FreeBSD kernel kern code
subr_gtaskqueue.c
Go to the documentation of this file.
1/*-
2 * Copyright (c) 2000 Doug Rabson
3 * Copyright (c) 2014 Jeff Roberson
4 * Copyright (c) 2016 Matthew Macy
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/cpuset.h>
36#include <sys/kernel.h>
37#include <sys/kthread.h>
38#include <sys/libkern.h>
39#include <sys/limits.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/mutex.h>
43#include <sys/proc.h>
44#include <sys/epoch.h>
45#include <sys/sched.h>
46#include <sys/smp.h>
47#include <sys/gtaskqueue.h>
48#include <sys/unistd.h>
49#include <machine/stdarg.h>
50
51static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
52static void gtaskqueue_thread_enqueue(void *);
53static void gtaskqueue_thread_loop(void *arg);
54static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
55static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
56
58
60 struct gtask *tb_running;
61 u_int tb_seq;
62 LIST_ENTRY(gtaskqueue_busy) tb_link;
63};
64
65typedef void (*gtaskqueue_enqueue_fn)(void *context);
66
67struct gtaskqueue {
68 STAILQ_HEAD(, gtask) tq_queue;
69 LIST_HEAD(, gtaskqueue_busy) tq_active;
70 u_int tq_seq;
71 int tq_callouts;
72 struct mtx_padalign tq_mutex;
73 gtaskqueue_enqueue_fn tq_enqueue;
74 void *tq_context;
75 char *tq_name;
76 struct thread **tq_threads;
77 int tq_tcount;
78 int tq_spin;
79 int tq_flags;
80 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
81 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
82};
83
84#define TQ_FLAGS_ACTIVE (1 << 0)
85#define TQ_FLAGS_BLOCKED (1 << 1)
86#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
87
88#define DT_CALLOUT_ARMED (1 << 0)
89
90#define TQ_LOCK(tq) \
91 do { \
92 if ((tq)->tq_spin) \
93 mtx_lock_spin(&(tq)->tq_mutex); \
94 else \
95 mtx_lock(&(tq)->tq_mutex); \
96 } while (0)
97#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98
99#define TQ_UNLOCK(tq) \
100 do { \
101 if ((tq)->tq_spin) \
102 mtx_unlock_spin(&(tq)->tq_mutex); \
103 else \
104 mtx_unlock(&(tq)->tq_mutex); \
105 } while (0)
106#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107
108#ifdef INVARIANTS
109static void
110gtask_dump(struct gtask *gtask)
111{
112 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
113 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
114}
115#endif
116
117static __inline int
118TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
119{
120 if (tq->tq_spin)
121 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
122 return (msleep(p, &tq->tq_mutex, 0, wm, 0));
123}
124
125static struct gtaskqueue *
126_gtaskqueue_create(const char *name, int mflags,
127 taskqueue_enqueue_fn enqueue, void *context,
128 int mtxflags, const char *mtxname __unused)
129{
130 struct gtaskqueue *queue;
131 char *tq_name;
132
133 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
134 if (!tq_name)
135 return (NULL);
136
137 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
138
139 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
140 if (!queue) {
141 free(tq_name, M_GTASKQUEUE);
142 return (NULL);
143 }
144
145 STAILQ_INIT(&queue->tq_queue);
146 LIST_INIT(&queue->tq_active);
147 queue->tq_enqueue = enqueue;
148 queue->tq_context = context;
149 queue->tq_name = tq_name;
150 queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
151 queue->tq_flags |= TQ_FLAGS_ACTIVE;
152 if (enqueue == gtaskqueue_thread_enqueue)
153 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155
156 return (queue);
157}
158
159/*
160 * Signal a taskqueue thread to terminate.
