FreeBSD kernel sound device code
feeder_rate.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * feeder_rate: (Codename: Z Resampler), which means any effort to create
31 * future replacement for this resampler are simply absurd unless
32 * the world decide to add new alphabet after Z.
33 *
34 * FreeBSD bandlimited sinc interpolator, technically based on
35 * "Digital Audio Resampling" by Julius O. Smith III
36 * - http://ccrma.stanford.edu/~jos/resample/
37 *
38 * The Good:
39 * + all out fixed point integer operations, no soft-float or anything like
40 * that.
41 * + classic polyphase converters with high quality coefficient's polynomial
42 * interpolators.
43 * + fast, faster, or the fastest of its kind.
44 * + compile time configurable.
45 * + etc etc..
46 *
47 * The Bad:
48 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
49 * couldn't think of anything simpler than that (feeder_rate_xxx is just
50 * too long). Expect possible clashes with other zitizens (any?).
51 */
52
53#ifdef _KERNEL
54#ifdef HAVE_KERNEL_OPTION_HEADERS
55#include "opt_snd.h"
56#endif
57#include <dev/sound/pcm/sound.h>
58#include <dev/sound/pcm/pcm.h>
59#include "feeder_if.h"
60
61#define SND_USE_FXDIV
62#include "snd_fxdiv_gen.h"
63
64SND_DECLARE_FILE("$FreeBSD$");
65#endif
66
67#include "feeder_rate_gen.h"
68
69#if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
70#undef Z_DIAGNOSTIC
71#define Z_DIAGNOSTIC 1
72#elif defined(_KERNEL)
73#undef Z_DIAGNOSTIC
74#endif
75
76#ifndef Z_QUALITY_DEFAULT
77#define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR
78#endif
79
80#define Z_RESERVOIR 2048
81#define Z_RESERVOIR_MAX 131072
82
83#define Z_SINC_MAX 0x3fffff
84#define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */
85
86#ifdef _KERNEL
87#define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */
88#else
89#define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */
90#endif
91
92#define Z_RATE_DEFAULT 48000
93
94#define Z_RATE_MIN FEEDRATE_RATEMIN
95#define Z_RATE_MAX FEEDRATE_RATEMAX
96#define Z_ROUNDHZ FEEDRATE_ROUNDHZ
97#define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN
98#define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX
99
100#define Z_RATE_SRC FEEDRATE_SRC
101#define Z_RATE_DST FEEDRATE_DST
102#define Z_RATE_QUALITY FEEDRATE_QUALITY
103#define Z_RATE_CHANNELS FEEDRATE_CHANNELS
104
105#define Z_PARANOID 1
106
107#define Z_MULTIFORMAT 1
108
109#ifdef _KERNEL
110#undef Z_USE_ALPHADRIFT
111#define Z_USE_ALPHADRIFT 1
112#endif
113
114#define Z_FACTOR_MIN 1
115#define Z_FACTOR_MAX Z_MASK
116#define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
117
118struct z_info;
119
120typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
121
122struct z_info {
123 int32_t rsrc, rdst; /* original source / destination rates */
124 int32_t src, dst; /* rounded source / destination rates */
125 int32_t channels; /* total channels */
126 int32_t bps; /* bytes-per-sample */
127 int32_t quality; /* resampling quality */
128
129 int32_t z_gx, z_gy; /* interpolation / decimation ratio */
130 int32_t z_alpha; /* output sample time phase / drift */
131 uint8_t *z_delay; /* FIR delay line / linear buffer */
132 int32_t *z_coeff; /* FIR coefficients */
133 int32_t *z_dcoeff; /* FIR coefficients differences */
134 int32_t *z_pcoeff; /* FIR polyphase coefficients */
135 int32_t z_scale; /* output scaling */
136 int32_t z_dx; /* input sample drift increment */
137 int32_t z_dy; /* output sample drift increment */
138#ifdef Z_USE_ALPHADRIFT
139 int32_t z_alphadrift; /* alpha drift rate */
140 int32_t z_startdrift; /* buffer start position drift rate */
141#endif
142 int32_t z_mask; /* delay line full length mask */
143 int32_t z_size; /* half width of FIR taps */
144 int32_t z_full; /* full size of delay line */
145 int32_t z_alloc; /* largest allocated full size of delay line */
146 int32_t z_start; /* buffer processing start position */
147 int32_t z_pos; /* current position for the next feed */
148#ifdef Z_DIAGNOSTIC
149 uint32_t z_cycle; /* output cycle, purely for statistical */
150#endif
151 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */
152
154};
155
160
162
163#ifdef _KERNEL
164static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
165SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
166 &feeder_rate_presets, 0, "compile-time rate presets");
167SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN,
168 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
169
170static int
172{
173 int err, val;
174
176 err = sysctl_handle_int(oidp, &val, 0, req);
177
178 if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
179 return (err);
180
182 return (EINVAL);
183
185
186 return (0);
187}
188SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min,
189 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
191 "minimum allowable rate");
192
193static int
195{
196 int err, val;
197
199 err = sysctl_handle_int(oidp, &val, 0, req);
200
201 if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
202 return (err);
203
205 return (EINVAL);
206
208
209 return (0);
210}
211SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max,
212 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
214 "maximum allowable rate");
215
216static int
218{
219 int err, val;
220
222 err = sysctl_handle_int(oidp, &val, 0, req);
223
224 if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
225 return (err);
226
227 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
228 return (EINVAL);
229
231
232 return (0);
233}
235 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int),
237 "sample rate converter rounding threshold");
238
239static int
241{
242 struct snddev_info *d;
243 struct pcm_channel *c;
244 struct pcm_feeder *f;
245 int i, err, val;
246
248 err = sysctl_handle_int(oidp, &val, 0, req);
249
250 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
251 return (err);
252
253 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
254 return (EINVAL);
255
257
258 /*
259 * Traverse all available channels on each device and try to
260 * set resampler quality if and only if it is exist as
261 * part of feeder chains and the channel is idle.
262 */
263 for (i = 0; pcm_devclass != NULL &&
264 i < devclass_get_maxunit(pcm_devclass); i++) {
265 d = devclass_get_softc(pcm_devclass, i);
266 if (!PCM_REGISTERED(d))
267 continue;
268 PCM_LOCK(d);
269 PCM_WAIT(d);
270 PCM_ACQUIRE(d);
271 CHN_FOREACH(c, d, channels.pcm) {
272 CHN_LOCK(c);
274 if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
275 CHN_UNLOCK(c);
276 continue;
277 }
278 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
279 CHN_UNLOCK(c);
280 }
281 PCM_RELEASE(d);
282 PCM_UNLOCK(d);
283 }
284
285 return (0);
286}
288 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
290 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
291 __XSTRING(Z_QUALITY_MAX)"=high)");
292#endif /* _KERNEL */
293
294/*
295 * Resampler type.
296 */
297#define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH)
298#define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR)
299#define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR)
300
301/*
302 * Macroses for accurate sample time drift calculations.
303 *
304 * gy2gx : given the amount of output, return the _exact_ required amount of
305 * input.
306 * gx2gy : given the amount of input, return the _maximum_ amount of output
307 * that will be generated.
308 * drift : given the amount of input and output, return the elapsed
309 * sample-time.
310 */
311#define _Z_GCAST(x) ((uint64_t)(x))
312
313#if defined(__GNUCLIKE_ASM) && defined(__i386__)
314/*
315 * This is where i386 being beaten to a pulp. Fortunately this function is
316 * rarely being called and if it is, it will decide the best (hopefully)
317 * fastest way to do the division. If we can ensure that everything is dword
318 * aligned, letting the compiler to call udivdi3 to do the division can be
319 * faster compared to this.
