FreeBSD kernel IPv4 code
ip_reass.c
Go to the documentation of this file.
1/*-
2 * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
3 * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_rss.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/eventhandler.h>
42#include <sys/kernel.h>
43#include <sys/hash.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/limits.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/sysctl.h>
50#include <sys/socket.h>
51
52#include <net/if.h>
53#include <net/if_var.h>
54#include <net/rss_config.h>
55#include <net/netisr.h>
56#include <net/vnet.h>
57
58#include <netinet/in.h>
59#include <netinet/ip.h>
60#include <netinet/ip_var.h>
61#include <netinet/in_rss.h>
62#ifdef MAC
63#include <security/mac/mac_framework.h>
64#endif
65
66SYSCTL_DECL(_net_inet_ip);
67
68/*
69 * Reassembly headers are stored in hash buckets.
70 */
71#define IPREASS_NHASH_LOG2 10
72#define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
73#define IPREASS_HMASK (IPREASS_NHASH - 1)
74
75struct ipqbucket {
76 TAILQ_HEAD(ipqhead, ipq) head;
77 struct mtx lock;
78 int count;
79};
80
82#define V_ipq VNET(ipq)
84#define V_ipq_hashseed VNET(ipq_hashseed)
85
86#define IPQ_LOCK(i) mtx_lock(&V_ipq[i].lock)
87#define IPQ_TRYLOCK(i) mtx_trylock(&V_ipq[i].lock)
88#define IPQ_UNLOCK(i) mtx_unlock(&V_ipq[i].lock)
89#define IPQ_LOCK_ASSERT(i) mtx_assert(&V_ipq[i].lock, MA_OWNED)
90
91VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
92#define V_ipreass_maxbucketsize VNET(ipreass_maxbucketsize)
93
94void ipreass_init(void);
95void ipreass_drain(void);
96void ipreass_slowtimo(void);
97#ifdef VIMAGE
98void ipreass_destroy(void);
99#endif
100static int sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
101static int sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
102static void ipreass_zone_change(void *);
103static void ipreass_drain_tomax(void);
104static void ipq_free(struct ipqbucket *, struct ipq *);
105static struct ipq * ipq_reuse(int);
106
107static inline void
108ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
109{
110
111 IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
112 ipq_free(bucket, fp);
113}
114
115static inline void
116ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
117{
118
119 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
120 ipq_free(bucket, fp);
121}
122
123/*
124 * By default, limit the number of IP fragments across all reassembly
125 * queues to 1/32 of the total number of mbuf clusters.
126 *
127 * Limit the total number of reassembly queues per VNET to the
128 * IP fragment limit, but ensure the limit will not allow any bucket
129 * to grow above 100 items. (The bucket limit is
130 * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
131 * multiplier to reach a 100-item limit.)
132 * The 100-item limit was chosen as brief testing seems to show that
133 * this produces "reasonable" performance on some subset of systems
134 * under DoS attack.
135 */
136#define IP_MAXFRAGS (nmbclusters / 32)
137#define IP_MAXFRAGPACKETS (imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
138
139static int maxfrags;
140static u_int __exclusive_cache_line nfrags;
141SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
142 &maxfrags, 0,
143 "Maximum number of IPv4 fragments allowed across all reassembly queues");
144SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
145 &nfrags, 0,
146 "Current number of IPv4 fragments across all reassembly queues");
147
148VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
149#define V_ipq_zone VNET(ipq_zone)
150SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
151 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
152 NULL, 0, sysctl_maxfragpackets, "I",
153 "Maximum number of IPv4 fragment reassembly queue entries");
154SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
155 &VNET_NAME(ipq_zone),
156 "Current number of IPv4 fragment reassembly queue entries");
157
158VNET_DEFINE_STATIC(int, noreass);
159#define V_noreass VNET(noreass)
160
161VNET_DEFINE_STATIC(int, maxfragsperpacket);
162#define V_maxfragsperpacket VNET(maxfragsperpacket)
163SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
164 &VNET_NAME(maxfragsperpacket), 0,
165 "Maximum number of IPv4 fragments allowed per packet");
166SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
167 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
169 "Maximum number of IPv4 fragment reassembly queue entries per bucket");
170
171/*
172 * Take incoming datagram fragment and try to reassemble it into
173 * whole datagram. If the argument is the first fragment or one
174 * in between the function will return NULL and store the mbuf
175 * in the fragment chain. If the argument is the last fragment
176 * the packet will be reassembled and the pointer to the new
177 * mbuf returned for further processing. Only m_tags attached
178 * to the first packet/fragment are preserved.
