FreeBSD kernel IPv6 code
ip6_output.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
32 */
33
34/*-
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD$");
67
68#include "opt_inet.h"
69#include "opt_inet6.h"
70#include "opt_ipsec.h"
71#include "opt_kern_tls.h"
72#include "opt_ratelimit.h"
73#include "opt_route.h"
74#include "opt_rss.h"
75#include "opt_sctp.h"
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/ktls.h>
80#include <sys/malloc.h>
81#include <sys/mbuf.h>
82#include <sys/errno.h>
83#include <sys/priv.h>
84#include <sys/proc.h>
85#include <sys/protosw.h>
86#include <sys/socket.h>
87#include <sys/socketvar.h>
88#include <sys/syslog.h>
89#include <sys/ucred.h>
90
91#include <machine/in_cksum.h>
92
93#include <net/if.h>
94#include <net/if_var.h>
95#include <net/if_vlan_var.h>
96#include <net/if_llatbl.h>
97#include <net/ethernet.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/route/nhop.h>
101#include <net/pfil.h>
102#include <net/rss_config.h>
103#include <net/vnet.h>
104
105#include <netinet/in.h>
106#include <netinet/in_var.h>
107#include <netinet/ip_var.h>
108#include <netinet6/in6_fib.h>
109#include <netinet6/in6_var.h>
110#include <netinet/ip6.h>
111#include <netinet/icmp6.h>
112#include <netinet6/ip6_var.h>
113#include <netinet/in_pcb.h>
114#include <netinet/tcp_var.h>
115#include <netinet6/nd6.h>
116#include <netinet6/in6_rss.h>
117
118#include <netipsec/ipsec_support.h>
119#if defined(SCTP) || defined(SCTP_SUPPORT)
120#include <netinet/sctp.h>
121#include <netinet/sctp_crc32.h>
122#endif
123
124#include <netinet6/ip6protosw.h>
125#include <netinet6/scope6_var.h>
126
127extern int in6_mcast_loop;
128
130 struct mbuf *ip6e_ip6;
131 struct mbuf *ip6e_hbh;
132 struct mbuf *ip6e_dest1;
133 struct mbuf *ip6e_rthdr;
134 struct mbuf *ip6e_dest2;
135};
136
137static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
138
139static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
140 struct ucred *, int);
141static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
142 struct socket *, struct sockopt *);
143static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
144static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
145 struct ucred *, int, int, int);
146
147static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
148static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
149 struct ip6_frag **);
150static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
151static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
152static int ip6_getpmtu(struct route_in6 *, int,
153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int,
154 u_int);
155static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
156 u_long *, int *, u_int);
157static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
158static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
159
160/*
161 * Make an extension header from option data. hp is the source,
162 * mp is the destination, and _ol is the optlen.
163 */
164#define MAKE_EXTHDR(hp, mp, _ol) \
165 do { \
166 if (hp) { \
167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
169 ((eh)->ip6e_len + 1) << 3); \
170 if (error) \
171 goto freehdrs; \
172 (_ol) += (*(mp))->m_len; \
173 } \
174 } while (/*CONSTCOND*/ 0)
175
176/*
177 * Form a chain of extension headers.
178 * m is the extension header mbuf
179 * mp is the previous mbuf in the chain
180 * p is the next header
181 * i is the type of option.
182 */
183#define MAKE_CHAIN(m, mp, p, i)\
184 do {\
185 if (m) {\
186 if (!hdrsplit) \
187 panic("%s:%d: assumption failed: "\
188 "hdr not split: hdrsplit %d exthdrs %p",\
189 __func__, __LINE__, hdrsplit, &exthdrs);\
190 *mtod((m), u_char *) = *(p);\
191 *(p) = (i);\
192 p = mtod((m), u_char *);\
193 (m)->m_next = (mp)->m_next;\
194 (mp)->m_next = (m);\
195 (mp) = (m);\
196 }\
197 } while (/*CONSTCOND*/ 0)
198
199void
200in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
201{
202 u_short csum;
203
204 csum = in_cksum_skip(m, offset + plen, offset);
205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
206 csum = 0xffff;
207 offset += m->m_pkthdr.csum_data; /* checksum offset */
208
209 if (offset + sizeof(csum) > m->m_len)
210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
211 else
212 *(u_short *)mtodo(m, offset) = csum;
213}
214
215static void
216ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags,
217 int plen, int optlen)
218{
219
220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p "
221 "csum_flags %#x",
222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags));
223
224 if (csum_flags & CSUM_DELAY_DATA_IPV6) {
225 in6_delayed_cksum(m, plen - optlen,
226 sizeof(struct ip6_hdr) + optlen);
227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
228 }
229#if defined(SCTP) || defined(SCTP_SUPPORT)
230 if (csum_flags & CSUM_SCTP_IPV6) {
231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen);
232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
233 }
234#endif
235}
236
237int
238ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
239 int fraglen , uint32_t id)
240{
241 struct mbuf *m, **mnext, *m_frgpart;
242 struct ip6_hdr *ip6, *mhip6;
243 struct ip6_frag *ip6f;
244 int off;
245 int error;
246 int tlen = m0->m_pkthdr.len;
247
248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
249
250 m = m0;
251 ip6 = mtod(m, struct ip6_hdr *);
252 mnext = &m->m_nextpkt;
253
254 for (off = hlen; off < tlen; off += fraglen) {
255 m = m_gethdr(M_NOWAIT, MT_DATA);
256 if (!m) {
257 IP6STAT_INC(ip6s_odropped);
258 return (ENOBUFS);
259 }
260
261 /*
262 * Make sure the complete packet header gets copied
263 * from the originating mbuf to the newly created
264 * mbuf. This also ensures that existing firewall
265 * classification(s), VLAN tags and so on get copied
266 * to the resulting fragmented packet(s):
267 */
268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
269 m_free(m);
270 IP6STAT_INC(ip6s_odropped);
271 return (ENOBUFS);
272 }
273
274 *mnext = m;
275 mnext = &m->m_nextpkt;
276 m->m_data += max_linkhdr;
277 mhip6 = mtod(m, struct ip6_hdr *);
278 *mhip6 = *ip6;
279 m->m_len = sizeof(*mhip6);
280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
281 if (error) {
282 IP6STAT_INC(ip6s_odropped);
283 return (error);
284 }
285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
286 if (off + fraglen >= tlen)
287 fraglen = tlen - off;
288 else
289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
291 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
293 IP6STAT_INC(ip6s_odropped);
294 return (ENOBUFS);
295 }
296 m_cat(m, m_frgpart);
297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
298 ip6f->ip6f_reserved = 0;
299 ip6f->ip6f_ident = id;
300 ip6f->ip6f_nxt = nextproto;
301 IP6STAT_INC(ip6s_ofragments);
302 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
303 }
304
305 return (0);
306}
307
308static int
309ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro,
311 bool stamp_tag)
312{
313#ifdef KERN_TLS
314 struct ktls_session *tls = NULL;
315#endif
316 struct m_snd_tag *mst;
317 int error;
318
319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
320 mst = NULL;
321
322#ifdef KERN_TLS
323 /*
324 * If this is an unencrypted TLS record, save a reference to
325 * the record. This local reference is used to call
326 * ktls_output_eagain after the mbuf has been freed (thus
327 * dropping the mbuf's reference) in if_output.
328 */
329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
330 tls = ktls_hold(m->m_next->m_epg_tls);
331 mst = tls->snd_tag;
332
333 /*
334 * If a TLS session doesn't have a valid tag, it must
335 * have had an earlier ifp mismatch, so drop this
336 * packet.
337 */
338 if (mst == NULL) {
339 m_freem(m);
340 error = EAGAIN;
341 goto done;
342 }
343 /*
344 * Always stamp tags that include NIC ktls.
345 */
346 stamp_tag = true;
347 }
348#endif
349#ifdef RATELIMIT
350 if (inp != NULL && mst == NULL) {
351 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
352 (inp->inp_snd_tag != NULL &&
353 inp->inp_snd_tag->ifp != ifp))
354 in_pcboutput_txrtlmt(inp, ifp, m);
355
356 if (inp->inp_snd_tag != NULL)
357 mst = inp->inp_snd_tag;
358 }
359#endif
360 if (stamp_tag && mst != NULL) {
361 KASSERT(m->m_pkthdr.rcvif == NULL,
362 ("trying to add a send tag to a forwarded packet"));
363 if (mst->ifp != ifp) {
364 m_freem(m);
365 error = EAGAIN;
366 goto done;
367 }
368
369 /* stamp send tag on mbuf */
370 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
371 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
372 }
373
374 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
375
376done:
377 /* Check for route change invalidating send tags. */
378#ifdef KERN_TLS
379 if (tls != NULL) {
380 if (error == EAGAIN)
381 error = ktls_output_eagain(inp, tls);
382 ktls_free(tls);
383 }
384#endif
385#ifdef RATELIMIT
386 if (error == EAGAIN)
387 in_pcboutput_eagain(inp);
388#endif
389 return (error);
390}
391
392/*
393 * IP6 output.
394 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len,
395 * nxt, hlim, src, dst).
396 * This function may modify ver and hlim only.
397 * The mbuf chain containing the packet will be freed.
398 * The mbuf opt, if present, will not be freed.
399 * If route_in6 ro is present and has ro_nh initialized, route lookup would be
400 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL,
401 * then result of route lookup is stored in ro->ro_nh.
402 *
403 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu
404 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu.
405 *
406 * ifpp - XXX: just for statistics
407 */
408int
409ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
410 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
411 struct ifnet **ifpp, struct inpcb *inp)
412{
413 struct ip6_hdr *ip6;
414 struct ifnet *ifp, *origifp;
415 struct mbuf *m = m0;
416 struct mbuf *mprev;
417 struct route_in6 *ro_pmtu;
418 struct nhop_object *nh;
419 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa;
420 struct in6_addr odst;
421 u_char *nexthdrp;
422 int tlen, len;
423 int error = 0;
424 int vlan_pcp = -1;
425 struct in6_ifaddr *ia = NULL;
426 u_long mtu;
427 int alwaysfrag, dontfrag;
428 u_int32_t optlen, plen = 0, unfragpartlen;
429 struct ip6_exthdrs exthdrs;
430 struct in6_addr src0, dst0;
431 u_int32_t zone;
432 bool hdrsplit;
433 int sw_csum, tso;
434 int needfiblookup;
435 uint32_t fibnum;
436 struct m_tag *fwd_tag = NULL;
437 uint32_t id;
438
439 NET_EPOCH_ASSERT();
440
441 if (inp != NULL) {
442 INP_LOCK_ASSERT(inp);
443 M_SETFIB(m, inp->inp_inc.inc_fibnum);
444 if ((flags & IP_NODEFAULTFLOWID) == 0) {
445 /* Unconditionally set flowid. */
446 m->m_pkthdr.flowid = inp->inp_flowid;
447 M_HASHTYPE_SET(m, inp->inp_flowtype);
448 }
449 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
450 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
451 INP_2PCP_SHIFT;
452#ifdef NUMA
453 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
454#endif
455 }
456
457#if defined(IPSEC) || defined(IPSEC_SUPPORT)
458 /*
459 * IPSec checking which handles several cases.
460 * FAST IPSEC: We re-injected the packet.
461 * XXX: need scope argument.
462 */
463 if (IPSEC_ENABLED(ipv6)) {
464 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) {
465 if (error == EINPROGRESS)
466 error = 0;
467 goto done;
468 }
469 }
470#endif /* IPSEC */
471
472 /* Source address validation. */
473 ip6 = mtod(m, struct ip6_hdr *);
474 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
475 (flags & IPV6_UNSPECSRC) == 0) {
476 error = EOPNOTSUPP;
477 IP6STAT_INC(ip6s_badscope);
478 goto bad;
479 }
480 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
481 error = EOPNOTSUPP;
482 IP6STAT_INC(ip6s_badscope);
483 goto bad;
484 }
485
486 /*
487 * If we are given packet options to add extension headers prepare them.
488 * Calculate the total length of the extension header chain.
489 * Keep the length of the unfragmentable part for fragmentation.
490 */
491 bzero(&exthdrs, sizeof(exthdrs));
492 optlen = 0;
493 unfragpartlen = sizeof(struct ip6_hdr);
494 if (opt) {
495 /* Hop-by-Hop options header. */
496 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen);
497
498 /* Destination options header (1st part). */
499 if (opt->ip6po_rthdr) {
500#ifndef RTHDR_SUPPORT_IMPLEMENTED
501 /*
502 * If there is a routing header, discard the packet
503 * right away here. RH0/1 are obsolete and we do not
504 * currently support RH2/3/4.
505 * People trying to use RH253/254 may want to disable
506 * this check.
507 * The moment we do support any routing header (again)
508 * this block should check the routing type more
509 * selectively.
510 */
511 error = EINVAL;
512 goto bad;
513#endif
514
515 /*
516 * Destination options header (1st part).
517 * This only makes sense with a routing header.
518 * See Section 9.2 of RFC 3542.
519 * Disabling this part just for MIP6 convenience is
520 * a bad idea. We need to think carefully about a
521 * way to make the advanced API coexist with MIP6
522 * options, which might automatically be inserted in
523 * the kernel.
524 */
525 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1,
526 optlen);
527 }
528 /* Routing header. */
529 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen);
530
531 unfragpartlen += optlen;
532
533 /*
534 * NOTE: we don't add AH/ESP length here (done in
535 * ip6_ipsec_output()).
536 */
537
538 /* Destination options header (2nd part). */
539 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen);
540 }
541
542 /*
543 * If there is at least one extension header,
544 * separate IP6 header from the payload.
545 */
546 hdrsplit = false;
547 if (optlen) {
548 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
549 m = NULL;
550 goto freehdrs;
551 }
552 m = exthdrs.ip6e_ip6;
553 ip6 = mtod(m, struct ip6_hdr *);
554 hdrsplit = true;
555 }
556
557 /* Adjust mbuf packet header length. */
558 m->m_pkthdr.len += optlen;
559 plen = m->m_pkthdr.len - sizeof(*ip6);
560
561 /* If this is a jumbo payload, insert a jumbo payload option. */
562 if (plen > IPV6_MAXPACKET) {
563 if (!hdrsplit) {
564 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
565 m = NULL;
566 goto freehdrs;
567 }
568 m = exthdrs.ip6e_ip6;
569 ip6 = mtod(m, struct ip6_hdr *);
570 hdrsplit = true;
571 }
572 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
573 goto freehdrs;
574 ip6->ip6_plen = 0;
575 } else
576 ip6->ip6_plen = htons(plen);
577 nexthdrp = &ip6->ip6_nxt;
578
579 if (optlen) {
580 /*
581 * Concatenate headers and fill in next header fields.
