FreeBSD kernel CAM code
cam_iosched.c
Go to the documentation of this file.
1/*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32#include "opt_cam.h"
33#include "opt_ddb.h"
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <sys/param.h>
39
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/bio.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/sbuf.h>
47#include <sys/sysctl.h>
48
49#include <cam/cam.h>
50#include <cam/cam_ccb.h>
51#include <cam/cam_periph.h>
52#include <cam/cam_xpt_periph.h>
54#include <cam/cam_iosched.h>
55
56#include <ddb/ddb.h>
57
58static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
59 "CAM I/O Scheduler buffers");
60
61static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
62 "CAM I/O Scheduler parameters");
63
64/*
65 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
66 * over the bioq_* interface, with notions of separate calls for normal I/O and
67 * for trims.
68 *
69 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
70 * steer the rate of one type of traffic to help other types of traffic (eg
71 * limit writes when read latency deteriorates on SSDs).
72 */
73
74#ifdef CAM_IOSCHED_DYNAMIC
75
76static bool do_dynamic_iosched = true;
77SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RD | CTLFLAG_TUN,
78 &do_dynamic_iosched, 1,
79 "Enable Dynamic I/O scheduler optimizations.");
80
81/*
82 * For an EMA, with an alpha of alpha, we know
83 * alpha = 2 / (N + 1)
84 * or
85 * N = 1 + (2 / alpha)
86 * where N is the number of samples that 86% of the current
87 * EMA is derived from.
88 *
89 * So we invent[*] alpha_bits:
90 * alpha_bits = -log_2(alpha)
91 * alpha = 2^-alpha_bits
92 * So
93 * N = 1 + 2^(alpha_bits + 1)
94 *
95 * The default 9 gives a 1025 lookback for 86% of the data.
96 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
97 *
98 * [*] Steal from the load average code and many other places.
99 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
100 */
101static int alpha_bits = 9;
102SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RW | CTLFLAG_TUN,
103 &alpha_bits, 1,
104 "Bits in EMA's alpha.");
105
106/*
107 * Different parameters for the buckets of latency we keep track of. These are all
108 * published read-only since at present they are compile time constants.
109 *
110 * Bucket base is the upper bounds of the first latency bucket. It's currently 20us.
111 * With 20 buckets (see below), that leads to a geometric progression with a max size
112 * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better.
113 */
114#ifndef BUCKET_BASE
115#define BUCKET_BASE ((SBT_1S / 50000) + 1) /* 20us */
116#endif
117static sbintime_t bucket_base = BUCKET_BASE;
118SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD,
119 &bucket_base,
120 "Size of the smallest latency bucket");
121
122/*
123 * Bucket ratio is the geometric progression for the bucket. For a bucket b_n
124 * the size of bucket b_n+1 is b_n * bucket_ratio / 100.
125 */
126static int bucket_ratio = 200; /* Rather hard coded at the moment */
127SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD,
128 &bucket_ratio, 200,
129 "Latency Bucket Ratio for geometric progression.");
130
131/*
132 * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2.
133 */
134#ifndef LAT_BUCKETS
135#define LAT_BUCKETS 20 /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */
136#endif
137static int lat_buckets = LAT_BUCKETS;
138SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD,
139 &lat_buckets, LAT_BUCKETS,
140 "Total number of latency buckets published");
141
142struct iop_stats;
143struct cam_iosched_softc;
144
145int iosched_debug = 0;
146
147typedef enum {
148 none = 0, /* No limits */
149 queue_depth, /* Limit how many ops we queue to SIM */
150 iops, /* Limit # of IOPS to the drive */
151 bandwidth, /* Limit bandwidth to the drive */
152 limiter_max
153} io_limiter;
154
155static const char *cam_iosched_limiter_names[] =
156 { "none", "queue_depth", "iops", "bandwidth" };
157
158/*
159 * Called to initialize the bits of the iop_stats structure relevant to the
160 * limiter. Called just after the limiter is set.
161 */
162typedef int l_init_t(struct iop_stats *);
163
164/*
165 * Called every tick.
166 */
167typedef int l_tick_t(struct iop_stats *);
168
169/*
170 * Called to see if the limiter thinks this IOP can be allowed to
171 * proceed. If so, the limiter assumes that the IOP proceeded
172 * and makes any accounting of it that's needed.
173 */
174typedef int l_iop_t(struct iop_stats *, struct bio *);
175
176/*
177 * Called when an I/O completes so the limiter can update its
178 * accounting. Pending I/Os may complete in any order (even when
179 * sent to the hardware at the same time), so the limiter may not
180 * make any assumptions other than this I/O has completed. If it
181 * returns 1, then xpt_schedule() needs to be called again.
182 */
183typedef int l_iodone_t(struct iop_stats *, struct bio *);
184
185static l_iop_t cam_iosched_qd_iop;
186static l_iop_t cam_iosched_qd_caniop;
187static l_iodone_t cam_iosched_qd_iodone;
188
189static l_init_t cam_iosched_iops_init;
190static l_tick_t cam_iosched_iops_tick;
191static l_iop_t cam_iosched_iops_caniop;
192static l_iop_t cam_iosched_iops_iop;
193
194static l_init_t cam_iosched_bw_init;
195static l_tick_t cam_iosched_bw_tick;
196static l_iop_t cam_iosched_bw_caniop;
197static l_iop_t cam_iosched_bw_iop;
198
199struct limswitch {
200 l_init_t *l_init;
201 l_tick_t *l_tick;
202 l_iop_t *l_iop;
203 l_iop_t *l_caniop;
204 l_iodone_t *l_iodone;
205} limsw[] =
206{
207 { /* none */
208 .l_init = NULL,
209 .l_tick = NULL,
210 .l_iop = NULL,
211 .l_iodone= NULL,
212 },
213 { /* queue_depth */
214 .l_init = NULL,
215 .l_tick = NULL,
216 .l_caniop = cam_iosched_qd_caniop,
217 .l_iop = cam_iosched_qd_iop,
218 .l_iodone= cam_iosched_qd_iodone,
219 },
220 { /* iops */
221 .l_init = cam_iosched_iops_init,
222 .l_tick = cam_iosched_iops_tick,
223 .l_caniop = cam_iosched_iops_caniop,
224 .l_iop = cam_iosched_iops_iop,
225 .l_iodone= NULL,
226 },
227 { /* bandwidth */
228 .l_init = cam_iosched_bw_init,
229 .l_tick = cam_iosched_bw_tick,
230 .l_caniop = cam_iosched_bw_caniop,
231 .l_iop = cam_iosched_bw_iop,
232 .l_iodone= NULL,
233 },
234};
235
236struct iop_stats {
237 /*
238 * sysctl state for this subnode.
239 */
240 struct sysctl_ctx_list sysctl_ctx;
241 struct sysctl_oid *sysctl_tree;
242
243 /*
244 * Information about the current rate limiters, if any
245 */
246 io_limiter limiter; /* How are I/Os being limited */
247 int min; /* Low range of limit */
248 int max; /* High range of limit */
249 int current; /* Current rate limiter */
250 int l_value1; /* per-limiter scratch value 1. */
251 int l_value2; /* per-limiter scratch value 2. */
252
253 /*
254 * Debug information about counts of I/Os that have gone through the
255 * scheduler.
256 */
257 int pending; /* I/Os pending in the hardware */
258 int queued; /* number currently in the queue */
259 int total; /* Total for all time -- wraps */
260 int in; /* number queued all time -- wraps */
261 int out; /* number completed all time -- wraps */
262 int errs; /* Number of I/Os completed with error -- wraps */
263
264 /*
265 * Statistics on different bits of the process.
266 */
267 /* Exp Moving Average, see alpha_bits for more details */
268 sbintime_t ema;
269 sbintime_t emvar;
270 sbintime_t sd; /* Last computed sd */
271
272 uint32_t state_flags;
273#define IOP_RATE_LIMITED 1u
274
275 uint64_t latencies[LAT_BUCKETS];
276
277 struct cam_iosched_softc *softc;
278};
279
280typedef enum {
281 set_max = 0, /* current = max */
282 read_latency, /* Steer read latency by throttling writes */
283 cl_max /* Keep last */
284} control_type;
285
286static const char *cam_iosched_control_type_names[] =
287 { "set_max", "read_latency" };
288
289struct control_loop {
290 /*
291 * sysctl state for this subnode.
