FreeBSD kernel kern code
subr_fattime.c
Go to the documentation of this file.
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2006 Poul-Henning Kamp
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD$
29 *
30 * Convert MS-DOS FAT format timestamps to and from unix timespecs
31 *
32 * FAT filestamps originally consisted of two 16 bit integers, encoded like
33 * this:
34 *
35 * yyyyyyymmmmddddd (year - 1980, month, day)
36 *
37 * hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
38 *
39 * Subsequently even Microsoft realized that files could be accessed in less
40 * than two seconds and a byte was added containing:
41 *
42 * sfffffff (second mod two, 100ths of second)
43 *
44 * FAT timestamps are in the local timezone, with no indication of which
45 * timezone much less if daylight savings time applies.
46 *
47 * Later on again, in Windows NT, timestamps were defined relative to GMT.
48 *
49 * Purists will point out that UTC replaced GMT for such uses around
50 * half a century ago, already then. Ironically "NT" was an abbreviation of
51 * "New Technology". Anyway...
52 *
53 * The 'utc' argument determines if the resulting FATTIME timestamp
54 * should be on the UTC or local timezone calendar.
55 *
56 * The conversion functions below cut time into four-year leap-year
57 * cycles rather than single years and uses table lookups inside those
58 * cycles to get the months and years sorted out.
59 *
60 * Obviously we cannot calculate the correct table index going from
61 * a posix seconds count to Y/M/D, but we can get pretty close by
62 * dividing the daycount by 32 (giving a too low index), and then
63 * adjusting upwards a couple of steps if necessary.
64 *
65 * FAT timestamps have 7 bits for the year and starts at 1980, so
66 * they can represent up to 2107 which means that the non-leap-year
67 * 2100 must be handled.
68 *
69 * XXX: As long as time_t is 32 bits this is not relevant or easily
70 * XXX: testable. Revisit when time_t grows bigger.
71 * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
72 *
73 */
74
75#include <sys/param.h>
76#include <sys/types.h>
77#include <sys/time.h>
78#include <sys/clock.h>
79
80#define DAY (24 * 60 * 60) /* Length of day in seconds */
81#define YEAR 365 /* Length of normal year */
82#define LYC (4 * YEAR + 1) /* Length of 4 year leap-year cycle */
83#define T1980 (10 * 365 + 2) /* Days from 1970 to 1980 */
84
85/* End of month is N days from start of (normal) year */
86#define JAN 31
87#define FEB (JAN + 28)
88#define MAR (FEB + 31)
89#define APR (MAR + 30)
90#define MAY (APR + 31)
91#define JUN (MAY + 30)
92#define JUL (JUN + 31)
93#define AUG (JUL + 31)
94#define SEP (AUG + 30)
95#define OCT (SEP + 31)
96#define NOV (OCT + 30)
97#define DEC (NOV + 31)
98
99/* Table of months in a 4 year leap-year cycle */
100
101#define ENC(y,m) (((y) << 9) | ((m) << 5))
102
103static const struct {
104 uint16_t days; /* month start in days relative to cycle */
105 uint16_t coded; /* encoded year + month information */
106} mtab[48] = {
107 { 0 + 0 * YEAR, ENC(0, 1) },
108
109 { JAN + 0 * YEAR, ENC(0, 2) }, { FEB + 0 * YEAR + 1, ENC(0, 3) },
110 { MAR + 0 * YEAR + 1, ENC(0, 4) }, { APR + 0 * YEAR + 1, ENC(0, 5) },
111 { MAY + 0 * YEAR + 1, ENC(0, 6) }, { JUN + 0 * YEAR + 1, ENC(0, 7) },
112 { JUL + 0 * YEAR + 1, ENC(0, 8) }, { AUG + 0 * YEAR + 1, ENC(0, 9) },
113 { SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
114 { NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1) },
115
116 { JAN + 1 * YEAR + 1, ENC(1, 2) }, { FEB + 1 * YEAR + 1, ENC(1, 3) },
117 { MAR + 1 * YEAR + 1, ENC(1, 4) }, { APR + 1 * YEAR + 1, ENC(1, 5) },
118 { MAY + 1 * YEAR + 1, ENC(1, 6) }, { JUN + 1 * YEAR + 1, ENC(1, 7) },
119 { JUL + 1 * YEAR + 1, ENC(1, 8) }, { AUG + 1 * YEAR + 1, ENC(1, 9) },
120 { SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
121 { NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1) },
122