582 * Here we have, on "m"
583 * IPv6 payload
584 * and we insert headers accordingly.
585 * Finally, we should be getting:
586 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload].
587 *
588 * During the header composing process "m" points to IPv6
589 * header. "mprev" points to an extension header prior to esp.
590 */
591 mprev = m;
592
593 /*
594 * We treat dest2 specially. This makes IPsec processing
595 * much easier. The goal here is to make mprev point the
596 * mbuf prior to dest2.
597 *
598 * Result: IPv6 dest2 payload.
599 * m and mprev will point to IPv6 header.
600 */
601 if (exthdrs.ip6e_dest2) {
602 if (!hdrsplit)
603 panic("%s:%d: assumption failed: "
604 "hdr not split: hdrsplit %d exthdrs %p",
605 __func__, __LINE__, hdrsplit, &exthdrs);
606 exthdrs.ip6e_dest2->m_next = m->m_next;
607 m->m_next = exthdrs.ip6e_dest2;
608 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
609 ip6->ip6_nxt = IPPROTO_DSTOPTS;
610 }
611
612 /*
613 * Result: IPv6 hbh dest1 rthdr dest2 payload.
614 * m will point to IPv6 header. mprev will point to the
615 * extension header prior to dest2 (rthdr in the above case).
616 */
617 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
618 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
619 IPPROTO_DSTOPTS);
620 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
621 IPPROTO_ROUTING);
622 }
623
624 IP6STAT_INC(ip6s_localout);
625
626 /* Route packet. */
627 ro_pmtu = ro;
628 if (opt && opt->ip6po_rthdr)
629 ro = &opt->ip6po_route;
630 if (ro != NULL)
631 dst = (struct sockaddr_in6 *)&ro->ro_dst;
632 else
633 dst = &sin6;
634 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
635
636again:
637 /*
638 * If specified, try to fill in the traffic class field.
639 * Do not override if a non-zero value is already set.
640 * We check the diffserv field and the ECN field separately.
641 */
642 if (opt && opt->ip6po_tclass >= 0) {
643 int mask = 0;
644
645 if (IPV6_DSCP(ip6) == 0)
646 mask |= 0xfc;
647 if (IPV6_ECN(ip6) == 0)
648 mask |= 0x03;
649 if (mask != 0)
650 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
651 }
652
653 /* Fill in or override the hop limit field, if necessary. */
654 if (opt && opt->ip6po_hlim != -1)
655 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
656 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
657 if (im6o != NULL)
658 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
659 else
660 ip6->ip6_hlim = V_ip6_defmcasthlim;
661 }
662
663 if (ro == NULL || ro->ro_nh == NULL) {
664 bzero(dst, sizeof(*dst));
665 dst->sin6_family = AF_INET6;
666 dst->sin6_len = sizeof(*dst);
667 dst->sin6_addr = ip6->ip6_dst;
668 }
669 /*
670 * Validate route against routing table changes.
671 * Make sure that the address family is set in route.
672 */
673 nh = NULL;
674 ifp = NULL;
675 mtu = 0;
676 if (ro != NULL) {
677 if (ro->ro_nh != NULL && inp != NULL) {
678 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */
679 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie,
680 fibnum);
681 }
682 if (ro->ro_nh != NULL && fwd_tag == NULL &&
683 (!NH_IS_VALID(ro->ro_nh) ||
684 ro->ro_dst.sin6_family != AF_INET6 ||
685 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)))
686 RO_INVALIDATE_CACHE(ro);
687
688 if (ro->ro_nh != NULL && fwd_tag == NULL &&
689 ro->ro_dst.sin6_family == AF_INET6 &&
690 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
691 nh = ro->ro_nh;
692 ifp = nh->nh_ifp;
693 } else {
694 if (ro->ro_lle)
695 LLE_FREE(ro->ro_lle); /* zeros ro_lle */
696 ro->ro_lle = NULL;
697 if (fwd_tag == NULL) {
698 bzero(&dst_sa, sizeof(dst_sa));
699 dst_sa.sin6_family = AF_INET6;
700 dst_sa.sin6_len = sizeof(dst_sa);
701 dst_sa.sin6_addr = ip6->ip6_dst;
702 }
703 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp,
704 &nh, fibnum, m->m_pkthdr.flowid);
705 if (error != 0) {
706 IP6STAT_INC(ip6s_noroute);
707 if (ifp != NULL)
708 in6_ifstat_inc(ifp, ifs6_out_discard);
709 goto bad;
710 }
711 if (ifp != NULL)
712 mtu = ifp->if_mtu;
713 }
714 if (nh == NULL) {
715 /*
716 * If in6_selectroute() does not return a nexthop
717 * dst may not have been updated.
718 */
719 *dst = dst_sa; /* XXX */
720 } else {
721 if (nh->nh_flags & NHF_HOST)
722 mtu = nh->nh_mtu;
723 ia = (struct in6_ifaddr *)(nh->nh_ifa);
724 counter_u64_add(nh->nh_pksent, 1);
725 }
726 } else {
727 struct nhop_object *nh;
728 struct in6_addr kdst;
729 uint32_t scopeid;
730
731 if (fwd_tag == NULL) {
732 bzero(&dst_sa, sizeof(dst_sa));
733 dst_sa.sin6_family = AF_INET6;
734 dst_sa.sin6_len = sizeof(dst_sa);
735 dst_sa.sin6_addr = ip6->ip6_dst;
736 }
737
738 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) &&
739 im6o != NULL &&
740 (ifp = im6o->im6o_multicast_ifp) != NULL) {
741 /* We do not need a route lookup. */
742 *dst = dst_sa; /* XXX */
743 goto nonh6lookup;
744 }
745
746 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid);
747
748 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) ||
750 if (scopeid > 0) {
751 ifp = in6_getlinkifnet(scopeid);
752 if (ifp == NULL) {
753 error = EHOSTUNREACH;
754 goto bad;
755 }
756 *dst = dst_sa; /* XXX */
757 goto nonh6lookup;
758 }
759 }
760
761 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE,
762 m->m_pkthdr.flowid);
763 if (nh == NULL) {
764 IP6STAT_INC(ip6s_noroute);
765 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */
766 error = EHOSTUNREACH;;
767 goto bad;
768 }
769
770 ifp = nh->nh_ifp;
771 mtu = nh->nh_mtu;
772 ia = ifatoia6(nh->nh_ifa);
773 if (nh->nh_flags & NHF_GATEWAY)
774 dst->sin6_addr = nh->gw6_sa.sin6_addr;
775nonh6lookup:
776 ;
777 }
778
779 /* Then nh (for unicast) and ifp must be non-NULL valid values. */
780 if ((flags & IPV6_FORWARDING) == 0) {
781 /* XXX: the FORWARDING flag can be set for mrouting. */
782 in6_ifstat_inc(ifp, ifs6_out_request);
783 }
784
785 /* Setup data structures for scope ID checks. */
786 src0 = ip6->ip6_src;
787 bzero(&src_sa, sizeof(src_sa));
788 src_sa.sin6_family = AF_INET6;
789 src_sa.sin6_len = sizeof(src_sa);
790 src_sa.sin6_addr = ip6->ip6_src;
791
792 dst0 = ip6->ip6_dst;
793 /* Re-initialize to be sure. */
794 bzero(&dst_sa, sizeof(dst_sa));
795 dst_sa.sin6_family = AF_INET6;
796 dst_sa.sin6_len = sizeof(dst_sa);
797 dst_sa.sin6_addr = ip6->ip6_dst;
798
799 /* Check for valid scope ID. */
800 if (in6_setscope(&src0, ifp, &zone) == 0 &&
801 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
802 in6_setscope(&dst0, ifp, &zone) == 0 &&
803 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
804 /*
805 * The outgoing interface is in the zone of the source
806 * and destination addresses.
807 *
808 * Because the loopback interface cannot receive
809 * packets with a different scope ID than its own,
810 * there is a trick to pretend the outgoing packet
811 * was received by the real network interface, by
812 * setting "origifp" different from "ifp". This is
813 * only allowed when "ifp" is a loopback network
814 * interface. Refer to code in nd6_output_ifp() for
815 * more details.
816 */
817 origifp = ifp;
818
819 /*
820 * We should use ia_ifp to support the case of sending
821 * packets to an address of our own.
822 */
823 if (ia != NULL && ia->ia_ifp)
824 ifp = ia->ia_ifp;
825
826 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 ||
827 sa6_recoverscope(&src_sa) != 0 ||
828 sa6_recoverscope(&dst_sa) != 0 ||
829 dst_sa.sin6_scope_id == 0 ||
830 (src_sa.sin6_scope_id != 0 &&
831 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
832 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) {
833 /*
834 * If the destination network interface is not a
835 * loopback interface, or the destination network
836 * address has no scope ID, or the source address has
837 * a scope ID set which is different from the
838 * destination address one, or there is no network
839 * interface representing this scope ID, the address
840 * pair is considered invalid.
841 */
842 IP6STAT_INC(ip6s_badscope);
843 in6_ifstat_inc(ifp, ifs6_out_discard);
844 if (error == 0)
845 error = EHOSTUNREACH; /* XXX */
846 goto bad;
847 }
848 /* All scope ID checks are successful. */
849
850 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
851 if (opt && opt->ip6po_nextroute.ro_nh) {
852 /*
853 * The nexthop is explicitly specified by the
854 * application. We assume the next hop is an IPv6
855 * address.
856 */
857 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
858 }
859 else if ((nh->nh_flags & NHF_GATEWAY))
860 dst = &nh->gw6_sa;
861 }
862
863 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
864 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */
865 } else {
866 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
867 in6_ifstat_inc(ifp, ifs6_out_mcast);
868
869 /* Confirm that the outgoing interface supports multicast. */
870 if (!(ifp->if_flags & IFF_MULTICAST)) {
871 IP6STAT_INC(ip6s_noroute);
872 in6_ifstat_inc(ifp, ifs6_out_discard);
873 error = ENETUNREACH;
874 goto bad;
875 }
876 if ((im6o == NULL && in6_mcast_loop) ||
877 (im6o && im6o->im6o_multicast_loop)) {
878 /*
879 * Loop back multicast datagram if not expressly
880 * forbidden to do so, even if we have not joined
881 * the address; protocols will filter it later,
882 * thus deferring a hash lookup and lock acquisition
883 * at the expense of an m_copym().
884 */
885 ip6_mloopback(ifp, m);
886 } else {
887 /*
888 * If we are acting as a multicast router, perform
889 * multicast forwarding as if the packet had just
890 * arrived on the interface to which we are about
891 * to send. The multicast forwarding function
892 * recursively calls this function, using the
893 * IPV6_FORWARDING flag to prevent infinite recursion.
894 *
895 * Multicasts that are looped back by ip6_mloopback(),
896 * above, will be forwarded by the ip6_input() routine,
897 * if necessary.
898 */
899 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
900 /*
901 * XXX: ip6_mforward expects that rcvif is NULL
902 * when it is called from the originating path.
903 * However, it may not always be the case.
904 */
905 m->m_pkthdr.rcvif = NULL;
906 if (ip6_mforward(ip6, ifp, m) != 0) {
907 m_freem(m);
908 goto done;
909 }
910 }
911 }
912 /*
913 * Multicasts with a hoplimit of zero may be looped back,
914 * above, but must not be transmitted on a network.
915 * Also, multicasts addressed to the loopback interface
916 * are not sent -- the above call to ip6_mloopback() will
917 * loop back a copy if this host actually belongs to the
918 * destination group on the loopback interface.
919 */
920 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
921 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
922 m_freem(m);
923 goto done;
924 }
925 }
926
927 /*
928 * Fill the outgoing inteface to tell the upper layer
929 * to increment per-interface statistics.
930 */
931 if (ifpp)
932 *ifpp = ifp;
933
934 /* Determine path MTU. */
935 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst,
936 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0)
937 goto bad;
938 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p "
939 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro,
940 ifp, alwaysfrag, fibnum));
941
942 /*
943 * The caller of this function may specify to use the minimum MTU
944 * in some cases.
945 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
946 * setting. The logic is a bit complicated; by default, unicast
947 * packets will follow path MTU while multicast packets will be sent at
948 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
949 * including unicast ones will be sent at the minimum MTU. Multicast
950 * packets will always be sent at the minimum MTU unless
951 * IP6PO_MINMTU_DISABLE is explicitly specified.
952 * See RFC 3542 for more details.
953 */
954 if (mtu > IPV6_MMTU) {
955 if ((flags & IPV6_MINMTU))
956 mtu = IPV6_MMTU;
957 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
958 mtu = IPV6_MMTU;
959 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
960 (opt == NULL ||
962 mtu = IPV6_MMTU;
963 }
964 }
965
966 /*
967 * Clear embedded scope identifiers if necessary.
968 * in6_clearscope() will touch the addresses only when necessary.
969 */
970 in6_clearscope(&ip6->ip6_src);
971 in6_clearscope(&ip6->ip6_dst);
972
973 /*
974 * If the outgoing packet contains a hop-by-hop options header,
975 * it must be examined and processed even by the source node.
976 * (RFC 2460, section 4.)
977 */
978 if (exthdrs.ip6e_hbh) {
979 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
980 u_int32_t dummy; /* XXX unused */
981 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
982
983#ifdef DIAGNOSTIC
984 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
985 panic("ip6e_hbh is not contiguous");
986#endif
987 /*
988 * XXX: if we have to send an ICMPv6 error to the sender,
989 * we need the M_LOOP flag since icmp6_error() expects
990 * the IPv6 and the hop-by-hop options header are
991 * contiguous unless the flag is set.