179 * The IP header is *NOT* adjusted out of iplen.
180 */
181#define M_IP_FRAG M_PROTO9
182struct mbuf *
183ip_reass(struct mbuf *m)
184{
185 struct ip *ip;
186 struct mbuf *p, *q, *nq, *t;
187 struct ipq *fp;
188 struct ifnet *srcifp;
189 struct ipqhead *head;
190 int i, hlen, next, tmpmax;
191 u_int8_t ecn, ecn0;
192 uint32_t hash, hashkey[3];
193#ifdef RSS
194 uint32_t rss_hash, rss_type;
195#endif
196
197 /*
198 * If no reassembling or maxfragsperpacket are 0,
199 * never accept fragments.
200 * Also, drop packet if it would exceed the maximum
201 * number of fragments.
202 */
203 tmpmax = maxfrags;
204 if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
205 (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
206 IPSTAT_INC(ips_fragments);
207 IPSTAT_INC(ips_fragdropped);
208 m_freem(m);
209 return (NULL);
210 }
211
212 ip = mtod(m, struct ip *);
213 hlen = ip->ip_hl << 2;
214
215 /*
216 * Adjust ip_len to not reflect header,
217 * convert offset of this to bytes.
218 */
219 ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
220 /*
221 * Make sure that fragments have a data length
222 * that's a non-zero multiple of 8 bytes, unless
223 * this is the last fragment.
224 */
225 if (ip->ip_len == htons(0) ||
226 ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
227 IPSTAT_INC(ips_toosmall); /* XXX */
228 IPSTAT_INC(ips_fragdropped);
229 m_freem(m);
230 return (NULL);
231 }
232 if (ip->ip_off & htons(IP_MF))
233 m->m_flags |= M_IP_FRAG;
234 else
235 m->m_flags &= ~M_IP_FRAG;
236 ip->ip_off = htons(ntohs(ip->ip_off) << 3);
237
238 /*
239 * Make sure the fragment lies within a packet of valid size.
240 */
241 if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
242 IPSTAT_INC(ips_toolong);
243 IPSTAT_INC(ips_fragdropped);
244 m_freem(m);
245 return (NULL);
246 }
247
248 /*
249 * Store receive network interface pointer for later.
250 */
251 srcifp = m->m_pkthdr.rcvif;
252
253 /*
254 * Attempt reassembly; if it succeeds, proceed.
255 * ip_reass() will return a different mbuf.
256 */
257 IPSTAT_INC(ips_fragments);
258 m->m_pkthdr.PH_loc.ptr = ip;
259
260 /*
261 * Presence of header sizes in mbufs
262 * would confuse code below.
263 */
264 m->m_data += hlen;
265 m->m_len -= hlen;
266
267 hashkey[0] = ip->ip_src.s_addr;
268 hashkey[1] = ip->ip_dst.s_addr;
269 hashkey[2] = (uint32_t)ip->ip_p << 16;
270 hashkey[2] += ip->ip_id;
271 hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
272 hash &= IPREASS_HMASK;
273 head = &V_ipq[hash].head;
274 IPQ_LOCK(hash);
275
276 /*
277 * Look for queue of fragments
278 * of this datagram.
279 */
280 TAILQ_FOREACH(fp, head, ipq_list)
281 if (ip->ip_id == fp->ipq_id &&
282 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
283 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
284#ifdef MAC
285 mac_ipq_match(m, fp) &&
286#endif
287 ip->ip_p == fp->ipq_p)
288 break;
289 /*
290 * If first fragment to arrive, create a reassembly queue.