320 *
321 * amd64 is the clear winner here, no question about it.
322 */
323static __inline uint32_t
324Z_DIV(uint64_t v, uint32_t d)
325{
326 uint32_t hi, lo, quo, rem;
327
328 hi = v >> 32;
329 lo = v & 0xffffffff;
330
331 /*
332 * As much as we can, try to avoid long division like a plague.
333 */
334 if (hi == 0)
335 quo = lo / d;
336 else
337 __asm("divl %2"
338 : "=a" (quo), "=d" (rem)
339 : "r" (d), "0" (lo), "1" (hi));
340
341 return (quo);
342}
343#else
344#define Z_DIV(x, y) ((x) / (y))
345#endif
346
347#define _Z_GY2GX(i, a, v) \
348 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \
349 (i)->z_gy)
350
351#define _Z_GX2GY(i, a, v) \
352 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
353
354#define _Z_DRIFT(i, x, y) \
355 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
356
357#define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v)
358#define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v)
359#define z_drift(i, x, y) _Z_DRIFT(i, x, y)
360
361/*
362 * Macroses for SINC coefficients table manipulations.. whatever.
363 */
364#define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1)
365
366#define Z_SINC_LEN(i) \
367 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \
368 Z_SHIFT) / (i)->z_dy))
369
370#define Z_SINC_BASE_LEN(i) \
371 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
372
373/*
374 * Macroses for linear delay buffer operations. Alignment is not
375 * really necessary since we're not using true circular buffer, but it
376 * will help us guard against possible trespasser. To be honest,
377 * the linear block operations does not need guarding at all due to
378 * accurate drifting!
379 */
380#define z_align(i, v) ((v) & (i)->z_mask)
381#define z_next(i, o, v) z_align(i, (o) + (v))
382#define z_prev(i, o, v) z_align(i, (o) - (v))
383#define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1)
384#define z_free(i) ((i)->z_full - (i)->z_pos)
385
386/*
387 * Macroses for Bla Bla .. :)
388 */
389#define z_copy(src, dst, sz) (void)memcpy(dst, src, sz)
390#define z_feed(...) FEEDER_FEED(__VA_ARGS__)
391
392static __inline uint32_t
393z_min(uint32_t x, uint32_t y)
394{
395
396 return ((x < y) ? x : y);
397}
398
399static int32_t
400z_gcd(int32_t x, int32_t y)
401{
402 int32_t w;
403
404 while (y != 0) {
405 w = x % y;
406 x = y;
407 y = w;
408 }
409
410 return (x);
411}
412
413static int32_t
414z_roundpow2(int32_t v)
415{
416 int32_t i;
417
418 i = 1;
419
420 /*
421 * Let it overflow at will..
422 */
423 while (i > 0 && i < v)
424 i <<= 1;
425
426 return (i);
427}
428
429/*
430 * Zero Order Hold, the worst of the worst, an insult against quality,
431 * but super fast.
432 */
433static void
434z_feed_zoh(struct z_info *info, uint8_t *dst)
435{
436#if 0
437 z_copy(info->z_delay +
438 (info->z_start * info->channels * info->bps), dst,
439 info->channels * info->bps);
440#else
441 uint32_t cnt;
442 uint8_t *src;
443
444 cnt = info->channels * info->bps;
445 src = info->z_delay + (info->z_start * cnt);
446
447 /*
448 * This is a bit faster than doing bcopy() since we're dealing
449 * with possible unaligned samples.
450 */
451 do {
452 *dst++ = *src++;
453 } while (--cnt != 0);
454#endif
455}
456
457/*
458 * Linear Interpolation. This at least sounds better (perceptually) and fast,
459 * but without any proper filtering which means aliasing still exist and
460 * could become worst with a right sample. Interpolation centered within
461 * Z_LINEAR_ONE between the present and previous sample and everything is
462 * done with simple 32bit scaling arithmetic.
463 */
464#define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
465static void \
466z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
467{ \
468 int32_t z; \
469 intpcm_t x, y; \
470 uint32_t ch; \
471 uint8_t *sx, *sy; \
472 \
473 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \
474 \
475 sx = info->z_delay + (info->z_start * info->channels * \
476 PCM_##BIT##_BPS); \
477 sy = sx - (info->channels * PCM_##BIT##_BPS); \
478 \
479 ch = info->channels; \
480 \
481 do { \
482 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \
483 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \
484 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \
485 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
486 sx += PCM_##BIT##_BPS; \
487 sy += PCM_##BIT##_BPS; \
488 dst += PCM_##BIT##_BPS; \
489 } while (--ch != 0); \
490}
491
492/*
493 * Userland clipping diagnostic check, not enabled in kernel compilation.
494 * While doing sinc interpolation, unrealistic samples like full scale sine
495 * wav will clip, but for other things this will not make any noise at all.
496 * Everybody should learn how to normalized perceived loudness of their own
497 * music/sounds/samples (hint: ReplayGain).
498 */
499#ifdef Z_DIAGNOSTIC
500#define Z_CLIP_CHECK(v, BIT) do { \
501 if ((v) > PCM_S##BIT##_MAX) { \
502 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \
503 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \
504 } else if ((v) < PCM_S##BIT##_MIN) { \
505 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \
506 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \
507 } \
508} while (0)
509#else
510#define Z_CLIP_CHECK(...)
511#endif
512
513#define Z_CLAMP(v, BIT) \
514 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \
515 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
516
517/*
518 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
519 * there's no point to hold the plate any longer. All samples will be
520 * shifted to a full 32 bit, scaled and restored during write for
521 * maximum dynamic range (only for downsampling).