992 */
993 m->m_flags |= M_LOOP;
994 m->m_pkthdr.rcvif = ifp;
995 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
996 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
997 &dummy, &plen) < 0) {
998 /* m was already freed at this point. */
999 error = EINVAL;/* better error? */
1000 goto done;
1001 }
1002 m->m_flags &= ~M_LOOP; /* XXX */
1003 m->m_pkthdr.rcvif = NULL;
1004 }
1005
1006 /* Jump over all PFIL processing if hooks are not active. */
1007 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
1008 goto passout;
1009
1010 odst = ip6->ip6_dst;
1011 /* Run through list of hooks for output packets. */
1012 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) {
1013 case PFIL_PASS:
1014 ip6 = mtod(m, struct ip6_hdr *);
1015 break;
1016 case PFIL_DROPPED:
1017 error = EACCES;
1018 /* FALLTHROUGH */
1019 case PFIL_CONSUMED:
1020 goto done;
1021 }
1022
1023 needfiblookup = 0;
1024 /* See if destination IP address was changed by packet filter. */
1025 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
1026 m->m_flags |= M_SKIP_FIREWALL;
1027 /* If destination is now ourself drop to ip6_input(). */
1028 if (in6_localip(&ip6->ip6_dst)) {
1029 m->m_flags |= M_FASTFWD_OURS;
1030 if (m->m_pkthdr.rcvif == NULL)
1031 m->m_pkthdr.rcvif = V_loif;
1032 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1033 m->m_pkthdr.csum_flags |=
1034 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1035 m->m_pkthdr.csum_data = 0xffff;
1036 }
1037#if defined(SCTP) || defined(SCTP_SUPPORT)
1038 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1039 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1040#endif
1041 error = netisr_queue(NETISR_IPV6, m);
1042 goto done;
1043 } else {
1044 if (ro != NULL)
1045 RO_INVALIDATE_CACHE(ro);
1046 needfiblookup = 1; /* Redo the routing table lookup. */
1047 }
1048 }
1049 /* See if fib was changed by packet filter. */
1050 if (fibnum != M_GETFIB(m)) {
1051 m->m_flags |= M_SKIP_FIREWALL;
1052 fibnum = M_GETFIB(m);
1053 if (ro != NULL)
1054 RO_INVALIDATE_CACHE(ro);
1055 needfiblookup = 1;
1056 }
1057 if (needfiblookup)
1058 goto again;
1059
1060 /* See if local, if yes, send it to netisr. */
1061 if (m->m_flags & M_FASTFWD_OURS) {
1062 if (m->m_pkthdr.rcvif == NULL)
1063 m->m_pkthdr.rcvif = V_loif;
1064 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1065 m->m_pkthdr.csum_flags |=
1066 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
1067 m->m_pkthdr.csum_data = 0xffff;
1068 }
1069#if defined(SCTP) || defined(SCTP_SUPPORT)
1070 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
1071 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1072#endif
1073 error = netisr_queue(NETISR_IPV6, m);
1074 goto done;
1075 }
1076 /* Or forward to some other address? */
1077 if ((m->m_flags & M_IP6_NEXTHOP) &&
1078 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
1079 if (ro != NULL)
1080 dst = (struct sockaddr_in6 *)&ro->ro_dst;
1081 else
1082 dst = &sin6;
1083 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
1084 m->m_flags |= M_SKIP_FIREWALL;
1085 m->m_flags &= ~M_IP6_NEXTHOP;
1086 m_tag_delete(m, fwd_tag);
1087 goto again;
1088 }
1089
1090passout:
1091 if (vlan_pcp > -1)
1092 EVL_APPLY_PRI(m, vlan_pcp);
1093
1094 /* Ensure the packet data is mapped if the interface requires it. */
1095 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
1096 m = mb_unmapped_to_ext(m);
1097 if (m == NULL) {
1098 IP6STAT_INC(ip6s_odropped);
1099 return (ENOBUFS);
1100 }
1101 }
1102
1103 /*
1104 * Send the packet to the outgoing interface.
1105 * If necessary, do IPv6 fragmentation before sending.
1106 *
1107 * The logic here is rather complex:
1108 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
1109 * 1-a: send as is if tlen <= path mtu
1110 * 1-b: fragment if tlen > path mtu
1111 *
1112 * 2: if user asks us not to fragment (dontfrag == 1)
1113 * 2-a: send as is if tlen <= interface mtu
1114 * 2-b: error if tlen > interface mtu
1115 *
1116 * 3: if we always need to attach fragment header (alwaysfrag == 1)
1117 * always fragment
1118 *
1119 * 4: if dontfrag == 1 && alwaysfrag == 1
1120 * error, as we cannot handle this conflicting request.
1121 */
1122 sw_csum = m->m_pkthdr.csum_flags;
1123 if (!hdrsplit) {
1124 tso = ((sw_csum & ifp->if_hwassist &
1125 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0;
1126 sw_csum &= ~ifp->if_hwassist;
1127 } else
1128 tso = 0;
1129 /*
1130 * If we added extension headers, we will not do TSO and calculate the
1131 * checksums ourselves for now.
1132 * XXX-BZ Need a framework to know when the NIC can handle it, even
1133 * with ext. hdrs.
1134 */
1135 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen);
1136 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */
1137 tlen = m->m_pkthdr.len;
1138
1139 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
1140 dontfrag = 1;
1141 else
1142 dontfrag = 0;
1143 if (dontfrag && alwaysfrag) { /* Case 4. */
1144 /* Conflicting request - can't transmit. */
1145 error = EMSGSIZE;
1146 goto bad;
1147 }
1148 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */
1149 /*
1150 * Even if the DONTFRAG option is specified, we cannot send the
1151 * packet when the data length is larger than the MTU of the
1152 * outgoing interface.
1153 * Notify the error by sending IPV6_PATHMTU ancillary data if
1154 * application wanted to know the MTU value. Also return an
1155 * error code (this is not described in the API spec).
1156 */
1157 if (inp != NULL)
1158 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
1159 error = EMSGSIZE;
1160 goto bad;
1161 }
1162
1163 /* Transmit packet without fragmentation. */
1164 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */
1165 struct in6_ifaddr *ia6;
1166
1167 ip6 = mtod(m, struct ip6_hdr *);
1168 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1169 if (ia6) {
1170 /* Record statistics for this interface address. */
1171 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
1172 counter_u64_add(ia6->ia_ifa.ifa_obytes,
1173 m->m_pkthdr.len);
1174 }
1175 error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1176 (flags & IP_NO_SND_TAG_RL) ? false : true);
1177 goto done;
1178 }
1179
1180 /* Try to fragment the packet. Cases 1-b and 3. */
1181 if (mtu < IPV6_MMTU) {
1182 /* Path MTU cannot be less than IPV6_MMTU. */
1183 error = EMSGSIZE;
1184 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1185 goto bad;
1186 } else if (ip6->ip6_plen == 0) {
1187 /* Jumbo payload cannot be fragmented. */
1188 error = EMSGSIZE;
1189 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1190 goto bad;
1191 } else {
1192 u_char nextproto;
1193
1194 /*
1195 * Too large for the destination or interface;
1196 * fragment if possible.
1197 * Must be able to put at least 8 bytes per fragment.
1198 */
1199 if (mtu > IPV6_MAXPACKET)
1200 mtu = IPV6_MAXPACKET;
1201
1202 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7;
1203 if (len < 8) {
1204 error = EMSGSIZE;
1205 in6_ifstat_inc(ifp, ifs6_out_fragfail);
1206 goto bad;
1207 }
1208
1209 /*
1210 * If the interface will not calculate checksums on
1211 * fragmented packets, then do it here.
1212 * XXX-BZ handle the hw offloading case. Need flags.
1213 */
1214 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen,
1215 optlen);
1216
1217 /*
1218 * Change the next header field of the last header in the
1219 * unfragmentable part.
1220 */
1221 if (exthdrs.ip6e_rthdr) {
1222 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1223 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1224 } else if (exthdrs.ip6e_dest1) {
1225 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1226 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1227 } else if (exthdrs.ip6e_hbh) {
1228 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1229 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1230 } else {
1231 ip6 = mtod(m, struct ip6_hdr *);
1232 nextproto = ip6->ip6_nxt;
1233 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1234 }
1235
1236 /*
1237 * Loop through length of segment after first fragment,
1238 * make new header and copy data of each part and link onto
1239 * chain.
1240 */
1241 m0 = m;
1242 id = htonl(ip6_randomid());
1243 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id);
1244 if (error != 0)
1245 goto sendorfree;
1246
1247 in6_ifstat_inc(ifp, ifs6_out_fragok);
1248 }
1249
1250 /* Remove leading garbage. */
1251sendorfree:
1252 m = m0->m_nextpkt;
1253 m0->m_nextpkt = 0;
1254 m_freem(m0);
1255 for (; m; m = m0) {
1256 m0 = m->m_nextpkt;
1257 m->m_nextpkt = 0;
1258 if (error == 0) {
1259 /* Record statistics for this interface address. */
1260 if (ia) {
1261 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
1262 counter_u64_add(ia->ia_ifa.ifa_obytes,
1263 m->m_pkthdr.len);
1264 }
1265 if (vlan_pcp > -1)
1266 EVL_APPLY_PRI(m, vlan_pcp);
1267 error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
1268 true);
1269 } else
1270 m_freem(m);
1271 }
1272
1273 if (error == 0)
1274 IP6STAT_INC(ip6s_fragmented);
1275
1276done:
1277 return (error);
1278
1279freehdrs:
1280 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */
1281 m_freem(exthdrs.ip6e_dest1);
1282 m_freem(exthdrs.ip6e_rthdr);
1283 m_freem(exthdrs.ip6e_dest2);
1284 /* FALLTHROUGH */
1285bad:
1286 if (m)
1287 m_freem(m);
1288 goto done;
1289}
1290
1291static int
1292ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1293{
1294 struct mbuf *m;
1295
1296 if (hlen > MCLBYTES)
1297 return (ENOBUFS); /* XXX */
1298
1299 if (hlen > MLEN)
1300 m = m_getcl(M_NOWAIT, MT_DATA, 0);
1301 else
1302 m = m_get(M_NOWAIT, MT_DATA);
1303 if (m == NULL)
1304 return (ENOBUFS);
1305 m->m_len = hlen;
1306 if (hdr)
1307 bcopy(hdr, mtod(m, caddr_t), hlen);
1308
1309 *mp = m;
1310 return (0);
1311}
1312
1313/*
1314 * Insert jumbo payload option.
1315 */
1316static int
1317ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1318{
1319 struct mbuf *mopt;
1320 u_char *optbuf;
1321 u_int32_t v;
1322
1323#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1324
1325 /*
1326 * If there is no hop-by-hop options header, allocate new one.
1327 * If there is one but it doesn't have enough space to store the
1328 * jumbo payload option, allocate a cluster to store the whole options.
1329 * Otherwise, use it to store the options.
1330 */
1331 if (exthdrs->ip6e_hbh == NULL) {
1332 mopt = m_get(M_NOWAIT, MT_DATA);
1333 if (mopt == NULL)
1334 return (ENOBUFS);
1335 mopt->m_len = JUMBOOPTLEN;
1336 optbuf = mtod(mopt, u_char *);
1337 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1338 exthdrs->ip6e_hbh = mopt;
1339 } else {
1340 struct ip6_hbh *hbh;
1341
1342 mopt = exthdrs->ip6e_hbh;
1343 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1344 /*
1345 * XXX assumption:
1346 * - exthdrs->ip6e_hbh is not referenced from places
1347 * other than exthdrs.
1348 * - exthdrs->ip6e_hbh is not an mbuf chain.
1349 */
1350 int oldoptlen = mopt->m_len;
1351 struct mbuf *n;
1352
1353 /*
1354 * XXX: give up if the whole (new) hbh header does
1355 * not fit even in an mbuf cluster.
1356 */
1357 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1358 return (ENOBUFS);
1359
1360 /*
1361 * As a consequence, we must always prepare a cluster
1362 * at this point.
1363 */
1364 n = m_getcl(M_NOWAIT, MT_DATA, 0);
1365 if (n == NULL)
1366 return (ENOBUFS);
1367 n->m_len = oldoptlen + JUMBOOPTLEN;
1368 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1369 oldoptlen);
1370 optbuf = mtod(n, caddr_t) + oldoptlen;
1371 m_freem(mopt);
1372 mopt = exthdrs->ip6e_hbh = n;
1373 } else {
1374 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1375 mopt->m_len += JUMBOOPTLEN;
1376 }
1377 optbuf[0] = IP6OPT_PADN;
1378 optbuf[1] = 1;
1379
1380 /*
1381 * Adjust the header length according to the pad and
1382 * the jumbo payload option.
1383 */
1384 hbh = mtod(mopt, struct ip6_hbh *);
1385 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1386 }
1387
1388 /* fill in the option. */
1389 optbuf[2] = IP6OPT_JUMBO;
1390 optbuf[3] = 4;
1391 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1392 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1393
1394 /* finally, adjust the packet header length */
1395 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1396
1397 return (0);
1398#undef JUMBOOPTLEN
1399}
1400
1401/*
1402 * Insert fragment header and copy unfragmentable header portions.
1403 */
1404static int
1405ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1406 struct ip6_frag **frghdrp)
1407{
1408 struct mbuf *n, *mlast;
1409
1410 if (hlen > sizeof(struct ip6_hdr)) {
1411 n = m_copym(m0, sizeof(struct ip6_hdr),
1412 hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1413 if (n == NULL)
1414 return (ENOBUFS);
1415 m->m_next = n;
1416 } else
1417 n = m;
1418
1419 /* Search for the last mbuf of unfragmentable part. */
1420 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1421 ;
1422
1423 if (M_WRITABLE(mlast) &&
1424 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1425 /* use the trailing space of the last mbuf for the fragment hdr */
1426 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1427 mlast->m_len);
1428 mlast->m_len += sizeof(struct ip6_frag);
1429 m->m_pkthdr.len += sizeof(struct ip6_frag);
1430 } else {
1431 /* allocate a new mbuf for the fragment header */
1432 struct mbuf *mfrg;
1433
1434 mfrg = m_get(M_NOWAIT, MT_DATA);
1435 if (mfrg == NULL)
1436 return (ENOBUFS);
1437 mfrg->m_len = sizeof(struct ip6_frag);
1438 *frghdrp = mtod(mfrg, struct ip6_frag *);
1439 mlast->m_next = mfrg;
1440 }
1441
1442 return (0);
1443}
1444
1445/*
1446 * Calculates IPv6 path mtu for destination @dst.
1447 * Resulting MTU is stored in @mtup.
1448 *
1449 * Returns 0 on success.
