FreeBSD kernel libkern code
jenkins_hash.c
Go to the documentation of this file.
1/*
2 * Taken from http://burtleburtle.net/bob/c/lookup3.c
3 * $FreeBSD$
4 */
5
6#include <sys/hash.h>
7#include <machine/endian.h>
8
9/*
10-------------------------------------------------------------------------------
11lookup3.c, by Bob Jenkins, May 2006, Public Domain.
12
13These are functions for producing 32-bit hashes for hash table lookup.
14hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
15are externally useful functions. Routines to test the hash are included
16if SELF_TEST is defined. You can use this free for any purpose. It's in
17the public domain. It has no warranty.
18
19You probably want to use hashlittle(). hashlittle() and hashbig()
20hash byte arrays. hashlittle() is faster than hashbig() on
21little-endian machines. Intel and AMD are little-endian machines.
22On second thought, you probably want hashlittle2(), which is identical to
23hashlittle() except it returns two 32-bit hashes for the price of one.
24You could implement hashbig2() if you wanted but I haven't bothered here.
25
26If you want to find a hash of, say, exactly 7 integers, do
27 a = i1; b = i2; c = i3;
28 mix(a,b,c);
29 a += i4; b += i5; c += i6;
30 mix(a,b,c);
31 a += i7;
32 final(a,b,c);
33then use c as the hash value. If you have a variable length array of
344-byte integers to hash, use hashword(). If you have a byte array (like
35a character string), use hashlittle(). If you have several byte arrays, or
36a mix of things, see the comments above hashlittle().
37
38Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
39then mix those integers. This is fast (you can do a lot more thorough
40mixing with 12*3 instructions on 3 integers than you can with 3 instructions
41on 1 byte), but shoehorning those bytes into integers efficiently is messy.
42-------------------------------------------------------------------------------
43*/
44
45#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
46
47/*
48-------------------------------------------------------------------------------
49mix -- mix 3 32-bit values reversibly.
50
51This is reversible, so any information in (a,b,c) before mix() is
52still in (a,b,c) after mix().
53
54If four pairs of (a,b,c) inputs are run through mix(), or through
55mix() in reverse, there are at least 32 bits of the output that
56are sometimes the same for one pair and different for another pair.
57This was tested for:
58* pairs that differed by one bit, by two bits, in any combination
59 of top bits of (a,b,c), or in any combination of bottom bits of
60 (a,b,c).
61* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
62 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
63 is commonly produced by subtraction) look like a single 1-bit
64 difference.
65* the base values were pseudorandom, all zero but one bit set, or
66 all zero plus a counter that starts at zero.
67
68Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
69satisfy this are
70 4 6 8 16 19 4
71 9 15 3 18 27 15
72 14 9 3 7 17 3
73Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
74for "differ" defined as + with a one-bit base and a two-bit delta. I
75used http://burtleburtle.net/bob/hash/avalanche.html to choose
76the operations, constants, and arrangements of the variables.
77
78This does not achieve avalanche. There are input bits of (a,b,c)
79that fail to affect some output bits of (a,b,c), especially of a. The
80most thoroughly mixed value is c, but it doesn't really even achieve
81avalanche in c.
82
83This allows some parallelism. Read-after-writes are good at doubling
84the number of bits affected, so the goal of mixing pulls in the opposite
85direction as the goal of parallelism. I did what I could. Rotates
86seem to cost as much as shifts on every machine I could lay my hands
87on, and rotates are much kinder to the top and bottom bits, so I used
88rotates.
89-------------------------------------------------------------------------------
90*/
91#define mix(a,b,c) \
92{ \
93 a -= c; a ^= rot(c, 4); c += b; \
94 b -= a; b ^= rot(a, 6); a += c; \
95 c -= b; c ^= rot(b, 8); b += a; \
96 a -= c; a ^= rot(c,16); c += b; \
97 b -= a; b ^= rot(a,19); a += c; \
98 c -= b; c ^= rot(b, 4); b += a; \
99}
100
101/*
102-------------------------------------------------------------------------------
103final -- final mixing of 3 32-bit values (a,b,c) into c
104
105Pairs of (a,b,c) values differing in only a few bits will usually
106produce values of c that look totally different. This was tested for
107* pairs that differed by one bit, by two bits, in any combination
108 of top bits of (a,b,c), or in any combination of bottom bits of
109 (a,b,c).
110* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
111 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
112 is commonly produced by subtraction) look like a single 1-bit
113 difference.
114* the base values were pseudorandom, all zero but one bit set, or
115 all zero plus a counter that starts at zero.
116
117These constants passed:
118 14 11 25 16 4 14 24
119 12 14 25 16 4 14 24
120and these came close:
121 4 8 15 26 3 22 24
122 10 8 15 26 3 22 24
123 11 8 15 26 3 22 24
124-------------------------------------------------------------------------------
125*/
126#define final(a,b,c) \
127{ \
128 c ^= b; c -= rot(b,14); \
129 a ^= c; a -= rot(c,11); \
130 b ^= a; b -= rot(a,25); \
131 c ^= b; c -= rot(b,16); \
132 a ^= c; a -= rot(c,4); \
133 b ^= a; b -= rot(a,14); \
134 c ^= b; c -= rot(b,24); \
135}
136
137/*
138--------------------------------------------------------------------
139 This works on all machines. To be useful, it requires
140 -- that the key be an array of uint32_t's, and
141 -- that the length be the number of uint32_t's in the key
142
143 The function hashword() is identical to hashlittle() on little-endian
144 machines, and identical to hashbig() on big-endian machines,
145 except that the length has to be measured in uint32_ts rather than in
146 bytes. hashlittle() is more complicated than hashword() only because
147 hashlittle() has to dance around fitting the key bytes into registers.
148--------------------------------------------------------------------
149*/
151const uint32_t *k, /* the key, an array of uint32_t values */
152size_t length, /* the length of the key, in uint32_ts */
153uint32_t initval) /* the previous hash, or an arbitrary value */
154{
155 uint32_t a,b,c;
156
157 /* Set up the internal state */
158 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
159
160 /*------------------------------------------------- handle most of the key */
161 while (length > 3)
162 {
163 a += k[0];
164 b += k[1];
165 c += k[2];
166 mix(a,b,c);
167 length -= 3;
168 k += 3;
169 }
170
171 /*------------------------------------------- handle the last 3 uint32_t's */
172 switch(length) /* all the case statements fall through */
173 {
174 case 3 : c+=k[2];
175 case 2 : b+=k[1];
176 case 1 : a+=k[0];
177 final(a,b,c);
178 case 0: /* case 0: nothing left to add */
179 break;
180 }
181 /*------------------------------------------------------ report the result */
182 return c;
183}
184
185#if BYTE_ORDER == LITTLE_ENDIAN
186/*
187-------------------------------------------------------------------------------
188hashlittle() -- hash a variable-length key into a 32-bit value
189 k : the key (the unaligned variable-length array of bytes)
190 length : the length of the key, counting by bytes
191 initval : can be any 4-byte value
192Returns a 32-bit value. Every bit of the key affects every bit of
193the return value. Two keys differing by one or two bits will have
194totally different hash values.
195
196The best hash table sizes are powers of 2. There is no need to do
197mod a prime (mod is sooo slow!). If you need less than 32 bits,
198use a bitmask. For example, if you need only 10 bits, do
199 h = (h & hashmask(10));
200In which case, the hash table should have hashsize(10) elements.
201
202If you are hashing n strings (uint8_t **)k, do it like this:
203 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
204
205By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
206code any way you wish, private, educational, or commercial. It's free.
207
208Use for hash table lookup, or anything where one collision in 2^^32 is
209acceptable. Do NOT use for cryptographic purposes.