522 */
523#define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \
524 c += z >> Z_SHIFT; \
525 z &= Z_MASK; \
526 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \
527 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
528 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \
529 z += info->z_dy; \
530 p adv##= info->channels * PCM_##BIT##_BPS
531
532/*
533 * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
534 */
535#if defined(__GNUC__) && __GNUC__ >= 4
536#define Z_SINC_ACCUMULATE(...) do { \
537 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
538 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
539} while (0)
540#define Z_SINC_ACCUMULATE_DECR 2
541#else
542#define Z_SINC_ACCUMULATE(...) do { \
543 _Z_SINC_ACCUMULATE(__VA_ARGS__); \
544} while (0)
545#define Z_SINC_ACCUMULATE_DECR 1
546#endif
547
548#define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
549static void \
550z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
551{ \
552 intpcm64_t v; \
553 intpcm_t x; \
554 uint8_t *p; \
555 int32_t coeff, z, *z_coeff, *z_dcoeff; \
556 uint32_t c, center, ch, i; \
557 \
558 z_coeff = info->z_coeff; \
559 z_dcoeff = info->z_dcoeff; \
560 center = z_prev(info, info->z_start, info->z_size); \
561 ch = info->channels * PCM_##BIT##_BPS; \
562 dst += ch; \
563 \
564 do { \
565 dst -= PCM_##BIT##_BPS; \
566 ch -= PCM_##BIT##_BPS; \
567 v = 0; \
568 z = info->z_alpha * info->z_dx; \
569 c = 0; \
570 p = info->z_delay + (z_next(info, center, 1) * \
571 info->channels * PCM_##BIT##_BPS) + ch; \
572 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
573 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \
574 z = info->z_dy - (info->z_alpha * info->z_dx); \
575 c = 0; \
576 p = info->z_delay + (center * info->channels * \
577 PCM_##BIT##_BPS) + ch; \
578 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
579 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \
580 if (info->z_scale != Z_ONE) \
581 v = Z_SCALE_##BIT(v, info->z_scale); \
582 else \
583 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
584 Z_CLIP_CHECK(v, BIT); \
585 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
586 } while (ch != 0); \
587}
588
589#define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \
590static void \
591z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
592{ \
593 intpcm64_t v; \
594 intpcm_t x; \
595 uint8_t *p; \
596 int32_t ch, i, start, *z_pcoeff; \
597 \
598 ch = info->channels * PCM_##BIT##_BPS; \
599 dst += ch; \
600 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \
601 \
602 do { \
603 dst -= PCM_##BIT##_BPS; \
604 ch -= PCM_##BIT##_BPS; \
605 v = 0; \
606 p = info->z_delay + start + ch; \
607 z_pcoeff = info->z_pcoeff + \
608 ((info->z_alpha * info->z_size) << 1); \
609 for (i = info->z_size; i != 0; i--) { \
610 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
611 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
612 z_pcoeff++; \
613 p += info->channels * PCM_##BIT##_BPS; \
614 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
615 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
616 z_pcoeff++; \
617 p += info->channels * PCM_##BIT##_BPS; \
618 } \
619 if (info->z_scale != Z_ONE) \
620 v = Z_SCALE_##BIT(v, info->z_scale); \
621 else \
622 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
623 Z_CLIP_CHECK(v, BIT); \
624 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
625 } while (ch != 0); \
626}
627
628#define Z_DECLARE(SIGN, BIT, ENDIAN) \
629 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
630 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
631 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
632
633#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
634Z_DECLARE(S, 16, LE)
635Z_DECLARE(S, 32, LE)
636#endif
637#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
638Z_DECLARE(S, 16, BE)
639Z_DECLARE(S, 32, BE)
640#endif
641#ifdef SND_FEEDER_MULTIFORMAT
642Z_DECLARE(S, 8, NE)
643Z_DECLARE(S, 24, LE)
644Z_DECLARE(S, 24, BE)
645Z_DECLARE(U, 8, NE)
646Z_DECLARE(U, 16, LE)
647Z_DECLARE(U, 24, LE)
648Z_DECLARE(U, 32, LE)
649Z_DECLARE(U, 16, BE)
650Z_DECLARE(U, 24, BE)
651Z_DECLARE(U, 32, BE)
652#endif
653
654enum {
661
662#define Z_RESAMPLER_IDX(i) \
663 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
664
665#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \
666 { \
667 AFMT_##SIGN##BIT##_##ENDIAN, \
668 { \
669 [Z_RESAMPLER_ZOH] = z_feed_zoh, \
670 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \
671 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \
672 [Z_RESAMPLER_SINC_POLYPHASE] = \
673 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \
674 } \
675 }
676
677static const struct {
678 uint32_t format;
680} z_resampler_tab[] = {
681#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
682 Z_RESAMPLER_ENTRY(S, 16, LE),
683 Z_RESAMPLER_ENTRY(S, 32, LE),
684#endif
685#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
686 Z_RESAMPLER_ENTRY(S, 16, BE),
687 Z_RESAMPLER_ENTRY(S, 32, BE),
688#endif
689#ifdef SND_FEEDER_MULTIFORMAT
690 Z_RESAMPLER_ENTRY(S, 8, NE),
691 Z_RESAMPLER_ENTRY(S, 24, LE),
692 Z_RESAMPLER_ENTRY(S, 24, BE),
693 Z_RESAMPLER_ENTRY(U, 8, NE),
694 Z_RESAMPLER_ENTRY(U, 16, LE),
695 Z_RESAMPLER_ENTRY(U, 24, LE),
696 Z_RESAMPLER_ENTRY(U, 32, LE),
697 Z_RESAMPLER_ENTRY(U, 16, BE),
698 Z_RESAMPLER_ENTRY(U, 24, BE),
699 Z_RESAMPLER_ENTRY(U, 32, BE),
700#endif
702
703#define Z_RESAMPLER_TAB_SIZE \
704 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
705
706static void
708{
709
710 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
712 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
714 info->z_gx = 1;
715 info->z_gy = 1;
716 info->z_alpha = 0;
717 info->z_resample = NULL;
718 info->z_size = 1;
719 info->z_coeff = NULL;
720 info->z_dcoeff = NULL;
721 if (info->z_pcoeff != NULL) {
722 free(info->z_pcoeff, M_DEVBUF);
723 info->z_pcoeff = NULL;
724 }
725 info->z_scale = Z_ONE;
726 info->z_dx = Z_FULL_ONE;
727 info->z_dy = Z_FULL_ONE;
728#ifdef Z_DIAGNOSTIC
729 info->z_cycle = 0;
730#endif
731 if (info->quality < Z_QUALITY_MIN)
732 info->quality = Z_QUALITY_MIN;
733 else if (info->quality > Z_QUALITY_MAX)
734 info->quality = Z_QUALITY_MAX;
735}
736
737#ifdef Z_PARANOID
738static int32_t
740{
741 int32_t c, z, len, lmax;
742
743 if (!Z_IS_SINC(info))
744 return (1);
745
746 /*
747 * A rather careful (or useless) way to calculate filter length.
748 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
749 * sanity checking is not going to hurt though..
750 */
751 c = 0;
752 z = info->z_dy;
753 len = 0;
754 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
755
756 do {
757 c += z >> Z_SHIFT;
758 z &= Z_MASK;
759 z += info->z_dy;
760 } while (c < lmax && ++len > 0);
761
762 if (len != Z_SINC_LEN(info)) {
763#ifdef _KERNEL
764 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
765 __func__, len, Z_SINC_LEN(info));
766#else
767 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
768 __func__, len, Z_SINC_LEN(info));
769 return (-1);
770#endif
771 }
772
773 return (len);
774}
775#else
776#define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
777#endif
778
779#define Z_POLYPHASE_COEFF_SHIFT 0
780
781/*
782 * Pick suitable polynomial interpolators based on filter oversampled ratio
783 * (2 ^ Z_DRIFT_SHIFT).
784 */
785#if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \
786 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \
787 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \
788 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \
789 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
790#if Z_DRIFT_SHIFT >= 6
791#define Z_COEFF_INTERP_BSPLINE 1
792#elif Z_DRIFT_SHIFT >= 5
793#define Z_COEFF_INTERP_OPT32X 1
794#elif Z_DRIFT_SHIFT == 4
795#define Z_COEFF_INTERP_OPT16X 1
796#elif Z_DRIFT_SHIFT == 3
797#define Z_COEFF_INTERP_OPT8X 1
798#elif Z_DRIFT_SHIFT == 2
799#define Z_COEFF_INTERP_OPT4X 1
800#elif Z_DRIFT_SHIFT == 1
801#define Z_COEFF_INTERP_OPT2X 1
802#else
803#error "Z_DRIFT_SHIFT screwed!"
804#endif
805#endif
806
807/*
808 * In classic polyphase mode, the actual coefficients for each phases need to
809 * be calculated based on default prototype filters. For highly oversampled
810 * filter, linear or quadradatic interpolator should be enough. Anything less
811 * than that require 'special' interpolators to reduce interpolation errors.