292 */
293 struct sysctl_ctx_list sysctl_ctx;
294 struct sysctl_oid *sysctl_tree;
295
296 sbintime_t next_steer; /* Time of next steer */
297 sbintime_t steer_interval; /* How often do we steer? */
298 sbintime_t lolat;
299 sbintime_t hilat;
300 int alpha;
301 control_type type; /* What type of control? */
302 int last_count; /* Last I/O count */
303
304 struct cam_iosched_softc *softc;
305};
306
307#endif
308
310 struct bio_queue_head bio_queue;
311 struct bio_queue_head trim_queue;
312 /* scheduler flags < 16, user flags >= 16 */
313 uint32_t flags;
315 int trim_goal; /* # of trims to queue before sending */
316 int trim_ticks; /* Max ticks to hold trims */
317 int last_trim_tick; /* Last 'tick' time ld a trim */
318 int queued_trims; /* Number of trims in the queue */
319#ifdef CAM_IOSCHED_DYNAMIC
320 int read_bias; /* Read bias setting */
321 int current_read_bias; /* Current read bias state */
322 int total_ticks;
323 int load; /* EMA of 'load average' of disk / 2^16 */
324
325 struct bio_queue_head write_queue;
326 struct iop_stats read_stats, write_stats, trim_stats;
327 struct sysctl_ctx_list sysctl_ctx;
328 struct sysctl_oid *sysctl_tree;
329
330 int quanta; /* Number of quanta per second */
331 struct callout ticker; /* Callout for our quota system */
332 struct cam_periph *periph; /* cam periph associated with this device */
333 uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */
334 sbintime_t last_time; /* Last time we ticked */
335 struct control_loop cl;
336 sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */
338 void *latarg;
339#endif
340};
341
342#ifdef CAM_IOSCHED_DYNAMIC
343/*
344 * helper functions to call the limsw functions.
345 */
346static int
347cam_iosched_limiter_init(struct iop_stats *ios)
348{
349 int lim = ios->limiter;
350
351 /* maybe this should be a kassert */
352 if (lim < none || lim >= limiter_max)
353 return EINVAL;
354
355 if (limsw[lim].l_init)
356 return limsw[lim].l_init(ios);
357
358 return 0;
359}
360
361static int
362cam_iosched_limiter_tick(struct iop_stats *ios)
363{
364 int lim = ios->limiter;
365
366 /* maybe this should be a kassert */
367 if (lim < none || lim >= limiter_max)
368 return EINVAL;
369
370 if (limsw[lim].l_tick)
371 return limsw[lim].l_tick(ios);
372
373 return 0;
374}
375
376static int
377cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
378{
379 int lim = ios->limiter;
380
381 /* maybe this should be a kassert */
382 if (lim < none || lim >= limiter_max)
383 return EINVAL;
384
385 if (limsw[lim].l_iop)
386 return limsw[lim].l_iop(ios, bp);
387
388 return 0;
389}
390
391static int
392cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
393{
394 int lim = ios->limiter;
395
396 /* maybe this should be a kassert */
397 if (lim < none || lim >= limiter_max)
398 return EINVAL;
399
400 if (limsw[lim].l_caniop)
401 return limsw[lim].l_caniop(ios, bp);
402
403 return 0;
404}
405
406static int
407cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
408{
409 int lim = ios->limiter;
410
411 /* maybe this should be a kassert */
412 if (lim < none || lim >= limiter_max)
413 return 0;
414
415 if (limsw[lim].l_iodone)
416 return limsw[lim].l_iodone(ios, bp);
417
418 return 0;
419}
420
421/*
422 * Functions to implement the different kinds of limiters
423 */
424
425static int
426cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
427{
428
429 if (ios->current <= 0 || ios->pending < ios->current)
430 return 0;
431
432 return EAGAIN;
433}
434
435static int
436cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
437{
438
439 if (ios->current <= 0 || ios->pending < ios->current)
440 return 0;
441
442 return EAGAIN;
443}
444
445static int
446cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
447{
448
449 if (ios->current <= 0 || ios->pending != ios->current)
450 return 0;
451
452 return 1;
453}
454
455static int
456cam_iosched_iops_init(struct iop_stats *ios)
457{
458
459 ios->l_value1 = ios->current / ios->softc->quanta;
460 if (ios->l_value1 <= 0)
461 ios->l_value1 = 1;
462 ios->l_value2 = 0;
463
464 return 0;
465}
466
467static int
468cam_iosched_iops_tick(struct iop_stats *ios)
469{
470 int new_ios;
471
472 /*
473 * Allow at least one IO per tick until all
474 * the IOs for this interval have been spent.
475 */
476 new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
477 if (new_ios < 1 && ios->l_value2 < ios->current) {
478 new_ios = 1;
479 ios->l_value2++;
480 }
481
482 /*
483 * If this a new accounting interval, discard any "unspent" ios
484 * granted in the previous interval. Otherwise add the new ios to
485 * the previously granted ones that haven't been spent yet.
486 */
487 if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
488 ios->l_value1 = new_ios;
489 ios->l_value2 = 1;
490 } else {
491 ios->l_value1 += new_ios;
492 }
493
494 return 0;
495}
496
497static int
498cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
499{
500
501 /*
502 * So if we have any more IOPs left, allow it,
503 * otherwise wait. If current iops is 0, treat that
504 * as unlimited as a failsafe.
505 */
506 if (ios->current > 0 && ios->l_value1 <= 0)
507 return EAGAIN;
508 return 0;
509}
510
511static int
512cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
513{
514 int rv;
515
516 rv = cam_iosched_limiter_caniop(ios, bp);
517 if (rv == 0)
518 ios->l_value1--;
519
520 return rv;
521}
522
523static int
524cam_iosched_bw_init(struct iop_stats *ios)
525{
526
527 /* ios->current is in kB/s, so scale to bytes */
528 ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
529
530 return 0;
531}
532
533static int
534cam_iosched_bw_tick(struct iop_stats *ios)
535{
536 int bw;
537
538 /*
539 * If we're in the hole for available quota from
540 * the last time, then add the quantum for this.
541 * If we have any left over from last quantum,
542 * then too bad, that's lost. Also, ios->current
543 * is in kB/s, so scale.
544 *
545 * We also allow up to 4 quanta of credits to
546 * accumulate to deal with burstiness. 4 is extremely
547 * arbitrary.
548 */
549 bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
550 if (ios->l_value1 < bw * 4)
551 ios->l_value1 += bw;
552
553 return 0;
554}
555
556static int
557cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
558{
559 /*
560 * So if we have any more bw quota left, allow it,
561 * otherwise wait. Note, we'll go negative and that's
562 * OK. We'll just get a little less next quota.
563 *
564 * Note on going negative: that allows us to process
565 * requests in order better, since we won't allow
566 * shorter reads to get around the long one that we
567 * don't have the quota to do just yet. It also prevents
568 * starvation by being a little more permissive about
569 * what we let through this quantum (to prevent the
570 * starvation), at the cost of getting a little less
571 * next quantum.
572 *
573 * Also note that if the current limit is <= 0,
574 * we treat it as unlimited as a failsafe.
575 */
576 if (ios->current > 0 && ios->l_value1 <= 0)
577 return EAGAIN;
578
579 return 0;
580}
581
582static int
583cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
584{
585 int rv;
586
587 rv = cam_iosched_limiter_caniop(ios, bp);
588 if (rv == 0)
589 ios->l_value1 -= bp->bio_length;
590
591 return rv;
592}
593
594static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
595
596static void
597cam_iosched_ticker(void *arg)
598{
599 struct cam_iosched_softc *isc = arg;
600 sbintime_t now, delta;
601 int pending;
602
603 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
604
605 now = sbinuptime();
606 delta = now - isc->last_time;
607 isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */
608 isc->last_time = now;
609
610 cam_iosched_cl_maybe_steer(&isc->cl);
611
612 cam_iosched_limiter_tick(&isc->read_stats);
613 cam_iosched_limiter_tick(&isc->write_stats);
614 cam_iosched_limiter_tick(&isc->trim_stats);
615
616 cam_iosched_schedule(isc, isc->periph);
617
618 /*
619 * isc->load is an EMA of the pending I/Os at each tick. The number of
620 * pending I/Os is the sum of the I/Os queued to the hardware, and those
621 * in the software queue that could be queued to the hardware if there
622 * were slots.