1450 */
1451static int
1452ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
1453{
1454 struct epoch_tracker et;
1455 struct nhop_object *nh;
1456 struct in6_addr kdst;
1457 uint32_t scopeid;
1458 int error;
1459
1460 in6_splitscope(dst, &kdst, &scopeid);
1461
1462 NET_EPOCH_ENTER(et);
1463 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1464 if (nh != NULL)
1465 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0);
1466 else
1467 error = EHOSTUNREACH;
1468 NET_EPOCH_EXIT(et);
1469
1470 return (error);
1471}
1472
1473/*
1474 * Calculates IPv6 path MTU for @dst based on transmit @ifp,
1475 * and cached data in @ro_pmtu.
1476 * MTU from (successful) route lookup is saved (along with dst)
1477 * inside @ro_pmtu to avoid subsequent route lookups after packet
1478 * filter processing.
1479 *
1480 * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1481 * Returns 0 on success.
1482 */
1483static int
1484ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
1485 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
1486 int *alwaysfragp, u_int fibnum, u_int proto)
1487{
1488 struct nhop_object *nh;
1489 struct in6_addr kdst;
1490 uint32_t scopeid;
1491 struct sockaddr_in6 *sa6_dst, sin6;
1492 u_long mtu;
1493
1494 NET_EPOCH_ASSERT();
1495
1496 mtu = 0;
1497 if (ro_pmtu == NULL || do_lookup) {
1498 /*
1499 * Here ro_pmtu has final destination address, while
1500 * ro might represent immediate destination.
1501 * Use ro_pmtu destination since mtu might differ.
1502 */
1503 if (ro_pmtu != NULL) {
1504 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1505 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
1506 ro_pmtu->ro_mtu = 0;
1507 } else
1508 sa6_dst = &sin6;
1509
1510 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) {
1511 bzero(sa6_dst, sizeof(*sa6_dst));
1512 sa6_dst->sin6_family = AF_INET6;
1513 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1514 sa6_dst->sin6_addr = *dst;
1515
1516 in6_splitscope(dst, &kdst, &scopeid);
1517 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
1518 if (nh != NULL) {
1519 mtu = nh->nh_mtu;
1520 if (ro_pmtu != NULL)
1521 ro_pmtu->ro_mtu = mtu;
1522 }
1523 } else
1524 mtu = ro_pmtu->ro_mtu;
1525 }
1526
1527 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL)
1528 mtu = ro_pmtu->ro_nh->nh_mtu;
1529
1530 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto));
1531}
1532
1533/*
1534 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
1535 * hostcache data for @dst.
1536 * Stores mtu and always-frag value into @mtup and @alwaysfragp.
1537 *
1538 * Returns 0 on success.
1539 */
1540static int
1541ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
1542 u_long *mtup, int *alwaysfragp, u_int proto)
1543{
1544 u_long mtu = 0;
1545 int alwaysfrag = 0;
1546 int error = 0;
1547
1548 if (rt_mtu > 0) {
1549 u_int32_t ifmtu;
1550 struct in_conninfo inc;
1551
1552 bzero(&inc, sizeof(inc));
1553 inc.inc_flags |= INC_ISIPV6;
1554 inc.inc6_faddr = *dst;
1555
1556 ifmtu = IN6_LINKMTU(ifp);
1557
1558 /* TCP is known to react to pmtu changes so skip hc */
1559 if (proto != IPPROTO_TCP)
1560 mtu = tcp_hc_getmtu(&inc);
1561
1562 if (mtu)
1563 mtu = min(mtu, rt_mtu);
1564 else
1565 mtu = rt_mtu;
1566 if (mtu == 0)
1567 mtu = ifmtu;
1568 else if (mtu < IPV6_MMTU) {
1569 /*
1570 * RFC2460 section 5, last paragraph:
1571 * if we record ICMPv6 too big message with
1572 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1573 * or smaller, with framgent header attached.
1574 * (fragment header is needed regardless from the
1575 * packet size, for translators to identify packets)
1576 */
1577 alwaysfrag = 1;
1578 mtu = IPV6_MMTU;
1579 }
1580 } else if (ifp) {
1581 mtu = IN6_LINKMTU(ifp);
1582 } else
1583 error = EHOSTUNREACH; /* XXX */
1584
1585 *mtup = mtu;
1586 if (alwaysfragp)
1587 *alwaysfragp = alwaysfrag;
1588 return (error);
1589}
1590
1591/*
1592 * IP6 socket option processing.
1593 */
1594int
1595ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1596{
1597 int optdatalen, uproto;
1598 void *optdata;
1599 struct inpcb *inp = sotoinpcb(so);
1600 int error, optval;
1601 int level, op, optname;
1602 int optlen;
1603 struct thread *td;
1604#ifdef RSS
1605 uint32_t rss_bucket;
1606 int retval;
1607#endif
1608
1609/*
1610 * Don't use more than a quarter of mbuf clusters. N.B.:
1611 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
1612 * on LP64 architectures, so cast to u_long to avoid undefined
1613 * behavior. ILP32 architectures cannot have nmbclusters
1614 * large enough to overflow for other reasons.
1615 */
1616#define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4)
1617
1618 level = sopt->sopt_level;
1619 op = sopt->sopt_dir;
1620 optname = sopt->sopt_name;
1621 optlen = sopt->sopt_valsize;
1622 td = sopt->sopt_td;
1623 error = 0;
1624 optval = 0;
1625 uproto = (int)so->so_proto->pr_protocol;
1626
1627 if (level != IPPROTO_IPV6) {
1628 error = EINVAL;
1629
1630 if (sopt->sopt_level == SOL_SOCKET &&
1631 sopt->sopt_dir == SOPT_SET) {
1632 switch (sopt->sopt_name) {
1633 case SO_REUSEADDR:
1634 INP_WLOCK(inp);
1635 if ((so->so_options & SO_REUSEADDR) != 0)
1636 inp->inp_flags2 |= INP_REUSEADDR;
1637 else
1638 inp->inp_flags2 &= ~INP_REUSEADDR;
1639 INP_WUNLOCK(inp);
1640 error = 0;
1641 break;
1642 case SO_REUSEPORT:
1643 INP_WLOCK(inp);
1644 if ((so->so_options & SO_REUSEPORT) != 0)
1645 inp->inp_flags2 |= INP_REUSEPORT;
1646 else
1647 inp->inp_flags2 &= ~INP_REUSEPORT;
1648 INP_WUNLOCK(inp);
1649 error = 0;
1650 break;
1651 case SO_REUSEPORT_LB:
1652 INP_WLOCK(inp);
1653 if ((so->so_options & SO_REUSEPORT_LB) != 0)
1654 inp->inp_flags2 |= INP_REUSEPORT_LB;
1655 else
1656 inp->inp_flags2 &= ~INP_REUSEPORT_LB;
1657 INP_WUNLOCK(inp);
1658 error = 0;
1659 break;
1660 case SO_SETFIB:
1661 INP_WLOCK(inp);
1662 inp->inp_inc.inc_fibnum = so->so_fibnum;
1663 INP_WUNLOCK(inp);
1664 error = 0;
1665 break;
1666 case SO_MAX_PACING_RATE:
1667#ifdef RATELIMIT
1668 INP_WLOCK(inp);
1669 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1670 INP_WUNLOCK(inp);
1671 error = 0;
1672#else
1673 error = EOPNOTSUPP;
1674#endif
1675 break;
1676 default:
1677 break;
1678 }
1679 }
1680 } else { /* level == IPPROTO_IPV6 */
1681 switch (op) {
1682 case SOPT_SET:
1683 switch (optname) {
1685#ifdef IPV6_PKTOPTIONS
1686 case IPV6_PKTOPTIONS:
1687#endif
1688 {
1689 struct mbuf *m;
1690
1691 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
1692 printf("ip6_ctloutput: mbuf limit hit\n");
1693 error = ENOBUFS;
1694 break;
1695 }
1696
1697 error = soopt_getm(sopt, &m); /* XXX */
1698 if (error != 0)
1699 break;
1700 error = soopt_mcopyin(sopt, m); /* XXX */
1701 if (error != 0)
1702 break;
1703 INP_WLOCK(inp);
1704 error = ip6_pcbopts(&inp->in6p_outputopts, m,
1705 so, sopt);
1706 INP_WUNLOCK(inp);
1707 m_freem(m); /* XXX */
1708 break;
1709 }
1710
1711 /*
1712 * Use of some Hop-by-Hop options or some
1713 * Destination options, might require special
1714 * privilege. That is, normal applications
1715 * (without special privilege) might be forbidden
1716 * from setting certain options in outgoing packets,
1717 * and might never see certain options in received
1718 * packets. [RFC 2292 Section 6]
1719 * KAME specific note:
1720 * KAME prevents non-privileged users from sending or
1721 * receiving ANY hbh/dst options in order to avoid
1722 * overhead of parsing options in the kernel.
1723 */
1724 case IPV6_RECVHOPOPTS:
1725 case IPV6_RECVDSTOPTS:
1727 if (td != NULL) {
1728 error = priv_check(td,
1729 PRIV_NETINET_SETHDROPTS);
1730 if (error)
1731 break;
1732 }
1733 /* FALLTHROUGH */
1734 case IPV6_UNICAST_HOPS:
1735 case IPV6_HOPLIMIT:
1736
1737 case IPV6_RECVPKTINFO:
1738 case IPV6_RECVHOPLIMIT:
1739 case IPV6_RECVRTHDR:
1740 case IPV6_RECVPATHMTU:
1741 case IPV6_RECVTCLASS:
1742 case IPV6_RECVFLOWID:
1743#ifdef RSS
1745#endif
1746 case IPV6_V6ONLY:
1747 case IPV6_AUTOFLOWLABEL:
1748 case IPV6_ORIGDSTADDR:
1749 case IPV6_BINDANY:
1750 case IPV6_BINDMULTI:
1751#ifdef RSS
1753#endif
1754 case IPV6_VLAN_PCP:
1755 if (optname == IPV6_BINDANY && td != NULL) {
1756 error = priv_check(td,
1757 PRIV_NETINET_BINDANY);
1758 if (error)
1759 break;
1760 }
1761
1762 if (optlen != sizeof(int)) {
1763 error = EINVAL;
1764 break;
1765 }
1766 error = sooptcopyin(sopt, &optval,
1767 sizeof optval, sizeof optval);
1768 if (error)
1769 break;
1770 switch (optname) {
1771 case IPV6_UNICAST_HOPS:
1772 if (optval < -1 || optval >= 256)
1773 error = EINVAL;
1774 else {
1775 /* -1 = kernel default */
1776 inp->in6p_hops = optval;
1777 if ((inp->inp_vflag &
1778 INP_IPV4) != 0)
1779 inp->inp_ip_ttl = optval;
1780 }
1781 break;
1782#define OPTSET(bit) \
1783do { \
1784 INP_WLOCK(inp); \
1785 if (optval) \
1786 inp->inp_flags |= (bit); \
1787 else \
1788 inp->inp_flags &= ~(bit); \
1789 INP_WUNLOCK(inp); \
1790} while (/*CONSTCOND*/ 0)
1791#define OPTSET2292(bit) \
1792do { \
1793 INP_WLOCK(inp); \
1794 inp->inp_flags |= IN6P_RFC2292; \
1795 if (optval) \
1796 inp->inp_flags |= (bit); \
1797 else \
1798 inp->inp_flags &= ~(bit); \
1799 INP_WUNLOCK(inp); \
1800} while (/*CONSTCOND*/ 0)
1801#define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1802
1803#define OPTSET2_N(bit, val) do { \
1804 if (val) \
1805 inp->inp_flags2 |= bit; \
1806 else \
1807 inp->inp_flags2 &= ~bit; \
1808} while (0)
1809#define OPTSET2(bit, val) do { \
1810 INP_WLOCK(inp); \
1811 OPTSET2_N(bit, val); \
1812 INP_WUNLOCK(inp); \
1813} while (0)
1814#define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0)
1815#define OPTSET2292_EXCLUSIVE(bit) \
1816do { \
1817 INP_WLOCK(inp); \
1818 if (OPTBIT(IN6P_RFC2292)) { \
1819 error = EINVAL; \
1820 } else { \
1821 if (optval) \
1822 inp->inp_flags |= (bit); \
1823 else \
1824 inp->inp_flags &= ~(bit); \
1825 } \
1826 INP_WUNLOCK(inp); \
1827} while (/*CONSTCOND*/ 0)
1828
1829 case IPV6_RECVPKTINFO:
1830 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
1831 break;
1832
1833 case IPV6_HOPLIMIT:
1834 {
1835 struct ip6_pktopts **optp;
1836
1837 /* cannot mix with RFC2292 */
1838 if (OPTBIT(IN6P_RFC2292)) {
1839 error = EINVAL;
1840 break;
1841 }
1842 INP_WLOCK(inp);
1843 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1844 INP_WUNLOCK(inp);
1845 return (ECONNRESET);
1846 }
1847 optp = &inp->in6p_outputopts;
1848 error = ip6_pcbopt(IPV6_HOPLIMIT,
1849 (u_char *)&optval, sizeof(optval),
1850 optp, (td != NULL) ? td->td_ucred :
1851 NULL, uproto);
1852 INP_WUNLOCK(inp);
1853 break;
1854 }
1855
1856 case IPV6_RECVHOPLIMIT:
1857 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
1858 break;
1859
1860 case IPV6_RECVHOPOPTS:
1861 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
1862 break;
1863
1864 case IPV6_RECVDSTOPTS:
1865 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
1866 break;
1867
1869 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
1870 break;
1871
1872 case IPV6_RECVRTHDR:
1873 OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
1874 break;
1875
1876 case IPV6_RECVPATHMTU:
1877 /*
1878 * We ignore this option for TCP
1879 * sockets.
1880 * (RFC3542 leaves this case
1881 * unspecified.)
1882 */
1883 if (uproto != IPPROTO_TCP)
1884 OPTSET(IN6P_MTU);
1885 break;
1886
1887 case IPV6_RECVFLOWID:
1888 OPTSET2(INP_RECVFLOWID, optval);
1889 break;
1890
1891#ifdef RSS
1893 OPTSET2(INP_RECVRSSBUCKETID, optval);
1894 break;
1895#endif
1896
1897 case IPV6_V6ONLY:
1898 INP_WLOCK(inp);
1899 if (inp->inp_lport ||
1900 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
1901 /*
1902 * The socket is already bound.