291 */
292 if (fp == NULL) {
294 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
295 if (fp == NULL)
296 fp = ipq_reuse(hash);
297 if (fp == NULL)
298 goto dropfrag;
299#ifdef MAC
300 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
301 uma_zfree(V_ipq_zone, fp);
302 fp = NULL;
303 goto dropfrag;
304 }
305 mac_ipq_create(m, fp);
306#endif
307 TAILQ_INSERT_HEAD(head, fp, ipq_list);
308 V_ipq[hash].count++;
309 fp->ipq_nfrags = 1;
310 atomic_add_int(&nfrags, 1);
311 fp->ipq_ttl = IPFRAGTTL;
312 fp->ipq_p = ip->ip_p;
313 fp->ipq_id = ip->ip_id;
314 fp->ipq_src = ip->ip_src;
315 fp->ipq_dst = ip->ip_dst;
316 fp->ipq_frags = m;
317 if (m->m_flags & M_IP_FRAG)
318 fp->ipq_maxoff = -1;
319 else
320 fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
321 m->m_nextpkt = NULL;
322 goto done;
323 } else {
324 /*
325 * If we already saw the last fragment, make sure
326 * this fragment's offset looks sane. Otherwise, if
327 * this is the last fragment, record its endpoint.
328 */
329 if (fp->ipq_maxoff > 0) {
330 i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
331 if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
332 ((m->m_flags & M_IP_FRAG) == 0 &&
333 i != fp->ipq_maxoff)) {
334 fp = NULL;
335 goto dropfrag;
336 }
337 } else if ((m->m_flags & M_IP_FRAG) == 0)
338 fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
339 fp->ipq_nfrags++;
340 atomic_add_int(&nfrags, 1);
341#ifdef MAC
342 mac_ipq_update(m, fp);
343#endif
344 }
345
346#define GETIP(m) ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
347
348 /*
349 * Handle ECN by comparing this segment with the first one;
350 * if CE is set, do not lose CE.
351 * drop if CE and not-ECT are mixed for the same packet.
352 */
353 ecn = ip->ip_tos & IPTOS_ECN_MASK;
354 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
355 if (ecn == IPTOS_ECN_CE) {
356 if (ecn0 == IPTOS_ECN_NOTECT)
357 goto dropfrag;
358 if (ecn0 != IPTOS_ECN_CE)
359 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
360 }
361 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
362 goto dropfrag;
363
364 /*
365 * Find a segment which begins after this one does.
366 */
367 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
368 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
369 break;
370
371 /*
372 * If there is a preceding segment, it may provide some of
373 * our data already. If so, drop the data from the incoming
374 * segment. If it provides all of our data, drop us, otherwise
375 * stick new segment in the proper place.
376 *
377 * If some of the data is dropped from the preceding
378 * segment, then it's checksum is invalidated.
379 */
380 if (p) {
381 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
382 ntohs(ip->ip_off);
383 if (i > 0) {
384 if (i >= ntohs(ip->ip_len))
385 goto dropfrag;
386 m_adj(m, i);
387 m->m_pkthdr.csum_flags = 0;
388 ip->ip_off = htons(ntohs(ip->ip_off) + i);
389 ip->ip_len = htons(ntohs(ip->ip_len) - i);
390 }
391 m->m_nextpkt = p->m_nextpkt;
392 p->m_nextpkt = m;
393 } else {
394 m->m_nextpkt = fp->ipq_frags;
395 fp->ipq_frags = m;
396 }
397
398 /*
399 * While we overlap succeeding segments trim them or,
400 * if they are completely covered, dequeue them.
401 */
402 for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
403 ntohs(GETIP(q)->ip_off); q = nq) {
404 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
405 ntohs(GETIP(q)->ip_off);
406 if (i < ntohs(GETIP(q)->ip_len)) {
407 GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
408 GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
409 m_adj(q, i);
410 q->m_pkthdr.csum_flags = 0;
411 break;
412 }
413 nq = q->m_nextpkt;
414 m->m_nextpkt = nq;
415 IPSTAT_INC(ips_fragdropped);
416 fp->ipq_nfrags--;
417 atomic_subtract_int(&nfrags, 1);
418 m_freem(q);
419 }
420
421 /*
422 * Check for complete reassembly and perform frag per packet
423 * limiting.
424 *
425 * Frag limiting is performed here so that the nth frag has
426 * a chance to complete the packet before we drop the packet.
427 * As a result, n+1 frags are actually allowed per packet, but
428 * only n will ever be stored. (n = maxfragsperpacket.)