623 *
624 * ios_stats.pending is a count of requests in the SIM right now for
625 * each of these types of I/O. So the total pending count is the sum of
626 * these I/Os and the sum of the queued I/Os still in the software queue
627 * for those operations that aren't being rate limited at the moment.
628 *
629 * The reason for the rate limiting bit is because those I/Os
630 * aren't part of the software queued load (since we could
631 * give them to hardware, but choose not to).
632 *
633 * Note: due to a bug in counting pending TRIM in the device, we
634 * don't include them in this count. We count each BIO_DELETE in
635 * the pending count, but the periph drivers collapse them down
636 * into one TRIM command. That one trim command gets the completion
637 * so the counts get off.
638 */
639 pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
640 pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
641 !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
642 !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
643 pending <<= 16;
644 pending /= isc->periph->path->device->ccbq.total_openings;
645
646 isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
647
648 isc->total_ticks++;
649}
650
651static void
652cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
653{
654
655 clp->next_steer = sbinuptime();
656 clp->softc = isc;
657 clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */
658 clp->lolat = 5 * SBT_1MS;
659 clp->hilat = 15 * SBT_1MS;
660 clp->alpha = 20; /* Alpha == gain. 20 = .2 */
661 clp->type = set_max;
662}
663
664static void
665cam_iosched_cl_maybe_steer(struct control_loop *clp)
666{
667 struct cam_iosched_softc *isc;
668 sbintime_t now, lat;
669 int old;
670
671 isc = clp->softc;
672 now = isc->last_time;
673 if (now < clp->next_steer)
674 return;
675
676 clp->next_steer = now + clp->steer_interval;
677 switch (clp->type) {
678 case set_max:
679 if (isc->write_stats.current != isc->write_stats.max)
680 printf("Steering write from %d kBps to %d kBps\n",
681 isc->write_stats.current, isc->write_stats.max);
682 isc->read_stats.current = isc->read_stats.max;
683 isc->write_stats.current = isc->write_stats.max;
684 isc->trim_stats.current = isc->trim_stats.max;
685 break;
686 case read_latency:
687 old = isc->write_stats.current;
688 lat = isc->read_stats.ema;
689 /*
690 * Simple PLL-like engine. Since we're steering to a range for
691 * the SP (set point) that makes things a little more
692 * complicated. In addition, we're not directly controlling our
693 * PV (process variable), the read latency, but instead are
694 * manipulating the write bandwidth limit for our MV
695 * (manipulation variable), analysis of this code gets a bit
696 * messy. Also, the MV is a very noisy control surface for read
697 * latency since it is affected by many hidden processes inside
698 * the device which change how responsive read latency will be
699 * in reaction to changes in write bandwidth. Unlike the classic
700 * boiler control PLL. this may result in over-steering while
701 * the SSD takes its time to react to the new, lower load. This
702 * is why we use a relatively low alpha of between .1 and .25 to
703 * compensate for this effect. At .1, it takes ~22 steering
704 * intervals to back off by a factor of 10. At .2 it only takes
705 * ~10. At .25 it only takes ~8. However some preliminary data
706 * from the SSD drives suggests a reasponse time in 10's of
707 * seconds before latency drops regardless of the new write
708 * rate. Careful observation will be required to tune this
709 * effectively.
710 *
711 * Also, when there's no read traffic, we jack up the write
712 * limit too regardless of the last read latency. 10 is
713 * somewhat arbitrary.
714 */
715 if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
716 isc->write_stats.current = isc->write_stats.current *
717 (100 + clp->alpha) / 100; /* Scale up */
718 else if (lat > clp->hilat)
719 isc->write_stats.current = isc->write_stats.current *
720 (100 - clp->alpha) / 100; /* Scale down */
721 clp->last_count = isc->read_stats.total;
722
723 /*
724 * Even if we don't steer, per se, enforce the min/max limits as
725 * those may have changed.
726 */
727 if (isc->write_stats.current < isc->write_stats.min)
728 isc->write_stats.current = isc->write_stats.min;
729 if (isc->write_stats.current > isc->write_stats.max)
730 isc->write_stats.current = isc->write_stats.max;
731 if (old != isc->write_stats.current && iosched_debug)
732 printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
733 old, isc->write_stats.current,
734 (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
735 break;
736 case cl_max:
737 break;
738 }
739}
740#endif
741
742/*
743 * Trim or similar currently pending completion. Should only be set for
744 * those drivers wishing only one Trim active at a time.
745 */
746#define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0)
747 /* Callout active, and needs to be torn down */
748#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
749
750 /* Periph drivers set these flags to indicate work */
751#define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16)
752
753#ifdef CAM_IOSCHED_DYNAMIC
754static void
755cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
756 sbintime_t sim_latency, int cmd, size_t size);
757#endif
758
759static inline bool
761{
762 return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
763}
764
765static inline bool
767{
768#ifdef CAM_IOSCHED_DYNAMIC
769 if (do_dynamic_iosched) {
770 struct bio *rbp = bioq_first(&isc->bio_queue);
771 struct bio *wbp = bioq_first(&isc->write_queue);
772 bool can_write = wbp != NULL &&
773 cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
774 bool can_read = rbp != NULL &&
775 cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
776 if (iosched_debug > 2) {
777 printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
778 printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
779 printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
780 }
781 return can_read || can_write;
782 }
783#endif
784 return bioq_first(&isc->bio_queue) != NULL;
785}
786
787static inline bool
789{
790 struct bio *bp;
791
792 bp = bioq_first(&isc->trim_queue);
793#ifdef CAM_IOSCHED_DYNAMIC
794 if (do_dynamic_iosched) {
795 /*
796 * If we're limiting trims, then defer action on trims
797 * for a bit.
798 */
799 if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
800 return false;
801 }
802#endif
803
804 /*
805 * If we've set a trim_goal, then if we exceed that allow trims
806 * to be passed back to the driver. If we've also set a tick timeout
807 * allow trims back to the driver. Otherwise, don't allow trims yet.
