
2958
2959 /*
2960 * Locate starting entry and clip if necessary.
2961 */
2962 VM_MAP_RANGE_CHECK(map, start, end);
2963
2964 if (modify_map) {
2965 /*
2966 * madvise behaviors that are implemented in the vm_map_entry.
2967 *
2968 * We clip the vm_map_entry so that behavioral changes are
2969 * limited to the specified address range.
2970 */
2971 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2972 if (rv != KERN_SUCCESS) {
2973 vm_map_unlock(map);
2974 return (vm_mmap_to_errno(rv));
2975 }
2976
2977 for (; entry->start < end; prev_entry = entry,
2978 entry = vm_map_entry_succ(entry)) {
2979 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2980 continue;
2981
2982 rv = vm_map_clip_end(map, entry, end);
2983 if (rv != KERN_SUCCESS) {
2984 vm_map_unlock(map);
2985 return (vm_mmap_to_errno(rv));
2986 }
2987
2988 switch (behav) {
2989 case MADV_NORMAL:
2992 break;
2993 case MADV_SEQUENTIAL:
2996 break;
2997 case MADV_RANDOM:
3000 break;
3001 case MADV_NOSYNC:
3002 entry->eflags |= MAP_ENTRY_NOSYNC;
3003 break;
3004 case MADV_AUTOSYNC:
3005 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3006 break;
3007 case MADV_NOCORE:
3008 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3009 break;
3010 case MADV_CORE:
3011 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3012 break;
3013 default:
3014 break;
3015 }
3016 vm_map_try_merge_entries(map, prev_entry, entry);
3017 }
3018 vm_map_try_merge_entries(map, prev_entry, entry);
3019 vm_map_unlock(map);
3020 } else {
3021 vm_pindex_t pstart, pend;
3022
3023 /*
3024 * madvise behaviors that are implemented in the underlying
3025 * vm_object.
3026 *
3027 * Since we don't clip the vm_map_entry, we have to clip
3028 * the vm_object pindex and count.
3029 */
3030 if (!vm_map_lookup_entry(map, start, &entry))
3031 entry = vm_map_entry_succ(entry);
3032 for (; entry->start < end;
3033 entry = vm_map_entry_succ(entry)) {
3034 vm_offset_t useEnd, useStart;
3035
3036 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3037 continue;
3038
3039 /*
3040 * MADV_FREE would otherwise rewind time to
3041 * the creation of the shadow object. Because
3042 * we hold the VM map read-locked, neither the
3043 * entry's object nor the presence of a
3044 * backing object can change.
3045 */
3046 if (behav == MADV_FREE &&
3047 entry->object.vm_object != NULL &&
3048 entry->object.vm_object->backing_object != NULL)
3049 continue;
3050
3051 pstart = OFF_TO_IDX(entry->offset);
3052 pend = pstart + atop(entry->end - entry->start);
3053 useStart = entry->start;
3054 useEnd = entry->end;
3055
3056 if (entry->start < start) {
3057 pstart += atop(start - entry->start);
3058 useStart = start;
3059 }
3060 if (entry->end > end) {
3061 pend -= atop(entry->end - end);
3062 useEnd = end;
3063 }
3064
3065 if (pstart >= pend)
3066 continue;
3067
3068 /*
3069 * Perform the pmap_advise() before clearing
3070 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
3071 * concurrent pmap operation, such as pmap_remove(),
3072 * could clear a reference in the pmap and set
3073 * PGA_REFERENCED on the page before the pmap_advise()
3074 * had completed. Consequently, the page would appear
3075 * referenced based upon an old reference that
3076 * occurred before this pmap_advise() ran.
3077 */
3078 if (behav == MADV_DONTNEED || behav == MADV_FREE)
3079 pmap_advise(map->pmap, useStart, useEnd,
3080 behav);
3081
3082 vm_object_madvise(entry->object.vm_object, pstart,
3083 pend, behav);
3084
3085 /*
3086 * Pre-populate paging structures in the
3087 * WILLNEED case. For wired entries, the
3088 * paging structures are already populated.
3089 */
3090 if (behav == MADV_WILLNEED &&
3091 entry->wired_count == 0) {
3093 useStart,
3094 entry->protection,
3095 entry->object.vm_object,
3096 pstart,
3097 ptoa(pend - pstart),
3099 );
3100 }
3101 }
3102 vm_map_unlock_read(map);
3103 }
3104 return (0);
3105}
3106
3107/*
3108 * vm_map_inherit:
3109 *
3110 * Sets the inheritance of the specified address
3111 * range in the target map. Inheritance
3112 * affects how the map will be shared with
3113 * child maps at the time of vmspace_fork.
3114 */
3115int
3116vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3117 vm_inherit_t new_inheritance)
3118{
3119 vm_map_entry_t entry, lentry, prev_entry, start_entry;
3120 int rv;
3121
3122 switch (new_inheritance) {
3123 case VM_INHERIT_NONE:
3124 case VM_INHERIT_COPY:
3125 case VM_INHERIT_SHARE:
3126 case VM_INHERIT_ZERO:
3127 break;
3128 default:
3129 return (KERN_INVALID_ARGUMENT);
3130 }
3131 if (start == end)
3132 return (KERN_SUCCESS);
3133 vm_map_lock(map);
3134 VM_MAP_RANGE_CHECK(map, start, end);
3135 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3136 if (rv != KERN_SUCCESS)
3137 goto unlock;
3138 if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3139 rv = vm_map_clip_end(map, lentry, end);
3140 if (rv != KERN_SUCCESS)
3141 goto unlock;
3142 }
3143 if (new_inheritance == VM_INHERIT_COPY) {
3144 for (entry = start_entry; entry->start < end;
3145 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3146 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3147 != 0) {
3149 goto unlock;
3150 }
3151 }
3152 }
3153 for (entry = start_entry; entry->start < end; prev_entry = entry,
3154 entry = vm_map_entry_succ(entry)) {
3155 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3156 entry, (uintmax_t)entry->end, (uintmax_t)end));
3157 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3158 new_inheritance != VM_INHERIT_ZERO)
3159 entry->inheritance = new_inheritance;
3160 vm_map_try_merge_entries(map, prev_entry, entry);
3161 }
3162 vm_map_try_merge_entries(map, prev_entry, entry);
3163unlock:
3164 vm_map_unlock(map);
3165 return (rv);
3166}
3167
3168/*
3169 * vm_map_entry_in_transition:
3170 *
3171 * Release the map lock, and sleep until the entry is no longer in
3172 * transition. Awake and acquire the map lock. If the map changed while
3173 * another held the lock, lookup a possibly-changed entry at or after the
3174 * 'start' position of the old entry.
3175 */
3176static vm_map_entry_t
3177vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3178 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3179{
3180 vm_map_entry_t entry;
3181 vm_offset_t start;
3182 u_int last_timestamp;
3183
3185 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3186 ("not in-tranition map entry %p", in_entry));
3187 /*
3188 * We have not yet clipped the entry.
3189 */
3190 start = MAX(in_start, in_entry->start);
3191 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3192 last_timestamp = map->timestamp;
3193 if (vm_map_unlock_and_wait(map, 0)) {
3194 /*
3195 * Allow interruption of user wiring/unwiring?
3196 */
3197 }
3198 vm_map_lock(map);
3199 if (last_timestamp + 1 == map->timestamp)
3200 return (in_entry);
3201
3202 /*
3203 * Look again for the entry because the map was modified while it was
3204 * unlocked. Specifically, the entry may have been clipped, merged, or
3205 * deleted.
3206 */
3207 if (!vm_map_lookup_entry(map, start, &entry)) {
3208 if (!holes_ok) {
3209 *io_end = start;
3210 return (NULL);
3211 }
3212 entry = vm_map_entry_succ(entry);
3213 }
3214 return (entry);
3216
3217/*
3218 * vm_map_unwire:
3219 *
3220 * Implements both kernel and user unwiring.
3221 */
3222int
3223vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3224 int flags)
3225{
3226 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3227 int rv;
3228 bool holes_ok, need_wakeup, user_unwire;
3229
3230 if (start == end)
3231 return (KERN_SUCCESS);
3232 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3233 user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3234 vm_map_lock(map);
3235 VM_MAP_RANGE_CHECK(map, start, end);
3236 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3237 if (holes_ok)
3238 first_entry = vm_map_entry_succ(first_entry);
3239 else {
3240 vm_map_unlock(map);
3241 return (KERN_INVALID_ADDRESS);
3242 }
3243 }
3244 rv = KERN_SUCCESS;
3245 for (entry = first_entry; entry->start < end; entry = next_entry) {
3246 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3247 /*
3248 * We have not yet clipped the entry.
3249 */
3250 next_entry = vm_map_entry_in_transition(map, start,
3251 &end, holes_ok, entry);
3252 if (next_entry == NULL) {
3253 if (entry == first_entry) {
3254 vm_map_unlock(map);
3255 return (KERN_INVALID_ADDRESS);
3256 }
3258 break;
3259 }
3260 first_entry = (entry == first_entry) ?
3261 next_entry : NULL;
3262 continue;
3263 }
3264 rv = vm_map_clip_start(map, entry, start);
3265 if (rv != KERN_SUCCESS)
3266 break;
3267 rv = vm_map_clip_end(map, entry, end);
3268 if (rv != KERN_SUCCESS)
3269 break;
3270
3271 /*
3272 * Mark the entry in case the map lock is released. (See
3273 * above.)
3274 */
3275 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3276 entry->wiring_thread == NULL,
3277 ("owned map entry %p", entry));
3279 entry->wiring_thread = curthread;
3280 next_entry = vm_map_entry_succ(entry);
3281 /*
3282 * Check the map for holes in the specified region.
3283 * If holes_ok, skip this check.
3284 */
3285 if (!holes_ok &&
3286 entry->end < end && next_entry->start > entry->end) {
3287 end = entry->end;
3289 break;
3290 }
3291 /*
3292 * If system unwiring, require that the entry is system wired.
3293 */
3294 if (!user_unwire &&
3295 vm_map_entry_system_wired_count(entry) == 0) {
3296 end = entry->end;
3298 break;
3299 }
3300 }
3301 need_wakeup = false;
3302 if (first_entry == NULL &&
3303 !vm_map_lookup_entry(map, start, &first_entry)) {
3304 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3305 prev_entry = first_entry;
3306 entry = vm_map_entry_succ(first_entry);
3307 } else {
3308 prev_entry = vm_map_entry_pred(first_entry);
3309 entry = first_entry;
3310 }
3311 for (; entry->start < end;
3312 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3313 /*
3314 * If holes_ok was specified, an empty
3315 * space in the unwired region could have been mapped
3316 * while the map lock was dropped for draining
3317 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
3318 * could be simultaneously wiring this new mapping
3319 * entry. Detect these cases and skip any entries
3320 * marked as in transition by us.
3321 */
3322 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3323 entry->wiring_thread != curthread) {
3324 KASSERT(holes_ok,
3325 ("vm_map_unwire: !HOLESOK and new/changed entry"));
3326 continue;
3327 }
3328
3329 if (rv == KERN_SUCCESS && (!user_unwire ||
3330 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3331 if (entry->wired_count == 1)
3332 vm_map_entry_unwire(map, entry);
3333 else
3334 entry->wired_count--;
3335 if (user_unwire)
3336 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3337 }
3338 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3339 ("vm_map_unwire: in-transition flag missing %p", entry));
3340 KASSERT(entry->wiring_thread == curthread,
3341 ("vm_map_unwire: alien wire %p", entry));
3342 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3343 entry->wiring_thread = NULL;
3344 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3345 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3346 need_wakeup = true;
3347 }
3348 vm_map_try_merge_entries(map, prev_entry, entry);
3349 }
3350 vm_map_try_merge_entries(map, prev_entry, entry);
3351 vm_map_unlock(map);
3352 if (need_wakeup)
3353 vm_map_wakeup(map);
3354 return (rv);
3355}
3356
3357static void
3358vm_map_wire_user_count_sub(u_long npages)
3359{
3360
3361 atomic_subtract_long(&vm_user_wire_count, npages);
3362}
3363
3364static bool
3365vm_map_wire_user_count_add(u_long npages)
3366{
3367 u_long wired;
3368
3369 wired = vm_user_wire_count;
3370 do {
3371 if (npages + wired > vm_page_max_user_wired)
3372 return (false);
3373 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3374 npages + wired));
3375
3376 return (true);
3377}
3378
3380 * vm_map_wire_entry_failure:
3381 *
3382 * Handle a wiring failure on the given entry.
