FreeBSD kernel IPv4 code
ip_id.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Michael J. Silbersack.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32/*
33 * IP ID generation is a fascinating topic.
34 *
35 * In order to avoid ID collisions during packet reassembly, common sense
36 * dictates that the period between reuse of IDs be as large as possible.
37 * This leads to the classic implementation of a system-wide counter, thereby
38 * ensuring that IDs repeat only once every 2^16 packets.
39 *
40 * Subsequent security researchers have pointed out that using a global
41 * counter makes ID values predictable. This predictability allows traffic
42 * analysis, idle scanning, and even packet injection in specific cases.
43 * These results suggest that IP IDs should be as random as possible.
44 *
45 * The "searchable queues" algorithm used in this IP ID implementation was
46 * proposed by Amit Klein. It is a compromise between the above two
47 * viewpoints that has provable behavior that can be tuned to the user's
48 * requirements.
49 *
50 * The basic concept is that we supplement a standard random number generator
51 * with a queue of the last L IDs that we have handed out to ensure that all
52 * IDs have a period of at least L.
53 *
54 * To efficiently implement this idea, we keep two data structures: a
55 * circular array of IDs of size L and a bitstring of 65536 bits.
56 *
57 * To start, we ask the RNG for a new ID. A quick index into the bitstring
58 * is used to determine if this is a recently used value. The process is
59 * repeated until a value is returned that is not in the bitstring.
60 *
61 * Having found a usable ID, we remove the ID stored at the current position
62 * in the queue from the bitstring and replace it with our new ID. Our new
63 * ID is then added to the bitstring and the queue pointer is incremented.
64 *
65 * The lower limit of 512 was chosen because there doesn't seem to be much
66 * point to having a smaller value. The upper limit of 32768 was chosen for
67 * two reasons. First, every step above 32768 decreases the entropy. Taken
68 * to an extreme, 65533 would offer 1 bit of entropy. Second, the number of
69 * attempts it takes the algorithm to find an unused ID drastically
70 * increases, killing performance. The default value of 8192 was chosen
71 * because it provides a good tradeoff between randomness and non-repetition.
72 *
73 * With L=8192, the queue will use 16K of memory. The bitstring always
74 * uses 8K of memory. No memory is allocated until the use of random ids is
75 * enabled.
76 */
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/counter.h>
81#include <sys/kernel.h>
82#include <sys/malloc.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/random.h>
86#include <sys/smp.h>
87#include <sys/sysctl.h>
88#include <sys/bitstring.h>
89
90#include <net/vnet.h>
91
92#include <netinet/in.h>
93#include <netinet/ip.h>
94#include <netinet/ip_var.h>
95
96/*
97 * By default we generate IP ID only for non-atomic datagrams, as
98 * suggested by RFC6864. We use per-CPU counter for that, or if
99 * user wants to, we can turn on random ID generation.
100 */
101VNET_DEFINE_STATIC(int, ip_rfc6864) = 1;
102VNET_DEFINE_STATIC(int, ip_do_randomid) = 0;
103#define V_ip_rfc6864 VNET(ip_rfc6864)
104#define V_ip_do_randomid VNET(ip_do_randomid)
105
106/*
107 * Random ID state engine.
108 */
109static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
111VNET_DEFINE_STATIC(bitstr_t *, id_bits);
112VNET_DEFINE_STATIC(int, array_ptr);
113VNET_DEFINE_STATIC(int, array_size);
114VNET_DEFINE_STATIC(int, random_id_collisions);
115VNET_DEFINE_STATIC(int, random_id_total);
116VNET_DEFINE_STATIC(struct mtx, ip_id_mtx);
117#define V_id_array VNET(id_array)
118#define V_id_bits VNET(id_bits)
119#define V_array_ptr VNET(array_ptr)
120#define V_array_size VNET(array_size)
121#define V_random_id_collisions VNET(random_id_collisions)
122#define V_random_id_total VNET(random_id_total)
123#define V_ip_id_mtx VNET(ip_id_mtx)
124
125/*
126 * Non-random ID state engine is simply a per-cpu counter.