1903 */
1904 INP_WUNLOCK(inp);
1905 error = EINVAL;
1906 break;
1907 }
1908 if (optval) {
1909 inp->inp_flags |= IN6P_IPV6_V6ONLY;
1910 inp->inp_vflag &= ~INP_IPV4;
1911 } else {
1912 inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
1913 inp->inp_vflag |= INP_IPV4;
1914 }
1915 INP_WUNLOCK(inp);
1916 break;
1917 case IPV6_RECVTCLASS:
1918 /* cannot mix with RFC2292 XXX */
1919 OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
1920 break;
1921 case IPV6_AUTOFLOWLABEL:
1922 OPTSET(IN6P_AUTOFLOWLABEL);
1923 break;
1924
1925 case IPV6_ORIGDSTADDR:
1926 OPTSET2(INP_ORIGDSTADDR, optval);
1927 break;
1928 case IPV6_BINDANY:
1929 OPTSET(INP_BINDANY);
1930 break;
1931
1932 case IPV6_BINDMULTI:
1933 OPTSET2(INP_BINDMULTI, optval);
1934 break;
1935#ifdef RSS
1937 if ((optval >= 0) &&
1938 (optval < rss_getnumbuckets())) {
1939 INP_WLOCK(inp);
1940 inp->inp_rss_listen_bucket = optval;
1941 OPTSET2_N(INP_RSS_BUCKET_SET, 1);
1942 INP_WUNLOCK(inp);
1943 } else {
1944 error = EINVAL;
1945 }
1946 break;
1947#endif
1948 case IPV6_VLAN_PCP:
1949 if ((optval >= -1) && (optval <=
1950 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1951 if (optval == -1) {
1952 INP_WLOCK(inp);
1953 inp->inp_flags2 &=
1954 ~(INP_2PCP_SET |
1955 INP_2PCP_MASK);
1956 INP_WUNLOCK(inp);
1957 } else {
1958 INP_WLOCK(inp);
1959 inp->inp_flags2 |=
1960 INP_2PCP_SET;
1961 inp->inp_flags2 &=
1962 ~INP_2PCP_MASK;
1963 inp->inp_flags2 |=
1964 optval <<
1965 INP_2PCP_SHIFT;
1966 INP_WUNLOCK(inp);
1967 }
1968 } else
1969 error = EINVAL;
1970 break;
1971 }
1972 break;
1973
1974 case IPV6_TCLASS:
1975 case IPV6_DONTFRAG:
1976 case IPV6_USE_MIN_MTU:
1978 if (optlen != sizeof(optval)) {
1979 error = EINVAL;
1980 break;
1981 }
1982 error = sooptcopyin(sopt, &optval,
1983 sizeof optval, sizeof optval);
1984 if (error)
1985 break;
1986 {
1987 struct ip6_pktopts **optp;
1988 INP_WLOCK(inp);
1989 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1990 INP_WUNLOCK(inp);
1991 return (ECONNRESET);
1992 }
1993 optp = &inp->in6p_outputopts;
1994 error = ip6_pcbopt(optname,
1995 (u_char *)&optval, sizeof(optval),
1996 optp, (td != NULL) ? td->td_ucred :
1997 NULL, uproto);
1998 INP_WUNLOCK(inp);
1999 break;
2000 }
2001
2002 case IPV6_2292PKTINFO:
2003 case IPV6_2292HOPLIMIT:
2004 case IPV6_2292HOPOPTS:
2005 case IPV6_2292DSTOPTS:
2006 case IPV6_2292RTHDR:
2007 /* RFC 2292 */
2008 if (optlen != sizeof(int)) {
2009 error = EINVAL;
2010 break;
2011 }
2012 error = sooptcopyin(sopt, &optval,
2013 sizeof optval, sizeof optval);
2014 if (error)
2015 break;
2016 switch (optname) {
2017 case IPV6_2292PKTINFO:
2018 OPTSET2292(IN6P_PKTINFO);
2019 break;
2020 case IPV6_2292HOPLIMIT:
2021 OPTSET2292(IN6P_HOPLIMIT);
2022 break;
2023 case IPV6_2292HOPOPTS:
2024 /*
2025 * Check super-user privilege.
2026 * See comments for IPV6_RECVHOPOPTS.
2027 */
2028 if (td != NULL) {
2029 error = priv_check(td,
2030 PRIV_NETINET_SETHDROPTS);
2031 if (error)
2032 return (error);
2033 }
2034 OPTSET2292(IN6P_HOPOPTS);
2035 break;
2036 case IPV6_2292DSTOPTS:
2037 if (td != NULL) {
2038 error = priv_check(td,
2039 PRIV_NETINET_SETHDROPTS);
2040 if (error)
2041 return (error);
2042 }
2043 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
2044 break;
2045 case IPV6_2292RTHDR:
2046 OPTSET2292(IN6P_RTHDR);
2047 break;
2048 }
2049 break;
2050 case IPV6_PKTINFO:
2051 case IPV6_HOPOPTS:
2052 case IPV6_RTHDR:
2053 case IPV6_DSTOPTS:
2054 case IPV6_RTHDRDSTOPTS:
2055 case IPV6_NEXTHOP:
2056 {
2057 /* new advanced API (RFC3542) */
2058 u_char *optbuf;
2059 u_char optbuf_storage[MCLBYTES];
2060 int optlen;
2061 struct ip6_pktopts **optp;
2062
2063 /* cannot mix with RFC2292 */
2064 if (OPTBIT(IN6P_RFC2292)) {
2065 error = EINVAL;
2066 break;
2067 }
2068
2069 /*
2070 * We only ensure valsize is not too large
2071 * here. Further validation will be done
2072 * later.
2073 */
2074 error = sooptcopyin(sopt, optbuf_storage,
2075 sizeof(optbuf_storage), 0);
2076 if (error)
2077 break;
2078 optlen = sopt->sopt_valsize;
2079 optbuf = optbuf_storage;
2080 INP_WLOCK(inp);
2081 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
2082 INP_WUNLOCK(inp);
2083 return (ECONNRESET);
2084 }
2085 optp = &inp->in6p_outputopts;
2086 error = ip6_pcbopt(optname, optbuf, optlen,
2087 optp, (td != NULL) ? td->td_ucred : NULL,
2088 uproto);
2089 INP_WUNLOCK(inp);
2090 break;
2091 }
2092#undef OPTSET
2093
2094 case IPV6_MULTICAST_IF:
2097 case IPV6_JOIN_GROUP:
2098 case IPV6_LEAVE_GROUP:
2099 case IPV6_MSFILTER:
2100 case MCAST_BLOCK_SOURCE:
2101 case MCAST_UNBLOCK_SOURCE:
2102 case MCAST_JOIN_GROUP:
2103 case MCAST_LEAVE_GROUP:
2104 case MCAST_JOIN_SOURCE_GROUP:
2105 case MCAST_LEAVE_SOURCE_GROUP:
2106 error = ip6_setmoptions(inp, sopt);
2107 break;
2108
2109 case IPV6_PORTRANGE:
2110 error = sooptcopyin(sopt, &optval,
2111 sizeof optval, sizeof optval);
2112 if (error)
2113 break;
2114
2115 INP_WLOCK(inp);
2116 switch (optval) {
2118 inp->inp_flags &= ~(INP_LOWPORT);
2119 inp->inp_flags &= ~(INP_HIGHPORT);
2120 break;
2121
2123 inp->inp_flags &= ~(INP_LOWPORT);
2124 inp->inp_flags |= INP_HIGHPORT;
2125 break;
2126
2127 case IPV6_PORTRANGE_LOW:
2128 inp->inp_flags &= ~(INP_HIGHPORT);
2129 inp->inp_flags |= INP_LOWPORT;
2130 break;
2131
2132 default:
2133 error = EINVAL;
2134 break;
2135 }
2136 INP_WUNLOCK(inp);
2137 break;
2138
2139#if defined(IPSEC) || defined(IPSEC_SUPPORT)
2140 case IPV6_IPSEC_POLICY:
2141 if (IPSEC_ENABLED(ipv6)) {
2142 error = IPSEC_PCBCTL(ipv6, inp, sopt);
2143 break;
2144 }
2145 /* FALLTHROUGH */
2146#endif /* IPSEC */
2147
2148 default:
2149 error = ENOPROTOOPT;
2150 break;
2151 }
2152 break;
2153
2154 case SOPT_GET:
2155 switch (optname) {
2157#ifdef IPV6_PKTOPTIONS
2158 case IPV6_PKTOPTIONS:
2159#endif
2160 /*
2161 * RFC3542 (effectively) deprecated the
2162 * semantics of the 2292-style pktoptions.
2163 * Since it was not reliable in nature (i.e.,
2164 * applications had to expect the lack of some
2165 * information after all), it would make sense
2166 * to simplify this part by always returning
2167 * empty data.
2168 */
2169 sopt->sopt_valsize = 0;
2170 break;
2171
2172 case IPV6_RECVHOPOPTS:
2173 case IPV6_RECVDSTOPTS:
2175 case IPV6_UNICAST_HOPS:
2176 case IPV6_RECVPKTINFO:
2177 case IPV6_RECVHOPLIMIT:
2178 case IPV6_RECVRTHDR:
2179 case IPV6_RECVPATHMTU:
2180
2181 case IPV6_V6ONLY:
2182 case IPV6_PORTRANGE:
2183 case IPV6_RECVTCLASS:
2184 case IPV6_AUTOFLOWLABEL:
2185 case IPV6_BINDANY:
2186 case IPV6_FLOWID:
2187 case IPV6_FLOWTYPE:
2188 case IPV6_RECVFLOWID:
2189#ifdef RSS
2190 case IPV6_RSSBUCKETID:
2192#endif
2193 case IPV6_BINDMULTI:
2194 case IPV6_VLAN_PCP:
2195 switch (optname) {
2196 case IPV6_RECVHOPOPTS:
2197 optval = OPTBIT(IN6P_HOPOPTS);
2198 break;
2199
2200 case IPV6_RECVDSTOPTS:
2201 optval = OPTBIT(IN6P_DSTOPTS);
2202 break;
2203
2205 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
2206 break;
2207
2208 case IPV6_UNICAST_HOPS:
2209 optval = inp->in6p_hops;
2210 break;
2211
2212 case IPV6_RECVPKTINFO:
2213 optval = OPTBIT(IN6P_PKTINFO);
2214 break;
2215
2216 case IPV6_RECVHOPLIMIT:
2217 optval = OPTBIT(IN6P_HOPLIMIT);
2218 break;
2219
2220 case IPV6_RECVRTHDR:
2221 optval = OPTBIT(IN6P_RTHDR);
2222 break;
2223
2224 case IPV6_RECVPATHMTU:
2225 optval = OPTBIT(IN6P_MTU);
2226 break;
2227
2228 case IPV6_V6ONLY:
2229 optval = OPTBIT(IN6P_IPV6_V6ONLY);
2230 break;
2231
2232 case IPV6_PORTRANGE:
2233 {
2234 int flags;
2235 flags = inp->inp_flags;
2236 if (flags & INP_HIGHPORT)
2237 optval = IPV6_PORTRANGE_HIGH;
2238 else if (flags & INP_LOWPORT)
2239 optval = IPV6_PORTRANGE_LOW;
2240 else
2241 optval = 0;
2242 break;
2243 }
2244 case IPV6_RECVTCLASS:
2245 optval = OPTBIT(IN6P_TCLASS);
2246 break;
2247
2248 case IPV6_AUTOFLOWLABEL:
2249 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2250 break;
2251
2252 case IPV6_ORIGDSTADDR:
2253 optval = OPTBIT2(INP_ORIGDSTADDR);
2254 break;
2255
2256 case IPV6_BINDANY:
2257 optval = OPTBIT(INP_BINDANY);
2258 break;
2259
2260 case IPV6_FLOWID:
2261 optval = inp->inp_flowid;
2262 break;
2263
2264 case IPV6_FLOWTYPE:
2265 optval = inp->inp_flowtype;
2266 break;
2267
2268 case IPV6_RECVFLOWID:
2269 optval = OPTBIT2(INP_RECVFLOWID);
2270 break;
2271#ifdef RSS
2272 case IPV6_RSSBUCKETID:
2273 retval =
2274 rss_hash2bucket(inp->inp_flowid,
2275 inp->inp_flowtype,
2276 &rss_bucket);
2277 if (retval == 0)
2278 optval = rss_bucket;
2279 else
2280 error = EINVAL;
2281 break;
2282
2284 optval = OPTBIT2(INP_RECVRSSBUCKETID);
2285 break;
2286#endif
2287
2288 case IPV6_BINDMULTI:
2289 optval = OPTBIT2(INP_BINDMULTI);
2290 break;
2291
2292 case IPV6_VLAN_PCP:
2293 if (OPTBIT2(INP_2PCP_SET)) {
2294 optval = (inp->inp_flags2 &
2295 INP_2PCP_MASK) >>
2296 INP_2PCP_SHIFT;
2297 } else {
2298 optval = -1;
2299 }
2300 break;
2301 }
2302
2303 if (error)
2304 break;
2305 error = sooptcopyout(sopt, &optval,
2306 sizeof optval);
2307 break;
2308
2309 case IPV6_PATHMTU:
2310 {
2311 u_long pmtu = 0;
2312 struct ip6_mtuinfo mtuinfo;
2313 struct in6_addr addr;
2314
2315 if (!(so->so_state & SS_ISCONNECTED))
2316 return (ENOTCONN);
2317 /*
2318 * XXX: we dot not consider the case of source
2319 * routing, or optional information to specify
2320 * the outgoing interface.
2321 * Copy faddr out of inp to avoid holding lock
2322 * on inp during route lookup.