812 *
813 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
814 * by Olli Niemitalo
815 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
816 *
817 */
818static int32_t
819z_coeff_interpolate(int32_t z, int32_t *z_coeff)
820{
821 int32_t coeff;
822#if defined(Z_COEFF_INTERP_ZOH)
823
824 /* 1-point, 0th-order (Zero Order Hold) */
825 z = z;
826 coeff = z_coeff[0];
827#elif defined(Z_COEFF_INTERP_LINEAR)
828 int32_t zl0, zl1;
829
830 /* 2-point, 1st-order Linear */
831 zl0 = z_coeff[0];
832 zl1 = z_coeff[1] - z_coeff[0];
833
834 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
835#elif defined(Z_COEFF_INTERP_QUADRATIC)
836 int32_t zq0, zq1, zq2;
837
838 /* 3-point, 2nd-order Quadratic */
839 zq0 = z_coeff[0];
840 zq1 = z_coeff[1] - z_coeff[-1];
841 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
842
843 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
844 zq1) * z, Z_SHIFT + 1) + zq0;
845#elif defined(Z_COEFF_INTERP_HERMITE)
846 int32_t zh0, zh1, zh2, zh3;
847
848 /* 4-point, 3rd-order Hermite */
849 zh0 = z_coeff[0];
850 zh1 = z_coeff[1] - z_coeff[-1];
851 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
852 z_coeff[2];
853 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
854
855 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
856 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
857#elif defined(Z_COEFF_INTERP_BSPLINE)
858 int32_t zb0, zb1, zb2, zb3;
859
860 /* 4-point, 3rd-order B-Spline */
861 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
862 z_coeff[-1] + z_coeff[1]), 30);
863 zb1 = z_coeff[1] - z_coeff[-1];
864 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
865 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
866 z_coeff[2] - z_coeff[-1]), 30);
867
868 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
869 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
870#elif defined(Z_COEFF_INTERP_OPT32X)
871 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
872 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
873
874 /* 6-point, 5th-order Optimal 32x */
875 zoz = z - (Z_ONE >> 1);
876 zoe1 = z_coeff[1] + z_coeff[0];
877 zoe2 = z_coeff[2] + z_coeff[-1];
878 zoe3 = z_coeff[3] + z_coeff[-2];
879 zoo1 = z_coeff[1] - z_coeff[0];
880 zoo2 = z_coeff[2] - z_coeff[-1];
881 zoo3 = z_coeff[3] - z_coeff[-2];
882
883 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
884 (0x00170c29LL * zoe3), 30);
885 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
886 (0x008cd4dcLL * zoo3), 30);
887 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
888 (0x0160b5d0LL * zoe3), 30);
889 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
890 (0x01cfe914LL * zoo3), 30);
891 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
892 (0x015508ddLL * zoe3), 30);
893 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
894 (0x0082d81aLL * zoo3), 30);
895
896 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
897 (int64_t)zoc5 * zoz, Z_SHIFT) +
898 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
899 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
900#elif defined(Z_COEFF_INTERP_OPT16X)
901 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
902 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
903
904 /* 6-point, 5th-order Optimal 16x */
905 zoz = z - (Z_ONE >> 1);
906 zoe1 = z_coeff[1] + z_coeff[0];
907 zoe2 = z_coeff[2] + z_coeff[-1];
908 zoe3 = z_coeff[3] + z_coeff[-2];
909 zoo1 = z_coeff[1] - z_coeff[0];
910 zoo2 = z_coeff[2] - z_coeff[-1];
911 zoo3 = z_coeff[3] - z_coeff[-2];
912
913 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
914 (0x00170c29LL * zoe3), 30);
915 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
916 (0x008cd4dcLL * zoo3), 30);
917 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
918 (0x0160b5d0LL * zoe3), 30);
919 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
920 (0x01cfe914LL * zoo3), 30);
921 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
922 (0x015508ddLL * zoe3), 30);
923 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
924 (0x0082d81aLL * zoo3), 30);
925
926 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
927 (int64_t)zoc5 * zoz, Z_SHIFT) +
928 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
929 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
930#elif defined(Z_COEFF_INTERP_OPT8X)
931 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
932 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
933
934 /* 6-point, 5th-order Optimal 8x */
935 zoz = z - (Z_ONE >> 1);
936 zoe1 = z_coeff[1] + z_coeff[0];
937 zoe2 = z_coeff[2] + z_coeff[-1];
938 zoe3 = z_coeff[3] + z_coeff[-2];
939 zoo1 = z_coeff[1] - z_coeff[0];
940 zoo2 = z_coeff[2] - z_coeff[-1];
941 zoo3 = z_coeff[3] - z_coeff[-2];
942
943 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
944 (0x0018b23fLL * zoe3), 30);
945 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
946 (0x0094b599LL * zoo3), 30);
947 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
948 (0x016ed8e0LL * zoe3), 30);
949 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
950 (0x01dae93aLL * zoo3), 30);
951 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
952 (0x0153ed07LL * zoe3), 30);
953 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
954 (0x007a7c26LL * zoo3), 30);
955
956 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
957 (int64_t)zoc5 * zoz, Z_SHIFT) +
958 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
959 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
960#elif defined(Z_COEFF_INTERP_OPT4X)
961 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
962 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
963
964 /* 6-point, 5th-order Optimal 4x */
965 zoz = z - (Z_ONE >> 1);
966 zoe1 = z_coeff[1] + z_coeff[0];
967 zoe2 = z_coeff[2] + z_coeff[-1];
968 zoe3 = z_coeff[3] + z_coeff[-2];
969 zoo1 = z_coeff[1] - z_coeff[0];
970 zoo2 = z_coeff[2] - z_coeff[-1];
971 zoo3 = z_coeff[3] - z_coeff[-2];
972
973 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
974 (0x001a3784LL * zoe3), 30);
975 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
976 (0x009ca889LL * zoo3), 30);
977 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
978 (0x017ef0c6LL * zoe3), 30);
979 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
980 (0x01e936dbLL * zoo3), 30);
981 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
982 (0x014f5923LL * zoe3), 30);
983 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
984 (0x00670dbdLL * zoo3), 30);
985
986 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
987 (int64_t)zoc5 * zoz, Z_SHIFT) +
988 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
989 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
990#elif defined(Z_COEFF_INTERP_OPT2X)
991 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
992 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
993
994 /* 6-point, 5th-order Optimal 2x */
995 zoz = z - (Z_ONE >> 1);
996 zoe1 = z_coeff[1] + z_coeff[0];
997 zoe2 = z_coeff[2] + z_coeff[-1];
998 zoe3 = z_coeff[3] + z_coeff[-2];
999 zoo1 = z_coeff[1] - z_coeff[0];
1000 zoo2 = z_coeff[2] - z_coeff[-1];
1001 zoo3 = z_coeff[3] - z_coeff[-2];
1002
1003 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
1004 (0x00267881LL * zoe3), 30);
1005 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1006 (0x00d683cdLL * zoo3), 30);
1007 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1008 (0x01e2aceaLL * zoe3), 30);
1009 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1010 (0x022cefc7LL * zoo3), 30);
1011 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1012 (0x0131d935LL * zoe3), 30);
1013 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1014 (0x0018ee79LL * zoo3), 30);
1015
1016 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1017 (int64_t)zoc5 * zoz, Z_SHIFT) +
1018 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1019 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1020#else
1021#error "Interpolation type screwed!"