3383 *
3384 * The map should be locked.
3385 */
3386static void
3388 vm_offset_t failed_addr)
3389{
3390
3392 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3393 entry->wired_count == 1,
3394 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3395 KASSERT(failed_addr < entry->end,
3396 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3397
3398 /*
3399 * If any pages at the start of this entry were successfully wired,
3400 * then unwire them.
3401 */
3402 if (failed_addr > entry->start) {
3403 pmap_unwire(map->pmap, entry->start, failed_addr);
3404 vm_object_unwire(entry->object.vm_object, entry->offset,
3405 failed_addr - entry->start, PQ_ACTIVE);
3406 }
3407
3409 * Assign an out-of-range value to represent the failure to wire this
3410 * entry.
3411 */
3412 entry->wired_count = -1;
3413}
3414
3415int
3416vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3417{
3418 int rv;
3419
3420 vm_map_lock(map);
3421 rv = vm_map_wire_locked(map, start, end, flags);
3422 vm_map_unlock(map);
3423 return (rv);
3424}
3426/*
3427 * vm_map_wire_locked:
3428 *
3429 * Implements both kernel and user wiring. Returns with the map locked,
3430 * the map lock may be dropped.
3431 */
3432int
3433vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3434{
3435 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3436 vm_offset_t faddr, saved_end, saved_start;
3437 u_long incr, npages;
3438 u_int bidx, last_timestamp;
3439 int rv;
3440 bool holes_ok, need_wakeup, user_wire;
3441 vm_prot_t prot;
3442
3444
3445 if (start == end)
3446 return (KERN_SUCCESS);
3447 prot = 0;
3448 if (flags & VM_MAP_WIRE_WRITE)
3449 prot |= VM_PROT_WRITE;
3450 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3451 user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3452 VM_MAP_RANGE_CHECK(map, start, end);
3453 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3454 if (holes_ok)
3455 first_entry = vm_map_entry_succ(first_entry);
3456 else
3457 return (KERN_INVALID_ADDRESS);
3458 }
3459 for (entry = first_entry; entry->start < end; entry = next_entry) {
3460 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3461 /*
3462 * We have not yet clipped the entry.
3463 */
3464 next_entry = vm_map_entry_in_transition(map, start,
3465 &end, holes_ok, entry);
3466 if (next_entry == NULL) {
3467 if (entry == first_entry)
3468 return (KERN_INVALID_ADDRESS);
3470 goto done;
3471 }
3472 first_entry = (entry == first_entry) ?
3473 next_entry : NULL;
3474 continue;
3475 }
3476 rv = vm_map_clip_start(map, entry, start);
3477 if (rv != KERN_SUCCESS)
3478 goto done;
3479 rv = vm_map_clip_end(map, entry, end);
3480 if (rv != KERN_SUCCESS)
3481 goto done;
3482
3483 /*
3484 * Mark the entry in case the map lock is released. (See
3485 * above.)
3486 */
3487 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3488 entry->wiring_thread == NULL,
3489 ("owned map entry %p", entry));
3491 entry->wiring_thread = curthread;
3492 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3493 || (entry->protection & prot) != prot) {
3495 if (!holes_ok) {
3496 end = entry->end;
3498 goto done;
3499 }
3500 } else if (entry->wired_count == 0) {
3501 entry->wired_count++;
3502
3503 npages = atop(entry->end - entry->start);
3504 if (user_wire && !vm_map_wire_user_count_add(npages)) {
3505 vm_map_wire_entry_failure(map, entry,
3506 entry->start);
3507 end = entry->end;
3509 goto done;
3510 }
3511
3512 /*
3513 * Release the map lock, relying on the in-transition
3514 * mark. Mark the map busy for fork.
3515 */
3516 saved_start = entry->start;
3517 saved_end = entry->end;
3518 last_timestamp = map->timestamp;
3519 bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3521 incr = pagesizes[bidx];
3522 vm_map_busy(map);
3523 vm_map_unlock(map);
3524
3525 for (faddr = saved_start; faddr < saved_end;
3526 faddr += incr) {
3527 /*
3528 * Simulate a fault to get the page and enter
3529 * it into the physical map.
3530 */
3531 rv = vm_fault(map, faddr, VM_PROT_NONE,
3532 VM_FAULT_WIRE, NULL);
3533 if (rv != KERN_SUCCESS)
3534 break;
3535 }
3536 vm_map_lock(map);
3537 vm_map_unbusy(map);
3538 if (last_timestamp + 1 != map->timestamp) {
3539 /*
3540 * Look again for the entry because the map was
3541 * modified while it was unlocked. The entry
3542 * may have been clipped, but NOT merged or
3543 * deleted.
3544 */
3545 if (!vm_map_lookup_entry(map, saved_start,
3546 &next_entry))
3547 KASSERT(false,
3548 ("vm_map_wire: lookup failed"));
3549 first_entry = (entry == first_entry) ?
3550 next_entry : NULL;
3551 for (entry = next_entry; entry->end < saved_end;
3552 entry = vm_map_entry_succ(entry)) {
3553 /*
3554 * In case of failure, handle entries
3555 * that were not fully wired here;
3556 * fully wired entries are handled
3557 * later.
3558 */
3559 if (rv != KERN_SUCCESS &&
3560 faddr < entry->end)
3562 entry, faddr);
3563 }
3564 }
3565 if (rv != KERN_SUCCESS) {
3566 vm_map_wire_entry_failure(map, entry, faddr);
3567 if (user_wire)
3569 end = entry->end;
3570 goto done;
3571 }
3572 } else if (!user_wire ||
3573 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3574 entry->wired_count++;
3575 }
3576 /*
3577 * Check the map for holes in the specified region.
3578 * If holes_ok was specified, skip this check.
3579 */
3580 next_entry = vm_map_entry_succ(entry);
3581 if (!holes_ok &&
3582 entry->end < end && next_entry->start > entry->end) {
3583 end = entry->end;
3585 goto done;
3586 }
3587 }
3588 rv = KERN_SUCCESS;
3589done:
3590 need_wakeup = false;
3591 if (first_entry == NULL &&
3592 !vm_map_lookup_entry(map, start, &first_entry)) {
3593 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3594 prev_entry = first_entry;
3595 entry = vm_map_entry_succ(first_entry);
3596 } else {
3597 prev_entry = vm_map_entry_pred(first_entry);
3598 entry = first_entry;
3599 }
3600 for (; entry->start < end;
3601 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3602 /*
3603 * If holes_ok was specified, an empty
3604 * space in the unwired region could have been mapped
3605 * while the map lock was dropped for faulting in the
3606 * pages or draining MAP_ENTRY_IN_TRANSITION.
3607 * Moreover, another thread could be simultaneously
3608 * wiring this new mapping entry. Detect these cases
3609 * and skip any entries marked as in transition not by us.
3610 *
3611 * Another way to get an entry not marked with
3612 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3613 * which set rv to KERN_INVALID_ARGUMENT.
3614 */
3615 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3616 entry->wiring_thread != curthread) {
3617 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3618 ("vm_map_wire: !HOLESOK and new/changed entry"));
3619 continue;
3620 }
3621
3622 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3623 /* do nothing */
3624 } else if (rv == KERN_SUCCESS) {
3625 if (user_wire)
3626 entry->eflags |= MAP_ENTRY_USER_WIRED;
3627 } else if (entry->wired_count == -1) {
3628 /*
3629 * Wiring failed on this entry. Thus, unwiring is
3630 * unnecessary.
3631 */
3632 entry->wired_count = 0;
3633 } else if (!user_wire ||
3634 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3635 /*
3636 * Undo the wiring. Wiring succeeded on this entry
3637 * but failed on a later entry.
3638 */
3639 if (entry->wired_count == 1) {
3640 vm_map_entry_unwire(map, entry);
3641 if (user_wire)
3643 atop(entry->end - entry->start));
3644 } else
3645 entry->wired_count--;
3646 }
3647 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3648 ("vm_map_wire: in-transition flag missing %p", entry));
3649 KASSERT(entry->wiring_thread == curthread,
3650 ("vm_map_wire: alien wire %p", entry));
3651 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3653 entry->wiring_thread = NULL;
3654 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3655 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3656 need_wakeup = true;
3657 }
3658 vm_map_try_merge_entries(map, prev_entry, entry);
3659 }
3660 vm_map_try_merge_entries(map, prev_entry, entry);
3661 if (need_wakeup)
3662 vm_map_wakeup(map);
3663 return (rv);
3664}
3665
3666/*
3667 * vm_map_sync
3668 *
3669 * Push any dirty cached pages in the address range to their pager.
3670 * If syncio is TRUE, dirty pages are written synchronously.
3671 * If invalidate is TRUE, any cached pages are freed as well.
3672 *
3673 * If the size of the region from start to end is zero, we are
3674 * supposed to flush all modified pages within the region containing
3675 * start. Unfortunately, a region can be split or coalesced with
3676 * neighboring regions, making it difficult to determine what the
3677 * original region was. Therefore, we approximate this requirement by
3678 * flushing the current region containing start.
3679 *
3680 * Returns an error if any part of the specified range is not mapped.
3681 */
3682int
3684 vm_map_t map,
3685 vm_offset_t start,
3686 vm_offset_t end,
3687 boolean_t syncio,
3688 boolean_t invalidate)
3689{
3690 vm_map_entry_t entry, first_entry, next_entry;
3691 vm_size_t size;
3692 vm_object_t object;
3693 vm_ooffset_t offset;
3694 unsigned int last_timestamp;
3695 int bdry_idx;
3696 boolean_t failed;
3697
3698 vm_map_lock_read(map);
3699 VM_MAP_RANGE_CHECK(map, start, end);
3700 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3701 vm_map_unlock_read(map);
3702 return (KERN_INVALID_ADDRESS);
3703 } else if (start == end) {
3704 start = first_entry->start;
3705 end = first_entry->end;
3706 }
3707
3708 /*
3709 * Make a first pass to check for user-wired memory, holes,
3710 * and partial invalidation of largepage mappings.
3711 */
3712 for (entry = first_entry; entry->start < end; entry = next_entry) {
3713 if (invalidate) {
3714 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3715 vm_map_unlock_read(map);
3716 return (KERN_INVALID_ARGUMENT);
3717 }
3718 bdry_idx = (entry->eflags &
3721 if (bdry_idx != 0 &&
3722 ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3723 (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3724 vm_map_unlock_read(map);
3725 return (KERN_INVALID_ARGUMENT);
3726 }
3727 }
3728 next_entry = vm_map_entry_succ(entry);
3729 if (end > entry->end &&
3730 entry->end != next_entry->start) {
3731 vm_map_unlock_read(map);
3732 return (KERN_INVALID_ADDRESS);
3733 }
3734 }
3735
3736 if (invalidate)
3737 pmap_remove(map->pmap, start, end);
3738 failed = FALSE;
3739
3740 /*
3741 * Make a second pass, cleaning/uncaching pages from the indicated
3742 * objects as we go.
3743 */
3744 for (entry = first_entry; entry->start < end;) {
3745 offset = entry->offset + (start - entry->start);
3746 size = (end <= entry->end ? end : entry->end) - start;
3747 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3748 vm_map_t smap;
3749 vm_map_entry_t tentry;
3750 vm_size_t tsize;
3751
3752 smap = entry->object.sub_map;
3753 vm_map_lock_read(smap);
3754 (void) vm_map_lookup_entry(smap, offset, &tentry);
3755 tsize = tentry->end - offset;
3756 if (tsize < size)
3757 size = tsize;
3758 object = tentry->object.vm_object;
3759 offset = tentry->offset + (offset - tentry->start);
3760 vm_map_unlock_read(smap);
3761 } else {
3762 object = entry->object.vm_object;
3763 }
3764 vm_object_reference(object);
3765 last_timestamp = map->timestamp;
3766 vm_map_unlock_read(map);
3767 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3768 failed = TRUE;
3769 start += size;
3770 vm_object_deallocate(object);
3771 vm_map_lock_read(map);
3772 if (last_timestamp == map->timestamp ||
3773 !vm_map_lookup_entry(map, start, &entry))
3774 entry = vm_map_entry_succ(entry);
3775 }
3776
3777 vm_map_unlock_read(map);
3778 return (failed ? KERN_FAILURE : KERN_SUCCESS);
3779}
3780
3781/*
3782 * vm_map_entry_unwire: [ internal use only ]
3783 *
3784 * Make the region specified by this entry pageable.