2323 */
2324 INP_RLOCK(inp);
2325 bcopy(&inp->in6p_faddr, &addr, sizeof(addr));
2326 INP_RUNLOCK(inp);
2327 error = ip6_getpmtu_ctl(so->so_fibnum,
2328 &addr, &pmtu);
2329 if (error)
2330 break;
2331 if (pmtu > IPV6_MAXPACKET)
2332 pmtu = IPV6_MAXPACKET;
2333
2334 bzero(&mtuinfo, sizeof(mtuinfo));
2335 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2336 optdata = (void *)&mtuinfo;
2337 optdatalen = sizeof(mtuinfo);
2338 error = sooptcopyout(sopt, optdata,
2339 optdatalen);
2340 break;
2341 }
2342
2343 case IPV6_2292PKTINFO:
2344 case IPV6_2292HOPLIMIT:
2345 case IPV6_2292HOPOPTS:
2346 case IPV6_2292RTHDR:
2347 case IPV6_2292DSTOPTS:
2348 switch (optname) {
2349 case IPV6_2292PKTINFO:
2350 optval = OPTBIT(IN6P_PKTINFO);
2351 break;
2352 case IPV6_2292HOPLIMIT:
2353 optval = OPTBIT(IN6P_HOPLIMIT);
2354 break;
2355 case IPV6_2292HOPOPTS:
2356 optval = OPTBIT(IN6P_HOPOPTS);
2357 break;
2358 case IPV6_2292RTHDR:
2359 optval = OPTBIT(IN6P_RTHDR);
2360 break;
2361 case IPV6_2292DSTOPTS:
2362 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2363 break;
2364 }
2365 error = sooptcopyout(sopt, &optval,
2366 sizeof optval);
2367 break;
2368 case IPV6_PKTINFO:
2369 case IPV6_HOPOPTS:
2370 case IPV6_RTHDR:
2371 case IPV6_DSTOPTS:
2372 case IPV6_RTHDRDSTOPTS:
2373 case IPV6_NEXTHOP:
2374 case IPV6_TCLASS:
2375 case IPV6_DONTFRAG:
2376 case IPV6_USE_MIN_MTU:
2378 error = ip6_getpcbopt(inp, optname, sopt);
2379 break;
2380
2381 case IPV6_MULTICAST_IF:
2384 case IPV6_MSFILTER:
2385 error = ip6_getmoptions(inp, sopt);
2386 break;
2387
2388#if defined(IPSEC) || defined(IPSEC_SUPPORT)
2389 case IPV6_IPSEC_POLICY:
2390 if (IPSEC_ENABLED(ipv6)) {
2391 error = IPSEC_PCBCTL(ipv6, inp, sopt);
2392 break;
2393 }
2394 /* FALLTHROUGH */
2395#endif /* IPSEC */
2396 default:
2397 error = ENOPROTOOPT;
2398 break;
2399 }
2400 break;
2401 }
2402 }
2403 return (error);
2404}
2405
2406int
2407ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2408{
2409 int error = 0, optval, optlen;
2410 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2411 struct inpcb *inp = sotoinpcb(so);
2412 int level, op, optname;
2413
2414 level = sopt->sopt_level;
2415 op = sopt->sopt_dir;
2416 optname = sopt->sopt_name;
2417 optlen = sopt->sopt_valsize;
2418
2419 if (level != IPPROTO_IPV6) {
2420 return (EINVAL);
2421 }
2422
2423 switch (optname) {
2424 case IPV6_CHECKSUM:
2425 /*
2426 * For ICMPv6 sockets, no modification allowed for checksum
2427 * offset, permit "no change" values to help existing apps.
2428 *
2429 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2430 * for an ICMPv6 socket will fail."
2431 * The current behavior does not meet RFC3542.
2432 */
2433 switch (op) {
2434 case SOPT_SET:
2435 if (optlen != sizeof(int)) {
2436 error = EINVAL;
2437 break;
2438 }
2439 error = sooptcopyin(sopt, &optval, sizeof(optval),
2440 sizeof(optval));
2441 if (error)
2442 break;
2443 if (optval < -1 || (optval % 2) != 0) {
2444 /*
2445 * The API assumes non-negative even offset
2446 * values or -1 as a special value.
2447 */
2448 error = EINVAL;
2449 } else if (so->so_proto->pr_protocol ==
2450 IPPROTO_ICMPV6) {
2451 if (optval != icmp6off)
2452 error = EINVAL;
2453 } else
2454 inp->in6p_cksum = optval;
2455 break;
2456
2457 case SOPT_GET:
2458 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2459 optval = icmp6off;
2460 else
2461 optval = inp->in6p_cksum;
2462
2463 error = sooptcopyout(sopt, &optval, sizeof(optval));
2464 break;
2465
2466 default:
2467 error = EINVAL;
2468 break;
2469 }
2470 break;
2471
2472 default:
2473 error = ENOPROTOOPT;
2474 break;
2475 }
2476
2477 return (error);
2478}
2479
2480/*
2481 * Set up IP6 options in pcb for insertion in output packets or
2482 * specifying behavior of outgoing packets.
2483 */
2484static int
2485ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2486 struct socket *so, struct sockopt *sopt)
2487{
2488 struct ip6_pktopts *opt = *pktopt;
2489 int error = 0;
2490 struct thread *td = sopt->sopt_td;
2491 struct epoch_tracker et;
2492
2493 /* turn off any old options. */
2494 if (opt) {
2495#ifdef DIAGNOSTIC
2496 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2497 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2499 printf("ip6_pcbopts: all specified options are cleared.\n");
2500#endif
2501 ip6_clearpktopts(opt, -1);
2502 } else {
2503 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2504 if (opt == NULL)
2505 return (ENOMEM);
2506 }
2507 *pktopt = NULL;
2508
2509 if (!m || m->m_len == 0) {
2510 /*
2511 * Only turning off any previous options, regardless of
2512 * whether the opt is just created or given.
2513 */
2514 free(opt, M_IP6OPT);
2515 return (0);
2516 }
2517
2518 /* set options specified by user. */
2519 NET_EPOCH_ENTER(et);
2520 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2521 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2522 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2523 free(opt, M_IP6OPT);
2524 NET_EPOCH_EXIT(et);
2525 return (error);
2526 }
2527 NET_EPOCH_EXIT(et);
2528 *pktopt = opt;
2529 return (0);
2530}
2531
2532/*
2533 * initialize ip6_pktopts. beware that there are non-zero default values in
2534 * the struct.
2535 */
2536void
2538{
2539
2540 bzero(opt, sizeof(*opt));
2541 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2542 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2545}
2546
2547static int
2548ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2549 struct ucred *cred, int uproto)
2550{
2551 struct epoch_tracker et;
2552 struct ip6_pktopts *opt;
2553 int ret;
2554
2555 if (*pktopt == NULL) {
2556 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2557 M_NOWAIT);
2558 if (*pktopt == NULL)
2559 return (ENOBUFS);
2560 ip6_initpktopts(*pktopt);
2561 }
2562 opt = *pktopt;
2563
2564 NET_EPOCH_ENTER(et);
2565 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto);
2566 NET_EPOCH_EXIT(et);
2567
2568 return (ret);
2569}
2570
2571#define GET_PKTOPT_VAR(field, lenexpr) do { \
2572 if (pktopt && pktopt->field) { \
2573 INP_RUNLOCK(inp); \
2574 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \
2575 malloc_optdata = true; \
2576 INP_RLOCK(inp); \
2577 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \
2578 INP_RUNLOCK(inp); \
2579 free(optdata, M_TEMP); \
2580 return (ECONNRESET); \
2581 } \
2582 pktopt = inp->in6p_outputopts; \
2583 if (pktopt && pktopt->field) { \
2584 optdatalen = min(lenexpr, sopt->sopt_valsize); \
2585 bcopy(pktopt->field, optdata, optdatalen); \
2586 } else { \
2587 free(optdata, M_TEMP); \
2588 optdata = NULL; \
2589 malloc_optdata = false; \
2590 } \
2591 } \
2592} while(0)
2593
2594#define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \
2595 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
2596
2597#define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \
2598 pktopt->field->sa_len)
2599
2600static int
2601ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt)
2602{
2603 void *optdata = NULL;
2604 bool malloc_optdata = false;
2605 int optdatalen = 0;
2606 int error = 0;
2607 struct in6_pktinfo null_pktinfo;
2608 int deftclass = 0, on;
2609 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2610 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2611 struct ip6_pktopts *pktopt;
2612
2613 INP_RLOCK(inp);
2614 pktopt = inp->in6p_outputopts;
2615
2616 switch (optname) {
2617 case IPV6_PKTINFO:
2618 optdata = (void *)&null_pktinfo;
2619 if (pktopt && pktopt->ip6po_pktinfo) {
2620 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
2621 sizeof(null_pktinfo));
2622 in6_clearscope(&null_pktinfo.ipi6_addr);
2623 } else {
2624 /* XXX: we don't have to do this every time... */
2625 bzero(&null_pktinfo, sizeof(null_pktinfo));
2626 }
2627 optdatalen = sizeof(struct in6_pktinfo);
2628 break;
2629 case IPV6_TCLASS:
2630 if (pktopt && pktopt->ip6po_tclass >= 0)
2631 deftclass = pktopt->ip6po_tclass;
2632 optdata = (void *)&deftclass;
2633 optdatalen = sizeof(int);
2634 break;
2635 case IPV6_HOPOPTS:
2636 GET_PKTOPT_EXT_HDR(ip6po_hbh);
2637 break;
2638 case IPV6_RTHDR:
2640 break;
2641 case IPV6_RTHDRDSTOPTS:
2642 GET_PKTOPT_EXT_HDR(ip6po_dest1);
2643 break;
2644 case IPV6_DSTOPTS:
2645 GET_PKTOPT_EXT_HDR(ip6po_dest2);
2646 break;
2647 case IPV6_NEXTHOP:
2649 break;
2650 case IPV6_USE_MIN_MTU:
2651 if (pktopt)
2652 defminmtu = pktopt->ip6po_minmtu;
2653 optdata = (void *)&defminmtu;
2654 optdatalen = sizeof(int);
2655 break;
2656 case IPV6_DONTFRAG:
2657 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2658 on = 1;
2659 else
2660 on = 0;
2661 optdata = (void *)&on;
2662 optdatalen = sizeof(on);
2663 break;
2665 if (pktopt)
2666 defpreftemp = pktopt->ip6po_prefer_tempaddr;
2667 optdata = (void *)&defpreftemp;
2668 optdatalen = sizeof(int);
2669 break;
2670 default: /* should not happen */
2671#ifdef DIAGNOSTIC
2672 panic("ip6_getpcbopt: unexpected option\n");
2673#endif
2674 INP_RUNLOCK(inp);
2675 return (ENOPROTOOPT);
2676 }
2677 INP_RUNLOCK(inp);
2678
2679 error = sooptcopyout(sopt, optdata, optdatalen);
2680 if (malloc_optdata)
2681 free(optdata, M_TEMP);
2682
2683 return (error);
2684}
2685
2686void
2687ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2688{
2689 if (pktopt == NULL)
2690 return;
2691
2692 if (optname == -1 || optname == IPV6_PKTINFO) {
2693 if (pktopt->ip6po_pktinfo)
2694 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2695 pktopt->ip6po_pktinfo = NULL;
2696 }
2697 if (optname == -1 || optname == IPV6_HOPLIMIT)
2698 pktopt->ip6po_hlim = -1;
2699 if (optname == -1 || optname == IPV6_TCLASS)
2700 pktopt->ip6po_tclass = -1;
2701 if (optname == -1 || optname == IPV6_NEXTHOP) {
2702 if (pktopt->ip6po_nextroute.ro_nh) {
2703 NH_FREE(pktopt->ip6po_nextroute.ro_nh);
2704 pktopt->ip6po_nextroute.ro_nh = NULL;
2705 }
2706 if (pktopt->ip6po_nexthop)
2707 free(pktopt->ip6po_nexthop, M_IP6OPT);
2708 pktopt->ip6po_nexthop = NULL;
2709 }
2710 if (optname == -1 || optname == IPV6_HOPOPTS) {
2711 if (pktopt->ip6po_hbh)
2712 free(pktopt->ip6po_hbh, M_IP6OPT);
2713 pktopt->ip6po_hbh = NULL;
2714 }
2715 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2716 if (pktopt->ip6po_dest1)
2717 free(pktopt->ip6po_dest1, M_IP6OPT);
2718 pktopt->ip6po_dest1 = NULL;
2719 }
2720 if (optname == -1 || optname == IPV6_RTHDR) {
2721 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2722 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2723 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2724 if (pktopt->ip6po_route.ro_nh) {
2725 NH_FREE(pktopt->ip6po_route.ro_nh);
2726 pktopt->ip6po_route.ro_nh = NULL;
2727 }
2728 }
2729 if (optname == -1 || optname == IPV6_DSTOPTS) {
2730 if (pktopt->ip6po_dest2)
2731 free(pktopt->ip6po_dest2, M_IP6OPT);
2732 pktopt->ip6po_dest2 = NULL;
2733 }
2734}
2735
2736#define PKTOPT_EXTHDRCPY(type) \
2737do {\
2738 if (src->type) {\
2739 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2740 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2741 if (dst->type == NULL)\
2742 goto bad;\
2743 bcopy(src->type, dst->type, hlen);\
2744 }\
2745} while (/*CONSTCOND*/ 0)
2746
2747static int
2748copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2749{
2750 if (dst == NULL || src == NULL) {
2751 printf("ip6_clearpktopts: invalid argument\n");
2752 return (EINVAL);
2753 }
2754
2755 dst->ip6po_hlim = src->ip6po_hlim;
2756 dst->ip6po_tclass = src->ip6po_tclass;
2757 dst->ip6po_flags = src->ip6po_flags;
2758 dst->ip6po_minmtu = src->ip6po_minmtu;
2760 if (src->ip6po_pktinfo) {
2761 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2762 M_IP6OPT, canwait);
2763 if (dst->ip6po_pktinfo == NULL)
2764 goto bad;
2765 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2766 }
2767 if (src->ip6po_nexthop) {
2768 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2769 M_IP6OPT, canwait);
2770 if (dst->ip6po_nexthop == NULL)
2771 goto bad;
2772 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2773 src->ip6po_nexthop->sa_len);
2774 }
2775 PKTOPT_EXTHDRCPY(ip6po_hbh);
2776 PKTOPT_EXTHDRCPY(ip6po_dest1);
2777 PKTOPT_EXTHDRCPY(ip6po_dest2);
2778 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2779 return (0);
2780
2781 bad:
2782 ip6_clearpktopts(dst, -1);
2783 return (ENOBUFS);
2784}
2785#undef PKTOPT_EXTHDRCPY
2786
2787struct ip6_pktopts *
2788ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2789{
2790 int error;
2791 struct ip6_pktopts *dst;
2792
2793 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2794 if (dst == NULL)
2795 return (NULL);
2796 ip6_initpktopts(dst);
2797
2798 if ((error = copypktopts(dst, src, canwait)) != 0) {
2799 free(dst, M_IP6OPT);
2800 return (NULL);
2801 }
2802
2803 return (dst);
2804}
2805
2806void
2808{
2809 if (pktopt == NULL)
2810 return;
2811
2812 ip6_clearpktopts(pktopt, -1);
2813
2814 free(pktopt, M_IP6OPT);
2815}
2816
2817/*
2818 * Set IPv6 outgoing packet options based on advanced API.