808 */
809 if (isc->trim_goal > 0) {
810 if (isc->queued_trims >= isc->trim_goal)
811 return true;
812 if (isc->queued_trims > 0 &&
813 isc->trim_ticks > 0 &&
814 ticks - isc->last_trim_tick > isc->trim_ticks)
815 return true;
816 return false;
817 }
818
819 /* NB: Should perhaps have a max trim active independent of I/O limiters */
820 return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
821}
822
823#define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \
824 (isc)->sort_io_queue : cam_sort_io_queues)
825
826static inline bool
828{
829#ifdef CAM_IOSCHED_DYNAMIC
830 if (iosched_debug > 2)
831 printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
834#endif
835
836 return cam_iosched_has_io(isc) ||
839}
840
841#ifdef CAM_IOSCHED_DYNAMIC
842static void
843cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
844{
845
846 ios->limiter = none;
847 ios->in = 0;
848 ios->max = ios->current = 300000;
849 ios->min = 1;
850 ios->out = 0;
851 ios->errs = 0;
852 ios->pending = 0;
853 ios->queued = 0;
854 ios->total = 0;
855 ios->ema = 0;
856 ios->emvar = 0;
857 ios->softc = isc;
858 cam_iosched_limiter_init(ios);
859}
860
861static int
862cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
863{
864 char buf[16];
865 struct iop_stats *ios;
866 struct cam_iosched_softc *isc;
867 int value, i, error;
868 const char *p;
869
870 ios = arg1;
871 isc = ios->softc;
872 value = ios->limiter;
873 if (value < none || value >= limiter_max)
874 p = "UNKNOWN";
875 else
876 p = cam_iosched_limiter_names[value];
877
878 strlcpy(buf, p, sizeof(buf));
879 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
880 if (error != 0 || req->newptr == NULL)
881 return error;
882
883 cam_periph_lock(isc->periph);
884
885 for (i = none; i < limiter_max; i++) {
886 if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
887 continue;
888 ios->limiter = i;
889 error = cam_iosched_limiter_init(ios);
890 if (error != 0) {
891 ios->limiter = value;
892 cam_periph_unlock(isc->periph);
893 return error;
894 }
895 /* Note: disk load averate requires ticker to be always running */
896 callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
898
899 cam_periph_unlock(isc->periph);
900 return 0;
901 }
902
903 cam_periph_unlock(isc->periph);
904 return EINVAL;
905}
906
907static int
908cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
909{
910 char buf[16];
911 struct control_loop *clp;
912 struct cam_iosched_softc *isc;
913 int value, i, error;
914 const char *p;
915
916 clp = arg1;
917 isc = clp->softc;
918 value = clp->type;
919 if (value < none || value >= cl_max)
920 p = "UNKNOWN";
921 else
922 p = cam_iosched_control_type_names[value];
923
924 strlcpy(buf, p, sizeof(buf));
925 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
926 if (error != 0 || req->newptr == NULL)
927 return error;
928
929 for (i = set_max; i < cl_max; i++) {
930 if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
931 continue;
932 cam_periph_lock(isc->periph);
933 clp->type = i;
934 cam_periph_unlock(isc->periph);
935 return 0;
936 }
937
938 return EINVAL;
939}
940
941static int
942cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
943{
944 char buf[16];
945 sbintime_t value;
946 int error;
947 uint64_t us;
948
949 value = *(sbintime_t *)arg1;
950 us = (uint64_t)value / SBT_1US;
951 snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
952 error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
953 if (error != 0 || req->newptr == NULL)
954 return error;
955 us = strtoul(buf, NULL, 10);
956 if (us == 0)
957 return EINVAL;
958 *(sbintime_t *)arg1 = us * SBT_1US;
959 return 0;
960}
961
962static int
963cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
964{
965 int i, error;
966 struct sbuf sb;
967 uint64_t *latencies;
968
969 latencies = arg1;
970 sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
971
972 for (i = 0; i < LAT_BUCKETS - 1; i++)
973 sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
974 sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
975 error = sbuf_finish(&sb);
976 sbuf_delete(&sb);
977
978 return (error);
979}
980
981static int
982cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
983{
984 int *quanta;
985 int error, value;
986
987 quanta = (unsigned *)arg1;
988 value = *quanta;
989
990 error = sysctl_handle_int(oidp, (int *)&value, 0, req);
991 if ((error != 0) || (req->newptr == NULL))
992 return (error);
993
994 if (value < 1 || value > hz)
995 return (EINVAL);
996
997 *quanta = value;
998
999 return (0);
1000}
1001
1002static void
1003cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
1004{
1005 struct sysctl_oid_list *n;
1006 struct sysctl_ctx_list *ctx;
1007
1008 ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1009 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
1010 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
1011 n = SYSCTL_CHILDREN(ios->sysctl_tree);
1012 ctx = &ios->sysctl_ctx;
1013
1014 SYSCTL_ADD_UQUAD(ctx, n,
1015 OID_AUTO, "ema", CTLFLAG_RD,
1016 &ios->ema,
1017 "Fast Exponentially Weighted Moving Average");
1018 SYSCTL_ADD_UQUAD(ctx, n,
1019 OID_AUTO, "emvar", CTLFLAG_RD,
1020 &ios->emvar,
1021 "Fast Exponentially Weighted Moving Variance");
1022
1023 SYSCTL_ADD_INT(ctx, n,
1024 OID_AUTO, "pending", CTLFLAG_RD,
1025 &ios->pending, 0,
1026 "Instantaneous # of pending transactions");
1027 SYSCTL_ADD_INT(ctx, n,
1028 OID_AUTO, "count", CTLFLAG_RD,
1029 &ios->total, 0,
1030 "# of transactions submitted to hardware");
1031 SYSCTL_ADD_INT(ctx, n,
1032 OID_AUTO, "queued", CTLFLAG_RD,
1033 &ios->queued, 0,
1034 "# of transactions in the queue");
1035 SYSCTL_ADD_INT(ctx, n,
1036 OID_AUTO, "in", CTLFLAG_RD,
1037 &ios->in, 0,
1038 "# of transactions queued to driver");
1039 SYSCTL_ADD_INT(ctx, n,
1040 OID_AUTO, "out", CTLFLAG_RD,
1041 &ios->out, 0,
1042 "# of transactions completed (including with error)");
1043 SYSCTL_ADD_INT(ctx, n,
1044 OID_AUTO, "errs", CTLFLAG_RD,
1045 &ios->errs, 0,
1046 "# of transactions completed with an error");
1047
1048 SYSCTL_ADD_PROC(ctx, n,
1049 OID_AUTO, "limiter",
1050 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1051 ios, 0, cam_iosched_limiter_sysctl, "A",
1052 "Current limiting type.");
1053 SYSCTL_ADD_INT(ctx, n,
1054 OID_AUTO, "min", CTLFLAG_RW,
1055 &ios->min, 0,
1056 "min resource");
1057 SYSCTL_ADD_INT(ctx, n,
1058 OID_AUTO, "max", CTLFLAG_RW,
1059 &ios->max, 0,
1060 "max resource");
1061 SYSCTL_ADD_INT(ctx, n,
1062 OID_AUTO, "current", CTLFLAG_RW,
1063 &ios->current, 0,
1064 "current resource");
1065
1066 SYSCTL_ADD_PROC(ctx, n,
1067 OID_AUTO, "latencies",
1068 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1069 &ios->latencies, 0,
1070 cam_iosched_sysctl_latencies, "A",
1071 "Array of power of 2 latency from 1ms to 1.024s");
1072}
1073
1074static void
1075cam_iosched_iop_stats_fini(struct iop_stats *ios)
1076{
1077 if (ios->sysctl_tree)
1078 if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1079 printf("can't remove iosched sysctl stats context\n");
1080}
1081
1082static void
1083cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1084{
1085 struct sysctl_oid_list *n;
1086 struct sysctl_ctx_list *ctx;
1087 struct control_loop *clp;
1088
1089 clp = &isc->cl;
1090 clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1091 SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1092 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1093 n = SYSCTL_CHILDREN(clp->sysctl_tree);
1094 ctx = &clp->sysctl_ctx;
1095
1096 SYSCTL_ADD_PROC(ctx, n,
1097 OID_AUTO, "type",
1098 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1099 clp, 0, cam_iosched_control_type_sysctl, "A",
1100 "Control loop algorithm");
1101 SYSCTL_ADD_PROC(ctx, n,
1102 OID_AUTO, "steer_interval",
1103 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1104 &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1105 "How often to steer (in us)");
1106 SYSCTL_ADD_PROC(ctx, n,
1107 OID_AUTO, "lolat",
1108 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1109 &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1110 "Low water mark for Latency (in us)");
1111 SYSCTL_ADD_PROC(ctx, n,
1112 OID_AUTO, "hilat",
1113 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1114 &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1115 "Hi water mark for Latency (in us)");
1116 SYSCTL_ADD_INT(ctx, n,
1117 OID_AUTO, "alpha", CTLFLAG_RW,
1118 &clp->alpha, 0,
1119 "Alpha for PLL (x100) aka gain");
1120}
1121
1122static void
1123cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1124{
1125 if (clp->sysctl_tree)
1126 if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1127 printf("can't remove iosched sysctl control loop context\n");
1128}
1129#endif
1130
1131/*
1132 * Allocate the iosched structure. This also insulates callers from knowing
1133 * sizeof struct cam_iosched_softc.