3785 *
3786 * The map in question should be locked.
3787 * [This is the reason for this routine's existence.]
3788 */
3789static void
3791{
3792 vm_size_t size;
3793
3795 KASSERT(entry->wired_count > 0,
3796 ("vm_map_entry_unwire: entry %p isn't wired", entry));
3797
3798 size = entry->end - entry->start;
3799 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3801 pmap_unwire(map->pmap, entry->start, entry->end);
3802 vm_object_unwire(entry->object.vm_object, entry->offset, size,
3803 PQ_ACTIVE);
3804 entry->wired_count = 0;
3805}
3806
3807static void
3808vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3809{
3810
3811 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3813 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3815
3816/*
3817 * vm_map_entry_delete: [ internal use only ]
3818 *
3819 * Deallocate the given entry from the target map.
3820 */
3821static void
3823{
3824 vm_object_t object;
3825 vm_pindex_t offidxstart, offidxend, size1;
3826 vm_size_t size;
3827
3829 object = entry->object.vm_object;
3830
3831 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3832 MPASS(entry->cred == NULL);
3833 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3834 MPASS(object == NULL);
3836 return;
3837 }
3838
3839 size = entry->end - entry->start;
3840 map->size -= size;
3841
3842 if (entry->cred != NULL) {
3843 swap_release_by_cred(size, entry->cred);
3844 crfree(entry->cred);
3845 }
3846
3847 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3848 entry->object.vm_object = NULL;
3849 } else if ((object->flags & OBJ_ANON) != 0 ||
3850 object == kernel_object) {
3851 KASSERT(entry->cred == NULL || object->cred == NULL ||
3852 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3853 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3854 offidxstart = OFF_TO_IDX(entry->offset);
3855 offidxend = offidxstart + atop(size);
3856 VM_OBJECT_WLOCK(object);
3857 if (object->ref_count != 1 &&
3858 ((object->flags & OBJ_ONEMAPPING) != 0 ||
3859 object == kernel_object)) {
3860 vm_object_collapse(object);
3861
3862 /*
3863 * The option OBJPR_NOTMAPPED can be passed here
3864 * because vm_map_delete() already performed
3865 * pmap_remove() on the only mapping to this range
3866 * of pages.
3867 */
3868 vm_object_page_remove(object, offidxstart, offidxend,
3870 if (offidxend >= object->size &&
3871 offidxstart < object->size) {
3872 size1 = object->size;
3873 object->size = offidxstart;
3874 if (object->cred != NULL) {
3875 size1 -= object->size;
3876 KASSERT(object->charge >= ptoa(size1),
3877 ("object %p charge < 0", object));
3878 swap_release_by_cred(ptoa(size1),
3879 object->cred);
3880 object->charge -= ptoa(size1);
3881 }
3882 }
3883 }
3884 VM_OBJECT_WUNLOCK(object);
3885 }
3886 if (map->system_map)
3887 vm_map_entry_deallocate(entry, TRUE);
3888 else {
3889 entry->defer_next = curthread->td_map_def_user;
3890 curthread->td_map_def_user = entry;
3891 }
3892}
3894/*
3895 * vm_map_delete: [ internal use only ]
3896 *
3897 * Deallocates the given address range from the target
3898 * map.
3899 */
3900int
3901vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3902{
3903 vm_map_entry_t entry, next_entry, scratch_entry;
3904 int rv;
3905
3907
3908 if (start == end)
3909 return (KERN_SUCCESS);
3910
3911 /*
3912 * Find the start of the region, and clip it.
3913 * Step through all entries in this region.
3914 */
3915 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3916 if (rv != KERN_SUCCESS)
3917 return (rv);
3918 for (; entry->start < end; entry = next_entry) {
3919 /*
3920 * Wait for wiring or unwiring of an entry to complete.
3921 * Also wait for any system wirings to disappear on
3922 * user maps.
3923 */
3924 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3925 (vm_map_pmap(map) != kernel_pmap &&
3926 vm_map_entry_system_wired_count(entry) != 0)) {
3927 unsigned int last_timestamp;
3928 vm_offset_t saved_start;
3929
3930 saved_start = entry->start;
3932 last_timestamp = map->timestamp;
3933 (void) vm_map_unlock_and_wait(map, 0);
3934 vm_map_lock(map);
3935 if (last_timestamp + 1 != map->timestamp) {
3936 /*
3937 * Look again for the entry because the map was
3938 * modified while it was unlocked.
3939 * Specifically, the entry may have been
3940 * clipped, merged, or deleted.
3941 */
3942 rv = vm_map_lookup_clip_start(map, saved_start,
3943 &next_entry, &scratch_entry);
3944 if (rv != KERN_SUCCESS)
3945 break;
3946 } else
3947 next_entry = entry;
3948 continue;
3949 }
3950
3951 /* XXXKIB or delete to the upper superpage boundary ? */
3952 rv = vm_map_clip_end(map, entry, end);
3953 if (rv != KERN_SUCCESS)
3954 break;
3955 next_entry = vm_map_entry_succ(entry);
3956
3957 /*
3958 * Unwire before removing addresses from the pmap; otherwise,
3959 * unwiring will put the entries back in the pmap.
3960 */
3961 if (entry->wired_count != 0)
3962 vm_map_entry_unwire(map, entry);
3963
3964 /*
3965 * Remove mappings for the pages, but only if the
3966 * mappings could exist. For instance, it does not
3967 * make sense to call pmap_remove() for guard entries.
3968 */
3969 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3970 entry->object.vm_object != NULL)
3971 pmap_remove(map->pmap, entry->start, entry->end);
3972
3973 if (entry->end == map->anon_loc)
3974 map->anon_loc = entry->start;
3975
3976 /*
3977 * Delete the entry only after removing all pmap
3978 * entries pointing to its pages. (Otherwise, its
3979 * page frames may be reallocated, and any modify bits
3980 * will be set in the wrong object!)
3981 */
3982 vm_map_entry_delete(map, entry);
3983 }
3984 return (rv);
3985}
3987/*
3988 * vm_map_remove:
3989 *
3990 * Remove the given address range from the target map.
3991 * This is the exported form of vm_map_delete.
3992 */
3993int
3994vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3995{
3996 int result;
3997
3998 vm_map_lock(map);
3999 VM_MAP_RANGE_CHECK(map, start, end);
4000 result = vm_map_delete(map, start, end);
4001 vm_map_unlock(map);
4002 return (result);
4003}
4004
4005/*
4006 * vm_map_check_protection:
4007 *
4008 * Assert that the target map allows the specified privilege on the
4009 * entire address region given. The entire region must be allocated.
4010 *
4011 * WARNING! This code does not and should not check whether the
4012 * contents of the region is accessible. For example a smaller file
4013 * might be mapped into a larger address space.
4014 *
4015 * NOTE! This code is also called by munmap().
4016 *
4017 * The map must be locked. A read lock is sufficient.
4018 */
4019boolean_t
4020vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4021 vm_prot_t protection)
4022{
4023 vm_map_entry_t entry;
4024 vm_map_entry_t tmp_entry;
4025
4026 if (!vm_map_lookup_entry(map, start, &tmp_entry))
4027 return (FALSE);
4028 entry = tmp_entry;
4029
4030 while (start < end) {
4031 /*
4032 * No holes allowed!
4033 */
4034 if (start < entry->start)
4035 return (FALSE);
4036 /*
4037 * Check protection associated with entry.
4038 */
4039 if ((entry->protection & protection) != protection)
4040 return (FALSE);
4041 /* go to next entry */
4042 start = entry->end;
4043 entry = vm_map_entry_succ(entry);
4044 }
4045 return (TRUE);
4046}
4047
4048/*
4050 * vm_map_copy_swap_object:
4051 *
4052 * Copies a swap-backed object from an existing map entry to a
4053 * new one. Carries forward the swap charge. May change the
4054 * src object on return.
4055 */
4056static void
4058 vm_offset_t size, vm_ooffset_t *fork_charge)
4059{
4060 vm_object_t src_object;
4061 struct ucred *cred;
4062 int charged;
4063
4064 src_object = src_entry->object.vm_object;
4065 charged = ENTRY_CHARGED(src_entry);
4066 if ((src_object->flags & OBJ_ANON) != 0) {
4067 VM_OBJECT_WLOCK(src_object);
4068 vm_object_collapse(src_object);
4069 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4070 vm_object_split(src_entry);
4071 src_object = src_entry->object.vm_object;
4072 }
4073 vm_object_reference_locked(src_object);
4075 VM_OBJECT_WUNLOCK(src_object);
4076 } else
4077 vm_object_reference(src_object);
4078 if (src_entry->cred != NULL &&
4079 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4080 KASSERT(src_object->cred == NULL,
4081 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4082 src_object));
4083 src_object->cred = src_entry->cred;
4084 src_object->charge = size;
4085 }
4086 dst_entry->object.vm_object = src_object;
4087 if (charged) {
4088 cred = curthread->td_ucred;
4089 crhold(cred);
4090 dst_entry->cred = cred;
4091 *fork_charge += size;
4092 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4093 crhold(cred);
4094 src_entry->cred = cred;
4095 *fork_charge += size;
4096 }
4097 }
4098}
4100/*
4101 * vm_map_copy_entry:
4102 *
4103 * Copies the contents of the source entry to the destination
4104 * entry. The entries *must* be aligned properly.
4105 */
4106static void
4108 vm_map_t src_map,
4109 vm_map_t dst_map,
4110 vm_map_entry_t src_entry,
4111 vm_map_entry_t dst_entry,
4112 vm_ooffset_t *fork_charge)
4113{
4114 vm_object_t src_object;
4115 vm_map_entry_t fake_entry;
4116 vm_offset_t size;
4117
4118 VM_MAP_ASSERT_LOCKED(dst_map);
4119
4120 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4121 return;
4122
4123 if (src_entry->wired_count == 0 ||
4124 (src_entry->protection & VM_PROT_WRITE) == 0) {
4125 /*
4126 * If the source entry is marked needs_copy, it is already
4127 * write-protected.
4128 */
4129 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4130 (src_entry->protection & VM_PROT_WRITE) != 0) {
4131 pmap_protect(src_map->pmap,
4132 src_entry->start,
4133 src_entry->end,
4134 src_entry->protection & ~VM_PROT_WRITE);
4135 }
4136
4137 /*
4138 * Make a copy of the object.
4139 */
4140 size = src_entry->end - src_entry->start;
4141 if ((src_object = src_entry->object.vm_object) != NULL) {
4142 if (src_object->type == OBJT_DEFAULT ||
4143 (src_object->flags & OBJ_SWAP) != 0) {
4144 vm_map_copy_swap_object(src_entry, dst_entry,
4145 size, fork_charge);
4146 /* May have split/collapsed, reload obj. */
4147 src_object = src_entry->object.vm_object;
4148 } else {
4149 vm_object_reference(src_object);
4150 dst_entry->object.vm_object = src_object;
4151 }
4152 src_entry->eflags |= MAP_ENTRY_COW |
4154 dst_entry->eflags |= MAP_ENTRY_COW |
4156 dst_entry->offset = src_entry->offset;
4157 if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4158 /*
4159 * MAP_ENTRY_WRITECNT cannot
4160 * indicate write reference from
4161 * src_entry, since the entry is
4162 * marked as needs copy. Allocate a
4163 * fake entry that is used to
4164 * decrement object->un_pager writecount
4165 * at the appropriate time. Attach
4166 * fake_entry to the deferred list.
4167 */
4168 fake_entry = vm_map_entry_create(dst_map);
4169 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4170 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4171 vm_object_reference(src_object);
4172 fake_entry->object.vm_object = src_object;
4173 fake_entry->start = src_entry->start;
4174 fake_entry->end = src_entry->end;
4175 fake_entry->defer_next =
4176 curthread->td_map_def_user;
4177 curthread->td_map_def_user = fake_entry;
4178 }
4179
4180 pmap_copy(dst_map->pmap, src_map->pmap,
4181 dst_entry->start, dst_entry->end - dst_entry->start,
4182 src_entry->start);
4183 } else {
4184 dst_entry->object.vm_object = NULL;
4185 dst_entry->offset = 0;
4186 if (src_entry->cred != NULL) {
4187 dst_entry->cred = curthread->td_ucred;
4188 crhold(dst_entry->cred);
4189 *fork_charge += size;
4190 }
4191 }
4192 } else {
4193 /*
4194 * We don't want to make writeable wired pages copy-on-write.
4195 * Immediately copy these pages into the new map by simulating
4196 * page faults. The new pages are pageable.