123 { JAN + 2 * YEAR + 1, ENC(2, 2) }, { FEB + 2 * YEAR + 1, ENC(2, 3) },
124 { MAR + 2 * YEAR + 1, ENC(2, 4) }, { APR + 2 * YEAR + 1, ENC(2, 5) },
125 { MAY + 2 * YEAR + 1, ENC(2, 6) }, { JUN + 2 * YEAR + 1, ENC(2, 7) },
126 { JUL + 2 * YEAR + 1, ENC(2, 8) }, { AUG + 2 * YEAR + 1, ENC(2, 9) },
127 { SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
128 { NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1) },
129
130 { JAN + 3 * YEAR + 1, ENC(3, 2) }, { FEB + 3 * YEAR + 1, ENC(3, 3) },
131 { MAR + 3 * YEAR + 1, ENC(3, 4) }, { APR + 3 * YEAR + 1, ENC(3, 5) },
132 { MAY + 3 * YEAR + 1, ENC(3, 6) }, { JUN + 3 * YEAR + 1, ENC(3, 7) },
133 { JUL + 3 * YEAR + 1, ENC(3, 8) }, { AUG + 3 * YEAR + 1, ENC(3, 9) },
134 { SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
135 { NOV + 3 * YEAR + 1, ENC(3, 12) }
137
138void
139timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
140 uint16_t *dtp, uint8_t *dhp)
141{
142 time_t t1;
143 unsigned t2, l, m;
144
145 t1 = tsp->tv_sec;
146 if (!utc)
147 t1 -= utc_offset();
148
149 if (dhp != NULL)
150 *dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
151 if (dtp != NULL) {
152 *dtp = (t1 / 2) % 30;
153 *dtp |= ((t1 / 60) % 60) << 5;
154 *dtp |= ((t1 / 3600) % 24) << 11;
155 }
156 if (ddp != NULL) {
157 t2 = t1 / DAY;
158 if (t2 < T1980) {
159 /* Impossible date, truncate to 1980-01-01 */
160 *ddp = 0x0021;
161 } else {
162 t2 -= T1980;
163
164 /*
165 * 2100 is not a leap year.
166 * XXX: a 32 bit time_t can not get us here.
167 */
168 if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
169 t2++;
170
171 /* Account for full leapyear cycles */
172 l = t2 / LYC;
173 *ddp = (l * 4) << 9;
174 t2 -= l * LYC;
175
176 /* Find approximate table entry */
177 m = t2 / 32;
178
179 /* Find correct table entry */
180 while (m < 47 && mtab[m + 1].days <= t2)
181 m++;
182
183 /* Get year + month from the table */
184 *ddp += mtab[m].coded;
185
186 /* And apply the day in the month */
187 t2 -= mtab[m].days - 1;
188 *ddp |= t2;
189 }
190 }
191}
192
193/*
194 * Table indexed by the bottom two bits of year + four bits of the month
195 * from the FAT timestamp, returning number of days into 4 year long
196 * leap-year cycle
197 */
198
199#define DCOD(m, y, l) ((m) + YEAR * (y) + (l))
200static const uint16_t daytab[64] = {
201 0, DCOD( 0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
202 DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
203 DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
204 DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0, 0,
205 0, DCOD( 0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
206 DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
207 DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
208 DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0, 0,
209 0, DCOD( 0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
210 DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
211 DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
212 DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0, 0,
213 0, DCOD( 0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
214 DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
215 DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
216 DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0, 0
217};
218
219void
220fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
221 struct timespec *tsp)
222{
223 unsigned day;
224
225 /* Unpack time fields */
226 tsp->tv_sec = (dt & 0x1f) << 1;
227 tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
228 tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
229 tsp->tv_sec += dh / 100;
230 tsp->tv_nsec = (dh % 100) * 10000000;
231
232 /* Day of month */
233 day = (dd & 0x1f) - 1;
234
235 /* Full leap-year cycles */
236 day += LYC * ((dd >> 11) & 0x1f);
237
238 /* Month offset from leap-year cycle */
239 day += daytab[(dd >> 5) & 0x3f];
240
241 /*
242 * 2100 is not a leap year.