1134 */
1135int
1136cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1137{
1138
1139 *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1140 if (*iscp == NULL)
1141 return ENOMEM;
1142#ifdef CAM_IOSCHED_DYNAMIC
1143 if (iosched_debug)
1144 printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1145#endif
1146 (*iscp)->sort_io_queue = -1;
1147 bioq_init(&(*iscp)->bio_queue);
1148 bioq_init(&(*iscp)->trim_queue);
1149#ifdef CAM_IOSCHED_DYNAMIC
1150 if (do_dynamic_iosched) {
1151 bioq_init(&(*iscp)->write_queue);
1152 (*iscp)->read_bias = 100;
1153 (*iscp)->current_read_bias = 100;
1154 (*iscp)->quanta = min(hz, 200);
1155 cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1156 cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1157 cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1158 (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */
1159 (*iscp)->last_time = sbinuptime();
1160 callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1161 (*iscp)->periph = periph;
1162 cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1163 callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1164 (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1165 }
1166#endif
1167
1168 return 0;
1169}
1170
1171/*
1172 * Reclaim all used resources. This assumes that other folks have
1173 * drained the requests in the hardware. Maybe an unwise assumption.
1174 */
1175void
1177{
1178 if (isc) {
1179 cam_iosched_flush(isc, NULL, ENXIO);
1180#ifdef CAM_IOSCHED_DYNAMIC
1181 cam_iosched_iop_stats_fini(&isc->read_stats);
1182 cam_iosched_iop_stats_fini(&isc->write_stats);
1183 cam_iosched_iop_stats_fini(&isc->trim_stats);
1184 cam_iosched_cl_sysctl_fini(&isc->cl);
1185 if (isc->sysctl_tree)
1186 if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1187 printf("can't remove iosched sysctl stats context\n");
1189 callout_drain(&isc->ticker);
1190 isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1191 }
1192#endif
1193 free(isc, M_CAMSCHED);
1194 }
1195}
1196
1197/*
1198 * After we're sure we're attaching a device, go ahead and add
1199 * hooks for any sysctl we may wish to honor.
1200 */
1202 struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1203{
1204 struct sysctl_oid_list *n;
1205
1206 n = SYSCTL_CHILDREN(node);
1207 SYSCTL_ADD_INT(ctx, n,
1208 OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1209 &isc->sort_io_queue, 0,
1210 "Sort IO queue to try and optimise disk access patterns");
1211 SYSCTL_ADD_INT(ctx, n,
1212 OID_AUTO, "trim_goal", CTLFLAG_RW,
1213 &isc->trim_goal, 0,
1214 "Number of trims to try to accumulate before sending to hardware");
1215 SYSCTL_ADD_INT(ctx, n,
1216 OID_AUTO, "trim_ticks", CTLFLAG_RW,
1217 &isc->trim_goal, 0,
1218 "IO Schedul qaunta to hold back trims for when accumulating");
1219
1220#ifdef CAM_IOSCHED_DYNAMIC
1221 if (!do_dynamic_iosched)
1222 return;
1223
1224 isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1225 SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1226 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1227 n = SYSCTL_CHILDREN(isc->sysctl_tree);
1228 ctx = &isc->sysctl_ctx;
1229
1230 cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1231 cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1232 cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1233 cam_iosched_cl_sysctl_init(isc);
1234
1235 SYSCTL_ADD_INT(ctx, n,
1236 OID_AUTO, "read_bias", CTLFLAG_RW,
1237 &isc->read_bias, 100,
1238 "How biased towards read should we be independent of limits");
1239
1240 SYSCTL_ADD_PROC(ctx, n,
1241 OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1242 &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1243 "How many quanta per second do we slice the I/O up into");
1244
1245 SYSCTL_ADD_INT(ctx, n,
1246 OID_AUTO, "total_ticks", CTLFLAG_RD,
1247 &isc->total_ticks, 0,
1248 "Total number of ticks we've done");
1249
1250 SYSCTL_ADD_INT(ctx, n,
1251 OID_AUTO, "load", CTLFLAG_RD,
1252 &isc->load, 0,
1253 "scaled load average / 100");
1254
1255 SYSCTL_ADD_U64(ctx, n,
1256 OID_AUTO, "latency_trigger", CTLFLAG_RW,
1257 &isc->max_lat, 0,
1258 "Latency treshold to trigger callbacks");
1259#endif
1260}
1261
1262void
1264 cam_iosched_latfcn_t fnp, void *argp)
1265{
1266#ifdef CAM_IOSCHED_DYNAMIC
1267 isc->latfcn = fnp;
1268 isc->latarg = argp;
1269#endif
1270}
1271
1272/*
1273 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1274 * that will be queued up before iosched will "release" the trims to the client
1275 * driver to wo with what they will (usually combine as many as possible). If we
1276 * don't get this many, after trim_ticks we'll submit the I/O anyway with
1277 * whatever we have. We do need an I/O of some kind of to clock the deferred
1278 * trims out to disk. Since we will eventually get a write for the super block
1279 * or something before we shutdown, the trims will complete. To be safe, when a
1280 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1281 * enough in the past so we'll present the BIO_DELETEs to the client driver.
1282 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1283 * and then a BIO_DELETE is sent down. No know client does this, and there's
1284 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1285 * but no client depends on the ordering being honored.
1286 *
1287 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1288 * flushing on shutdown. I think there's bufs that would be dependent on the BIO
1289 * finishing to write out at least metadata, so we'll be fine. To be safe, keep
1290 * the number of ticks low (less than maybe 10s) to avoid shutdown races.
1291 */
1292
1293void
1295{
1296
1297 isc->trim_goal = goal;
1298}
1299
1300void
1302{
1303
1304 isc->trim_ticks = trim_ticks;
1305}
1306
1307/*
1308 * Flush outstanding I/O. Consumers of this library don't know all the
1309 * queues we may keep, so this allows all I/O to be flushed in one
1310 * convenient call.
1311 */
1312void
1313cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1314{
1315 bioq_flush(&isc->bio_queue, stp, err);
1316 bioq_flush(&isc->trim_queue, stp, err);
1317#ifdef CAM_IOSCHED_DYNAMIC
1318 if (do_dynamic_iosched)
1319 bioq_flush(&isc->write_queue, stp, err);
1320#endif
1321}
1322
1323#ifdef CAM_IOSCHED_DYNAMIC
1324static struct bio *
1325cam_iosched_get_write(struct cam_iosched_softc *isc)
1326{
1327 struct bio *bp;
1328
1329 /*
1330 * We control the write rate by controlling how many requests we send
1331 * down to the drive at any one time. Fewer requests limits the
1332 * effects of both starvation when the requests take a while and write
1333 * amplification when each request is causing more than one write to
1334 * the NAND media. Limiting the queue depth like this will also limit
1335 * the write throughput and give and reads that want to compete to
1336 * compete unfairly.
1337 */
1338 bp = bioq_first(&isc->write_queue);
1339 if (bp == NULL) {
1340 if (iosched_debug > 3)
1341 printf("No writes present in write_queue\n");
1342 return NULL;
1343 }
1344
1345 /*
1346 * If pending read, prefer that based on current read bias
1347 * setting.
1348 */
1349 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1350 if (iosched_debug)
1351 printf(
1352 "Reads present and current_read_bias is %d queued "
1353 "writes %d queued reads %d\n",
1354 isc->current_read_bias, isc->write_stats.queued,
1355 isc->read_stats.queued);
1356 isc->current_read_bias--;
1357 /* We're not limiting writes, per se, just doing reads first */
1358 return NULL;
1359 }
1360
1361 /*
1362 * See if our current limiter allows this I/O.
1363 */
1364 if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1365 if (iosched_debug)
1366 printf("Can't write because limiter says no.\n");
1367 isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1368 return NULL;
1369 }
1370
1371 /*
1372 * Let's do this: We've passed all the gates and we're a go
1373 * to schedule the I/O in the SIM.
1374 */
1375 isc->current_read_bias = isc->read_bias;
1376 bioq_remove(&isc->write_queue, bp);
1377 if (bp->bio_cmd == BIO_WRITE) {
1378 isc->write_stats.queued--;
1379 isc->write_stats.total++;
1380 isc->write_stats.pending++;
1381 }
1382 if (iosched_debug > 9)
1383 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1384 isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1385 return bp;
1386}
1387#endif
1388
1389/*
1390 * Put back a trim that you weren't able to actually schedule this time.