1022#endif
1023
1024#if Z_POLYPHASE_COEFF_SHIFT > 0
1025 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1026#endif
1027 return (coeff);
1028}
1029
1030static int
1032{
1033 int32_t alpha, c, i, z, idx;
1034
1035 /* Let this be here first. */
1036 if (info->z_pcoeff != NULL) {
1037 free(info->z_pcoeff, M_DEVBUF);
1038 info->z_pcoeff = NULL;
1039 }
1040
1042 return (ENOTSUP);
1043
1044 if (((int64_t)info->z_size * info->z_gy * 2) >
1046#ifndef _KERNEL
1047 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1048 info->z_gx, info->z_gy,
1049 (intmax_t)info->z_size * info->z_gy * 2,
1051#endif
1052 return (E2BIG);
1053 }
1054
1055 info->z_pcoeff = malloc(sizeof(int32_t) *
1056 info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
1057 if (info->z_pcoeff == NULL)
1058 return (ENOMEM);
1059
1060 for (alpha = 0; alpha < info->z_gy; alpha++) {
1061 z = alpha * info->z_dx;
1062 c = 0;
1063 for (i = info->z_size; i != 0; i--) {
1064 c += z >> Z_SHIFT;
1065 z &= Z_MASK;
1066 idx = (alpha * info->z_size * 2) +
1067 (info->z_size * 2) - i;
1068 info->z_pcoeff[idx] =
1069 z_coeff_interpolate(z, info->z_coeff + c);
1070 z += info->z_dy;
1071 }
1072 z = info->z_dy - (alpha * info->z_dx);
1073 c = 0;
1074 for (i = info->z_size; i != 0; i--) {
1075 c += z >> Z_SHIFT;
1076 z &= Z_MASK;
1077 idx = (alpha * info->z_size * 2) + i - 1;
1078 info->z_pcoeff[idx] =
1079 z_coeff_interpolate(z, info->z_coeff + c);
1080 z += info->z_dy;
1081 }
1082 }
1083
1084#ifndef _KERNEL
1085 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1086 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1087#endif
1088
1089 return (0);
1090}
1091
1092static int
1094{
1095 struct z_info *info;
1096 int64_t gy2gx_max, gx2gy_max;
1097 uint32_t format;
1098 int32_t align, i, z_scale;
1099 int adaptive;
1100
1101 info = f->data;
1102 z_resampler_reset(info);
1103
1104 if (info->src == info->dst)
1105 return (0);
1106
1107 /* Shrink by greatest common divisor. */
1108 i = z_gcd(info->src, info->dst);
1109 info->z_gx = info->src / i;
1110 info->z_gy = info->dst / i;
1111
1112 /* Too big, or too small. Bail out. */
1113 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1114 return (EINVAL);
1115
1116 format = f->desc->in;
1117 adaptive = 0;
1118 z_scale = 0;
1119
1120 /*
1121 * Setup everything: filter length, conversion factor, etc.
1122 */
1123 if (Z_IS_SINC(info)) {
1124 /*
1125 * Downsampling, or upsampling scaling factor. As long as the
1126 * factor can be represented by a fraction of 1 << Z_SHIFT,
1127 * we're pretty much in business. Scaling is not needed for
1128 * upsampling, so we just slap Z_ONE there.
1129 */
1130 if (info->z_gx > info->z_gy)
1131 /*
1132 * If the downsampling ratio is beyond sanity,
1133 * enable semi-adaptive mode. Although handling
1134 * extreme ratio is possible, the result of the
1135 * conversion is just pointless, unworthy,
1136 * nonsensical noises, etc.
1137 */
1138 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1139 z_scale = Z_ONE / Z_SINC_DOWNMAX;
1140 else
1141 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1142 info->z_gx;
1143 else
1144 z_scale = Z_ONE;
1145
1146 /*
1147 * This is actually impossible, unless anything above
1148 * overflow.
1149 */
1150 if (z_scale < 1)
1151 return (E2BIG);
1152
1153 /*
1154 * Calculate sample time/coefficients index drift. It is
1155 * a constant for upsampling, but downsampling require
1156 * heavy duty filtering with possible too long filters.
1157 * If anything goes wrong, revisit again and enable
1158 * adaptive mode.
1159 */
1160z_setup_adaptive_sinc:
1161 if (info->z_pcoeff != NULL) {
1162 free(info->z_pcoeff, M_DEVBUF);
1163 info->z_pcoeff = NULL;
1164 }
1165
1166 if (adaptive == 0) {
1167 info->z_dy = z_scale << Z_DRIFT_SHIFT;
1168 if (info->z_dy < 1)
1169 return (E2BIG);
1170 info->z_scale = z_scale;
1171 } else {
1172 info->z_dy = Z_FULL_ONE;
1173 info->z_scale = Z_ONE;
1174 }
1175
1176#if 0
1177#define Z_SCALE_DIV 10000
1178#define Z_SCALE_LIMIT(s, v) \
1179 ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1180
1181 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1182#endif
1183
1184 /* Smallest drift increment. */
1185 info->z_dx = info->z_dy / info->z_gy;
1186
1187 /*
1188 * Overflow or underflow. Try adaptive, let it continue and
1189 * retry.
1190 */
1191 if (info->z_dx < 1) {
1192 if (adaptive == 0) {
1193 adaptive = 1;
1194 goto z_setup_adaptive_sinc;
1195 }
1196 return (E2BIG);
1197 }
1198
1199 /*
1200 * Round back output drift.
1201 */
1202 info->z_dy = info->z_dx * info->z_gy;
1203
1204 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1205 if (Z_SINC_COEFF_IDX(info) != i)
1206 continue;
1207 /*
1208 * Calculate required filter length and guard
1209 * against possible abusive result. Note that
1210 * this represents only 1/2 of the entire filter
1211 * length.
1212 */
1213 info->z_size = z_resampler_sinc_len(info);
1214
1215 /*
1216 * Multiple of 2 rounding, for better accumulator
1217 * performance.
1218 */
1219 info->z_size &= ~1;
1220
1221 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1222 if (adaptive == 0) {
1223 adaptive = 1;
1224 goto z_setup_adaptive_sinc;
1225 }
1226 return (E2BIG);
1227 }
1228 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1229 info->z_dcoeff = z_coeff_tab[i].dcoeff;
1230 break;
1231 }
1232
1233 if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1234 return (EINVAL);
1235 } else if (Z_IS_LINEAR(info)) {
1236 /*
1237 * Don't put much effort if we're doing linear interpolation.
1238 * Just center the interpolation distance within Z_LINEAR_ONE,
1239 * and be happy about it.
1240 */
1241 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1242 }
1243
1244 /*
1245 * We're safe for now, lets continue.. Look for our resampler
1246 * depending on configured format and quality.
1247 */
1248 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1249 int ridx;
1250
1252 continue;
1253 if (Z_IS_SINC(info) && adaptive == 0 &&
1254 z_resampler_build_polyphase(info) == 0)
1256 else
1257 ridx = Z_RESAMPLER_IDX(info);
1258 info->z_resample = z_resampler_tab[i].resampler[ridx];
1259 break;
1260 }
1261
1262 if (info->z_resample == NULL)
1263 return (EINVAL);
1264
1265 info->bps = AFMT_BPS(format);
1266 align = info->channels * info->bps;
1267
1268 /*
1269 * Calculate largest value that can be fed into z_gy2gx() and
1270 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1271 * be called early during feeding process to determine how much input
1272 * samples that is required to generate requested output, while
1273 * z_gx2gy() will be called just before samples filtering /
1274 * accumulation process based on available samples that has been
1275 * calculated using z_gx2gy().
1276 *
1277 * Now that is damn confusing, I guess ;-) .
1278 */
1279 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1280 info->z_gx;
1281
1282 if ((gy2gx_max * align) > SND_FXDIV_MAX)
1283 gy2gx_max = SND_FXDIV_MAX / align;
1284
1285 if (gy2gx_max < 1)
1286 return (E2BIG);
1287
1288 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1289 info->z_gy;
1290
1291 if (gx2gy_max > INT32_MAX)
1292 gx2gy_max = INT32_MAX;
1293
1294 if (gx2gy_max < 1)
1295 return (E2BIG);
1296
1297 /*
1298 * Ensure that z_gy2gx() at its largest possible calculated value
1299 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1300 * stage.
1301 */
1302 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1303 return (E2BIG);
1304
1305 info->z_maxfeed = gy2gx_max * align;
1306
1307#ifdef Z_USE_ALPHADRIFT
1308 info->z_startdrift = z_gy2gx(info, 1);
1309 info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1310#endif
1311
1312 i = z_gy2gx(info, 1);
1313 info->z_full = z_roundpow2((info->z_size << 1) + i);
1314
1315 /*
1316 * Too big to be true, and overflowing left and right like mad ..