161 */
162static void
163gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
164{
165
166 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
167 wakeup(tq);
168 TQ_SLEEP(tq, pp, "gtq_destroy");
169 }
170}
171
172static void __unused
174{
175
176 TQ_LOCK(queue);
177 queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
178 gtaskqueue_terminate(queue->tq_threads, queue);
179 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
180 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
181 mtx_destroy(&queue->tq_mutex);
182 free(queue->tq_threads, M_GTASKQUEUE);
183 free(queue->tq_name, M_GTASKQUEUE);
184 free(queue, M_GTASKQUEUE);
185}
186
187/*
188 * Wait for all to complete, then prevent it from being enqueued
189 */
190void
191grouptask_block(struct grouptask *grouptask)
192{
193 struct gtaskqueue *queue = grouptask->gt_taskqueue;
194 struct gtask *gtask = &grouptask->gt_task;
195
196#ifdef INVARIANTS
197 if (queue == NULL) {
198 gtask_dump(gtask);
199 panic("queue == NULL");
200 }
201#endif
202 TQ_LOCK(queue);
203 gtask->ta_flags |= TASK_NOENQUEUE;
204 gtaskqueue_drain_locked(queue, gtask);
205 TQ_UNLOCK(queue);
206}
207
208void
209grouptask_unblock(struct grouptask *grouptask)
210{
211 struct gtaskqueue *queue = grouptask->gt_taskqueue;
212 struct gtask *gtask = &grouptask->gt_task;
213
214#ifdef INVARIANTS
215 if (queue == NULL) {
216 gtask_dump(gtask);
217 panic("queue == NULL");
218 }
219#endif
220 TQ_LOCK(queue);
221 gtask->ta_flags &= ~TASK_NOENQUEUE;
222 TQ_UNLOCK(queue);
223}
224
225int
226grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
227{
228#ifdef INVARIANTS
229 if (queue == NULL) {
230 gtask_dump(gtask);
231 panic("queue == NULL");
232 }
233#endif
234 TQ_LOCK(queue);
235 if (gtask->ta_flags & TASK_ENQUEUED) {
236 TQ_UNLOCK(queue);
237 return (0);
238 }
239 if (gtask->ta_flags & TASK_NOENQUEUE) {
240 TQ_UNLOCK(queue);
241 return (EAGAIN);
242 }
243 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
244 gtask->ta_flags |= TASK_ENQUEUED;
245 TQ_UNLOCK(queue);
246 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
247 queue->tq_enqueue(queue->tq_context);
248 return (0);
249}
250
251static void
253{
254}
255
256/*
257 * Block until all currently queued tasks in this taskqueue
258 * have begun execution. Tasks queued during execution of
259 * this function are ignored.
260 */
261static void
263{
264 struct gtask t_barrier;
265
266 if (STAILQ_EMPTY(&queue->tq_queue))
267 return;
268
269 /*
270 * Enqueue our barrier after all current tasks, but with
271 * the highest priority so that newly queued tasks cannot
272 * pass it. Because of the high priority, we can not use
273 * taskqueue_enqueue_locked directly (which drops the lock
274 * anyway) so just insert it at tail while we have the
275 * queue lock.
276 */
277 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
278 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
279 t_barrier.ta_flags |= TASK_ENQUEUED;
280
281 /*
282 * Once the barrier has executed, all previously queued tasks
283 * have completed or are currently executing.
284 */
285 while (t_barrier.ta_flags & TASK_ENQUEUED)
286 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
287}
288
289/*
290 * Block until all currently executing tasks for this taskqueue
291 * complete. Tasks that begin execution during the execution
292 * of this function are ignored.