1391 */
1392void
1394{
1395 bioq_insert_head(&isc->trim_queue, bp);
1396 if (isc->queued_trims == 0)
1397 isc->last_trim_tick = ticks;
1398 isc->queued_trims++;
1399#ifdef CAM_IOSCHED_DYNAMIC
1400 isc->trim_stats.queued++;
1401 isc->trim_stats.total--; /* since we put it back, don't double count */
1402 isc->trim_stats.pending--;
1403#endif
1404}
1405
1406/*
1407 * gets the next trim from the trim queue.
1408 *
1409 * Assumes we're called with the periph lock held. It removes this
1410 * trim from the queue and the device must explicitly reinsert it
1411 * should the need arise.
1412 */
1413struct bio *
1415{
1416 struct bio *bp;
1417
1418 bp = bioq_first(&isc->trim_queue);
1419 if (bp == NULL)
1420 return NULL;
1421 bioq_remove(&isc->trim_queue, bp);
1422 isc->queued_trims--;
1423 isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */
1424#ifdef CAM_IOSCHED_DYNAMIC
1425 isc->trim_stats.queued--;
1426 isc->trim_stats.total++;
1427 isc->trim_stats.pending++;
1428#endif
1429 return bp;
1430}
1431
1432/*
1433 * gets an available trim from the trim queue, if there's no trim
1434 * already pending. It removes this trim from the queue and the device
1435 * must explicitly reinsert it should the need arise.
1436 *
1437 * Assumes we're called with the periph lock held.
1438 */
1439struct bio *
1441{
1442#ifdef CAM_IOSCHED_DYNAMIC
1443 struct bio *bp;
1444#endif
1445
1446 if (!cam_iosched_has_more_trim(isc))
1447 return NULL;
1448#ifdef CAM_IOSCHED_DYNAMIC
1449 bp = bioq_first(&isc->trim_queue);
1450 if (bp == NULL)
1451 return NULL;
1452
1453 /*
1454 * If pending read, prefer that based on current read bias setting. The
1455 * read bias is shared for both writes and TRIMs, but on TRIMs the bias
1456 * is for a combined TRIM not a single TRIM request that's come in.
1457 */
1458 if (do_dynamic_iosched) {
1459 if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1460 if (iosched_debug)
1461 printf("Reads present and current_read_bias is %d"
1462 " queued trims %d queued reads %d\n",
1463 isc->current_read_bias, isc->trim_stats.queued,
1464 isc->read_stats.queued);
1465 isc->current_read_bias--;
1466 /* We're not limiting TRIMS, per se, just doing reads first */
1467 return NULL;
1468 }
1469 /*
1470 * We're going to do a trim, so reset the bias.
1471 */
1472 isc->current_read_bias = isc->read_bias;
1473 }
1474
1475 /*
1476 * See if our current limiter allows this I/O. Because we only call this
1477 * here, and not in next_trim, the 'bandwidth' limits for trims won't
1478 * work, while the iops or max queued limits will work. It's tricky
1479 * because we want the limits to be from the perspective of the
1480 * "commands sent to the device." To make iops work, we need to check
1481 * only here (since we want all the ops we combine to count as one). To
1482 * make bw limits work, we'd need to check in next_trim, but that would
1483 * have the effect of limiting the iops as seen from the upper layers.
1484 */
1485 if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1486 if (iosched_debug)
1487 printf("Can't trim because limiter says no.\n");
1488 isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1489 return NULL;
1490 }
1491 isc->current_read_bias = isc->read_bias;
1492 isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1493 /* cam_iosched_next_trim below keeps proper book */
1494#endif
1495 return cam_iosched_next_trim(isc);
1496}
1497
1498/*
1499 * Determine what the next bit of work to do is for the periph. The
1500 * default implementation looks to see if we have trims to do, but no
1501 * trims outstanding. If so, we do that. Otherwise we see if we have
1502 * other work. If we do, then we do that. Otherwise why were we called?
1503 */
1504struct bio *
1506{
1507 struct bio *bp;
1508
1509 /*
1510 * See if we have a trim that can be scheduled. We can only send one
1511 * at a time down, so this takes that into account.
1512 *
1513 * XXX newer TRIM commands are queueable. Revisit this when we
1514 * implement them.
1515 */
1516 if ((bp = cam_iosched_get_trim(isc)) != NULL)
1517 return bp;
1518
1519#ifdef CAM_IOSCHED_DYNAMIC
1520 /*
1521 * See if we have any pending writes, room in the queue for them,
1522 * and no pending reads (unless we've scheduled too many).
1523 * if so, those are next.
1524 */
1525 if (do_dynamic_iosched) {
1526 if ((bp = cam_iosched_get_write(isc)) != NULL)
1527 return bp;
1528 }
1529#endif
1530
1531 /*
1532 * next, see if there's other, normal I/O waiting. If so return that.
1533 */
1534 if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1535 return NULL;
1536
1537#ifdef CAM_IOSCHED_DYNAMIC
1538 /*
1539 * For the dynamic scheduler, bio_queue is only for reads, so enforce
1540 * the limits here. Enforce only for reads.
1541 */
1542 if (do_dynamic_iosched) {
1543 if (bp->bio_cmd == BIO_READ &&
1544 cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1545 isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1546 return NULL;
1547 }
1548 }
1549 isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1550#endif
1551 bioq_remove(&isc->bio_queue, bp);
1552#ifdef CAM_IOSCHED_DYNAMIC
1553 if (do_dynamic_iosched) {
1554 if (bp->bio_cmd == BIO_READ) {
1555 isc->read_stats.queued--;
1556 isc->read_stats.total++;
1557 isc->read_stats.pending++;
1558 } else
1559 printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1560 }
1561 if (iosched_debug > 9)
1562 printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1563#endif
1564 return bp;
1565}
1566
1567/*
1568 * Driver has been given some work to do by the block layer. Tell the
1569 * scheduler about it and have it queue the work up. The scheduler module
1570 * will then return the currently most useful bit of work later, possibly
1571 * deferring work for various reasons.
1572 */
1573void
1574cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1575{
1576
1577 /*
1578 * A BIO_SPEEDUP from the uppper layers means that they have a block
1579 * shortage. At the present, this is only sent when we're trying to
1580 * allocate blocks, but have a shortage before giving up. bio_length is
1581 * the size of their shortage. We will complete just enough BIO_DELETEs
1582 * in the queue to satisfy the need. If bio_length is 0, we'll complete
1583 * them all. This allows the scheduler to delay BIO_DELETEs to improve
1584 * read/write performance without worrying about the upper layers. When
1585 * it's possibly a problem, we respond by pretending the BIO_DELETEs
1586 * just worked. We can't do anything about the BIO_DELETEs in the
1587 * hardware, though. We have to wait for them to complete.
1588 */
1589 if (bp->bio_cmd == BIO_SPEEDUP) {
1590 off_t len;
1591 struct bio *nbp;
1592
1593 len = 0;
1594 while (bioq_first(&isc->trim_queue) &&
1595 (bp->bio_length == 0 || len < bp->bio_length)) {
1596 nbp = bioq_takefirst(&isc->trim_queue);
1597 len += nbp->bio_length;
1598 nbp->bio_error = 0;
1599 biodone(nbp);
1600 }
1601 if (bp->bio_length > 0) {
1602 if (bp->bio_length > len)
1603 bp->bio_resid = bp->bio_length - len;
1604 else
1605 bp->bio_resid = 0;
1606 }
1607 bp->bio_error = 0;
1608 biodone(bp);
1609 return;
1610 }
1611
1612 /*
1613 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1614 * set the last tick time to one less than the current ticks minus the
1615 * delay to force the BIO_DELETEs to be presented to the client driver.
1616 */
1617 if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1618 isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1619
1620 /*
1621 * Put all trims on the trim queue. Otherwise put the work on the bio
1622 * queue.