1317 */
1318 if ((info->z_full * align) < 1) {
1319 if (adaptive == 0 && Z_IS_SINC(info)) {
1320 adaptive = 1;
1321 goto z_setup_adaptive_sinc;
1322 }
1323 return (E2BIG);
1324 }
1325
1326 /*
1327 * Increase full buffer size if its too small to reduce cyclic
1328 * buffer shifting in main conversion/feeder loop.
1329 */
1330 while (info->z_full < Z_RESERVOIR_MAX &&
1331 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1332 info->z_full <<= 1;
1333
1334 /* Initialize buffer position. */
1335 info->z_mask = info->z_full - 1;
1336 info->z_start = z_prev(info, info->z_size << 1, 1);
1337 info->z_pos = z_next(info, info->z_start, 1);
1338
1339 /*
1340 * Allocate or reuse delay line buffer, whichever makes sense.
1341 */
1342 i = info->z_full * align;
1343 if (i < 1)
1344 return (E2BIG);
1345
1346 if (info->z_delay == NULL || info->z_alloc < i ||
1347 i <= (info->z_alloc >> 1)) {
1348 if (info->z_delay != NULL)
1349 free(info->z_delay, M_DEVBUF);
1350 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
1351 if (info->z_delay == NULL)
1352 return (ENOMEM);
1353 info->z_alloc = i;
1354 }
1355
1356 /*
1357 * Zero out head of buffer to avoid pops and clicks.
1358 */
1359 memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1360 info->z_pos * align);
1361
1362#ifdef Z_DIAGNOSTIC
1363 /*
1364 * XXX Debuging mess !@#$%^
1365 */
1366#define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \
1367 "z_"__STRING(x), (uint32_t)info->z_##x, \
1368 (int32_t)info->z_##x)
1369 fprintf(stderr, "\n%s():\n", __func__);
1370 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1371 info->channels, info->bps, format, info->quality);
1372 fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1373 info->src, info->rsrc, info->dst, info->rdst);
1374 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1375 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1376 if (adaptive != 0)
1377 z_scale = Z_ONE;
1378 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1379 z_scale, Z_ONE, (double)z_scale / Z_ONE);
1380 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1381 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1382 dumpz(size);
1383 dumpz(alloc);
1384 if (info->z_alloc < 1024)
1385 fprintf(stderr, "\t%15s%10d Bytes\n",
1386 "", info->z_alloc);
1387 else if (info->z_alloc < (1024 << 10))
1388 fprintf(stderr, "\t%15s%10d KBytes\n",
1389 "", info->z_alloc >> 10);
1390 else if (info->z_alloc < (1024 << 20))
1391 fprintf(stderr, "\t%15s%10d MBytes\n",
1392 "", info->z_alloc >> 20);
1393 else
1394 fprintf(stderr, "\t%15s%10d GBytes\n",
1395 "", info->z_alloc >> 30);
1396 fprintf(stderr, "\t%12s %10d (min output samples)\n",
1397 "",
1398 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1399 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n",
1400 "",
1401 (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1402 (info->z_size << 1)));
1403 fprintf(stderr, "\t%12s = %10d\n",
1404 "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1405 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1406 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1407 fprintf(stderr, "\t%12s = %10d\n",
1408 "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1409 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1410 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1411 dumpz(maxfeed);
1412 dumpz(full);
1413 dumpz(start);
1414 dumpz(pos);
1415 dumpz(scale);
1416 fprintf(stderr, "\t%12s %10f\n", "",
1417 (double)info->z_scale / Z_ONE);
1418 dumpz(dx);
1419 fprintf(stderr, "\t%12s %10f\n", "",
1420 (double)info->z_dx / info->z_dy);
1421 dumpz(dy);
1422 fprintf(stderr, "\t%12s %10d (drift step)\n", "",
1423 info->z_dy >> Z_SHIFT);
1424 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "",
1425 (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1426 fprintf(stderr, "\t%12s = %u bytes\n",
1427 "intpcm32_t", sizeof(intpcm32_t));
1428 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1429 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1430#endif
1431
1432 return (0);
1433}
1434
1435static int
1436z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
1437{
1438 struct z_info *info;
1439 int32_t oquality;
1440
1441 info = f->data;
1442
1443 switch (what) {
1444 case Z_RATE_SRC:
1445 if (value < feeder_rate_min || value > feeder_rate_max)
1446 return (E2BIG);
1447 if (value == info->rsrc)
1448 return (0);
1449 info->rsrc = value;
1450 break;
1451 case Z_RATE_DST:
1452 if (value < feeder_rate_min || value > feeder_rate_max)
1453 return (E2BIG);
1454 if (value == info->rdst)
1455 return (0);
1456 info->rdst = value;
1457 break;
1458 case Z_RATE_QUALITY:
1459 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1460 return (EINVAL);
1461 if (value == info->quality)
1462 return (0);
1463 /*
1464 * If we failed to set the requested quality, restore
1465 * the old one. We cannot afford leaving it broken since
1466 * passive feeder chains like vchans never reinitialize
1467 * itself.
1468 */
1469 oquality = info->quality;
1470 info->quality = value;
1471 if (z_resampler_setup(f) == 0)
1472 return (0);
1473 info->quality = oquality;
1474 break;
1475 case Z_RATE_CHANNELS:
1476 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1477 return (EINVAL);
1478 if (value == info->channels)
1479 return (0);
1480 info->channels = value;
1481 break;
1482 default:
1483 return (EINVAL);
1484 break;
1485 }
1486
1487 return (z_resampler_setup(f));
1488}
1489
1490static int
1492{
1493 struct z_info *info;
1494
1495 info = f->data;
1496
1497 switch (what) {
1498 case Z_RATE_SRC:
1499 return (info->rsrc);
1500 break;
1501 case Z_RATE_DST:
1502 return (info->rdst);
1503 break;
1504 case Z_RATE_QUALITY:
1505 return (info->quality);
1506 break;
1507 case Z_RATE_CHANNELS:
1508 return (info->channels);
1509 break;
1510 default:
1511 break;
1512 }
1513
1514 return (-1);
1515}
1516
1517static int
1519{
1520 struct z_info *info;
1521 int ret;
1522
1523 if (f->desc->in != f->desc->out)
1524 return (EINVAL);
1525
1526 info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
1527 if (info == NULL)
1528 return (ENOMEM);
1529
1530 info->rsrc = Z_RATE_DEFAULT;
1531 info->rdst = Z_RATE_DEFAULT;
1533 info->channels = AFMT_CHANNEL(f->desc->in);
1534
1535 f->data = info;
1536
1537 ret = z_resampler_setup(f);
1538 if (ret != 0) {
1539 if (info->z_pcoeff != NULL)
1540 free(info->z_pcoeff, M_DEVBUF);
1541 if (info->z_delay != NULL)
1542 free(info->z_delay, M_DEVBUF);
1543 free(info, M_DEVBUF);
1544 f->data = NULL;
1545 }
1546
1547 return (ret);
1548}
1549
1550static int
1552{
1553 struct z_info *info;
1554
1555 info = f->data;
1556 if (info != NULL) {
1557 if (info->z_pcoeff != NULL)
1558 free(info->z_pcoeff, M_DEVBUF);
1559 if (info->z_delay != NULL)
1560 free(info->z_delay, M_DEVBUF);
1561 free(info, M_DEVBUF);
1562 }
1563
1564 f->data = NULL;
1565
1566 return (0);
1567}
1568
1569static uint32_t
1571 uint8_t *b, uint32_t count, void *source)
1572{
1573 struct z_info *info;
1574 int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1575 int32_t fetch, fetched, start, cp;
1576 uint8_t *dst;
1577
1578 info = f->data;
1579 if (info->z_resample == NULL)
1580 return (z_feed(f->source, c, b, count, source));
1581
1582 /*
1583 * Calculate sample size alignment and amount of sample output.