4197 */
4198 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4199 fork_charge);
4200 }
4201}
4203/*
4204 * vmspace_map_entry_forked:
4205 * Update the newly-forked vmspace each time a map entry is inherited
4206 * or copied. The values for vm_dsize and vm_tsize are approximate
4207 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4208 */
4209static void
4210vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4211 vm_map_entry_t entry)
4212{
4213 vm_size_t entrysize;
4214 vm_offset_t newend;
4215
4216 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4217 return;
4218 entrysize = entry->end - entry->start;
4219 vm2->vm_map.size += entrysize;
4221 vm2->vm_ssize += btoc(entrysize);
4222 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4223 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4224 newend = MIN(entry->end,
4225 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4226 vm2->vm_dsize += btoc(newend - entry->start);
4227 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4228 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4229 newend = MIN(entry->end,
4230 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4231 vm2->vm_tsize += btoc(newend - entry->start);
4232 }
4233}
4234
4235/*
4236 * vmspace_fork:
4237 * Create a new process vmspace structure and vm_map
4238 * based on those of an existing process. The new map
4239 * is based on the old map, according to the inheritance
4240 * values on the regions in that map.
4241 *
4242 * XXX It might be worth coalescing the entries added to the new vmspace.
4243 *
4244 * The source map must not be locked.
4245 */
4246struct vmspace *
4247vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4248{
4249 struct vmspace *vm2;
4250 vm_map_t new_map, old_map;
4251 vm_map_entry_t new_entry, old_entry;
4252 vm_object_t object;
4253 int error, locked;
4254 vm_inherit_t inh;
4255
4256 old_map = &vm1->vm_map;
4257 /* Copy immutable fields of vm1 to vm2. */
4258 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4259 pmap_pinit);
4260 if (vm2 == NULL)
4261 return (NULL);
4262
4263 vm2->vm_taddr = vm1->vm_taddr;
4264 vm2->vm_daddr = vm1->vm_daddr;
4265 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4266 vm2->vm_stacktop = vm1->vm_stacktop;
4267 vm_map_lock(old_map);
4268 if (old_map->busy)
4269 vm_map_wait_busy(old_map);
4270 new_map = &vm2->vm_map;
4271 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4272 KASSERT(locked, ("vmspace_fork: lock failed"));
4273
4274 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4275 if (error != 0) {
4276 sx_xunlock(&old_map->lock);
4277 sx_xunlock(&new_map->lock);
4279 vmspace_free(vm2);
4280 return (NULL);
4281 }
4282
4283 new_map->anon_loc = old_map->anon_loc;
4284 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4286
4287 VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4288 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4289 panic("vm_map_fork: encountered a submap");
4290
4291 inh = old_entry->inheritance;
4292 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4293 inh != VM_INHERIT_NONE)
4294 inh = VM_INHERIT_COPY;
4295
4296 switch (inh) {
4297 case VM_INHERIT_NONE:
4298 break;
4299
4300 case VM_INHERIT_SHARE:
4301 /*
4302 * Clone the entry, creating the shared object if
4303 * necessary.
4304 */
4305 object = old_entry->object.vm_object;
4306 if (object == NULL) {
4307 vm_map_entry_back(old_entry);
4308 object = old_entry->object.vm_object;
4309 }
4310
4311 /*
4312 * Add the reference before calling vm_object_shadow
4313 * to insure that a shadow object is created.
4314 */
4315 vm_object_reference(object);
4316 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4317 vm_object_shadow(&old_entry->object.vm_object,
4318 &old_entry->offset,
4319 old_entry->end - old_entry->start,
4320 old_entry->cred,
4321 /* Transfer the second reference too. */
4322 true);
4323 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4324 old_entry->cred = NULL;
4325
4326 /*
4327 * As in vm_map_merged_neighbor_dispose(),
4328 * the vnode lock will not be acquired in
4329 * this call to vm_object_deallocate().
4330 */
4331 vm_object_deallocate(object);
4332 object = old_entry->object.vm_object;
4333 } else {
4334 VM_OBJECT_WLOCK(object);
4336 if (old_entry->cred != NULL) {
4337 KASSERT(object->cred == NULL,
4338 ("vmspace_fork both cred"));
4339 object->cred = old_entry->cred;
4340 object->charge = old_entry->end -
4341 old_entry->start;
4342 old_entry->cred = NULL;
4343 }
4344
4345 /*
4346 * Assert the correct state of the vnode
4347 * v_writecount while the object is locked, to
4348 * not relock it later for the assertion
4349 * correctness.
4350 */
4351 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4352 object->type == OBJT_VNODE) {
4353 KASSERT(((struct vnode *)object->
4354 handle)->v_writecount > 0,
4355 ("vmspace_fork: v_writecount %p",
4356 object));
4357 KASSERT(object->un_pager.vnp.
4358 writemappings > 0,
4359 ("vmspace_fork: vnp.writecount %p",
4360 object));
4361 }
4362 VM_OBJECT_WUNLOCK(object);
4363 }
4364
4365 /*
4366 * Clone the entry, referencing the shared object.
4367 */
4368 new_entry = vm_map_entry_create(new_map);
4369 *new_entry = *old_entry;
4370 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4372 new_entry->wiring_thread = NULL;
4373 new_entry->wired_count = 0;
4374 if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4376 new_entry->start, new_entry->end);
4377 }
4378 vm_map_entry_set_vnode_text(new_entry, true);
4379
4380 /*
4381 * Insert the entry into the new map -- we know we're
4382 * inserting at the end of the new map.
4383 */
4384 vm_map_entry_link(new_map, new_entry);
4385 vmspace_map_entry_forked(vm1, vm2, new_entry);
4386
4387 /*
4388 * Update the physical map
4389 */
4390 pmap_copy(new_map->pmap, old_map->pmap,
4391 new_entry->start,
4392 (old_entry->end - old_entry->start),
4393 old_entry->start);
4394 break;
4395
4396 case VM_INHERIT_COPY:
4397 /*
4398 * Clone the entry and link into the map.
4399 */
4400 new_entry = vm_map_entry_create(new_map);
4401 *new_entry = *old_entry;
4402 /*
4403 * Copied entry is COW over the old object.
4404 */
4405 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4407 new_entry->wiring_thread = NULL;
4408 new_entry->wired_count = 0;
4409 new_entry->object.vm_object = NULL;
4410 new_entry->cred = NULL;
4411 vm_map_entry_link(new_map, new_entry);
4412 vmspace_map_entry_forked(vm1, vm2, new_entry);
4413 vm_map_copy_entry(old_map, new_map, old_entry,
4414 new_entry, fork_charge);
4415 vm_map_entry_set_vnode_text(new_entry, true);
4416 break;
4417
4418 case VM_INHERIT_ZERO:
4419 /*
4420 * Create a new anonymous mapping entry modelled from
4421 * the old one.
4422 */
4423 new_entry = vm_map_entry_create(new_map);
4424 memset(new_entry, 0, sizeof(*new_entry));
4425
4426 new_entry->start = old_entry->start;
4427 new_entry->end = old_entry->end;
4428 new_entry->eflags = old_entry->eflags &
4432 new_entry->protection = old_entry->protection;
4433 new_entry->max_protection = old_entry->max_protection;
4434 new_entry->inheritance = VM_INHERIT_ZERO;
4435
4436 vm_map_entry_link(new_map, new_entry);
4437 vmspace_map_entry_forked(vm1, vm2, new_entry);
4438
4439 new_entry->cred = curthread->td_ucred;
4440 crhold(new_entry->cred);
4441 *fork_charge += (new_entry->end - new_entry->start);
4442
4443 break;
4444 }
4445 }
4446 /*
4447 * Use inlined vm_map_unlock() to postpone handling the deferred
4448 * map entries, which cannot be done until both old_map and
4449 * new_map locks are released.
4450 */
4451 sx_xunlock(&old_map->lock);
4452 sx_xunlock(&new_map->lock);
4454
4455 return (vm2);
4456}
4457
4458/*
4459 * Create a process's stack for exec_new_vmspace(). This function is never
4460 * asked to wire the newly created stack.
4461 */
4462int
4463vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4464 vm_prot_t prot, vm_prot_t max, int cow)
4465{
4466 vm_size_t growsize, init_ssize;
4467 rlim_t vmemlim;
4468 int rv;
4469
4470 MPASS((map->flags & MAP_WIREFUTURE) == 0);
4471 growsize = sgrowsiz;
4472 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4473 vm_map_lock(map);
4474 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4475 /* If we would blow our VMEM resource limit, no go */
4476 if (map->size + init_ssize > vmemlim) {
4477 rv = KERN_NO_SPACE;
4478 goto out;
4480 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4481 max, cow);
4482out:
4483 vm_map_unlock(map);
4484 return (rv);
4486
4487static int stack_guard_page = 1;
4488SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4489 &stack_guard_page, 0,
4490 "Specifies the number of guard pages for a stack that grows");
4491
4492static int
4493vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4494 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4495{
4496 vm_map_entry_t new_entry, prev_entry;
4497 vm_offset_t bot, gap_bot, gap_top, top;
4498 vm_size_t init_ssize, sgp;
4499 int orient, rv;
4500
4501 /*
4502 * The stack orientation is piggybacked with the cow argument.
4503 * Extract it into orient and mask the cow argument so that we
4504 * don't pass it around further.
4505 */
4506 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4507 KASSERT(orient != 0, ("No stack grow direction"));
4508 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4509 ("bi-dir stack"));
4510
4511 if (max_ssize == 0 ||
4512 !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4513 return (KERN_INVALID_ADDRESS);
4514 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4515 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4516 (vm_size_t)stack_guard_page * PAGE_SIZE;
4517 if (sgp >= max_ssize)
4518 return (KERN_INVALID_ARGUMENT);
4519
4520 init_ssize = growsize;
4521 if (max_ssize < init_ssize + sgp)
4522 init_ssize = max_ssize - sgp;
4523
4524 /* If addr is already mapped, no go */
4525 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4526 return (KERN_NO_SPACE);
4527
4528 /*
4529 * If we can't accommodate max_ssize in the current mapping, no go.
4530 */
4531 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4532 return (KERN_NO_SPACE);
4533
4534 /*
4535 * We initially map a stack of only init_ssize. We will grow as
4536 * needed later. Depending on the orientation of the stack (i.e.
4537 * the grow direction) we either map at the top of the range, the
4538 * bottom of the range or in the middle.
4539 *
4540 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4541 * and cow to be 0. Possibly we should eliminate these as input
4542 * parameters, and just pass these values here in the insert call.
4543 */
4544 if (orient == MAP_STACK_GROWS_DOWN) {
4545 bot = addrbos + max_ssize - init_ssize;
4546 top = bot + init_ssize;
4547 gap_bot = addrbos;
4548 gap_top = bot;
4549 } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4550 bot = addrbos;
4551 top = bot + init_ssize;
4552 gap_bot = top;
4553 gap_top = addrbos + max_ssize;
4554 }
4555 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4556 if (rv != KERN_SUCCESS)
4557 return (rv);
4558 new_entry = vm_map_entry_succ(prev_entry);
4559 KASSERT(new_entry->end == top || new_entry->start == bot,
4560 ("Bad entry start/end for new stack entry"));
4561 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4562 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4563 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4564 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4565 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4566 ("new entry lacks MAP_ENTRY_GROWS_UP"));
4567 if (gap_bot == gap_top)
4568 return (KERN_SUCCESS);
4569 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4572 if (rv == KERN_SUCCESS) {
4573 /*
4574 * Gap can never successfully handle a fault, so
4575 * read-ahead logic is never used for it. Re-use
4576 * next_read of the gap entry to store
4577 * stack_guard_page for vm_map_growstack().
4578 */
4579 if (orient == MAP_STACK_GROWS_DOWN)
4580 vm_map_entry_pred(new_entry)->next_read = sgp;
4581 else
4582 vm_map_entry_succ(new_entry)->next_read = sgp;
4583 } else {
4584 (void)vm_map_delete(map, bot, top);
4585 }
4586 return (rv);
4587}
4588
4589/*
4590 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
4591 * successfully grow the stack.