1623 */
1624 if (bp->bio_cmd == BIO_DELETE) {
1625 bioq_insert_tail(&isc->trim_queue, bp);
1626 if (isc->queued_trims == 0)
1627 isc->last_trim_tick = ticks;
1628 isc->queued_trims++;
1629#ifdef CAM_IOSCHED_DYNAMIC
1630 isc->trim_stats.in++;
1631 isc->trim_stats.queued++;
1632#endif
1633 }
1634#ifdef CAM_IOSCHED_DYNAMIC
1635 else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
1636 if (cam_iosched_sort_queue(isc))
1637 bioq_disksort(&isc->write_queue, bp);
1638 else
1639 bioq_insert_tail(&isc->write_queue, bp);
1640 if (iosched_debug > 9)
1641 printf("Qw : %p %#x\n", bp, bp->bio_cmd);
1642 if (bp->bio_cmd == BIO_WRITE) {
1643 isc->write_stats.in++;
1644 isc->write_stats.queued++;
1645 }
1646 }
1647#endif
1648 else {
1649 if (cam_iosched_sort_queue(isc))
1650 bioq_disksort(&isc->bio_queue, bp);
1651 else
1652 bioq_insert_tail(&isc->bio_queue, bp);
1653#ifdef CAM_IOSCHED_DYNAMIC
1654 if (iosched_debug > 9)
1655 printf("Qr : %p %#x\n", bp, bp->bio_cmd);
1656 if (bp->bio_cmd == BIO_READ) {
1657 isc->read_stats.in++;
1658 isc->read_stats.queued++;
1659 } else if (bp->bio_cmd == BIO_WRITE) {
1660 isc->write_stats.in++;
1661 isc->write_stats.queued++;
1662 }
1663#endif
1664 }
1665}
1666
1667/*
1668 * If we have work, get it scheduled. Called with the periph lock held.
1669 */
1670void
1672{
1673
1674 if (cam_iosched_has_work(isc))
1676}
1677
1678/*
1679 * Complete a trim request. Mark that we no longer have one in flight.
1680 */
1681void
1683{
1684
1685 isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1686}
1687
1688/*
1689 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1690 * might use notes in the ccb for statistics.
1691 */
1692int
1694 union ccb *done_ccb)
1695{
1696 int retval = 0;
1697#ifdef CAM_IOSCHED_DYNAMIC
1698 if (!do_dynamic_iosched)
1699 return retval;
1700
1701 if (iosched_debug > 10)
1702 printf("done: %p %#x\n", bp, bp->bio_cmd);
1703 if (bp->bio_cmd == BIO_WRITE) {
1704 retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1705 if ((bp->bio_flags & BIO_ERROR) != 0)
1706 isc->write_stats.errs++;
1707 isc->write_stats.out++;
1708 isc->write_stats.pending--;
1709 } else if (bp->bio_cmd == BIO_READ) {
1710 retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1711 if ((bp->bio_flags & BIO_ERROR) != 0)
1712 isc->read_stats.errs++;
1713 isc->read_stats.out++;
1714 isc->read_stats.pending--;
1715 } else if (bp->bio_cmd == BIO_DELETE) {
1716 if ((bp->bio_flags & BIO_ERROR) != 0)
1717 isc->trim_stats.errs++;
1718 isc->trim_stats.out++;
1719 isc->trim_stats.pending--;
1720 } else if (bp->bio_cmd != BIO_FLUSH) {
1721 if (iosched_debug)
1722 printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1723 }
1724
1725 if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL &&
1726 (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) {
1727 sbintime_t sim_latency;
1728
1729 sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1730
1731 cam_iosched_io_metric_update(isc, sim_latency,
1732 bp->bio_cmd, bp->bio_bcount);
1733 /*
1734 * Debugging code: allow callbacks to the periph driver when latency max
1735 * is exceeded. This can be useful for triggering external debugging actions.
1736 */
1737 if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1738 isc->latfcn(isc->latarg, sim_latency, bp);
1739 }
1740
1741#endif
1742 return retval;
1743}
1744
1745/*
1746 * Tell the io scheduler that you've pushed a trim down into the sim.
1747 * This also tells the I/O scheduler not to push any more trims down, so
1748 * some periphs do not call it if they can cope with multiple trims in flight.
1749 */
1750void
1752{
1753
1755}
1756
1757/*
1758 * Change the sorting policy hint for I/O transactions for this device.
1759 */
1760void
1762{
1763
1764 isc->sort_io_queue = val;
1765}
1766
1767int
1769{
1770 return isc->flags & flags;
1771}
1772
1773void
1775{
1776 isc->flags |= flags;
1777}
1778
1779void
1781{
1782 isc->flags &= ~flags;
1783}
1784
1785#ifdef CAM_IOSCHED_DYNAMIC
1786/*
1787 * After the method presented in Jack Crenshaw's 1998 article "Integer
1788 * Square Roots," reprinted at
1789 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1790 * and well worth the read. Briefly, we find the power of 4 that's the
1791 * largest smaller than val. We then check each smaller power of 4 to
1792 * see if val is still bigger. The right shifts at each step divide
1793 * the result by 2 which after successive application winds up
1794 * accumulating the right answer. It could also have been accumulated
1795 * using a separate root counter, but this code is smaller and faster
1796 * than that method. This method is also integer size invariant.
1797 * It returns floor(sqrt((float)val)), or the largest integer less than
1798 * or equal to the square root.
1799 */
1800static uint64_t
1801isqrt64(uint64_t val)
1802{
1803 uint64_t res = 0;
1804 uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1805
1806 /*
1807 * Find the largest power of 4 smaller than val.
1808 */
1809 while (bit > val)
1810 bit >>= 2;
1811
1812 /*
1813 * Accumulate the answer, one bit at a time (we keep moving
1814 * them over since 2 is the square root of 4 and we test
1815 * powers of 4). We accumulate where we find the bit, but
1816 * the successive shifts land the bit in the right place
1817 * by the end.
1818 */
1819 while (bit != 0) {
1820 if (val >= res + bit) {
1821 val -= res + bit;
1822 res = (res >> 1) + bit;
1823 } else
1824 res >>= 1;
1825 bit >>= 2;
1826 }
1827
1828 return res;
1829}
1830
1831static sbintime_t latencies[LAT_BUCKETS - 1] = {
1832 BUCKET_BASE << 0, /* 20us */
1833 BUCKET_BASE << 1,
1834 BUCKET_BASE << 2,
1835 BUCKET_BASE << 3,
1836 BUCKET_BASE << 4,
1837 BUCKET_BASE << 5,
1838 BUCKET_BASE << 6,
1839 BUCKET_BASE << 7,
1840 BUCKET_BASE << 8,
1841 BUCKET_BASE << 9,
1842 BUCKET_BASE << 10,
1843 BUCKET_BASE << 11,
1844 BUCKET_BASE << 12,
1845 BUCKET_BASE << 13,
1846 BUCKET_BASE << 14,
1847 BUCKET_BASE << 15,
1848 BUCKET_BASE << 16,
1849 BUCKET_BASE << 17,
1850 BUCKET_BASE << 18 /* 5,242,880us */
1851};
1852
1853static void
1854cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1855{
1856 sbintime_t y, deltasq, delta;
1857 int i;
1858
1859 /*
1860 * Keep counts for latency. We do it by power of two buckets.
1861 * This helps us spot outlier behavior obscured by averages.
1862 */
1863 for (i = 0; i < LAT_BUCKETS - 1; i++) {
1864 if (sim_latency < latencies[i]) {
1865 iop->latencies[i]++;
1866 break;
1867 }
1868 }
1869 if (i == LAT_BUCKETS - 1)
1870 iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */
1871
1872 /*
1873 * Classic exponentially decaying average with a tiny alpha
1874 * (2 ^ -alpha_bits). For more info see the NIST statistical
1875 * handbook.
1876 *
1877 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist]
1878 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1879 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1880 * alpha = 1 / (1 << alpha_bits)
1881 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1882 * = y_t/b - e/b + be/b
1883 * = (y_t - e + be) / b
1884 * = (e + d) / b
1885 *
1886 * Since alpha is a power of two, we can compute this w/o any mult or
1887 * division.