210-------------------------------------------------------------------------------
211*/
212
213uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
214{
215 uint32_t a,b,c; /* internal state */
216 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
217
218 /* Set up the internal state */
219 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
220
221 u.ptr = key;
222 if ((u.i & 0x3) == 0) {
223 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
224
225 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
226 while (length > 12)
227 {
228 a += k[0];
229 b += k[1];
230 c += k[2];
231 mix(a,b,c);
232 length -= 12;
233 k += 3;
234 }
235
236 /*----------------------------- handle the last (probably partial) block */
237 /*
238 * "k[2]&0xffffff" actually reads beyond the end of the string, but
239 * then masks off the part it's not allowed to read. Because the
240 * string is aligned, the masked-off tail is in the same word as the
241 * rest of the string. Every machine with memory protection I've seen
242 * does it on word boundaries, so is OK with this. But VALGRIND will
243 * still catch it and complain. The masking trick does make the hash
244 * noticably faster for short strings (like English words).
245 */
246
247 switch(length)
248 {
249 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
250 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
251 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
252 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
253 case 8 : b+=k[1]; a+=k[0]; break;
254 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
255 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
256 case 5 : b+=k[1]&0xff; a+=k[0]; break;
257 case 4 : a+=k[0]; break;
258 case 3 : a+=k[0]&0xffffff; break;
259 case 2 : a+=k[0]&0xffff; break;
260 case 1 : a+=k[0]&0xff; break;
261 case 0 : return c; /* zero length strings require no mixing */
262 }
263
264 } else if ((u.i & 0x1) == 0) {
265 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
266 const uint8_t *k8;
267
268 /*--------------- all but last block: aligned reads and different mixing */
269 while (length > 12)
270 {
271 a += k[0] + (((uint32_t)k[1])<<16);
272 b += k[2] + (((uint32_t)k[3])<<16);
273 c += k[4] + (((uint32_t)k[5])<<16);
274 mix(a,b,c);
275 length -= 12;
276 k += 6;
277 }
278
279 /*----------------------------- handle the last (probably partial) block */
280 k8 = (const uint8_t *)k;
281 switch(length)
282 {
283 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
284 b+=k[2]+(((uint32_t)k[3])<<16);
285 a+=k[0]+(((uint32_t)k[1])<<16);
286 break;
287 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
288 case 10: c+=k[4];
289 b+=k[2]+(((uint32_t)k[3])<<16);
290 a+=k[0]+(((uint32_t)k[1])<<16);
291 break;
292 case 9 : c+=k8[8]; /* fall through */
293 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
294 a+=k[0]+(((uint32_t)k[1])<<16);
295 break;
296 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
297 case 6 : b+=k[2];
298 a+=k[0]+(((uint32_t)k[1])<<16);
299 break;
300 case 5 : b+=k8[4]; /* fall through */
301 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
302 break;
303 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
304 case 2 : a+=k[0];
305 break;
306 case 1 : a+=k8[0];
307 break;
308 case 0 : return c; /* zero length requires no mixing */
309 }
310
311 } else { /* need to read the key one byte at a time */
312 const uint8_t *k = (const uint8_t *)key;
313
314 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
315 while (length > 12)
316 {
317 a += k[0];
318 a += ((uint32_t)k[1])<<8;
319 a += ((uint32_t)k[2])<<16;
320 a += ((uint32_t)k[3])<<24;
321 b += k[4];
322 b += ((uint32_t)k[5])<<8;
323 b += ((uint32_t)k[6])<<16;
324 b += ((uint32_t)k[7])<<24;
325 c += k[8];
326 c += ((uint32_t)k[9])<<8;
327 c += ((uint32_t)k[10])<<16;
328 c += ((uint32_t)k[11])<<24;
329 mix(a,b,c);
330 length -= 12;
331 k += 12;
332 }
333
334 /*-------------------------------- last block: affect all 32 bits of (c) */
335 switch(length) /* all the case statements fall through */
336 {
337 case 12: c+=((uint32_t)k[11])<<24;
338 case 11: c+=((uint32_t)k[10])<<16;
339 case 10: c+=((uint32_t)k[9])<<8;
340 case 9 : c+=k[8];
341 case 8 : b+=((uint32_t)k[7])<<24;
342 case 7 : b+=((uint32_t)k[6])<<16;
343 case 6 : b+=((uint32_t)k[5])<<8;
344 case 5 : b+=k[4];
345 case 4 : a+=((uint32_t)k[3])<<24;
346 case 3 : a+=((uint32_t)k[2])<<16;
347 case 2 : a+=((uint32_t)k[1])<<8;
348 case 1 : a+=k[0];
349 break;
350 case 0 : return c;
351 }
352 }
353
354 final(a,b,c);
355 return c;
356}
357
358#else /* !(BYTE_ORDER == LITTLE_ENDIAN) */
359
360/*
361 * hashbig():
362 * This is the same as hashword() on big-endian machines. It is different
363 * from hashlittle() on all machines. hashbig() takes advantage of
364 * big-endian byte ordering.