293 */
294static void
296{
297 struct gtaskqueue_busy *tb;
298 u_int seq;
299
300 if (LIST_EMPTY(&queue->tq_active))
301 return;
302
303 /* Block taskq_terminate().*/
304 queue->tq_callouts++;
305
306 /* Wait for any active task with sequence from the past. */
307 seq = queue->tq_seq;
308restart:
309 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
310 if ((int)(tb->tb_seq - seq) <= 0) {
311 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
312 goto restart;
313 }
314 }
315
316 /* Release taskqueue_terminate(). */
317 queue->tq_callouts--;
318 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
319 wakeup_one(queue->tq_threads);
320}
321
322void
324{
325
326 TQ_LOCK(queue);
327 queue->tq_flags |= TQ_FLAGS_BLOCKED;
328 TQ_UNLOCK(queue);
329}
330
331void
333{
334
335 TQ_LOCK(queue);
336 queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
337 if (!STAILQ_EMPTY(&queue->tq_queue))
338 queue->tq_enqueue(queue->tq_context);
339 TQ_UNLOCK(queue);
340}
341
342static void
344{
345 struct epoch_tracker et;
346 struct gtaskqueue_busy tb;
347 struct gtask *gtask;
348 bool in_net_epoch;
349
350 KASSERT(queue != NULL, ("tq is NULL"));
351 TQ_ASSERT_LOCKED(queue);
352 tb.tb_running = NULL;
353 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
354 in_net_epoch = false;
355
356 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
357 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
358 gtask->ta_flags &= ~TASK_ENQUEUED;
359 tb.tb_running = gtask;
360 tb.tb_seq = ++queue->tq_seq;
361 TQ_UNLOCK(queue);
362
363 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
364 if (!in_net_epoch && TASK_IS_NET(gtask)) {
365 in_net_epoch = true;
366 NET_EPOCH_ENTER(et);
367 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
368 NET_EPOCH_EXIT(et);
369 in_net_epoch = false;
370 }
371 gtask->ta_func(gtask->ta_context);
372
373 TQ_LOCK(queue);
374 wakeup(gtask);
375 }
376 if (in_net_epoch)
377 NET_EPOCH_EXIT(et);
378 LIST_REMOVE(&tb, tb_link);
379}
380
381static int
382task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
383{
384 struct gtaskqueue_busy *tb;
385
386 TQ_ASSERT_LOCKED(queue);
387 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
388 if (tb->tb_running == gtask)
389 return (1);
390 }
391 return (0);
392}
393
394static int
395gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
396{
397
398 if (gtask->ta_flags & TASK_ENQUEUED)
399 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
400 gtask->ta_flags &= ~TASK_ENQUEUED;
401 return (task_is_running(queue, gtask) ? EBUSY : 0);
402}
403
404int
405gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
406{
407 int error;
408
409 TQ_LOCK(queue);
410 error = gtaskqueue_cancel_locked(queue, gtask);
411 TQ_UNLOCK(queue);
412
413 return (error);
414}
415
416static void
417gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
418{
419 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
420 TQ_SLEEP(queue, gtask, "gtq_drain");
421}
422
423void
424gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
425{
426
427 if (!queue->tq_spin)
428 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
429
430 TQ_LOCK(queue);
431 gtaskqueue_drain_locked(queue, gtask);
432 TQ_UNLOCK(queue);
433}
434
435void
437{
438
439 if (!queue->tq_spin)
440 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
441
442 TQ_LOCK(queue);
445 TQ_UNLOCK(queue);
446}
447
448static int
449_gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
450 cpuset_t *mask, const char *name, va_list ap)
451{
452 char ktname[MAXCOMLEN + 1];
453 struct thread *td;
454 struct gtaskqueue *tq;
455 int i, error;
456
457 if (count <= 0)
458 return (EINVAL);
459
460 vsnprintf(ktname, sizeof(ktname), name, ap);
461 tq = *tqp;
462
463 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
464 M_NOWAIT | M_ZERO);
465 if (tq->tq_threads == NULL) {
466 printf("%s: no memory for %s threads\n", __func__, ktname);
467 return (ENOMEM);
468 }
469
470 for (i = 0; i < count; i++) {
471 if (count == 1)
472 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
473 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
474 else
475 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
476 &tq->tq_threads[i], RFSTOPPED, 0,
477 "%s_%d", ktname, i);
478 if (error) {
479 /* should be ok to continue, taskqueue_free will dtrt */
480 printf("%s: kthread_add(%s): error %d", __func__,
481 ktname, error);
482 tq->tq_threads[i] = NULL; /* paranoid */
483 } else
484 tq->tq_tcount++;
485 }
486 for (i = 0; i < count; i++) {
487 if (tq->tq_threads[i] == NULL)
488 continue;
489 td = tq->tq_threads[i];
490 if (mask) {
491 error = cpuset_setthread(td->td_tid, mask);
492 /*
493 * Failing to pin is rarely an actual fatal error;
494 * it'll just affect performance.
495 */
496 if (error)
497 printf("%s: curthread=%llu: can't pin; "
498 "error=%d\n",
499 __func__,
500 (unsigned long long) td->td_tid,
501 error);
502 }
503 thread_lock(td);
504 sched_prio(td, pri);
505 sched_add(td, SRQ_BORING);
506 }
507
508 return (0);
509}
510
511static int
512gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
513 const char *name, ...)