1888 *
1889 * Variance can also be computed. Usually, it would be expressed as follows:
1890 * diff_t = y_t - ema_t-1
1891 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1892 * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1893 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1894 * = e - e/b + dd/b + dd/bb
1895 * = (bbe - be + bdd + dd) / bb
1896 * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1897 */
1898 /*
1899 * XXX possible numeric issues
1900 * o We assume right shifted integers do the right thing, since that's
1901 * implementation defined. You can change the right shifts to / (1LL << alpha).
1902 * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1903 * for emvar. This puts a ceiling of 13 bits on alpha since we need a
1904 * few tens of seconds of representation.
1905 * o We mitigate alpha issues by never setting it too high.
1906 */
1907 y = sim_latency;
1908 delta = (y - iop->ema); /* d */
1909 iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1910
1911 /*
1912 * Were we to naively plow ahead at this point, we wind up with many numerical
1913 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1914 * us with microsecond level precision in the input, so the same in the
1915 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1916 * also means that emvar can be up 46 bits 40 of which are fraction, which
1917 * gives us a way to measure up to ~8s in the SD before the computation goes
1918 * unstable. Even the worst hard disk rarely has > 1s service time in the
1919 * drive. It does mean we have to shift left 12 bits after taking the
1920 * square root to compute the actual standard deviation estimate. This loss of
1921 * precision is preferable to needing int128 types to work. The above numbers
1922 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1923 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1924 */
1925 delta >>= 12;
1926 deltasq = delta * delta; /* dd */
1927 iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */
1928 ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */
1929 deltasq) /* dd */
1930 >> (2 * alpha_bits); /* div bb */
1931 iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1932}
1933
1934static void
1935cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1936 sbintime_t sim_latency, int cmd, size_t size)
1937{
1938 /* xxx Do we need to scale based on the size of the I/O ? */
1939 switch (cmd) {
1940 case BIO_READ:
1941 cam_iosched_update(&isc->read_stats, sim_latency);
1942 break;
1943 case BIO_WRITE:
1944 cam_iosched_update(&isc->write_stats, sim_latency);
1945 break;
1946 case BIO_DELETE:
1947 cam_iosched_update(&isc->trim_stats, sim_latency);
1948 break;
1949 default:
1950 break;
1951 }
1952}
1953
1954#ifdef DDB
1955static int biolen(struct bio_queue_head *bq)
1956{
1957 int i = 0;
1958 struct bio *bp;
1959
1960 TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1961 i++;
1962 }
1963 return i;
1964}
1965
1966/*
1967 * Show the internal state of the I/O scheduler.
1968 */
1969DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1970{
1971 struct cam_iosched_softc *isc;
1972
1973 if (!have_addr) {
1974 db_printf("Need addr\n");
1975 return;
1976 }
1977 isc = (struct cam_iosched_softc *)addr;
1978 db_printf("pending_reads: %d\n", isc->read_stats.pending);
1979 db_printf("min_reads: %d\n", isc->read_stats.min);
1980 db_printf("max_reads: %d\n", isc->read_stats.max);
1981 db_printf("reads: %d\n", isc->read_stats.total);
1982 db_printf("in_reads: %d\n", isc->read_stats.in);
1983 db_printf("out_reads: %d\n", isc->read_stats.out);
1984 db_printf("queued_reads: %d\n", isc->read_stats.queued);
1985 db_printf("Read Q len %d\n", biolen(&isc->bio_queue));
1986 db_printf("pending_writes: %d\n", isc->write_stats.pending);
1987 db_printf("min_writes: %d\n", isc->write_stats.min);
1988 db_printf("max_writes: %d\n", isc->write_stats.max);
1989 db_printf("writes: %d\n", isc->write_stats.total);
1990 db_printf("in_writes: %d\n", isc->write_stats.in);
1991 db_printf("out_writes: %d\n", isc->write_stats.out);
1992 db_printf("queued_writes: %d\n", isc->write_stats.queued);
1993 db_printf("Write Q len %d\n", biolen(&isc->write_queue));
1994 db_printf("pending_trims: %d\n", isc->trim_stats.pending);
1995 db_printf("min_trims: %d\n", isc->trim_stats.min);
1996 db_printf("max_trims: %d\n", isc->trim_stats.max);
1997 db_printf("trims: %d\n", isc->trim_stats.total);
1998 db_printf("in_trims: %d\n", isc->trim_stats.in);
1999 db_printf("out_trims: %d\n", isc->trim_stats.out);
2000 db_printf("queued_trims: %d\n", isc->trim_stats.queued);
2001 db_printf("Trim Q len %d\n", biolen(&isc->trim_queue));
2002 db_printf("read_bias: %d\n", isc->read_bias);
2003 db_printf("current_read_bias: %d\n", isc->current_read_bias);
2004 db_printf("Trim active? %s\n",
2005 (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
2006}
2007#endif
2008#endif
SYSCTL_INT(_kern_cam_ada, OID_AUTO, retry_count, CTLFLAG_RWTUN, &ada_retry_count, 0, "Normal I/O retry count")
int iosched_debug
#define CAM_PRIORITY_NORMAL
Definition: cam.h:92
@ CAM_QOS_VALID
Definition: cam.h:299
static bool cam_iosched_has_io(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:766
struct bio * cam_iosched_next_trim(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1414
static bool cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:788
void cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
Definition: cam_iosched.c:1780
void cam_iosched_fini(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1176
void cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
Definition: cam_iosched.c:1774
static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD|CTLFLAG_MPSAFE, 0, "CAM I/O Scheduler parameters")
void cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
Definition: cam_iosched.c:1313
void cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
Definition: cam_iosched.c:1294
struct bio * cam_iosched_get_trim(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1440
void cam_iosched_trim_done(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1682
#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE
Definition: cam_iosched.c:748
int cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
Definition: cam_iosched.c:1136
void cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
Definition: cam_iosched.c:1393
int cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp, union ccb *done_ccb)
Definition: cam_iosched.c:1693
static bool cam_iosched_has_work(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:827
#define cam_iosched_sort_queue(isc)
Definition: cam_iosched.c:823
#define CAM_IOSCHED_FLAG_WORK_FLAGS
Definition: cam_iosched.c:751
void cam_iosched_sysctl_init(struct cam_iosched_softc *isc, struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
Definition: cam_iosched.c:1201
__FBSDID("$FreeBSD$")
void cam_iosched_set_latfcn(struct cam_iosched_softc *isc, cam_iosched_latfcn_t fnp, void *argp)
Definition: cam_iosched.c:1263
void cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
Definition: cam_iosched.c:1301
void cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
Definition: cam_iosched.c:1671
void cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
Definition: cam_iosched.c:1761
void cam_iosched_submit_trim(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1751
struct bio * cam_iosched_next_bio(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:1505
#define CAM_IOSCHED_FLAG_TRIM_ACTIVE
Definition: cam_iosched.c:746
int cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
Definition: cam_iosched.c:1768
static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler", "CAM I/O Scheduler buffers")
static bool cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
Definition: cam_iosched.c:760
void cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
Definition: cam_iosched.c:1574
static sbintime_t cam_iosched_sbintime_t(uintptr_t delta)
Definition: cam_iosched.h:76
void(* cam_iosched_latfcn_t)(void *, sbintime_t, struct bio *)
Definition: cam_iosched.h:83
#define cam_periph_lock(periph)
Definition: cam_periph.h:224
#define cam_periph_unlock(periph)
Definition: cam_periph.h:227
static __inline struct mtx * cam_periph_mtx(struct cam_periph *periph)
Definition: cam_periph.h:213
void xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
Definition: cam_xpt.c:3243
struct bio_queue_head bio_queue
Definition: cam_iosched.c:310
struct bio_queue_head trim_queue
Definition: cam_iosched.c:311
u_int32_t status
Definition: cam_ccb.h:363
ccb_qos_area qos
Definition: cam_ccb.h:372
uintptr_t periph_data
Definition: cam_ccb.h:345
Definition: cam_ccb.h:1345
struct ccb_hdr ccb_h
Definition: cam_ccb.h:1346