429 *
430 */
431 next = 0;
432 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
433 if (ntohs(GETIP(q)->ip_off) != next) {
435 ipq_drop(&V_ipq[hash], fp);
436 goto done;
437 }
438 next += ntohs(GETIP(q)->ip_len);
439 }
440 /* Make sure the last packet didn't have the IP_MF flag */
441 if (p->m_flags & M_IP_FRAG) {
443 ipq_drop(&V_ipq[hash], fp);
444 goto done;
445 }
446
447 /*
448 * Reassembly is complete. Make sure the packet is a sane size.
449 */
450 q = fp->ipq_frags;
451 ip = GETIP(q);
452 if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
453 IPSTAT_INC(ips_toolong);
454 ipq_drop(&V_ipq[hash], fp);
455 goto done;
456 }
457
458 /*
459 * Concatenate fragments.
460 */
461 m = q;
462 t = m->m_next;
463 m->m_next = NULL;
464 m_cat(m, t);
465 nq = q->m_nextpkt;
466 q->m_nextpkt = NULL;
467 for (q = nq; q != NULL; q = nq) {
468 nq = q->m_nextpkt;
469 q->m_nextpkt = NULL;
470 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
471 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
472 m_demote_pkthdr(q);
473 m_cat(m, q);
474 }
475 /*
476 * In order to do checksumming faster we do 'end-around carry' here
477 * (and not in for{} loop), though it implies we are not going to
478 * reassemble more than 64k fragments.
479 */
480 while (m->m_pkthdr.csum_data & 0xffff0000)
481 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
482 (m->m_pkthdr.csum_data >> 16);
483 atomic_subtract_int(&nfrags, fp->ipq_nfrags);
484#ifdef MAC
485 mac_ipq_reassemble(fp, m);
486 mac_ipq_destroy(fp);
487#endif
488
489 /*
490 * Create header for new ip packet by modifying header of first
491 * packet; dequeue and discard fragment reassembly header.
492 * Make header visible.
493 */
494 ip->ip_len = htons((ip->ip_hl << 2) + next);
495 ip->ip_src = fp->ipq_src;
496 ip->ip_dst = fp->ipq_dst;
497 TAILQ_REMOVE(head, fp, ipq_list);
498 V_ipq[hash].count--;
499 uma_zfree(V_ipq_zone, fp);
500 m->m_len += (ip->ip_hl << 2);
501 m->m_data -= (ip->ip_hl << 2);
502 /* some debugging cruft by sklower, below, will go away soon */
503 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
504 m_fixhdr(m);
505 /* set valid receive interface pointer */
506 m->m_pkthdr.rcvif = srcifp;
507 }
508 IPSTAT_INC(ips_reassembled);
509 IPQ_UNLOCK(hash);
510
511#ifdef RSS
512 /*
513 * Query the RSS layer for the flowid / flowtype for the
514 * mbuf payload.
515 *
516 * For now, just assume we have to calculate a new one.
517 * Later on we should check to see if the assigned flowid matches
518 * what RSS wants for the given IP protocol and if so, just keep it.
519 *
520 * We then queue into the relevant netisr so it can be dispatched
521 * to the correct CPU.
522 *
523 * Note - this may return 1, which means the flowid in the mbuf
524 * is correct for the configured RSS hash types and can be used.
525 */
526 if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
527 m->m_pkthdr.flowid = rss_hash;
528 M_HASHTYPE_SET(m, rss_type);
529 }
530
531 /*
532 * Queue/dispatch for reprocessing.
533 *
534 * Note: this is much slower than just handling the frame in the
535 * current receive context. It's likely worth investigating
536 * why this is.
537 */
538 netisr_dispatch(NETISR_IP_DIRECT, m);
539 return (NULL);
540#endif
541
542 /* Handle in-line */
543 return (m);
544
545dropfrag:
546 IPSTAT_INC(ips_fragdropped);
547 if (fp != NULL) {
548 fp->ipq_nfrags--;
549 atomic_subtract_int(&nfrags, 1);
550 }
551 m_freem(m);
552done:
553 IPQ_UNLOCK(hash);
554 return (NULL);
555
556#undef GETIP
557}
558
559/*
560 * Initialize IP reassembly structures.