514{
515 va_list ap;
516 int error;
517
518 va_start(ap, name);
519 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
520 va_end(ap);
521 return (error);
522}
523
524static inline void
526 enum taskqueue_callback_type cb_type)
527{
528 taskqueue_callback_fn tq_callback;
529
531 tq_callback = tq->tq_callbacks[cb_type];
532 if (tq_callback != NULL)
533 tq_callback(tq->tq_cb_contexts[cb_type]);
534}
535
536static void
538{
539 struct gtaskqueue **tqp, *tq;
540
541 tqp = arg;
542 tq = *tqp;
543 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
544 TQ_LOCK(tq);
545 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
546 /* XXX ? */
548 /*
549 * Because taskqueue_run() can drop tq_mutex, we need to
550 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
551 * meantime, which means we missed a wakeup.
552 */
553 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
554 break;
555 TQ_SLEEP(tq, tq, "-");
556 }
558 /*
559 * This thread is on its way out, so just drop the lock temporarily
560 * in order to call the shutdown callback. This allows the callback
561 * to look at the taskqueue, even just before it dies.
562 */
563 TQ_UNLOCK(tq);
564 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
565 TQ_LOCK(tq);
566
567 /* rendezvous with thread that asked us to terminate */
568 tq->tq_tcount--;
569 wakeup_one(tq->tq_threads);
570 TQ_UNLOCK(tq);
571 kthread_exit();
572}
573
574static void
576{
577 struct gtaskqueue **tqp, *tq;
578
579 tqp = context;
580 tq = *tqp;
581 wakeup_any(tq);
582}
583
584static struct gtaskqueue *
585gtaskqueue_create_fast(const char *name, int mflags,
586 taskqueue_enqueue_fn enqueue, void *context)
587{
588 return _gtaskqueue_create(name, mflags, enqueue, context,
589 MTX_SPIN, "fast_taskqueue");
590}
591
593 LIST_HEAD(, grouptask) tgc_tasks;
594 struct gtaskqueue *tgc_taskq;
595 int tgc_cnt;
596 int tgc_cpu;
597};
598
600 struct taskqgroup_cpu tqg_queue[MAXCPU];
601 struct mtx tqg_lock;
602 const char * tqg_name;
604};
605
607 struct gtask bt_task;
609};
610
611static void
612taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
613{
614 struct taskqgroup_cpu *qcpu;
615
616 qcpu = &qgroup->tqg_queue[idx];
617 LIST_INIT(&qcpu->tgc_tasks);
618 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
619 taskqueue_thread_enqueue, &qcpu->tgc_taskq);
620 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
621 "%s_%d", qgroup->tqg_name, idx);
622 qcpu->tgc_cpu = cpu;
623}
624
625/*
626 * Find the taskq with least # of tasks that doesn't currently have any
627 * other queues from the uniq identifier.
628 */
629static int
630taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
631{
632 struct grouptask *n;
633 int i, idx, mincnt;
634 int strict;
635
636 mtx_assert(&qgroup->tqg_lock, MA_OWNED);
637 KASSERT(qgroup->tqg_cnt != 0,
638 ("qgroup %s has no queues", qgroup->tqg_name));
639
640 /*
641 * Two passes: first scan for a queue with the least tasks that
642 * does not already service this uniq id. If that fails simply find
643 * the queue with the least total tasks.