365 */
366uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
367{
368 uint32_t a,b,c;
369 union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
370
371 /* Set up the internal state */
372 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
373
374 u.ptr = key;
375 if ((u.i & 0x3) == 0) {
376 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
377
378 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
379 while (length > 12)
380 {
381 a += k[0];
382 b += k[1];
383 c += k[2];
384 mix(a,b,c);
385 length -= 12;
386 k += 3;
387 }
388
389 /*----------------------------- handle the last (probably partial) block */
390 /*
391 * "k[2]<<8" actually reads beyond the end of the string, but
392 * then shifts out the part it's not allowed to read. Because the
393 * string is aligned, the illegal read is in the same word as the
394 * rest of the string. Every machine with memory protection I've seen
395 * does it on word boundaries, so is OK with this. But VALGRIND will
396 * still catch it and complain. The masking trick does make the hash
397 * noticably faster for short strings (like English words).
398 */
399
400 switch(length)
401 {
402 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
403 case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
404 case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
405 case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
406 case 8 : b+=k[1]; a+=k[0]; break;
407 case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
408 case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
409 case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
410 case 4 : a+=k[0]; break;
411 case 3 : a+=k[0]&0xffffff00; break;
412 case 2 : a+=k[0]&0xffff0000; break;
413 case 1 : a+=k[0]&0xff000000; break;
414 case 0 : return c; /* zero length strings require no mixing */
415 }
416
417 } else { /* need to read the key one byte at a time */
418 const uint8_t *k = (const uint8_t *)key;
419
420 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
421 while (length > 12)
422 {
423 a += ((uint32_t)k[0])<<24;
424 a += ((uint32_t)k[1])<<16;
425 a += ((uint32_t)k[2])<<8;
426 a += ((uint32_t)k[3]);
427 b += ((uint32_t)k[4])<<24;
428 b += ((uint32_t)k[5])<<16;
429 b += ((uint32_t)k[6])<<8;
430 b += ((uint32_t)k[7]);
431 c += ((uint32_t)k[8])<<24;
432 c += ((uint32_t)k[9])<<16;
433 c += ((uint32_t)k[10])<<8;
434 c += ((uint32_t)k[11]);
435 mix(a,b,c);
436 length -= 12;
437 k += 12;
438 }
439
440 /*-------------------------------- last block: affect all 32 bits of (c) */
441 switch(length) /* all the case statements fall through */
442 {
443 case 12: c+=k[11];
444 case 11: c+=((uint32_t)k[10])<<8;
445 case 10: c+=((uint32_t)k[9])<<16;
446 case 9 : c+=((uint32_t)k[8])<<24;
447 case 8 : b+=k[7];
448 case 7 : b+=((uint32_t)k[6])<<8;
449 case 6 : b+=((uint32_t)k[5])<<16;
450 case 5 : b+=((uint32_t)k[4])<<24;
451 case 4 : a+=k[3];
452 case 3 : a+=((uint32_t)k[2])<<8;
453 case 2 : a+=((uint32_t)k[1])<<16;
454 case 1 : a+=((uint32_t)k[0])<<24;
455 break;
456 case 0 : return c;
457 }
458 }
459
460 final(a,b,c);
461 return c;
462}
463#endif
int c
uint32_t jenkins_hash(const void *key, size_t length, uint32_t initval)
Definition: jenkins_hash.c:213
uint32_t jenkins_hash32(const uint32_t *k, size_t length, uint32_t initval)
Definition: jenkins_hash.c:150
#define mix(a, b, c)
Definition: jenkins_hash.c:91