561 */
562void
564{
565 int max;
566
567 for (int i = 0; i < IPREASS_NHASH; i++) {
568 TAILQ_INIT(&V_ipq[i].head);
569 mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
570 MTX_DEF | MTX_DUPOK);
571 V_ipq[i].count = 0;
572 }
573 V_ipq_hashseed = arc4random();
575 V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
576 NULL, UMA_ALIGN_PTR, 0);
577 max = IP_MAXFRAGPACKETS;
578 max = uma_zone_set_max(V_ipq_zone, max);
579 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
580
581 if (IS_DEFAULT_VNET(curvnet)) {
583 EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
584 NULL, EVENTHANDLER_PRI_ANY);
585 }
586}
587
588/*
589 * If a timer expires on a reassembly queue, discard it.
590 */
591void
593{
594 struct ipq *fp, *tmp;
595
596 if (atomic_load_int(&nfrags) == 0)
597 return;
598
599 for (int i = 0; i < IPREASS_NHASH; i++) {
600 if (TAILQ_EMPTY(&V_ipq[i].head))
601 continue;
602 IPQ_LOCK(i);
603 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
604 if (--fp->ipq_ttl == 0)
605 ipq_timeout(&V_ipq[i], fp);
606 IPQ_UNLOCK(i);
607 }
608}
609
610/*
611 * Drain off all datagram fragments.
612 */
613void
615{
616
617 for (int i = 0; i < IPREASS_NHASH; i++) {
618 IPQ_LOCK(i);
619 while(!TAILQ_EMPTY(&V_ipq[i].head))
620 ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
621 KASSERT(V_ipq[i].count == 0,
622 ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
623 V_ipq[i].count, V_ipq));
624 IPQ_UNLOCK(i);
625 }
626}
627
628/*
629 * Drain off all datagram fragments belonging to
630 * the given network interface.
631 */
632static void
633ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
634{
635 struct ipq *fp, *temp;
636 struct mbuf *m;
637 int i;
638
639 KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
640
641 CURVNET_SET_QUIET(ifp->if_vnet);
642
643 /*
644 * Skip processing if IPv4 reassembly is not initialised or
645 * torn down by ipreass_destroy().
646 */
647 if (V_ipq_zone == NULL) {
648 CURVNET_RESTORE();
649 return;
650 }
651
652 for (i = 0; i < IPREASS_NHASH; i++) {
653 IPQ_LOCK(i);
654 /* Scan fragment list. */
655 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
656 for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
657 /* clear no longer valid rcvif pointer */
658 if (m->m_pkthdr.rcvif == ifp)
659 m->m_pkthdr.rcvif = NULL;
660 }
661 }
662 IPQ_UNLOCK(i);
663 }
664 CURVNET_RESTORE();
665}
666EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);
667
668#ifdef VIMAGE
669/*
670 * Destroy IP reassembly structures.
671 */
672void
673ipreass_destroy(void)
674{
675
677 uma_zdestroy(V_ipq_zone);
678 V_ipq_zone = NULL;
679 for (int i = 0; i < IPREASS_NHASH; i++)
680 mtx_destroy(&V_ipq[i].lock);
681}
682#endif
683
684/*
685 * After maxnipq has been updated, propagate the change to UMA. The UMA zone
686 * max has slightly different semantics than the sysctl, for historical
687 * reasons.
688 */
689static void
691{
692 struct ipq *fp;
693 int target;
694
695 /*
696 * Make sure each bucket is under the new limit. If
697 * necessary, drop enough of the oldest elements from
698 * each bucket to get under the new limit.
699 */
700 for (int i = 0; i < IPREASS_NHASH; i++) {
701 IPQ_LOCK(i);
702 while (V_ipq[i].count > V_ipreass_maxbucketsize &&
703 (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
704 ipq_timeout(&V_ipq[i], fp);
705 IPQ_UNLOCK(i);
706 }
707
708 /*
709 * If we are over the maximum number of fragments,
710 * drain off enough to get down to the new limit,
711 * stripping off last elements on queues. Every
712 * run we strip the oldest element from each bucket.