4592 */
4593static int
4594vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4595{
4596 vm_map_entry_t stack_entry;
4597 struct proc *p;
4598 struct vmspace *vm;
4599 struct ucred *cred;
4600 vm_offset_t gap_end, gap_start, grow_start;
4601 vm_size_t grow_amount, guard, max_grow;
4602 rlim_t lmemlim, stacklim, vmemlim;
4603 int rv, rv1;
4604 bool gap_deleted, grow_down, is_procstack;
4605#ifdef notyet
4606 uint64_t limit;
4607#endif
4608#ifdef RACCT
4609 int error;
4610#endif
4611
4612 p = curproc;
4613 vm = p->p_vmspace;
4614
4615 /*
4616 * Disallow stack growth when the access is performed by a
4617 * debugger or AIO daemon. The reason is that the wrong
4618 * resource limits are applied.
4619 */
4620 if (p != initproc && (map != &p->p_vmspace->vm_map ||
4621 p->p_textvp == NULL))
4622 return (KERN_FAILURE);
4623
4624 MPASS(!map->system_map);
4625
4626 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4627 stacklim = lim_cur(curthread, RLIMIT_STACK);
4628 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4629retry:
4630 /* If addr is not in a hole for a stack grow area, no need to grow. */
4631 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4632 return (KERN_FAILURE);
4633 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4634 return (KERN_SUCCESS);
4635 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4636 stack_entry = vm_map_entry_succ(gap_entry);
4637 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4638 stack_entry->start != gap_entry->end)
4639 return (KERN_FAILURE);
4640 grow_amount = round_page(stack_entry->start - addr);
4641 grow_down = true;
4642 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4643 stack_entry = vm_map_entry_pred(gap_entry);
4644 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4645 stack_entry->end != gap_entry->start)
4646 return (KERN_FAILURE);
4647 grow_amount = round_page(addr + 1 - stack_entry->end);
4648 grow_down = false;
4649 } else {
4650 return (KERN_FAILURE);
4651 }
4652 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4653 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4654 gap_entry->next_read;
4655 max_grow = gap_entry->end - gap_entry->start;
4656 if (guard > max_grow)
4657 return (KERN_NO_SPACE);
4658 max_grow -= guard;
4659 if (grow_amount > max_grow)
4660 return (KERN_NO_SPACE);
4661
4662 /*
4663 * If this is the main process stack, see if we're over the stack
4664 * limit.
4665 */
4666 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4667 addr < (vm_offset_t)vm->vm_stacktop;
4668 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4669 return (KERN_NO_SPACE);
4670
4671#ifdef RACCT
4672 if (racct_enable) {
4673 PROC_LOCK(p);
4674 if (is_procstack && racct_set(p, RACCT_STACK,
4675 ctob(vm->vm_ssize) + grow_amount)) {
4676 PROC_UNLOCK(p);
4677 return (KERN_NO_SPACE);
4678 }
4679 PROC_UNLOCK(p);
4680 }
4681#endif
4682
4683 grow_amount = roundup(grow_amount, sgrowsiz);
4684 if (grow_amount > max_grow)
4685 grow_amount = max_grow;
4686 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4687 grow_amount = trunc_page((vm_size_t)stacklim) -
4688 ctob(vm->vm_ssize);
4689 }
4690
4691#ifdef notyet
4692 PROC_LOCK(p);
4693 limit = racct_get_available(p, RACCT_STACK);
4694 PROC_UNLOCK(p);
4695 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4696 grow_amount = limit - ctob(vm->vm_ssize);
4697#endif
4698
4699 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4700 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4701 rv = KERN_NO_SPACE;
4702 goto out;
4703 }
4704#ifdef RACCT
4705 if (racct_enable) {
4706 PROC_LOCK(p);
4707 if (racct_set(p, RACCT_MEMLOCK,
4708 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4709 PROC_UNLOCK(p);
4710 rv = KERN_NO_SPACE;
4711 goto out;
4712 }
4713 PROC_UNLOCK(p);
4714 }
4715#endif
4716 }
4717
4718 /* If we would blow our VMEM resource limit, no go */
4719 if (map->size + grow_amount > vmemlim) {
4720 rv = KERN_NO_SPACE;
4721 goto out;
4722 }
4723#ifdef RACCT
4724 if (racct_enable) {
4725 PROC_LOCK(p);
4726 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4727 PROC_UNLOCK(p);
4728 rv = KERN_NO_SPACE;
4729 goto out;
4730 }
4731 PROC_UNLOCK(p);
4732 }
4733#endif
4734
4735 if (vm_map_lock_upgrade(map)) {
4736 gap_entry = NULL;
4737 vm_map_lock_read(map);
4738 goto retry;
4739 }
4740
4741 if (grow_down) {
4742 grow_start = gap_entry->end - grow_amount;
4743 if (gap_entry->start + grow_amount == gap_entry->end) {
4744 gap_start = gap_entry->start;
4745 gap_end = gap_entry->end;
4746 vm_map_entry_delete(map, gap_entry);
4747 gap_deleted = true;
4748 } else {
4749 MPASS(gap_entry->start < gap_entry->end - grow_amount);
4750 vm_map_entry_resize(map, gap_entry, -grow_amount);
4751 gap_deleted = false;
4752 }
4753 rv = vm_map_insert(map, NULL, 0, grow_start,
4754 grow_start + grow_amount,
4755 stack_entry->protection, stack_entry->max_protection,
4757 if (rv != KERN_SUCCESS) {
4758 if (gap_deleted) {
4759 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4760 gap_end, VM_PROT_NONE, VM_PROT_NONE,
4762 MPASS(rv1 == KERN_SUCCESS);
4763 } else
4764 vm_map_entry_resize(map, gap_entry,
4765 grow_amount);
4766 }
4767 } else {
4768 grow_start = stack_entry->end;
4769 cred = stack_entry->cred;
4770 if (cred == NULL && stack_entry->object.vm_object != NULL)
4771 cred = stack_entry->object.vm_object->cred;
4772 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4773 rv = KERN_NO_SPACE;
4774 /* Grow the underlying object if applicable. */
4775 else if (stack_entry->object.vm_object == NULL ||
4776 vm_object_coalesce(stack_entry->object.vm_object,
4777 stack_entry->offset,
4778 (vm_size_t)(stack_entry->end - stack_entry->start),
4779 grow_amount, cred != NULL)) {
4780 if (gap_entry->start + grow_amount == gap_entry->end) {
4781 vm_map_entry_delete(map, gap_entry);
4782 vm_map_entry_resize(map, stack_entry,
4783 grow_amount);
4784 } else {
4785 gap_entry->start += grow_amount;
4786 stack_entry->end += grow_amount;
4787 }
4788 map->size += grow_amount;
4789 rv = KERN_SUCCESS;
4790 } else
4791 rv = KERN_FAILURE;
4792 }
4793 if (rv == KERN_SUCCESS && is_procstack)
4794 vm->vm_ssize += btoc(grow_amount);
4795
4796 /*
4797 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4798 */
4799 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4800 rv = vm_map_wire_locked(map, grow_start,
4801 grow_start + grow_amount,
4803 }
4805
4806out:
4807#ifdef RACCT
4808 if (racct_enable && rv != KERN_SUCCESS) {
4809 PROC_LOCK(p);
4810 error = racct_set(p, RACCT_VMEM, map->size);
4811 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4812 if (!old_mlock) {
4813 error = racct_set(p, RACCT_MEMLOCK,
4814 ptoa(pmap_wired_count(map->pmap)));
4815 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4816 }
4817 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4818 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4819 PROC_UNLOCK(p);
4820 }
4821#endif
4822
4823 return (rv);
4824}
4825
4826/*
4827 * Unshare the specified VM space for exec. If other processes are
4828 * mapped to it, then create a new one. The new vmspace is null.
4829 */
4830int
4831vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4832{
4833 struct vmspace *oldvmspace = p->p_vmspace;
4834 struct vmspace *newvmspace;
4835
4836 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4837 ("vmspace_exec recursed"));
4838 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4839 if (newvmspace == NULL)
4840 return (ENOMEM);
4841 newvmspace->vm_swrss = oldvmspace->vm_swrss;
4842 /*
4843 * This code is written like this for prototype purposes. The
4844 * goal is to avoid running down the vmspace here, but let the
4845 * other process's that are still using the vmspace to finally
4846 * run it down. Even though there is little or no chance of blocking
4847 * here, it is a good idea to keep this form for future mods.
4848 */
4850 p->p_vmspace = newvmspace;
4852 if (p == curthread->td_proc)
4853 pmap_activate(curthread);
4854 curthread->td_pflags |= TDP_EXECVMSPC;
4855 return (0);
4856}
4857
4858/*
4859 * Unshare the specified VM space for forcing COW. This
4860 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4861 */
4862int
4863vmspace_unshare(struct proc *p)
4864{
4865 struct vmspace *oldvmspace = p->p_vmspace;
4866 struct vmspace *newvmspace;
4867 vm_ooffset_t fork_charge;
4868
4869 /*
4870 * The caller is responsible for ensuring that the reference count
4871 * cannot concurrently transition 1 -> 2.
4872 */
4873 if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4874 return (0);
4875 fork_charge = 0;
4876 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4877 if (newvmspace == NULL)
4878 return (ENOMEM);
4879 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4880 vmspace_free(newvmspace);
4881 return (ENOMEM);
4882 }
4884 p->p_vmspace = newvmspace;
4886 if (p == curthread->td_proc)
4887 pmap_activate(curthread);
4888 vmspace_free(oldvmspace);
4889 return (0);
4890}
4891
4892/*
4893 * vm_map_lookup:
4894 *
4895 * Finds the VM object, offset, and
4896 * protection for a given virtual address in the
4897 * specified map, assuming a page fault of the
4898 * type specified.
4899 *
4900 * Leaves the map in question locked for read; return
4901 * values are guaranteed until a vm_map_lookup_done
4902 * call is performed. Note that the map argument
4903 * is in/out; the returned map must be used in
4904 * the call to vm_map_lookup_done.
4905 *
4906 * A handle (out_entry) is returned for use in
4907 * vm_map_lookup_done, to make that fast.
4908 *
4909 * If a lookup is requested with "write protection"
4910 * specified, the map may be changed to perform virtual
4911 * copying operations, although the data referenced will
4912 * remain the same.
4913 */
4914int
4915vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4916 vm_offset_t vaddr,
4917 vm_prot_t fault_typea,
4918 vm_map_entry_t *out_entry, /* OUT */
4919 vm_object_t *object, /* OUT */
4920 vm_pindex_t *pindex, /* OUT */
4921 vm_prot_t *out_prot, /* OUT */
4922 boolean_t *wired) /* OUT */
4923{
4924 vm_map_entry_t entry;
4925 vm_map_t map = *var_map;
4926 vm_prot_t prot;
4927 vm_prot_t fault_type;
4928 vm_object_t eobject;
4929 vm_size_t size;
4930 struct ucred *cred;
4931
4932RetryLookup:
4933
4934 vm_map_lock_read(map);
4935
4936RetryLookupLocked:
4937 /*
4938 * Lookup the faulting address.
4939 */
4940 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4941 vm_map_unlock_read(map);
4942 return (KERN_INVALID_ADDRESS);
4943 }
4944
4945 entry = *out_entry;
4946
4947 /*
4948 * Handle submaps.
4949 */
4950 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4951 vm_map_t old_map = map;
4952
4953 *var_map = map = entry->object.sub_map;
4954 vm_map_unlock_read(old_map);
4955 goto RetryLookup;
4956 }
4957
4958 /*
4959 * Check whether this task is allowed to have this page.
4960 */
4961 prot = entry->protection;
4962 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4963 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4964 if (prot == VM_PROT_NONE && map != kernel_map &&
4965 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4966 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4967 MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4968 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4969 goto RetryLookupLocked;
4970 }
4971 fault_type = fault_typea & VM_PROT_ALL;
4972 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4973 vm_map_unlock_read(map);
4974 return (KERN_PROTECTION_FAILURE);
4975 }
4976 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4979 ("entry %p flags %x", entry, entry->eflags));
4980 if ((fault_typea & VM_PROT_COPY) != 0 &&
4981 (entry->max_protection & VM_PROT_WRITE) == 0 &&
4982 (entry->eflags & MAP_ENTRY_COW) == 0) {
4983 vm_map_unlock_read(map);
4984 return (KERN_PROTECTION_FAILURE);
4985 }
4986
4987 /*
4988 * If this page is not pageable, we have to get it for all possible
4989 * accesses.
4990 */
4991 *wired = (entry->wired_count != 0);
4992 if (*wired)
4993 fault_type = entry->protection;
4994 size = entry->end - entry->start;
4995
4996 /*
4997 * If the entry was copy-on-write, we either ...