2819 */
2820int
2821ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2822 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2823{
2824 struct cmsghdr *cm = NULL;
2825
2826 if (control == NULL || opt == NULL)
2827 return (EINVAL);
2828
2829 /*
2830 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we
2831 * are in the network epoch here.
2832 */
2833 NET_EPOCH_ASSERT();
2834
2835 ip6_initpktopts(opt);
2836 if (stickyopt) {
2837 int error;
2838
2839 /*
2840 * If stickyopt is provided, make a local copy of the options
2841 * for this particular packet, then override them by ancillary
2842 * objects.
2843 * XXX: copypktopts() does not copy the cached route to a next
2844 * hop (if any). This is not very good in terms of efficiency,
2845 * but we can allow this since this option should be rarely
2846 * used.
2847 */
2848 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2849 return (error);
2850 }
2851
2852 /*
2853 * XXX: Currently, we assume all the optional information is stored
2854 * in a single mbuf.
2855 */
2856 if (control->m_next)
2857 return (EINVAL);
2858
2859 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2860 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2861 int error;
2862
2863 if (control->m_len < CMSG_LEN(0))
2864 return (EINVAL);
2865
2866 cm = mtod(control, struct cmsghdr *);
2867 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2868 return (EINVAL);
2869 if (cm->cmsg_level != IPPROTO_IPV6)
2870 continue;
2871
2872 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2873 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2874 if (error)
2875 return (error);
2876 }
2877
2878 return (0);
2879}
2880
2881/*
2882 * Set a particular packet option, as a sticky option or an ancillary data
2883 * item. "len" can be 0 only when it's a sticky option.
2884 * We have 4 cases of combination of "sticky" and "cmsg":
2885 * "sticky=0, cmsg=0": impossible
2886 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2887 * "sticky=1, cmsg=0": RFC3542 socket option
2888 * "sticky=1, cmsg=1": RFC2292 socket option
2889 */
2890static int
2891ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2892 struct ucred *cred, int sticky, int cmsg, int uproto)
2893{
2894 int minmtupolicy, preftemp;
2895 int error;
2896
2897 NET_EPOCH_ASSERT();
2898
2899 if (!sticky && !cmsg) {
2900#ifdef DIAGNOSTIC
2901 printf("ip6_setpktopt: impossible case\n");
2902#endif
2903 return (EINVAL);
2904 }
2905
2906 /*
2907 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2908 * not be specified in the context of RFC3542. Conversely,
2909 * RFC3542 types should not be specified in the context of RFC2292.
2910 */
2911 if (!cmsg) {
2912 switch (optname) {
2913 case IPV6_2292PKTINFO:
2914 case IPV6_2292HOPLIMIT:
2915 case IPV6_2292NEXTHOP:
2916 case IPV6_2292HOPOPTS:
2917 case IPV6_2292DSTOPTS:
2918 case IPV6_2292RTHDR:
2920 return (ENOPROTOOPT);
2921 }
2922 }
2923 if (sticky && cmsg) {
2924 switch (optname) {
2925 case IPV6_PKTINFO:
2926 case IPV6_HOPLIMIT:
2927 case IPV6_NEXTHOP:
2928 case IPV6_HOPOPTS:
2929 case IPV6_DSTOPTS:
2930 case IPV6_RTHDRDSTOPTS:
2931 case IPV6_RTHDR:
2932 case IPV6_USE_MIN_MTU:
2933 case IPV6_DONTFRAG:
2934 case IPV6_TCLASS:
2935 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2936 return (ENOPROTOOPT);
2937 }
2938 }
2939
2940 switch (optname) {
2941 case IPV6_2292PKTINFO:
2942 case IPV6_PKTINFO:
2943 {
2944 struct ifnet *ifp = NULL;
2945 struct in6_pktinfo *pktinfo;
2946
2947 if (len != sizeof(struct in6_pktinfo))
2948 return (EINVAL);
2949
2950 pktinfo = (struct in6_pktinfo *)buf;
2951
2952 /*
2953 * An application can clear any sticky IPV6_PKTINFO option by
2954 * doing a "regular" setsockopt with ipi6_addr being
2955 * in6addr_any and ipi6_ifindex being zero.
2956 * [RFC 3542, Section 6]
2957 */
2958 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2959 pktinfo->ipi6_ifindex == 0 &&
2961 ip6_clearpktopts(opt, optname);
2962 break;
2963 }
2964
2965 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2966 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2967 return (EINVAL);
2968 }
2969 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
2970 return (EINVAL);
2971 /* validate the interface index if specified. */
2972 if (pktinfo->ipi6_ifindex) {
2973 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2974 if (ifp == NULL)
2975 return (ENXIO);
2976 }
2977 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
2978 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
2979 return (ENETDOWN);
2980
2981 if (ifp != NULL &&
2982 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2983 struct in6_ifaddr *ia;
2984
2985 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
2986 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
2987 if (ia == NULL)
2988 return (EADDRNOTAVAIL);
2989 ifa_free(&ia->ia_ifa);
2990 }
2991 /*
2992 * We store the address anyway, and let in6_selectsrc()
2993 * validate the specified address. This is because ipi6_addr
2994 * may not have enough information about its scope zone, and
2995 * we may need additional information (such as outgoing
2996 * interface or the scope zone of a destination address) to
2997 * disambiguate the scope.
2998 * XXX: the delay of the validation may confuse the
2999 * application when it is used as a sticky option.
3000 */
3001 if (opt->ip6po_pktinfo == NULL) {
3002 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
3003 M_IP6OPT, M_NOWAIT);
3004 if (opt->ip6po_pktinfo == NULL)
3005 return (ENOBUFS);
3006 }
3007 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
3008 break;
3009 }
3010
3011 case IPV6_2292HOPLIMIT:
3012 case IPV6_HOPLIMIT:
3013 {
3014 int *hlimp;
3015
3016 /*
3017 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3018 * to simplify the ordering among hoplimit options.
3019 */
3020 if (optname == IPV6_HOPLIMIT && sticky)
3021 return (ENOPROTOOPT);
3022
3023 if (len != sizeof(int))
3024 return (EINVAL);
3025 hlimp = (int *)buf;
3026 if (*hlimp < -1 || *hlimp > 255)
3027 return (EINVAL);
3028
3029 opt->ip6po_hlim = *hlimp;
3030 break;
3031 }
3032
3033 case IPV6_TCLASS:
3034 {
3035 int tclass;
3036
3037 if (len != sizeof(int))
3038 return (EINVAL);
3039 tclass = *(int *)buf;
3040 if (tclass < -1 || tclass > 255)
3041 return (EINVAL);
3042
3043 opt->ip6po_tclass = tclass;
3044 break;
3045 }
3046
3047 case IPV6_2292NEXTHOP:
3048 case IPV6_NEXTHOP:
3049 if (cred != NULL) {
3050 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3051 if (error)
3052 return (error);
3053 }
3054
3055 if (len == 0) { /* just remove the option */
3057 break;
3058 }
3059
3060 /* check if cmsg_len is large enough for sa_len */
3061 if (len < sizeof(struct sockaddr) || len < *buf)
3062 return (EINVAL);
3063
3064 switch (((struct sockaddr *)buf)->sa_family) {
3065 case AF_INET6:
3066 {
3067 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3068 int error;
3069
3070 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3071 return (EINVAL);
3072
3075 return (EINVAL);
3076 }
3077 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
3078 != 0) {
3079 return (error);
3080 }
3081 break;
3082 }
3083 case AF_LINK: /* should eventually be supported */
3084 default:
3085 return (EAFNOSUPPORT);
3086 }
3087
3088 /* turn off the previous option, then set the new option. */
3090 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3091 if (opt->ip6po_nexthop == NULL)
3092 return (ENOBUFS);
3093 bcopy(buf, opt->ip6po_nexthop, *buf);
3094 break;
3095
3096 case IPV6_2292HOPOPTS:
3097 case IPV6_HOPOPTS:
3098 {
3099 struct ip6_hbh *hbh;
3100 int hbhlen;
3101
3102 /*
3103 * XXX: We don't allow a non-privileged user to set ANY HbH
3104 * options, since per-option restriction has too much
3105 * overhead.
3106 */
3107 if (cred != NULL) {
3108 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3109 if (error)
3110 return (error);
3111 }
3112
3113 if (len == 0) {
3115 break; /* just remove the option */
3116 }
3117
3118 /* message length validation */
3119 if (len < sizeof(struct ip6_hbh))
3120 return (EINVAL);
3121 hbh = (struct ip6_hbh *)buf;
3122 hbhlen = (hbh->ip6h_len + 1) << 3;
3123 if (len != hbhlen)
3124 return (EINVAL);
3125
3126 /* turn off the previous option, then set the new option. */
3128 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3129 if (opt->ip6po_hbh == NULL)
3130 return (ENOBUFS);
3131 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3132
3133 break;
3134 }
3135
3136 case IPV6_2292DSTOPTS:
3137 case IPV6_DSTOPTS:
3138 case IPV6_RTHDRDSTOPTS:
3139 {
3140 struct ip6_dest *dest, **newdest = NULL;
3141 int destlen;
3142
3143 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
3144 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
3145 if (error)
3146 return (error);
3147 }
3148
3149 if (len == 0) {
3150 ip6_clearpktopts(opt, optname);
3151 break; /* just remove the option */
3152 }
3153
3154 /* message length validation */
3155 if (len < sizeof(struct ip6_dest))
3156 return (EINVAL);
3157 dest = (struct ip6_dest *)buf;
3158 destlen = (dest->ip6d_len + 1) << 3;
3159 if (len != destlen)
3160 return (EINVAL);
3161
3162 /*
3163 * Determine the position that the destination options header
3164 * should be inserted; before or after the routing header.
3165 */
3166 switch (optname) {
3167 case IPV6_2292DSTOPTS:
3168 /*
3169 * The old advacned API is ambiguous on this point.
3170 * Our approach is to determine the position based
3171 * according to the existence of a routing header.
3172 * Note, however, that this depends on the order of the
3173 * extension headers in the ancillary data; the 1st
3174 * part of the destination options header must appear
3175 * before the routing header in the ancillary data,
3176 * too.
3177 * RFC3542 solved the ambiguity by introducing
3178 * separate ancillary data or option types.
3179 */
3180 if (opt->ip6po_rthdr == NULL)
3181 newdest = &opt->ip6po_dest1;
3182 else
3183 newdest = &opt->ip6po_dest2;
3184 break;
3185 case IPV6_RTHDRDSTOPTS:
3186 newdest = &opt->ip6po_dest1;
3187 break;
3188 case IPV6_DSTOPTS:
3189 newdest = &opt->ip6po_dest2;
3190 break;
3191 }
3192
3193 /* turn off the previous option, then set the new option. */
3194 ip6_clearpktopts(opt, optname);
3195 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3196 if (*newdest == NULL)
3197 return (ENOBUFS);
3198 bcopy(dest, *newdest, destlen);
3199
3200 break;
3201 }
3202
3203 case IPV6_2292RTHDR:
3204 case IPV6_RTHDR:
3205 {
3206 struct ip6_rthdr *rth;
3207 int rthlen;
3208
3209 if (len == 0) {
3211 break; /* just remove the option */
3212 }
3213
3214 /* message length validation */
3215 if (len < sizeof(struct ip6_rthdr))
3216 return (EINVAL);
3217 rth = (struct ip6_rthdr *)buf;
3218 rthlen = (rth->ip6r_len + 1) << 3;
3219 if (len != rthlen)
3220 return (EINVAL);
3221
3222 switch (rth->ip6r_type) {
3223 case IPV6_RTHDR_TYPE_0:
3224 if (rth->ip6r_len == 0) /* must contain one addr */
3225 return (EINVAL);
3226 if (rth->ip6r_len % 2) /* length must be even */
3227 return (EINVAL);
3228 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3229 return (EINVAL);
3230 break;
3231 default:
3232 return (EINVAL); /* not supported */
3233 }
3234
3235 /* turn off the previous option */
3237 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3238 if (opt->ip6po_rthdr == NULL)
3239 return (ENOBUFS);
3240 bcopy(rth, opt->ip6po_rthdr, rthlen);
3241
3242 break;
3243 }
3244
3245 case IPV6_USE_MIN_MTU:
3246 if (len != sizeof(int))
3247 return (EINVAL);
3248 minmtupolicy = *(int *)buf;
3249 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3250 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3251 minmtupolicy != IP6PO_MINMTU_ALL) {
3252 return (EINVAL);
3253 }
3254 opt->ip6po_minmtu = minmtupolicy;
3255 break;
3256
3257 case IPV6_DONTFRAG:
3258 if (len != sizeof(int))
3259 return (EINVAL);
3260
3261 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3262 /*
3263 * we ignore this option for TCP sockets.
3264 * (RFC3542 leaves this case unspecified.)
3265 */
3266 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3267 } else
3269 break;
3270
3272 if (len != sizeof(int))
3273 return (EINVAL);
3274 preftemp = *(int *)buf;
3275 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3276 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3277 preftemp != IP6PO_TEMPADDR_PREFER) {
3278 return (EINVAL);
3279 }
3280 opt->ip6po_prefer_tempaddr = preftemp;
3281 break;
3282
3283 default:
3284 return (ENOPROTOOPT);
3285 } /* end of switch */
3286
3287 return (0);
3288}
3289
3290/*
3291 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3292 * packet to the input queue of a specified interface. Note that this
3293 * calls the output routine of the loopback "driver", but with an interface
3294 * pointer that might NOT be &loif -- easier than replicating that code here.
3295 */
3296void
3297ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
3298{
3299 struct mbuf *copym;
3300 struct ip6_hdr *ip6;
3301
3302 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3303 if (copym == NULL)
3304 return;
3305
3306 /*
3307 * Make sure to deep-copy IPv6 header portion in case the data
3308 * is in an mbuf cluster, so that we can safely override the IPv6
3309 * header portion later.
3310 */
3311 if (!M_WRITABLE(copym) ||
3312 copym->m_len < sizeof(struct ip6_hdr)) {
3313 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3314 if (copym == NULL)
3315 return;
3316 }
3317 ip6 = mtod(copym, struct ip6_hdr *);
3318 /*
3319 * clear embedded scope identifiers if necessary.
3320 * in6_clearscope will touch the addresses only when necessary.