713 */
714 target = uma_zone_get_max(V_ipq_zone);
715 while (uma_zone_get_cur(V_ipq_zone) > target) {
716 for (int i = 0; i < IPREASS_NHASH; i++) {
717 IPQ_LOCK(i);
718 fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
719 if (fp != NULL)
720 ipq_timeout(&V_ipq[i], fp);
721 IPQ_UNLOCK(i);
722 }
723 }
724}
725
726static void
728{
729 VNET_ITERATOR_DECL(vnet_iter);
730 int max;
731
733 max = IP_MAXFRAGPACKETS;
734 VNET_LIST_RLOCK_NOSLEEP();
735 VNET_FOREACH(vnet_iter) {
736 CURVNET_SET(vnet_iter);
737 max = uma_zone_set_max(V_ipq_zone, max);
738 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
740 CURVNET_RESTORE();
741 }
742 VNET_LIST_RUNLOCK_NOSLEEP();
743}
744
745/*
746 * Change the limit on the UMA zone, or disable the fragment allocation
747 * at all. Since 0 and -1 is a special values here, we need our own handler,
748 * instead of sysctl_handle_uma_zone_max().
749 */
750static int
751sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
752{
753 int error, max;
754
755 if (V_noreass == 0) {
756 max = uma_zone_get_max(V_ipq_zone);
757 if (max == 0)
758 max = -1;
759 } else
760 max = 0;
761 error = sysctl_handle_int(oidp, &max, 0, req);
762 if (error || !req->newptr)
763 return (error);
764 if (max > 0) {
765 /*
766 * XXXRW: Might be a good idea to sanity check the argument
767 * and place an extreme upper bound.
768 */
769 max = uma_zone_set_max(V_ipq_zone, max);
770 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
772 V_noreass = 0;
773 } else if (max == 0) {
774 V_noreass = 1;
776 } else if (max == -1) {
777 V_noreass = 0;
778 uma_zone_set_max(V_ipq_zone, 0);
779 V_ipreass_maxbucketsize = INT_MAX;
780 } else
781 return (EINVAL);
782 return (0);
783}
784
785/*
786 * Seek for old fragment queue header that can be reused. Try to
787 * reuse a header from currently locked hash bucket.
788 */
789static struct ipq *
790ipq_reuse(int start)
791{
792 struct ipq *fp;
793 int bucket, i;
794
795 IPQ_LOCK_ASSERT(start);
796
797 for (i = 0; i < IPREASS_NHASH; i++) {
798 bucket = (start + i) % IPREASS_NHASH;
799 if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
800 continue;
801 fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
802 if (fp) {
803 struct mbuf *m;
804
805 IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
806 atomic_subtract_int(&nfrags, fp->ipq_nfrags);
807 while (fp->ipq_frags) {
808 m = fp->ipq_frags;
809 fp->ipq_frags = m->m_nextpkt;
810 m_freem(m);
811 }
812 TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
813 V_ipq[bucket].count--;
814 if (bucket != start)
816 break;
817 }
818 if (bucket != start)
820 }
821 IPQ_LOCK_ASSERT(start);
822 return (fp);
823}
824
825/*
826 * Free a fragment reassembly header and all associated datagrams.
827 */
828static void
829ipq_free(struct ipqbucket *bucket, struct ipq *fp)
830{
831 struct mbuf *q;
832
833 atomic_subtract_int(&nfrags, fp->ipq_nfrags);
834 while (fp->ipq_frags) {
835 q = fp->ipq_frags;
836 fp->ipq_frags = q->m_nextpkt;
837 m_freem(q);
838 }
839 TAILQ_REMOVE(&bucket->head, fp, ipq_list);
840 bucket->count--;
841 uma_zfree(V_ipq_zone, fp);
842}
843
844/*
845 * Get or set the maximum number of reassembly queues per bucket.