1584 * We will do everything in sample domain, but at the end we
1585 * will jump back to byte domain.
1586 */
1587 align = info->channels * info->bps;
1588 ocount = SND_FXDIV(count, align);
1589 if (ocount == 0)
1590 return (0);
1591
1592 /*
1593 * Calculate amount of input samples that is needed to generate
1594 * exact amount of output.
1595 */
1596 reqin = z_gy2gx(info, ocount) - z_fetched(info);
1597
1598#ifdef Z_USE_ALPHADRIFT
1599 startdrift = info->z_startdrift;
1600 alphadrift = info->z_alphadrift;
1601#else
1602 startdrift = _Z_GY2GX(info, 0, 1);
1603 alphadrift = z_drift(info, startdrift, 1);
1604#endif
1605
1606 dst = b;
1607
1608 do {
1609 if (reqin != 0) {
1610 fetch = z_min(z_free(info), reqin);
1611 if (fetch == 0) {
1612 /*
1613 * No more free spaces, so wind enough
1614 * samples back to the head of delay line
1615 * in byte domain.
1616 */
1617 fetched = z_fetched(info);
1618 start = z_prev(info, info->z_start,
1619 (info->z_size << 1) - 1);
1620 cp = (info->z_size << 1) + fetched;
1621 z_copy(info->z_delay + (start * align),
1622 info->z_delay, cp * align);
1623 info->z_start =
1624 z_prev(info, info->z_size << 1, 1);
1625 info->z_pos =
1626 z_next(info, info->z_start, fetched + 1);
1627 fetch = z_min(z_free(info), reqin);
1628#ifdef Z_DIAGNOSTIC
1629 if (1) {
1630 static uint32_t kk = 0;
1631 fprintf(stderr,
1632 "Buffer Move: "
1633 "start=%d fetched=%d cp=%d "
1634 "cycle=%u [%u]\r",
1635 start, fetched, cp, info->z_cycle,
1636 ++kk);
1637 }
1638 info->z_cycle = 0;
1639#endif
1640 }
1641 if (fetch != 0) {
1642 /*
1643 * Fetch in byte domain and jump back
1644 * to sample domain.
1645 */
1646 fetched = SND_FXDIV(z_feed(f->source, c,
1647 info->z_delay + (info->z_pos * align),
1648 fetch * align, source), align);
1649 /*
1650 * Prepare to convert fetched buffer,
1651 * or mark us done if we cannot fulfill
1652 * the request.
1653 */
1654 reqin -= fetched;
1655 info->z_pos += fetched;
1656 if (fetched != fetch)
1657 reqin = 0;
1658 }
1659 }
1660
1661 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1662 if (reqout != 0) {
1663 ocount -= reqout;
1664
1665 /*
1666 * Drift.. drift.. drift..
1667 *
1668 * Notice that there are 2 methods of doing the drift
1669 * operations: The former is much cleaner (in a sense
1670 * of mathematical readings of my eyes), but slower
1671 * due to integer division in z_gy2gx(). Nevertheless,
1672 * both should give the same exact accurate drifting
1673 * results, so the later is favourable.
1674 */
1675 do {
1676 info->z_resample(info, dst);
1677#if 0
1678 startdrift = z_gy2gx(info, 1);
1679 alphadrift = z_drift(info, startdrift, 1);
1680 info->z_start += startdrift;
1681 info->z_alpha += alphadrift;
1682#else
1683 info->z_alpha += alphadrift;
1684 if (info->z_alpha < info->z_gy)
1685 info->z_start += startdrift;
1686 else {
1687 info->z_start += startdrift - 1;
1688 info->z_alpha -= info->z_gy;
1689 }
1690#endif
1691 dst += align;
1692#ifdef Z_DIAGNOSTIC
1693 info->z_cycle++;
1694#endif
1695 } while (--reqout != 0);
1696 }
1697 } while (reqin != 0 && ocount != 0);
1698
1699 /*
1700 * Back to byte domain..
1701 */
1702 return (dst - b);
1703}
1704
1705static int
1706z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1707 uint32_t count, void *source)
1708{
1709 uint32_t feed, maxfeed, left;
1710
1711 /*
1712 * Split count to smaller chunks to avoid possible 32bit overflow.
1713 */
1714 maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1715 left = count;
1716
1717 do {
1719 z_min(maxfeed, left), source);
1720 b += feed;
1721 left -= feed;
1722 } while (left != 0 && feed != 0);
1723
1724 return (count - left);
1725}
1726
1728 { FEEDER_RATE, 0, 0, 0, 0 },
1729 { 0, 0, 0, 0, 0 },
1730};
1731
1732static kobj_method_t feeder_rate_methods[] = {
1733 KOBJMETHOD(feeder_init, z_resampler_init),
1734 KOBJMETHOD(feeder_free, z_resampler_free),
1735 KOBJMETHOD(feeder_set, z_resampler_set),
1736 KOBJMETHOD(feeder_get, z_resampler_get),
1737 KOBJMETHOD(feeder_feed, z_resampler_feed),
1739};
1740
1741FEEDER_DECLARE(feeder_rate, NULL);
u_int8_t sndbuf_zerodata(u_int32_t fmt)
Definition: buffer.c:591
#define CHN_UNLOCK(c)
Definition: channel.h:322
#define CHN_LOCK(c)
Definition: channel.h:321
#define CHN_FOREACH(x, y, z)
Definition: channel.h:181
#define CHN_STARTED(c)
Definition: channel.h:429
struct pcm_channel * c
Definition: channel_if.m:106
METHOD int free
Definition: channel_if.m:110
struct snd_dbuf * b
Definition: channel_if.m:105
uint16_t len
unsigned left
Definition: es137x.c:260
struct pcm_feeder * chn_findfeeder(struct pcm_channel *c, u_int32_t type)
Definition: feeder.c:270
@ FEEDRATE_QUALITY
Definition: feeder.h:106
@ FEEDER_RATE
Definition: feeder.h:85
METHOD int feed
Definition: feeder_if.m:82
u_int32_t count
Definition: feeder_if.m:86
void * source
Definition: feeder_if.m:87
int what
Definition: feeder_if.m:73
static __inline uint32_t z_min(uint32_t x, uint32_t y)
Definition: feeder_rate.c:393
#define Z_RATE_SRC
Definition: feeder_rate.c:100
z_resampler_t resampler[Z_RESAMPLER_LAST]
Definition: feeder_rate.c:679
#define _Z_GCAST(x)
Definition: feeder_rate.c:311
#define z_prev(i, o, v)
Definition: feeder_rate.c:382
static int z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source)
Definition: feeder_rate.c:1706
#define Z_SINC_DOWNMAX
Definition: feeder_rate.c:84
static int sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
Definition: feeder_rate.c:240
#define Z_RATE_DEFAULT
Definition: feeder_rate.c:92
static struct pcm_feederdesc feeder_rate_desc[]
Definition: feeder_rate.c:1727
#define Z_IS_LINEAR(i)
Definition: feeder_rate.c:298
FEEDER_DECLARE(feeder_rate, NULL)
#define z_drift(i, x, y)
Definition: feeder_rate.c:359
#define z_gy2gx(i, v)
Definition: feeder_rate.c:357
#define Z_SINC_COEFF_IDX(i)
Definition: feeder_rate.c:364
static int z_resampler_setup(struct pcm_feeder *f)
Definition: feeder_rate.c:1093
void(* z_resampler_t)(struct z_info *, uint8_t *)
Definition: feeder_rate.c:120
#define Z_RATE_MAX
Definition: feeder_rate.c:95
#define Z_RESAMPLER_IDX(i)
Definition: feeder_rate.c:662
static int z_resampler_build_polyphase(struct z_info *info)
Definition: feeder_rate.c:1031