3321 */
3322 in6_clearscope(&ip6->ip6_src);
3323 in6_clearscope(&ip6->ip6_dst);
3324 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
3325 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
3326 CSUM_PSEUDO_HDR;
3327 copym->m_pkthdr.csum_data = 0xffff;
3328 }
3329 if_simloop(ifp, copym, AF_INET6, 0);
3330}
3331
3332/*
3333 * Chop IPv6 header off from the payload.
3334 */
3335static int
3336ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3337{
3338 struct mbuf *mh;
3339 struct ip6_hdr *ip6;
3340
3341 ip6 = mtod(m, struct ip6_hdr *);
3342 if (m->m_len > sizeof(*ip6)) {
3343 mh = m_gethdr(M_NOWAIT, MT_DATA);
3344 if (mh == NULL) {
3345 m_freem(m);
3346 return ENOBUFS;
3347 }
3348 m_move_pkthdr(mh, m);
3349 M_ALIGN(mh, sizeof(*ip6));
3350 m->m_len -= sizeof(*ip6);
3351 m->m_data += sizeof(*ip6);
3352 mh->m_next = m;
3353 m = mh;
3354 m->m_len = sizeof(*ip6);
3355 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3356 }
3357 exthdrs->ip6e_ip6 = m;
3358 return 0;
3359}
3360
3361/*
3362 * Compute IPv6 extension header length.
3363 */
3364int
3365ip6_optlen(struct inpcb *inp)
3366{
3367 int len;
3368
3369 if (!inp->in6p_outputopts)
3370 return 0;
3371
3372 len = 0;
3373#define elen(x) \
3374 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3375
3376 len += elen(inp->in6p_outputopts->ip6po_hbh);
3377 if (inp->in6p_outputopts->ip6po_rthdr)
3378 /* dest1 is valid with rthdr only */
3379 len += elen(inp->in6p_outputopts->ip6po_dest1);
3380 len += elen(inp->in6p_outputopts->ip6po_rthdr);
3381 len += elen(inp->in6p_outputopts->ip6po_dest2);
3382 return len;
3383#undef elen
3384}
struct in6_ifaddr * in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
Definition: in6.c:1902
int in6_localip(struct in6_addr *in6)
Definition: in6.c:1740
struct in6_ifaddr * in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr)
Definition: in6.c:1585
#define IPV6_RECVTCLASS
Definition: in6.h:481
#define IPV6_RTHDR_TYPE_0
Definition: in6.h:517
#define IPV6_PORTRANGE
Definition: in6.h:419
#define IPV6_PORTRANGE_HIGH
Definition: in6.h:566
#define IPV6_PORTRANGE_LOW
Definition: in6.h:567
#define IPV6_IPSEC_POLICY
Definition: in6.h:438
#define M_FASTFWD_OURS
Definition: in6.h:651
#define IPV6_AUTOFLOWLABEL
Definition: in6.h:483
#define IPV6_2292HOPOPTS
Definition: in6.h:426
#define IPV6_MULTICAST_LOOP
Definition: in6.h:416
#define IPV6_FLOWTYPE
Definition: in6.h:495
#define IPV6_DONTFRAG
Definition: in6.h:486
#define IPV6_NEXTHOP
Definition: in6.h:472
#define IPV6_HOPLIMIT
Definition: in6.h:471
#define IPV6_MSFILTER
Definition: in6.h:507
#define IPV6_V6ONLY
Definition: in6.h:433
#define IPV6_RECVRTHDRDSTOPTS
Definition: in6.h:457
#define IPV6_UNICAST_HOPS
Definition: in6.h:413
#define IPV6_JOIN_GROUP
Definition: in6.h:417
#define IPV6_RECVPKTINFO
Definition: in6.h:451
#define IPV6_RTHDR
Definition: in6.h:475
#define IN6_IS_ADDR_MC_LINKLOCAL(a)
Definition: in6.h:322
#define IN6_IS_ADDR_UNSPECIFIED(a)
Definition: in6.h:239
#define IPV6_BINDMULTI
Definition: in6.h:492
#define IPV6_2292PKTINFO
Definition: in6.h:423
#define IPV6_LEAVE_GROUP
Definition: in6.h:418
#define IPV6_TCLASS
Definition: in6.h:485
#define IPV6_CHECKSUM
Definition: in6.h:432
#define IPV6_2292PKTOPTIONS
Definition: in6.h:429
#define IPV6_2292NEXTHOP
Definition: in6.h:425
#define IPV6_PORTRANGE_DEFAULT
Definition: in6.h:565
#define M_IP6_NEXTHOP
Definition: in6.h:652
#define IPV6_MULTICAST_HOPS
Definition: in6.h:415
#define IPV6_2292HOPLIMIT
Definition: in6.h:424
#define IPV6_2292DSTOPTS
Definition: in6.h:427
#define IPV6_VLAN_PCP
Definition: in6.h:510
#define IPV6_USE_MIN_MTU
Definition: in6.h:460
#define IN6_ARE_ADDR_EQUAL(a, b)
Definition: in6.h:227
#define IPV6_RECVPATHMTU
Definition: in6.h:461
#define IPV6_BINDANY
Definition: in6.h:490
#define IPV6_PREFER_TEMPADDR
Definition: in6.h:488
#define M_LOOP
Definition: in6.h:657
#define IPV6_RECVDSTOPTS
Definition: in6.h:455
#define IPV6_RECVRTHDR
Definition: in6.h:453
#define IPV6_RSS_LISTEN_BUCKET
Definition: in6.h:493
#define IPV6_FLOWID
Definition: in6.h:494
#define IPV6_RTHDRDSTOPTS
Definition: in6.h:449
#define IPV6_ORIGDSTADDR
Definition: in6.h:500
#define IPV6_HOPOPTS
Definition: in6.h:473
#define IPV6_PKTINFO
Definition: in6.h:470
#define M_SKIP_FIREWALL
Definition: in6.h:654
#define IPV6_RSSBUCKETID
Definition: in6.h:496
#define ifatoia6(ifa)
Definition: in6.h:691
#define IPV6_DSTOPTS
Definition: in6.h:474
#define IPV6_RECVHOPOPTS
Definition: in6.h:454
#define IPV6_RECVFLOWID
Definition: in6.h:497
#define IN6_IS_ADDR_MULTICAST(a)
Definition: in6.h:304
#define IPV6_PATHMTU
Definition: in6.h:463
#define IPV6_2292RTHDR
Definition: in6.h:428
#define IN6_IS_ADDR_MC_INTFACELOCAL(a)
Definition: in6.h:319
#define IN6_IS_ADDR_MC_NODELOCAL(a)
Definition: in6.h:316
#define IPV6_RECVRSSBUCKETID
Definition: in6.h:498
#define IPV6_MULTICAST_IF
Definition: in6.h:414
#define IPV6_RECVHOPLIMIT
Definition: in6.h:452
struct nhop_object * fib6_lookup(uint32_t fibnum, const struct in6_addr *dst6, uint32_t scopeid, uint32_t flags, uint32_t flowid)
int ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
Definition: in6_mcast.c:1767
int ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
Definition: in6_mcast.c:2651
int in6_selectroute(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, struct ip6_moptions *mopts, struct route_in6 *ro, struct ifnet **retifp, struct nhop_object **retnh, u_int fibnum, uint32_t flowid)
Definition: in6_src.c:882
#define in6_ifstat_inc(ifp, tag)
Definition: in6_var.h:544
u_int32_t ip6_randomid(void)
Definition: ip6_id.c:252
int ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen, u_int32_t *rtalertp, u_int32_t *plenp)
Definition: ip6_input.c:1012
void ip6_notify_pmtu(struct inpcb *inp, struct sockaddr_in6 *dst, u_int32_t mtu)
Definition: ip6_input.c:1560
static struct sockaddr_in6 sin6
Definition: ip6_mroute.c:672
static int ip6_copyexthdr(struct mbuf **, caddr_t, int)
Definition: ip6_output.c:1292
#define OPTSET2292_EXCLUSIVE(bit)
#define GET_PKTOPT_EXT_HDR(field)
Definition: ip6_output.c:2594
static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, struct sockopt *)
Definition: ip6_output.c:2485
void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
Definition: ip6_output.c:2687
int ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, int fraglen, uint32_t id)
Definition: ip6_output.c:238
void in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
Definition: ip6_output.c:200
static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options")
void ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
Definition: ip6_output.c:3297
int ip6_ctloutput(struct socket *so, struct sockopt *sopt)
Definition: ip6_output.c:1595
static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, struct ucred *, int, int, int)
Definition: ip6_output.c:2891
#define OPTSET(bit)
static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, struct ucred *, int)
Definition: ip6_output.c:2548
static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int)
Definition: ip6_output.c:2748
#define OPTSET2292(bit)
#define MAKE_CHAIN(m, mp, p, i)
Definition: ip6_output.c:183
void ip6_initpktopts(struct ip6_pktopts *opt)
Definition: ip6_output.c:2537
#define elen(x)
int ip6_optlen(struct inpcb *inp)
Definition: ip6_output.c:3365
#define GET_PKTOPT_SOCKADDR(field)
Definition: ip6_output.c:2597
int ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct inpcb *inp)
Definition: ip6_output.c:409
static int ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, bool stamp_tag)
Definition: ip6_output.c:309
void ip6_freepcbopts(struct ip6_pktopts *pktopt)
Definition: ip6_output.c:2807
#define OPTSET2(bit, val)
int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
Definition: ip6_output.c:2821
struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, int canwait)
Definition: ip6_output.c:2788
__FBSDID("$FreeBSD$")
#define PKTOPT_EXTHDRCPY(type)
Definition: ip6_output.c:2736
#define OPTBIT2(bit)
static void ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, int plen, int optlen)
Definition: ip6_output.c:216
static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *)
Definition: ip6_output.c:1452
int in6_mcast_loop
Definition: in6_mcast.c:186
static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *)
Definition: ip6_output.c:2601
#define MAKE_EXTHDR(hp, mp, _ol)
Definition: ip6_output.c:164
#define OPTSET2_N(bit, val)
static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *)
Definition: ip6_output.c:3336
static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t)
Definition: ip6_output.c:1317
static int ip6_getpmtu(struct route_in6 *, int, struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, u_int)
Definition: ip6_output.c:1484
#define IPV6_PKTOPTIONS_MBUF_LIMIT
static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **)
Definition: ip6_output.c:1405
static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, u_long *, int *, u_int)
Definition: ip6_output.c:1541
#define OPTBIT(bit)
int ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
Definition: ip6_output.c:2407
#define JUMBOOPTLEN
#define IP6PO_MINMTU_DISABLE
Definition: ip6_var.h:161
#define IP6PO_MINMTU_ALL
Definition: ip6_var.h:162
#define IP6STAT_INC(name)
Definition: ip6_var.h:256
#define V_ip6_mrouter
Definition: ip6_var.h:301
#define ip6po_rthdr
Definition: ip6_var.h:125
#define IPV6_MINMTU
Definition: ip6_var.h:264
#define ip6po_nexthop
Definition: ip6_var.h:133
#define IPV6_UNSPECSRC
Definition: ip6_var.h:262
#define IP6PO_DONTFRAG
Definition: ip6_var.h:175
#define IP6PO_TEMPADDR_SYSTEM
Definition: ip6_var.h:166
#define IPV6_FORWARDING
Definition: ip6_var.h:263
#define V_inet6_pfil_head
Definition: ip6_var.h:329
#define V_ip6_defmcasthlim
Definition: ip6_var.h:281
#define IP6PO_MINMTU_MCASTONLY
Definition: ip6_var.h:160
#define V_ip6_use_defzone
Definition: ip6_var.h:326
#define IP6PO_TEMPADDR_PREFER
Definition: ip6_var.h:168
int(* ip6_mforward)(struct ip6_hdr *, struct ifnet *, struct mbuf *)
Definition: raw_ip6.c:151
#define IP6PO_TEMPADDR_NOTPREFER
Definition: ip6_var.h:167
int nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route *ro)
Definition: nd6.c:2218
#define IN6_LINKMTU(ifp)
Definition: nd6.h:101
#define ND_IFINFO(ifp)
Definition: nd6.h:99
#define ND6_IFF_IFDISABLED
Definition: nd6.h:85
int in6_setscope(struct in6_addr *in6, struct ifnet *ifp, u_int32_t *ret_id)
Definition: scope6.c:406
void in6_splitscope(const struct in6_addr *src, struct in6_addr *dst, uint32_t *scopeid)
Definition: scope6.c:534
struct ifnet * in6_getlinkifnet(uint32_t zoneid)
Definition: scope6.c:508
int in6_clearscope(struct in6_addr *in6)
Definition: scope6.c:455
int sa6_embedscope(struct sockaddr_in6 *sin6, int defaultok)
Definition: scope6.c:324
int sa6_recoverscope(struct sockaddr_in6 *sin6)
Definition: scope6.c:361
Definition: in6.h:97
struct ifaddr ia_ifa
Definition: in6_var.h:122
struct in6_addr ipi6_addr
Definition: in6.h:549
unsigned int ipi6_ifindex
Definition: in6.h:550
struct mbuf * ip6e_rthdr
Definition: ip6_output.c:133
struct mbuf * ip6e_hbh
Definition: ip6_output.c:131
struct mbuf * ip6e_ip6
Definition: ip6_output.c:130
struct mbuf * ip6e_dest1
Definition: ip6_output.c:132
struct mbuf * ip6e_dest2
Definition: ip6_output.c:134
uint32_t ip6m_mtu
Definition: in6.h:558
struct ip6_hbh * ip6po_hbh
Definition: ip6_var.h:146
struct ip6po_rhinfo ip6po_rhinfo
Definition: ip6_var.h:152
int ip6po_minmtu
Definition: ip6_var.h:159
int ip6po_prefer_tempaddr
Definition: ip6_var.h:164
int ip6po_hlim
Definition: ip6_var.h:138
int ip6po_flags
Definition: ip6_var.h:170
int ip6po_tclass
Definition: ip6_var.h:157
struct in6_pktinfo * ip6po_pktinfo
Definition: ip6_var.h:141
struct ip6_dest * ip6po_dest2
Definition: ip6_var.h:155
struct ip6_dest * ip6po_dest1
Definition: ip6_var.h:149
struct ip6_rthdr * ip6po_rhi_rthdr
Definition: ip6_var.h:122
uint8_t sin6_len
Definition: in6.h:126
struct in6_addr sin6_addr
Definition: in6.h:130
uint32_t sin6_scope_id
Definition: in6.h:131
sa_family_t sin6_family
Definition: in6.h:127