4998 */
4999 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5000 /*
5001 * If we want to write the page, we may as well handle that
5002 * now since we've got the map locked.
5003 *
5004 * If we don't need to write the page, we just demote the
5005 * permissions allowed.
5006 */
5007 if ((fault_type & VM_PROT_WRITE) != 0 ||
5008 (fault_typea & VM_PROT_COPY) != 0) {
5009 /*
5010 * Make a new object, and place it in the object
5011 * chain. Note that no new references have appeared
5012 * -- one just moved from the map to the new
5013 * object.
5014 */
5015 if (vm_map_lock_upgrade(map))
5016 goto RetryLookup;
5017
5018 if (entry->cred == NULL) {
5019 /*
5020 * The debugger owner is charged for
5021 * the memory.
5022 */
5023 cred = curthread->td_ucred;
5024 crhold(cred);
5025 if (!swap_reserve_by_cred(size, cred)) {
5026 crfree(cred);
5027 vm_map_unlock(map);
5028 return (KERN_RESOURCE_SHORTAGE);
5029 }
5030 entry->cred = cred;
5031 }
5032 eobject = entry->object.vm_object;
5034 &entry->offset, size, entry->cred, false);
5035 if (eobject == entry->object.vm_object) {
5036 /*
5037 * The object was not shadowed.
5038 */
5039 swap_release_by_cred(size, entry->cred);
5040 crfree(entry->cred);
5041 }
5042 entry->cred = NULL;
5043 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5044
5046 } else {
5047 /*
5048 * We're attempting to read a copy-on-write page --
5049 * don't allow writes.
5050 */
5051 prot &= ~VM_PROT_WRITE;
5052 }
5053 }
5054
5055 /*
5056 * Create an object if necessary.
5057 */
5058 if (entry->object.vm_object == NULL && !map->system_map) {
5059 if (vm_map_lock_upgrade(map))
5060 goto RetryLookup;
5061 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5062 NULL, entry->cred, entry->cred != NULL ? size : 0);
5063 entry->offset = 0;
5064 entry->cred = NULL;
5066 }
5067
5068 /*
5069 * Return the object/offset from this entry. If the entry was
5070 * copy-on-write or empty, it has been fixed up.
5071 */
5072 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5073 *object = entry->object.vm_object;
5074
5075 *out_prot = prot;
5076 return (KERN_SUCCESS);
5077}
5079/*
5080 * vm_map_lookup_locked:
5081 *
5082 * Lookup the faulting address. A version of vm_map_lookup that returns
5083 * KERN_FAILURE instead of blocking on map lock or memory allocation.
5084 */
5085int
5086vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
5087 vm_offset_t vaddr,
5088 vm_prot_t fault_typea,
5089 vm_map_entry_t *out_entry, /* OUT */
5090 vm_object_t *object, /* OUT */
5091 vm_pindex_t *pindex, /* OUT */
5092 vm_prot_t *out_prot, /* OUT */
5093 boolean_t *wired) /* OUT */
5094{
5095 vm_map_entry_t entry;
5096 vm_map_t map = *var_map;
5097 vm_prot_t prot;
5098 vm_prot_t fault_type = fault_typea;
5099
5100 /*
5101 * Lookup the faulting address.
5102 */
5103 if (!vm_map_lookup_entry(map, vaddr, out_entry))
5104 return (KERN_INVALID_ADDRESS);
5105
5106 entry = *out_entry;
5107
5108 /*
5109 * Fail if the entry refers to a submap.
5110 */
5111 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5112 return (KERN_FAILURE);
5113
5114 /*
5115 * Check whether this task is allowed to have this page.
5116 */
5117 prot = entry->protection;
5118 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5119 if ((fault_type & prot) != fault_type)
5120 return (KERN_PROTECTION_FAILURE);
5121
5122 /*
5123 * If this page is not pageable, we have to get it for all possible
5124 * accesses.
5125 */
5126 *wired = (entry->wired_count != 0);
5127 if (*wired)
5128 fault_type = entry->protection;
5129
5130 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5131 /*
5132 * Fail if the entry was copy-on-write for a write fault.
5133 */
5134 if (fault_type & VM_PROT_WRITE)
5135 return (KERN_FAILURE);
5136 /*
5137 * We're attempting to read a copy-on-write page --
5138 * don't allow writes.
5139 */
5140 prot &= ~VM_PROT_WRITE;
5141 }
5142
5143 /*
5144 * Fail if an object should be created.
5145 */
5146 if (entry->object.vm_object == NULL && !map->system_map)
5147 return (KERN_FAILURE);
5148
5149 /*
5150 * Return the object/offset from this entry. If the entry was
5151 * copy-on-write or empty, it has been fixed up.
5152 */
5153 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5154 *object = entry->object.vm_object;
5155
5156 *out_prot = prot;
5157 return (KERN_SUCCESS);
5158}
5160/*
5161 * vm_map_lookup_done:
5162 *
5163 * Releases locks acquired by a vm_map_lookup
5164 * (according to the handle returned by that lookup).
5165 */
5166void
5169 /*
5170 * Unlock the main-level map
5171 */
5172 vm_map_unlock_read(map);
5173}
5174
5175vm_offset_t
5176vm_map_max_KBI(const struct vm_map *map)
5177{
5178
5179 return (vm_map_max(map));
5180}
5181
5182vm_offset_t
5183vm_map_min_KBI(const struct vm_map *map)
5184{
5185
5186 return (vm_map_min(map));
5187}
5188
5189pmap_t
5191{
5192
5193 return (map->pmap);
5194}
5195
5196bool
5197vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5198{
5199
5200 return (vm_map_range_valid(map, start, end));
5201}
5202
5203#ifdef INVARIANTS
5204static void
5205_vm_map_assert_consistent(vm_map_t map, int check)
5206{
5207 vm_map_entry_t entry, prev;
5208 vm_map_entry_t cur, header, lbound, ubound;
5209 vm_size_t max_left, max_right;
5210
5211#ifdef DIAGNOSTIC
5212 ++map->nupdates;
5213#endif
5214 if (enable_vmmap_check != check)
5215 return;
5216
5217 header = prev = &map->header;
5218 VM_MAP_ENTRY_FOREACH(entry, map) {
5219 KASSERT(prev->end <= entry->start,
5220 ("map %p prev->end = %jx, start = %jx", map,
5221 (uintmax_t)prev->end, (uintmax_t)entry->start));
5222 KASSERT(entry->start < entry->end,
5223 ("map %p start = %jx, end = %jx", map,
5224 (uintmax_t)entry->start, (uintmax_t)entry->end));
5225 KASSERT(entry->left == header ||
5226 entry->left->start < entry->start,
5227 ("map %p left->start = %jx, start = %jx", map,
5228 (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5229 KASSERT(entry->right == header ||
5230 entry->start < entry->right->start,
5231 ("map %p start = %jx, right->start = %jx", map,
5232 (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5233 cur = map->root;
5234 lbound = ubound = header;
5235 for (;;) {
5236 if (entry->start < cur->start) {
5237 ubound = cur;
5238 cur = cur->left;
5239 KASSERT(cur != lbound,
5240 ("map %p cannot find %jx",
5241 map, (uintmax_t)entry->start));
5242 } else if (cur->end <= entry->start) {
5243 lbound = cur;
5244 cur = cur->right;
5245 KASSERT(cur != ubound,
5246 ("map %p cannot find %jx",
5247 map, (uintmax_t)entry->start));
5248 } else {
5249 KASSERT(cur == entry,
5250 ("map %p cannot find %jx",
5251 map, (uintmax_t)entry->start));
5252 break;
5253 }
5254 }
5255 max_left = vm_map_entry_max_free_left(entry, lbound);
5256 max_right = vm_map_entry_max_free_right(entry, ubound);
5257 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5258 ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5259 (uintmax_t)entry->max_free,
5260 (uintmax_t)max_left, (uintmax_t)max_right));
5261 prev = entry;
5262 }
5263 KASSERT(prev->end <= entry->start,
5264 ("map %p prev->end = %jx, start = %jx", map,
5265 (uintmax_t)prev->end, (uintmax_t)entry->start));
5266}
5267#endif
5268
5269#include "opt_ddb.h"
5270#ifdef DDB
5271#include <sys/kernel.h>
5272
5273#include <ddb/ddb.h>
5274
5275static void
5276vm_map_print(vm_map_t map)
5277{
5278 vm_map_entry_t entry, prev;
5279
5280 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5281 (void *)map,
5282 (void *)map->pmap, map->nentries, map->timestamp);
5283
5284 db_indent += 2;
5285 prev = &map->header;
5286 VM_MAP_ENTRY_FOREACH(entry, map) {
5287 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5288 (void *)entry, (void *)entry->start, (void *)entry->end,
5289 entry->eflags);
5290 {
5291 static const char * const inheritance_name[4] =
5292 {"share", "copy", "none", "donate_copy"};
5293
5294 db_iprintf(" prot=%x/%x/%s",
5295 entry->protection,
5296 entry->max_protection,
5297 inheritance_name[(int)(unsigned char)
5298 entry->inheritance]);
5299 if (entry->wired_count != 0)
5300 db_printf(", wired");
5301 }
5302 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5303 db_printf(", share=%p, offset=0x%jx\n",
5304 (void *)entry->object.sub_map,
5305 (uintmax_t)entry->offset);
5306 if (prev == &map->header ||
5307 prev->object.sub_map !=
5308 entry->object.sub_map) {
5309 db_indent += 2;
5310 vm_map_print((vm_map_t)entry->object.sub_map);
5311 db_indent -= 2;
5312 }
5313 } else {
5314 if (entry->cred != NULL)
5315 db_printf(", ruid %d", entry->cred->cr_ruid);
5316 db_printf(", object=%p, offset=0x%jx",
5317 (void *)entry->object.vm_object,
5318 (uintmax_t)entry->offset);
5319 if (entry->object.vm_object && entry->object.vm_object->cred)
5320 db_printf(", obj ruid %d charge %jx",
5321 entry->object.vm_object->cred->cr_ruid,
5322 (uintmax_t)entry->object.vm_object->charge);
5323 if (entry->eflags & MAP_ENTRY_COW)
5324 db_printf(", copy (%s)",
5325 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5326 db_printf("\n");
5327
5328 if (prev == &map->header ||
5329 prev->object.vm_object !=
5330 entry->object.vm_object) {
5331 db_indent += 2;
5332 vm_object_print((db_expr_t)(intptr_t)
5333 entry->object.vm_object,
5334 0, 0, (char *)0);
5335 db_indent -= 2;
5336 }
5337 }
5338 prev = entry;
5339 }
5340 db_indent -= 2;
5341}
5342
5343DB_SHOW_COMMAND(map, map)
5344{
5345
5346 if (!have_addr) {
5347 db_printf("usage: show map <addr>\n");
5348 return;
5349 }
5350 vm_map_print((vm_map_t)addr);
5351}
5352
5353DB_SHOW_COMMAND(procvm, procvm)
5354{
5355 struct proc *p;
5356
5357 if (have_addr) {
5358 p = db_lookup_proc(addr);
5359 } else {
5360 p = curproc;
5361 }
5362
5363 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5364 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5365 (void *)vmspace_pmap(p->p_vmspace));
5366
5367 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5368}
5369
5370#endif /* DDB */
void pmap_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t)
#define pmap_wired_count(pm)
Definition: pmap.h:173
void pmap_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t)
void pmap_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t)
vm_offset_t kernel_vm_end
void pmap_unwire(pmap_t pmap, vm_offset_t start, vm_offset_t end)
void pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
void pmap_remove_pages(pmap_t)
void pmap_release(pmap_t)
void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size)
void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
int pmap_pinit(pmap_t)
#define pmap_resident_count(pm)
Definition: pmap.h:172
void pmap_growkernel(vm_offset_t)
void pmap_remove(pmap_t, vm_offset_t, vm_offset_t)
void pmap_activate(struct thread *td)
Definition: vm_map.h:101
struct vm_map_entry * right
Definition: vm_map.h:103
vm_eflags_t eflags
Definition: vm_map.h:110
struct thread * wiring_thread
Definition: vm_map.h:117
vm_prot_t max_protection
Definition: vm_map.h:112
union vm_map_object object
Definition: vm_map.h:108
vm_prot_t protection
Definition: vm_map.h:111
struct ucred * cred
Definition: vm_map.h:116
int wired_count
Definition: vm_map.h:115
vm_ooffset_t offset
Definition: vm_map.h:109
uint8_t read_ahead
Definition: vm_map.h:114
struct vm_map_entry * left
Definition: vm_map.h:102
vm_offset_t start
Definition: vm_map.h:104
vm_size_t max_free
Definition: vm_map.h:107
vm_offset_t next_read
Definition: vm_map.h:106
vm_inherit_t inheritance
Definition: vm_map.h:113
vm_offset_t end
Definition: vm_map.h:105
Definition: vm_map.h:197
struct sx lock
Definition: vm_map.h:199