846 */
847static int
848sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
849{
850 int error, max;
851
853 error = sysctl_handle_int(oidp, &max, 0, req);
854 if (error || !req->newptr)
855 return (error);
856 if (max <= 0)
857 return (EINVAL);
860 return (0);
861}
static TAILQ_HEAD(handler_chain, proto_handler)
Definition: alias_mod.c:57
__uint32_t uint32_t
Definition: in.h:62
int rss_mbuf_software_hash_v4(const struct mbuf *m, int dir, uint32_t *hashval, uint32_t *hashtype)
Definition: in_rss.c:207
#define IP_MAXPACKET
Definition: ip.h:74
#define IPTOS_ECN_MASK
Definition: ip.h:135
#define IPTOS_ECN_CE
Definition: ip.h:134
u_short ip_len
Definition: ip.h:9
u_short ip_off
Definition: ip.h:11
#define IPFRAGTTL
Definition: ip.h:213
#define IP_MF
Definition: ip.h:14
#define IPTOS_ECN_NOTECT
Definition: ip.h:131
ipfw_dyn_rule * next
Definition: ip_fw.h:0
u_int32_t bucket
Definition: ip_fw.h:9
u_int16_t count
Definition: ip_fw.h:18
EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0)
#define IPQ_UNLOCK(i)
Definition: ip_reass.c:88
#define IP_MAXFRAGS
Definition: ip_reass.c:136
static int maxfrags
Definition: ip_reass.c:139
static void ipreass_drain_tomax(void)
Definition: ip_reass.c:690
struct mbuf * ip_reass(struct mbuf *m)
Definition: ip_reass.c:183
#define IP_MAXFRAGPACKETS
Definition: ip_reass.c:137
SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD, &nfrags, 0, "Current number of IPv4 fragments across all reassembly queues")
static void ipq_free(struct ipqbucket *, struct ipq *)
Definition: ip_reass.c:829
#define GETIP(m)
static u_int __exclusive_cache_line nfrags
Definition: ip_reass.c:140
#define IPQ_TRYLOCK(i)
Definition: ip_reass.c:87
#define V_ipq_hashseed
Definition: ip_reass.c:84
VNET_DEFINE_STATIC(struct ipqbucket, ipq[IPREASS_NHASH])
SYSCTL_DECL(_net_inet_ip)
#define M_IP_FRAG
Definition: ip_reass.c:181
#define V_ipq_zone
Definition: ip_reass.c:149
#define IPREASS_NHASH
Definition: ip_reass.c:72
#define V_noreass
Definition: ip_reass.c:159
static void ipreass_zone_change(void *)
Definition: ip_reass.c:727
#define IPQ_LOCK_ASSERT(i)
Definition: ip_reass.c:89
__FBSDID("$FreeBSD$")
static int sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
Definition: ip_reass.c:751
#define V_ipreass_maxbucketsize
Definition: ip_reass.c:92
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET|CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_NEEDGIANT, NULL, 0, sysctl_maxfragpackets, "I", "Maximum number of IPv4 fragment reassembly queue entries")
static void ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
Definition: ip_reass.c:108
static void ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
Definition: ip_reass.c:633
static struct ipq * ipq_reuse(int)
Definition: ip_reass.c:790
static void ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
Definition: ip_reass.c:116
static int sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
Definition: ip_reass.c:848
#define V_ipq
Definition: ip_reass.c:82
void ipreass_slowtimo(void)
Definition: ip_reass.c:592
void ipreass_init(void)
Definition: ip_reass.c:563
#define V_maxfragsperpacket
Definition: ip_reass.c:162
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW, &maxfrags, 0, "Maximum number of IPv4 fragments allowed across all reassembly queues")
#define IPQ_LOCK(i)
Definition: ip_reass.c:86
void ipreass_drain(void)
Definition: ip_reass.c:614
SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET, &VNET_NAME(ipq_zone), "Current number of IPv4 fragment reassembly queue entries")
#define IPREASS_HMASK
Definition: ip_reass.c:73
#define IPSTAT_INC(name)
Definition: ip_var.h:151
#define IPSTAT_ADD(name, val)
Definition: ip_var.h:148
in_addr_t s_addr
Definition: in.h:84
Definition: ip.h:51
u_char ip_p
Definition: ip.h:69
u_short ip_id
Definition: ip.h:62
struct in_addr ip_src ip_dst
Definition: ip.h:71
u_char ip_tos
Definition: ip.h:60
u_char ip_hl
Definition: ip.h:53
u_short ip_len
Definition: ip.h:61
u_short ip_off
Definition: ip.h:63
Definition: ip_var.h:62
struct mbuf * ipq_frags
Definition: ip_var.h:68
int ipq_maxoff
Definition: ip_var.h:67
u_char ipq_p
Definition: ip_var.h:65
struct in_addr ipq_src ipq_dst
Definition: ip_var.h:69
u_short ipq_id
Definition: ip_var.h:66
u_char ipq_ttl
Definition: ip_var.h:64
u_char ipq_nfrags
Definition: ip_var.h:70