644 */
645 for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
646 strict = 0) {
647 for (i = 0; i < qgroup->tqg_cnt; i++) {
648 if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
649 continue;
650 if (strict) {
651 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
652 gt_list)
653 if (n->gt_uniq == uniq)
654 break;
655 if (n != NULL)
656 continue;
657 }
658 mincnt = qgroup->tqg_queue[i].tgc_cnt;
659 idx = i;
660 }
661 }
662 if (idx == -1)
663 panic("%s: failed to pick a qid.", __func__);
664
665 return (idx);
666}
667
668void
669taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
670 void *uniq, device_t dev, struct resource *irq, const char *name)
671{
672 int cpu, qid, error;
673
674 KASSERT(qgroup->tqg_cnt > 0,
675 ("qgroup %s has no queues", qgroup->tqg_name));
676
677 gtask->gt_uniq = uniq;
678 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
679 gtask->gt_dev = dev;
680 gtask->gt_irq = irq;
681 gtask->gt_cpu = -1;
682 mtx_lock(&qgroup->tqg_lock);
683 qid = taskqgroup_find(qgroup, uniq);
684 qgroup->tqg_queue[qid].tgc_cnt++;
685 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
686 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
687 if (dev != NULL && irq != NULL) {
688 cpu = qgroup->tqg_queue[qid].tgc_cpu;
689 gtask->gt_cpu = cpu;
690 mtx_unlock(&qgroup->tqg_lock);
691 error = bus_bind_intr(dev, irq, cpu);
692 if (error)
693 printf("%s: binding interrupt failed for %s: %d\n",
694 __func__, gtask->gt_name, error);
695 } else
696 mtx_unlock(&qgroup->tqg_lock);
697}
698
699int
700taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
701 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
702{
703 int i, qid, error;
704
705 gtask->gt_uniq = uniq;
706 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
707 gtask->gt_dev = dev;
708 gtask->gt_irq = irq;
709 gtask->gt_cpu = cpu;
710 mtx_lock(&qgroup->tqg_lock);
711 for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
712 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
713 qid = i;
714 break;
715 }
716 if (qid == -1) {
717 mtx_unlock(&qgroup->tqg_lock);
718 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
719 return (EINVAL);
720 }
721 qgroup->tqg_queue[qid].tgc_cnt++;
722 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
723 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
724 cpu = qgroup->tqg_queue[qid].tgc_cpu;
725 mtx_unlock(&qgroup->tqg_lock);
726
727 if (dev != NULL && irq != NULL) {
728 error = bus_bind_intr(dev, irq, cpu);
729 if (error)
730 printf("%s: binding interrupt failed for %s: %d\n",
731 __func__, gtask->gt_name, error);
732 }
733 return (0);
734}
735
736void
737taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
738{
739 int i;
740
741 grouptask_block(gtask);
742 mtx_lock(&qgroup->tqg_lock);
743 for (i = 0; i < qgroup->tqg_cnt; i++)
744 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
745 break;
746 if (i == qgroup->tqg_cnt)
747 panic("%s: task %s not in group", __func__, gtask->gt_name);
748 qgroup->tqg_queue[i].tgc_cnt--;
749 LIST_REMOVE(gtask, gt_list);
750 mtx_unlock(&qgroup->tqg_lock);
751 gtask->gt_taskqueue = NULL;
752 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
753}
754
755static void
757{
758 struct taskq_bind_task *gtask;
759 cpuset_t mask;
760 int error;
761
762 gtask = ctx;
763 CPU_ZERO(&mask);
764 CPU_SET(gtask->bt_cpuid, &mask);
765 error = cpuset_setthread(curthread->td_tid, &mask);
766 thread_lock(curthread);
767 sched_bind(curthread, gtask->bt_cpuid);
768 thread_unlock(curthread);
769
770 if (error)
771 printf("%s: binding curthread failed: %d\n", __func__, error);
772 free(gtask, M_DEVBUF);
773}
774
775void
777{
778 struct taskq_bind_task *gtask;
779 int i;
780
781 /*
782 * Bind taskqueue threads to specific CPUs, if they have been assigned
783 * one.
784 */
785 if (qgroup->tqg_cnt == 1)
786 return;
787
788 for (i = 0; i < qgroup->tqg_cnt; i++) {
789 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
790 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
791 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
792 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
793 &gtask->bt_task);
794 }
795}
796
797struct taskqgroup *
798taskqgroup_create(const char *name, int cnt, int stride)
799{
800 struct taskqgroup *qgroup;
801 int cpu, i, j;
802
803 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
804 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
805 qgroup->tqg_name = name;
806 qgroup->tqg_cnt = cnt;
807
808 for (cpu = i = 0; i < cnt; i++) {
809 taskqgroup_cpu_create(qgroup, i, cpu);
810 for (j = 0; j < stride; j++)
811 cpu = CPU_NEXT(cpu);
812 }
813 return (qgroup);
814}
815
816void
818{
819}
820
821void
823{
824 struct gtaskqueue *q;
825
826 for (int i = 0; i < mp_ncpus; i++) {
827 q = tqg->tqg_queue[i].tgc_taskq;
828 if (q == NULL)
829 continue;
831 }
832}
int * count
Definition: cpufreq_if.m:63
const char * name
Definition: kern_fail.c:145
static LIST_HEAD(alq)
Definition: kern_alq.c:99
static STAILQ_HEAD(cn_device)
Definition: kern_cons.c:88
int cpuset_setthread(lwpid_t id, cpuset_t *mask)
Definition: kern_cpuset.c:1502
void kthread_exit(void)
Definition: kern_kthread.c:328
int kthread_add(void(*func)(void *), void *arg, struct proc *p, struct thread **newtdp, int flags, int pages, const char *fmt,...)