vm_size_t size
Definition: vm_map.h:202
struct vm_map_entry header
Definition: vm_map.h:198
u_int timestamp
Definition: vm_map.h:203
u_char system_map
Definition: vm_map.h:205
pmap_t pmap
Definition: vm_map.h:208
vm_flags_t flags
Definition: vm_map.h:206
struct mtx system_mtx
Definition: vm_map.h:200
int busy
Definition: vm_map.h:210
int nentries
Definition: vm_map.h:201
vm_map_entry_t root
Definition: vm_map.h:207
u_char needs_wakeup
Definition: vm_map.h:204
vm_offset_t anon_loc
Definition: vm_map.h:209
struct ucred * cred
Definition: vm_object.h:188
objtype_t type
Definition: vm_object.h:114
vm_pindex_t size
Definition: vm_object.h:107
volatile u_int ref_count
Definition: vm_object.h:111
struct vm_object::@0::@1 vnp
int shadow_count
Definition: vm_object.h:112
vm_ooffset_t charge
Definition: vm_object.h:189
u_short flags
Definition: vm_object.h:115
union vm_object::@0 un_pager
struct vm_object * backing_object
Definition: vm_object.h:120
struct shmmap_state * vm_shm
Definition: vm_map.h:283
caddr_t vm_taddr
Definition: vm_map.h:288
segsz_t vm_dsize
Definition: vm_map.h:286
struct vm_map vm_map
Definition: vm_map.h:282
vm_offset_t vm_stacktop
Definition: vm_map.h:291
caddr_t vm_daddr
Definition: vm_map.h:289
segsz_t vm_swrss
Definition: vm_map.h:284
segsz_t vm_ssize
Definition: vm_map.h:287
segsz_t vm_tsize
Definition: vm_map.h:285
u_int vm_refcnt
Definition: vm_map.h:292
caddr_t vm_maxsaddr
Definition: vm_map.h:290
bool swap_reserve(vm_ooffset_t incr)
Definition: swap_pager.c:255
bool swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
Definition: swap_pager.c:262
void swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
Definition: swap_pager.c:357
void uma_zone_set_freef(uma_zone_t zone, uma_free freef)
Definition: uma_core.c:5037
static __inline void uma_zfree(uma_zone_t zone, void *item)
Definition: uma.h:373
#define UMA_ZONE_VM
Definition: uma.h:243
#define UMA_ALIGN_PTR
Definition: uma.h:268
static __inline void * uma_zalloc(uma_zone_t zone, int flags)
Definition: uma.h:332
#define UMA_ZONE_NOBUCKET
Definition: uma.h:246
void uma_prealloc(uma_zone_t zone, int itemcnt)
Definition: uma_core.c:5133
uma_zone_t uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, uma_init uminit, uma_fini fini, int align, uint32_t flags)
Definition: uma_core.c:3251
#define UMA_ZONE_NOFREE
Definition: uma.h:241
#define UMA_SLAB_PRIV
Definition: uma.h:613
void uma_zone_reserve(uma_zone_t zone, int nitems)
Definition: uma_core.c:5081
void uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
Definition: uma_core.c:5048
struct vm_object * vm_object
Definition: vm_map.h:91
struct vm_map * sub_map
Definition: vm_map.h:92
#define VM_INHERIT_COPY
Definition: vm.h:71
#define VM_PROT_WRITE
Definition: vm.h:80
int old_mlock
Definition: vm_mmap.c:101
char vm_inherit_t
Definition: vm.h:68
#define VM_INHERIT_NONE
Definition: vm.h:72
#define VM_PROT_RW
Definition: vm.h:88
#define VM_PROT_COPY
Definition: vm.h:82
#define VM_INHERIT_DEFAULT
Definition: vm.h:74
u_char vm_prot_t
Definition: vm.h:76
#define VM_INHERIT_ZERO
Definition: vm.h:73
#define VM_PROT_NONE
Definition: vm.h:78
@ OBJT_DEFAULT
Definition: vm.h:92
@ OBJT_SG
Definition: vm.h:98
@ OBJT_VNODE
Definition: vm.h:94
@ OBJT_DEVICE
Definition: vm.h:95
#define VM_PROT_FAULT_LOOKUP
Definition: vm.h:84
#define VM_INHERIT_SHARE
Definition: vm.h:70
#define VM_PROT_EXECUTE
Definition: vm.h:81
#define VM_PROT_READ
Definition: vm.h:79
#define VM_PROT_ALL
Definition: vm.h:87
int vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags, vm_page_t *m_hold)
Definition: vm_fault.c:1447
void kmem_unback(vm_object_t, vm_offset_t, vm_size_t)
Definition: vm_kern.c:601
int vm_mmap_to_errno(int rv)
Definition: vm_mmap.c:1685
int kmem_back_domain(int, vm_object_t, vm_offset_t, vm_size_t, int)
Definition: vm_kern.c:462
void vm_fault_copy_entry(vm_map_t, vm_map_t, vm_map_entry_t, vm_map_entry_t, vm_ooffset_t *)
Definition: vm_fault.c:1966
int(* pmap_pinit_t)(struct pmap *pmap)
Definition: vm_extern.h:114
#define kernel_map
Definition: vm_kern.h:70
void vm_map_wakeup(vm_map_t map)
Definition: vm_map.c:832
int vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
Definition: vm_map.c:4823
void vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:5159
void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
Definition: vm_map.c:765
#define SPLAY_RIGHT_STEP(root, y, llist, rlist, test)
Definition: vm_map.c:1074
static void kmapent_free(void *item, vm_size_t size, uint8_t pflag)
Definition: vm_map.c:223
void vmspace_free(struct vmspace *vm)
Definition: vm_map.c:390
static void vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, vm_map_entry_t src_entry, vm_map_entry_t dst_entry, vm_ooffset_t *fork_charge)
Definition: vm_map.c:4099
static void vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, vm_map_entry_t entry)
Definition: vm_map.c:4202
unlink_merge_type
Definition: vm_map.c:1436
@ UNLINK_MERGE_NONE
Definition: vm_map.c:1437
@ UNLINK_MERGE_NEXT
Definition: vm_map.c:1438
static uma_zone_t vmspace_zone
Definition: vm_map.c:131
#define MAP_ENTRY_NOMERGE_MASK
Definition: vm_map.c:2263
static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:4485
static void vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, vm_offset_t size, vm_ooffset_t *fork_charge)
Definition: vm_map.c:4049
static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:3782
int vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:2241
static vm_map_entry_t vm_map_splay(vm_map_t map, vm_offset_t addr)
Definition: vm_map.c:1331
void vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
Definition: vm_map.c:912
static void vm_map_process_deferred(void)
Definition: vm_map.c:585
static const int aslr_pages_rnd_32[2]
Definition: vm_map.c:1968
static vm_size_t vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
Definition: vm_map.c:994
int vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
Definition: vm_map.c:2699
int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
Definition: vm_map.c:3408
void vm_map_unbusy(vm_map_t map)
Definition: vm_map.c:854
SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, &aslr_restarts, 0, "Number of aslr failures")
void vmspace_exitfree(struct proc *p)
Definition: vm_map.c:401
static void vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
Definition: vm_map.c:1492
int vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:1608
static __always_inline void vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
Definition: vm_map.c:1148
static struct mtx map_sleep_mtx
Definition: vm_map.c:128
static const int aslr_pages_rnd_64[2]
Definition: vm_map.c:1967
int vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
Definition: vm_map.c:2910
static vm_map_entry_t vm_map_entry_pred(vm_map_entry_t entry)
Definition: vm_map.c:1017
static long aslr_restarts
Definition: vm_map.c:1990
static uma_zone_t mapentzone
Definition: vm_map.c:129
static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, vm_offset_t failed_addr)
Definition: vm_map.c:3379
int vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:4455
#define PROC_VMSPACE_LOCK(p)
Definition: vm_map.c:159
#define PROC_VMSPACE_UNLOCK(p)
Definition: vm_map.c:160
int vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_inherit_t new_inheritance)
Definition: vm_map.c:3108
int vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, vm_offset_t alignment)
Definition: vm_map.c:2061
#define MASK(entry)
static void vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, enum unlink_merge_type op)
Definition: vm_map.c:1442
void _vm_map_unlock_read(vm_map_t map, const char *file, int line)
Definition: vm_map.c:690
int vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
Definition: vm_map.c:3425
void vm_map_wait_busy(vm_map_t map)
Definition: vm_map.c:866
static vm_size_t vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
Definition: vm_map.c:1192
void vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
Definition: vm_map.c:539
static void vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
Definition: vm_map.c:980
#define SPLAY_LEFT_STEP(root, y, llist, rlist, test)
Definition: vm_map.c:1037
static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
Definition: vm_map.c:891
int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
Definition: vm_map.c:738
void vm_map_startup(void)
Definition: vm_map.c:259
static bool clustering_anon_allowed(vm_offset_t addr)
Definition: vm_map.c:1976
void _vm_map_unlock(vm_map_t map, const char *file, int line)
Definition: vm_map.c:661
int _vm_map_trylock(vm_map_t map, const char *file, int line)
Definition: vm_map.c:704
#define MAX_INIT_PT
Definition: vm_map.c:2596
pmap_t vm_map_pmap_KBI(vm_map_t map)
Definition: vm_map.c:5182
static void vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:1379
static vm_size_t vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t llist)
Definition: vm_map.c:1214
#define ENTRY_CHARGED(e)
Definition: vm_map.c:151
int vm_map_sync(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, boolean_t invalidate)
Definition: vm_map.c:3675
static void vm_map_wire_user_count_sub(u_long npages)
Definition: vm_map.c:3350
boolean_t vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
Definition: vm_map.c:1522
static int vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
Definition: vm_map.c:2423
struct vmspace * vmspace_acquire_ref(struct proc *p)
Definition: vm_map.c:467
void vmspace_switch_aio(struct vmspace *newvm)
Definition: vm_map.c:502
void _vm_map_lock(vm_map_t map, const char *file, int line)
Definition: vm_map.c:528
static void vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
Definition: vm_map.c:1178
void _vm_map_lock_read(vm_map_t map, const char *file, int line)
Definition: vm_map.c:680
#define VM_MAP_UNLOCK_CONSISTENT(map)
Definition: vm_map.c:657
int _vm_map_trylock_read(vm_map_t map, const char *file, int line)
Definition: vm_map.c:717
int vmspace_unshare(struct proc *p)
Definition: vm_map.c:4855
void vmspace_exit(struct thread *td)
Definition: vm_map.c:414
struct vmspace * vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
Definition: vm_map.c:4239
static int vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, vm_offset_t alignment)
Definition: vm_map.c:2008
int vm_map_lookup_locked(vm_map_t *var_map, vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, vm_object_t *object, vm_pindex_t *pindex, vm_prot_t *out_prot, boolean_t *wired)
Definition: vm_map.c:5078
struct vmspace * vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
Definition: vm_map.c:325
int vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:2083
__FBSDID("$FreeBSD$")
#define KMAPENT_RESERVE
Definition: vm_map.c:243
static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:927
static void vmspace_dofree(struct vmspace *vm)
Definition: vm_map.c:365
static vm_size_t vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
Definition: vm_map.c:1249
boolean_t vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t protection)
Definition: vm_map.c:4012
int _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
Definition: vm_map.c:809
static int stack_guard_page
Definition: vm_map.c:4479
static int vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
Definition: vm_map.c:2466
#define VM_MAP_ASSERT_LOCKED(map)
Definition: vm_map.c:655
int vm_map_lookup(vm_map_t *var_map, vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, vm_object_t *object, vm_pindex_t *pindex, vm_prot_t *out_prot, boolean_t *wired)
Definition: vm_map.c:4907