243 * XXX: a 32 bit time_t can not get us here.
244 */
245 if (day >= ((2100 - 1980) / 4 * LYC + FEB))
246 day--;
247
248 /* Align with time_t epoch */
249 day += T1980;
250
251 tsp->tv_sec += DAY * day;
252 if (!utc)
253 tsp->tv_sec += utc_offset();
254}
255
256#ifdef TEST_DRIVER
257
258#include <stdio.h>
259#include <unistd.h>
260#include <stdlib.h>
261
262int
263main(int argc __unused, char **argv __unused)
264{
265 int i;
266 struct timespec ts;
267 struct tm tm;
268 double a;
269 uint16_t d, t;
270 uint8_t p;
271 char buf[100];
272
273 for (i = 0; i < 10000; i++) {
274 do {
275 ts.tv_sec = random();
276 } while (ts.tv_sec < T1980 * 86400);
277 ts.tv_nsec = random() % 1000000000;
278
279 printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
280
281 gmtime_r(&ts.tv_sec, &tm);
282 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
283 printf("%s -- ", buf);
284
285 a = ts.tv_sec + ts.tv_nsec * 1e-9;
286 d = t = p = 0;
287 timet2fattime(&ts, &d, &t, &p);
288 printf("%04x %04x %02x -- ", d, t, p);
289 printf("%3d %02d %02d %02d %02d %02d -- ",
290 ((d >> 9) & 0x7f) + 1980,
291 (d >> 5) & 0x0f,
292 (d >> 0) & 0x1f,
293 (t >> 11) & 0x1f,
294 (t >> 5) & 0x3f,
295 ((t >> 0) & 0x1f) * 2);
296
297 ts.tv_sec = ts.tv_nsec = 0;
298 fattime2timet(d, t, p, &ts);
299 printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
300 gmtime_r(&ts.tv_sec, &tm);
301 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
302 printf("%s -- ", buf);
303 a -= ts.tv_sec + ts.tv_nsec * 1e-9;
304 printf("%.3f", a);
305 printf("\n");
306 }
307 return (0);
308}
309
310#endif /* TEST_DRIVER */
struct timespec * ts
Definition: clock_if.m:39
int utc_offset(void)
Definition: subr_clock.c:382
static const uint16_t daytab[64]
Definition: subr_fattime.c:200
uint16_t days
Definition: subr_fattime.c:104
#define APR
Definition: subr_fattime.c:89
#define T1980
Definition: subr_fattime.c:83
#define NOV
Definition: subr_fattime.c:96
#define AUG
Definition: subr_fattime.c:93
#define DAY
Definition: subr_fattime.c:80
#define MAY
Definition: subr_fattime.c:90
#define YEAR
Definition: subr_fattime.c:81
#define LYC
Definition: subr_fattime.c:82
void fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc, struct timespec *tsp)
Definition: subr_fattime.c:220
static const struct @12 mtab[48]
#define JUN
Definition: subr_fattime.c:91
#define MAR
Definition: subr_fattime.c:88
uint16_t coded
Definition: subr_fattime.c:105
#define OCT
Definition: subr_fattime.c:95
#define JUL
Definition: subr_fattime.c:92
#define SEP
Definition: subr_fattime.c:94
#define FEB
Definition: subr_fattime.c:87
#define JAN
Definition: subr_fattime.c:86
void timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp, uint16_t *dtp, uint8_t *dhp)
Definition: subr_fattime.c:139
#define ENC(y, m)
Definition: subr_fattime.c:101
#define DCOD(m, y, l)
Definition: subr_fattime.c:199
#define DEC
Definition: subr_fattime.c:97
int printf(const char *fmt,...)
Definition: subr_prf.c:397
struct stat * buf