#define Z_QUALITY_DEFAULT
Definition: feeder_rate.c:77
static int sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
Definition: feeder_rate.c:217
#define Z_FACTOR_SAFE(v)
Definition: feeder_rate.c:116
#define Z_DECLARE(SIGN, BIT, ENDIAN)
Definition: feeder_rate.c:628
#define z_free(i)
Definition: feeder_rate.c:384
int feeder_rate_max
Definition: feeder_rate.c:157
#define z_next(i, o, v)
Definition: feeder_rate.c:381
#define Z_RATE_CHANNELS
Definition: feeder_rate.c:103
static void z_feed_zoh(struct z_info *info, uint8_t *dst)
Definition: feeder_rate.c:434
uint32_t format
Definition: feeder_rate.c:678
#define Z_RESERVOIR
Definition: feeder_rate.c:80
#define Z_RATE_MIN
Definition: feeder_rate.c:94
static int z_resampler_free(struct pcm_feeder *f)
Definition: feeder_rate.c:1551
static int feeder_rate_polyphase_max
Definition: feeder_rate.c:161
static const struct @47 z_resampler_tab[]
SND_DECLARE_FILE("$FreeBSD$")
static char feeder_rate_presets[]
Definition: feeder_rate.c:164
#define _Z_GY2GX(i, a, v)
Definition: feeder_rate.c:347
static int32_t z_resampler_sinc_len(struct z_info *info)
Definition: feeder_rate.c:739
@ Z_RESAMPLER_LINEAR
Definition: feeder_rate.c:656
@ Z_RESAMPLER_LAST
Definition: feeder_rate.c:659
@ Z_RESAMPLER_SINC_POLYPHASE
Definition: feeder_rate.c:658
@ Z_RESAMPLER_SINC
Definition: feeder_rate.c:657
@ Z_RESAMPLER_ZOH
Definition: feeder_rate.c:655
static kobj_method_t feeder_rate_methods[]
Definition: feeder_rate.c:1732
int feeder_rate_round
Definition: feeder_rate.c:158
static uint32_t z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, uint32_t count, void *source)
Definition: feeder_rate.c:1570
#define Z_ROUNDHZ_MAX
Definition: feeder_rate.c:98
static int sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
Definition: feeder_rate.c:171
static void z_resampler_reset(struct z_info *info)
Definition: feeder_rate.c:707
int feeder_rate_quality
Definition: feeder_rate.c:159
#define z_fetched(i)
Definition: feeder_rate.c:383
#define Z_POLYPHASE_COEFF_SHIFT
Definition: feeder_rate.c:779
#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)
Definition: feeder_rate.c:665
#define z_copy(src, dst, sz)
Definition: feeder_rate.c:389
static int32_t z_coeff_interpolate(int32_t z, int32_t *z_coeff)
Definition: feeder_rate.c:819
#define z_feed(...)
Definition: feeder_rate.c:390
#define Z_SINC_BASE_LEN(i)
Definition: feeder_rate.c:370
#define Z_DIV(x, y)
Definition: feeder_rate.c:344
#define Z_SINC_MAX
Definition: feeder_rate.c:83
static int z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
Definition: feeder_rate.c:1436
SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, &feeder_rate_presets, 0, "compile-time rate presets")
int feeder_rate_min
Definition: feeder_rate.c:156
#define Z_RESERVOIR_MAX
Definition: feeder_rate.c:81
SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN, &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries")
#define Z_SINC_LEN(i)
Definition: feeder_rate.c:366
static int z_resampler_get(struct pcm_feeder *f, int what)
Definition: feeder_rate.c:1491
#define Z_IS_SINC(i)
Definition: feeder_rate.c:299
#define Z_RATE_DST
Definition: feeder_rate.c:101
#define z_gx2gy(i, v)
Definition: feeder_rate.c:358
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT|CTLFLAG_RWTUN|CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I", "minimum allowable rate")
static int32_t z_gcd(int32_t x, int32_t y)
Definition: feeder_rate.c:400
static int32_t z_roundpow2(int32_t v)
Definition: feeder_rate.c:414
static int sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
Definition: feeder_rate.c:194
#define Z_ROUNDHZ
Definition: feeder_rate.c:96
#define Z_RATE_QUALITY
Definition: feeder_rate.c:102
#define Z_RESAMPLER_TAB_SIZE
Definition: feeder_rate.c:703
static int z_resampler_init(struct pcm_feeder *f)
Definition: feeder_rate.c:1518
#define Z_POLYPHASE_MAX
Definition: feeder_rate.c:87
uint32_t value
Definition: hdaa.c:58
uint8_t size
#define SND_CHN_MAX
Definition: matrix.h:183
#define KOBJMETHOD_END
Definition: midi.c:76
u_int32_t src
Definition: mixer_if.m:66
bool start
u_int32_t val
int32_t intpcm32_t
Definition: pcm.h:70
devclass_t pcm_devclass
Definition: sound.c:49
#define AFMT_ENCODING(v)
Definition: sound.h:222
#define PCM_RELEASE(x)
Definition: sound.h:554
#define AFMT_BPS(v)
Definition: sound.h:235
#define PCM_ACQUIRE(x)
Definition: sound.h:546
#define PCM_WAIT(x)
Definition: sound.h:540
#define PCM_UNLOCK(d)
Definition: sound.h:421
#define AFMT_CHANNEL(v)
Definition: sound.h:227
#define PCM_LOCK(d)
Definition: sound.h:420
#define PCM_REGISTERED(x)
Definition: sound.h:178
struct pcm_feeder * source
Definition: feeder.h:51
void * data
Definition: feeder.h:49
struct pcm_feederdesc * desc
Definition: feeder.h:48
u_int32_t out
Definition: feeder.h:34
u_int32_t in
Definition: feeder.h:34
struct snddev_info::@49::@50 pcm
int32_t z_gx
Definition: feeder_rate.c:129
int32_t z_size
Definition: feeder_rate.c:143
int32_t z_alphadrift
Definition: feeder_rate.c:139
z_resampler_t z_resample
Definition: feeder_rate.c:153
int32_t * z_coeff
Definition: feeder_rate.c:132
int32_t z_alpha
Definition: feeder_rate.c:130
int32_t z_dy
Definition: feeder_rate.c:137
int32_t quality
Definition: feeder_rate.c:127
int32_t bps
Definition: feeder_rate.c:126
int32_t z_dx
Definition: feeder_rate.c:136
int32_t channels
Definition: feeder_rate.c:125
int32_t z_scale
Definition: feeder_rate.c:135
int32_t z_startdrift
Definition: feeder_rate.c:140
int32_t src
Definition: feeder_rate.c:124
int32_t z_maxfeed
Definition: feeder_rate.c:151
uint8_t * z_delay
Definition: feeder_rate.c:131
int32_t z_pos
Definition: feeder_rate.c:147
int32_t z_full
Definition: feeder_rate.c:144
int32_t z_alloc
Definition: feeder_rate.c:145
int32_t z_gy
Definition: feeder_rate.c:129
int32_t rsrc
Definition: feeder_rate.c:123
int32_t * z_pcoeff
Definition: feeder_rate.c:134
int32_t * z_dcoeff
Definition: feeder_rate.c:133
int32_t z_start
Definition: feeder_rate.c:146
int32_t rdst
Definition: feeder_rate.c:123
int32_t z_mask
Definition: feeder_rate.c:142
int32_t dst
Definition: feeder_rate.c:124
METHOD int alloc
Definition: synth_if.m:309
const void * req