127 */
128VNET_DEFINE_STATIC(counter_u64_t, ip_id);
129#define V_ip_id VNET(ip_id)
130
131static int sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
132static int sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
133static void ip_initid(int);
134static uint16_t ip_randomid(void);
135static void ipid_sysinit(void);
136static void ipid_sysuninit(void);
137
138SYSCTL_DECL(_net_inet_ip);
139SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
140 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_MPSAFE,
141 &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
142 "Assign random ip_id values");
143SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
144 &VNET_NAME(ip_rfc6864), 0,
145 "Use constant IP ID for atomic datagrams");
146SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
147 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET | CTLFLAG_MPSAFE,
148 &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
149SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
150 CTLFLAG_RD | CTLFLAG_VNET,
151 &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
152SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
153 &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
154
155static int
156sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
157{
158 int error, new;
159
160 new = V_ip_do_randomid;
161 error = sysctl_handle_int(oidp, &new, 0, req);
162 if (error || req->newptr == NULL)
163 return (error);
164 if (new != 0 && new != 1)
165 return (EINVAL);
166 if (new == V_ip_do_randomid)
167 return (0);
168 if (new == 1 && V_ip_do_randomid == 0)
169 ip_initid(8192);
170 /* We don't free memory when turning random ID off, due to race. */
171 V_ip_do_randomid = new;
172 return (0);
173}
174
175static int
176sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
177{
178 int error, new;
179
180 new = V_array_size;
181 error = sysctl_handle_int(oidp, &new, 0, req);
182 if (error == 0 && req->newptr) {
183 if (new >= 512 && new <= 32768)
184 ip_initid(new);
185 else
186 error = EINVAL;
187 }
188 return (error);
189}
190
191static void
192ip_initid(int new_size)
193{
194 uint16_t *new_array;
195 bitstr_t *new_bits;
196
197 new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
198 M_WAITOK | M_ZERO);
199 new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
200
201 mtx_lock(&V_ip_id_mtx);
202 if (V_id_array != NULL) {
203 free(V_id_array, M_IPID);
204 free(V_id_bits, M_IPID);
205 }
206 V_id_array = new_array;
207 V_id_bits = new_bits;
208 V_array_size = new_size;
209 V_array_ptr = 0;
212 mtx_unlock(&V_ip_id_mtx);
213}
214
215static uint16_t
217{
218 uint16_t new_id;
219
220 mtx_lock(&V_ip_id_mtx);
221 /*
222 * To avoid a conflict with the zeros that the array is initially
223 * filled with, we never hand out an id of zero.
224 */
225 new_id = 0;
226 do {
227 if (new_id != 0)
229 arc4rand(&new_id, sizeof(new_id), 0);
230 } while (bit_test(V_id_bits, new_id) || new_id == 0);
231 bit_clear(V_id_bits, V_id_array[V_array_ptr]);
232 bit_set(V_id_bits, new_id);
233 V_id_array[V_array_ptr] = new_id;
234 V_array_ptr++;
236 V_array_ptr = 0;
238 mtx_unlock(&V_ip_id_mtx);
239 return (new_id);
240}
241
242void
244{
245
246 /*
247 * Per RFC6864 Section 4
248 *
249 * o Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
250 * o Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
251 */
252 if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
253 ip->ip_id = 0;
254 else if (V_ip_do_randomid)
255 ip->ip_id = ip_randomid();
256 else {
257 counter_u64_add(V_ip_id, 1);
258 /*
259 * There are two issues about this trick, to be kept in mind.
260 * 1) We can migrate between counter_u64_add() and next
261 * line, and grab counter from other CPU, resulting in too
262 * quick ID reuse. This is tolerable in our particular case,
263 * since probability of such event is much lower then reuse
264 * of ID due to legitimate overflow, that at modern Internet
265 * speeds happens all the time.
266 * 2) We are relying on the fact that counter(9) is based on
267 * UMA_ZONE_PCPU uma(9) zone. We also take only last
268 * sixteen bits of a counter, so we don't care about the
269 * fact that machines with 32-bit word update their counters
270 * not atomically.
271 */
272 ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
273 }
274}
275
276static void
278{
279 int i;
280
281 mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
282 V_ip_id = counter_u64_alloc(M_WAITOK);
283
284 CPU_FOREACH(i)
285 arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
286}
287VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
288
289static void
291{
292
293 if (V_id_array != NULL) {
294 free(V_id_array, M_IPID);
295 free(V_id_bits, M_IPID);
296 }
297 counter_u64_free(V_ip_id);
298 mtx_destroy(&V_ip_id_mtx);
299}
300VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);
__uint16_t uint16_t
Definition: in.h:57
u_short ip_id
Definition: ip.h:10
#define IP_DF
Definition: ip.h:13
#define V_id_bits
Definition: ip_id.c:118
#define V_ip_id
Definition: ip_id.c:129
VNET_DEFINE_STATIC(int, ip_rfc6864)
SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id, CTLTYPE_INT|CTLFLAG_VNET|CTLFLAG_RW|CTLFLAG_MPSAFE, &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU", "Assign random ip_id values")
static void ipid_sysinit(void)
Definition: ip_id.c:277
VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL)
#define V_random_id_collisions
Definition: ip_id.c:121
VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL)
static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state")
static void ip_initid(int)
Definition: ip_id.c:192
SYSCTL_DECL(_net_inet_ip)
#define V_array_size
Definition: ip_id.c:120
#define V_random_id_total
Definition: ip_id.c:122
SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET|CTLFLAG_RW, &VNET_NAME(ip_rfc6864), 0, "Use constant IP ID for atomic datagrams")
#define V_array_ptr
Definition: ip_id.c:119
static uint16_t ip_randomid(void)
Definition: ip_id.c:216
__FBSDID("$FreeBSD$")
void ip_fillid(struct ip *ip)
Definition: ip_id.c:243
static int sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
Definition: ip_id.c:156
#define V_ip_id_mtx
Definition: ip_id.c:123
#define V_id_array
Definition: ip_id.c:117
#define V_ip_do_randomid
Definition: ip_id.c:104
static void ipid_sysuninit(void)
Definition: ip_id.c:290
static int sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
Definition: ip_id.c:176
#define V_ip_rfc6864
Definition: ip_id.c:103
Definition: ip.h:51
u_short ip_id
Definition: ip.h:62
u_short ip_off
Definition: ip.h:63