Definition: kern_kthread.c:255
void *() malloc(size_t size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:632
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:907
void panic(const char *fmt,...)
void wakeup_any(const void *ident)
Definition: kern_synch.c:380
void wakeup(const void *ident)
Definition: kern_synch.c:349
void wakeup_one(const void *ident)
Definition: kern_synch.c:369
void sched_bind(struct thread *td, int cpu)
Definition: sched_4bsd.c:1531
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:901
void sched_add(struct thread *td, int flags)
Definition: sched_4bsd.c:1285
struct gtask * tb_running
struct gtask bt_task
const char * tqg_name
struct mtx tqg_lock
struct taskqgroup_cpu tqg_queue[MAXCPU]
int mask
Definition: subr_acl_nfs4.c:70
int bus_bind_intr(device_t dev, struct resource *r, int cpu)
Wrapper function for BUS_BIND_INTR().
Definition: subr_bus.c:4958
static void gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
int taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
static struct gtaskqueue * gtaskqueue_create_fast(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context)
void grouptask_block(struct grouptask *grouptask)
#define TQ_ASSERT_LOCKED(tq)
TASKQGROUP_DEFINE(softirq, mp_ncpus, 1)
static void gtaskqueue_thread_enqueue(void *)
static int gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
#define TQ_ASSERT_UNLOCKED(tq)
void taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
void taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, void *uniq, device_t dev, struct resource *irq, const char *name)
static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues")
static void gtaskqueue_thread_loop(void *arg)
void gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
static void __unused gtaskqueue_free(struct gtaskqueue *queue)
void taskqgroup_bind(struct taskqgroup *qgroup)
void gtaskqueue_unblock(struct gtaskqueue *queue)
#define TQ_FLAGS_BLOCKED
static void gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
#define TQ_LOCK(tq)
static void gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
#define TQ_FLAGS_UNLOCKED_ENQUEUE
void gtaskqueue_block(struct gtaskqueue *queue)
static __inline int TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
__FBSDID("$FreeBSD$")
static struct gtaskqueue * _gtaskqueue_create(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context, int mtxflags, const char *mtxname __unused)
static void gtaskqueue_task_nop_fn(void *context)
static int taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
static void gtaskqueue_run_locked(struct gtaskqueue *queue)
#define TQ_FLAGS_ACTIVE
void gtaskqueue_drain_all(struct gtaskqueue *queue)
static int gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, const char *name,...)
void taskqgroup_drain_all(struct taskqgroup *tqg)
static int _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, cpuset_t *mask, const char *name, va_list ap)
void(* gtaskqueue_enqueue_fn)(void *context)
static void taskqgroup_binder(void *ctx)
int grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
void grouptask_unblock(struct grouptask *grouptask)
int gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
void taskqgroup_destroy(struct taskqgroup *qgroup)
static void gtaskqueue_run_callback(struct gtaskqueue *tq, enum taskqueue_callback_type cb_type)
static void taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
struct taskqgroup * taskqgroup_create(const char *name, int cnt, int stride)
static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
#define TQ_UNLOCK(tq)
int vsnprintf(char *str, size_t size, const char *format, va_list ap)
Definition: subr_prf.c:565
int printf(const char *fmt,...)
Definition: subr_prf.c:397
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:550
int mp_ncpus
Definition: subr_smp.c:72
void taskqueue_thread_enqueue(void *context)
struct mtx mtx
Definition: uipc_ktls.c:0