static vm_size_t vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t llist)
Definition: vm_map.c:1234
static void vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:3814
#define VM_MAP_RANGE_CHECK(map, start, end)
Definition: vm_map.c:168
vm_offset_t vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
Definition: vm_map.c:1845
vm_offset_t vm_map_min_KBI(const struct vm_map *map)
Definition: vm_map.c:5175
long vmspace_resident_count(struct vmspace *vmspace)
Definition: vm_map.c:881
static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
Definition: vm_map.c:3800
static vm_size_t vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t rlist)
Definition: vm_map.c:1271
static __always_inline vm_map_entry_t vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, vm_map_entry_t *llist, vm_map_entry_t *rlist)
Definition: vm_map.c:1122
static void * kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait)
Definition: vm_map.c:189
void vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, vm_map_entry_t entry)
Definition: vm_map.c:2317
static __always_inline void vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
Definition: vm_map.c:1163
void vm_map_busy(vm_map_t map)
Definition: vm_map.c:846
static int vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
Definition: vm_map.c:2497
static int vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
Definition: vm_map.c:4586
static vm_size_t vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t rlist)
Definition: vm_map.c:1291
vm_offset_t vm_map_max_KBI(const struct vm_map *map)
Definition: vm_map.c:5168
bool vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
Definition: vm_map.c:5189
static bool vm_map_wire_user_count_add(u_long npages)
Definition: vm_map.c:3357
int vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_size_t length, vm_prot_t prot, vm_prot_t max, int cow)
Definition: vm_map.c:1937
static bool vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
Definition: vm_map.c:2267
SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, &cluster_anon, 0, "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always")
static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
Definition: vm_map.c:2611
static int cluster_anon
Definition: vm_map.c:1970
int vm_map_locked(vm_map_t map)
Definition: vm_map.c:785
static int vmspace_zinit(void *mem, int size, int flags)
Definition: vm_map.c:290
int vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
Definition: vm_map.c:3893
int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
Definition: vm_map.c:3215
static vm_map_entry_t vm_map_entry_create(vm_map_t map)
Definition: vm_map.c:939
static vm_map_entry_t vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:2385
static void vm_map_entry_back(vm_map_entry_t entry)
Definition: vm_map.c:2335
int vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
Definition: vm_map.c:3986
static vm_size_t vm_size_max(vm_size_t a, vm_size_t b)
Definition: vm_map.c:1031
static vm_map_entry_t vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
Definition: vm_map.c:3169
static void vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:2287
static void vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
Definition: vm_map.c:2357
static uma_zone_t kmapentzone
Definition: vm_map.c:130
#define VM_MAP_ASSERT_CONSISTENT(map)
Definition: vm_map.c:656
static vm_size_t vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
Definition: vm_map.c:1002
int vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
Definition: vm_map.c:2552
static __inline void vm_map_modflags(vm_map_t map, vm_flags_t set, vm_flags_t clear)
Definition: vm_map.h:257
#define MAP_ASLR
Definition: vm_map.h:222
#define MAP_ENTRY_GROWS_DOWN
Definition: vm_map.h:136
#define MAP_ENTRY_NOCOREDUMP
Definition: vm_map.h:134
#define vm_map_lock_upgrade(map)
Definition: vm_map.h:348
#define MAP_ENTRY_GUARD
Definition: vm_map.h:141
#define VM_MAP_WIRE_USER
Definition: vm_map.h:414
#define MAP_ENTRY_NOSYNC
Definition: vm_map.h:120
#define MAP_CREATE_STACK_GAP_DN
Definition: vm_map.h:376
#define MAP_ACC_CHARGED
Definition: vm_map.h:373
#define MAP_CHECK_EXCL
Definition: vm_map.h:365
#define VMFS_NO_SPACE
Definition: vm_map.h:404
#define MAP_NOFAULT
Definition: vm_map.h:361
u_int vm_eflags_t
Definition: vm_map.h:83
#define MAP_ENTRY_NEEDS_COPY
Definition: vm_map.h:123
#define MAP_ENTRY_SPLIT_BOUNDARY_SHIFT
Definition: vm_map.h:148
#define MAP_ENTRY_USER_WIRED
Definition: vm_map.h:125
#define MAP_ENTRY_BEHAV_RANDOM
Definition: vm_map.h:129
#define MAP_STACK_GROWS_DOWN
Definition: vm_map.h:371
#define vm_map_unlock_read(map)
Definition: vm_map.h:344
#define VMFS_OPTIMAL_SPACE
Definition: vm_map.h:406
#define VM_MAP_ENTRY_FOREACH(it, map)
Definition: vm_map.h:505
#define VM_MAP_WIRE_HOLESOK
Definition: vm_map.h:417
static __inline vm_offset_t vm_map_max(const struct vm_map *map)
Definition: vm_map.h:237
static __inline pmap_t vm_map_pmap(vm_map_t map)
Definition: vm_map.h:251
#define MAP_ENTRY_IS_SUB_MAP
Definition: vm_map.h:121
#define MAP_ENTRY_BEHAV_NORMAL
Definition: vm_map.h:127
static bool vm_map_range_valid(vm_map_t map, vm_offset_t start, vm_offset_t end)
Definition: vm_map.h:263
#define VM_FAULT_READ_AHEAD_INIT
Definition: vm_map.h:395
#define MAP_IS_SUB_MAP
Definition: vm_map.h:221
static __inline int vm_map_entry_system_wired_count(vm_map_entry_t entry)
Definition: vm_map.h:166
#define vm_map_lock_read(map)
Definition: vm_map.h:343
#define MAP_VN_EXEC
Definition: vm_map.h:377
#define MAP_ENTRY_WRITECNT
Definition: vm_map.h:140
#define MAP_ASLR_IGNSTART
Definition: vm_map.h:223
#define MAP_WIREFUTURE
Definition: vm_map.h:219
#define MAP_SPLIT_BOUNDARY_MASK
Definition: vm_map.h:378
#define VMFS_ANY_SPACE
Definition: vm_map.h:405
#define MAP_WRITECOUNT
Definition: vm_map.h:369
#define MAP_INHERIT_SHARE
Definition: vm_map.h:359
#define VM_MAP_WIRE_WRITE
Definition: vm_map.h:419
#define MAP_DISABLE_SYNCER
Definition: vm_map.h:364
#define vm_map_trylock(map)
Definition: vm_map.h:345
#define VM_FAULT_WIRE
Definition: vm_map.h:386
#define MAP_COPY_ON_WRITE
Definition: vm_map.h:360
#define VM_MAP_PROTECT_SET_PROT
Definition: vm_map.h:510
#define MAP_ASLR_STACK
Definition: vm_map.h:226
#define vm_map_lock_downgrade(map)
Definition: vm_map.h:350
#define MAP_PREFAULT_MADVISE
Definition: vm_map.h:368
#define MAP_CREATE_GUARD
Definition: vm_map.h:366
#define MAP_ENTRY_COW
Definition: vm_map.h:122
#define MAP_SPLIT_BOUNDARY_SHIFT
Definition: vm_map.h:380
#define vm_map_lock(map)
Definition: vm_map.h:339
#define MAP_ENTRY_STACK_GAP_UP
Definition: vm_map.h:143
#define MAP_REPLENISH
Definition: vm_map.h:224
#define MAP_ENTRY_GROWS_UP
Definition: vm_map.h:137
#define MAP_ENTRY_NEEDS_WAKEUP
Definition: vm_map.h:133
#define MAP_ENTRY_HEADER
Definition: vm_map.h:144
#define VMFS_SUPER_SPACE
Definition: vm_map.h:407
static __inline pmap_t vmspace_pmap(struct vmspace *vmspace)
Definition: vm_map.h:303
#define MAP_WXORX
Definition: vm_map.h:225
#define MAP_PREFAULT_PARTIAL
Definition: vm_map.h:363
#define MAP_ENTRY_NOFAULT
Definition: vm_map.h:124
#define MAP_PREFAULT
Definition: vm_map.h:362
#define VM_MAP_WIRE_NOHOLES
Definition: vm_map.h:416
#define MAP_STACK_GROWS_UP
Definition: vm_map.h:372
#define MAP_ENTRY_BEHAV_SEQUENTIAL
Definition: vm_map.h:128
#define MAP_ENTRY_STACK_GAP_DN
Definition: vm_map.h:142
#define MAP_ENTRY_IN_TRANSITION
Definition: vm_map.h:132
static __inline vm_offset_t vm_map_min(const struct vm_map *map)
Definition: vm_map.h:244
#define MAP_ENTRY_SPLIT_BOUNDARY_MASK
Definition: vm_map.h:146
#define vm_map_unlock_and_wait(map, timo)
Definition: vm_map.h:341
#define MAP_ENTRY_WIRE_SKIPPED
Definition: vm_map.h:139
#define MAP_ACC_NO_CHARGE
Definition: vm_map.h:374
static vm_map_entry_t vm_map_entry_succ(vm_map_entry_t entry)
Definition: vm_map.h:492
#define MAP_ENTRY_BEHAV_MASK
Definition: vm_map.h:131
#define MAP_ENTRY_VN_EXEC
Definition: vm_map.h:135
#define vm_map_unlock(map)
Definition: vm_map.h:340
#define MAP_REMAP
Definition: vm_map.h:370
#define MAP_CREATE_STACK_GAP_UP
Definition: vm_map.h:375
#define VM_MAP_PROTECT_SET_MAXPROT
Definition: vm_map.h:511
#define MAP_BUSY_WAKEUP
Definition: vm_map.h:220
#define MAP_DISABLE_COREDUMP
Definition: vm_map.h:367
u_long __exclusive_cache_line vm_user_wire_count
Definition: vm_meter.c:100
void vm_object_split(vm_map_entry_t entry)
Definition: vm_object.c:1525
void vm_object_reference(vm_object_t object)
Definition: vm_object.c:504
boolean_t vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, boolean_t syncio, boolean_t invalidate)
Definition: vm_object.c:1195
vm_object_t vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, struct ucred *cred, vm_size_t charge)
Definition: vm_object.c:461
void vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, uint8_t queue)
Definition: vm_object.c:2398
void vm_object_collapse(vm_object_t object)
Definition: vm_object.c:1927
void vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int options)
Definition: vm_object.c:2101
void vm_object_reference_locked(vm_object_t object)
Definition: vm_object.c:526
void vm_object_clear_flag(vm_object_t object, u_short bits)
Definition: vm_object.c:312
void vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, int advice)
Definition: vm_object.c:1331
boolean_t vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
Definition: vm_object.c:2289
void vm_object_deallocate(vm_object_t object)
Definition: vm_object.c:625
void vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, struct ucred *cred, bool shared)
Definition: vm_object.c:1445
#define OBJ_ANON
Definition: vm_object.h:200
#define VM_OBJECT_RLOCK(object)
Definition: vm_object.h:258
#define OBJ_COLORED
Definition: vm_object.h:208
#define VM_OBJECT_LOCK_DOWNGRADE(object)
Definition: vm_object.h:256
#define OBJ_ONEMAPPING
Definition: vm_object.h:209
#define VM_OBJECT_RUNLOCK(object)
Definition: vm_object.h:260
#define OBJPR_NOTMAPPED
Definition: vm_object.h:234
#define kernel_object
Definition: vm_object.h:245
#define VM_OBJECT_WLOCK(object)
Definition: vm_object.h:270
#define OBJ_SWAP
Definition: vm_object.h:205
#define OFF_TO_IDX(off)
Definition: vm_object.h:221
#define VM_OBJECT_WUNLOCK(object)
Definition: vm_object.h:274
void vm_object_print(long addr, boolean_t have_addr, long count, char *modif)
vm_page_t vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
Definition: vm_page.c:1708
bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
Definition: vm_page.c:5399
#define PQ_ACTIVE
Definition: vm_page.h:333
static bool vm_page_all_valid(vm_page_t m)
Definition: vm_page.h:990
#define PS_ALL_VALID
Definition: vm_page.h:595
u_long vm_page_max_user_wired
Definition: vm_pageout.c:204
static __inline void vm_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
Definition: vm_pager.h:229
static __inline void vm_pager_update_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end)
Definition: vm_pager.h:207
static __inline void vm_pager_release_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end)
Definition: vm_pager.h:218
#define KERN_RESOURCE_SHORTAGE
Definition: vm_param.h:113
#define KERN_SUCCESS
Definition: vm_param.h:107
#define KERN_PROTECTION_FAILURE
Definition: vm_param.h:109
#define KERN_FAILURE
Definition: vm_param.h:112
#define KERN_OUT_OF_BOUNDS
Definition: vm_param.h:116
#define KERN_NO_SPACE
Definition: vm_param.h:110
#define KERN_INVALID_ADDRESS
Definition: vm_param.h:108
#define KERN_INVALID_ARGUMENT
Definition: vm_param.h:111
unsigned long sgrowsiz