gain_analysis.c

Go to the documentation of this file.
00001 /*
00002  *  ReplayGainAnalysis - analyzes input samples and give the recommended dB change
00003  *  Copyright (C) 2001 David Robinson and Glen Sawyer
00004  *  Improvements and optimizations added by Frank Klemm, and by Marcel Muller 
00005  *
00006  *  This library is free software; you can redistribute it and/or
00007  *  modify it under the terms of the GNU Lesser General Public
00008  *  License as published by the Free Software Foundation; either
00009  *  version 2.1 of the License, or (at your option) any later version.
00010  *
00011  *  This library is distributed in the hope that it will be useful,
00012  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  *  Lesser General Public License for more details.
00015  *
00016  *  You should have received a copy of the GNU Lesser General Public
00017  *  License along with this library; if not, write to the Free Software
00018  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
00019  *
00020  *  concept and filter values by David Robinson (David@Robinson.org)
00021  *    -- blame him if you think the idea is flawed
00022  *  original coding by Glen Sawyer (mp3gain@hotmail.com)
00023  *    -- blame him if you think this runs too slowly, or the coding is otherwise flawed
00024  *
00025  *  lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
00026  *    -- credit him for all the _good_ programming ;)
00027  *
00028  *
00029  *  For an explanation of the concepts and the basic algorithms involved, go to:
00030  *    http://www.replaygain.org/
00031  */
00032 
00033 /*
00034  *  Here's the deal. Call
00035  *
00036  *    InitGainAnalysis ( long samplefreq );
00037  *
00038  *  to initialize everything. Call
00039  *
00040  *    AnalyzeSamples ( const Float_t*  left_samples,
00041  *                     const Float_t*  right_samples,
00042  *                     size_t          num_samples,
00043  *                     int             num_channels );
00044  *
00045  *  as many times as you want, with as many or as few samples as you want.
00046  *  If mono, pass the sample buffer in through left_samples, leave
00047  *  right_samples NULL, and make sure num_channels = 1.
00048  *
00049  *    GetTitleGain()
00050  *
00051  *  will return the recommended dB level change for all samples analyzed
00052  *  SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
00053  *
00054  *    GetAlbumGain()
00055  *
00056  *  will return the recommended dB level change for all samples analyzed
00057  *  since InitGainAnalysis() was called and finalized with GetTitleGain().
00058  *
00059  *  Pseudo-code to process an album:
00060  *
00061  *    Float_t       l_samples [4096];
00062  *    Float_t       r_samples [4096];
00063  *    size_t        num_samples;
00064  *    unsigned int  num_songs;
00065  *    unsigned int  i;
00066  *
00067  *    InitGainAnalysis ( 44100 );
00068  *    for ( i = 1; i <= num_songs; i++ ) {
00069  *        while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
00070  *            AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
00071  *        fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
00072  *    }
00073  *    fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
00074  */
00075 
00076 /*
00077  *  So here's the main source of potential code confusion:
00078  *
00079  *  The filters applied to the incoming samples are IIR filters,
00080  *  meaning they rely on up to <filter order> number of previous samples
00081  *  AND up to <filter order> number of previous filtered samples.
00082  *
00083  *  I set up the AnalyzeSamples routine to minimize memory usage and interface
00084  *  complexity. The speed isn't compromised too much (I don't think), but the
00085  *  internal complexity is higher than it should be for such a relatively
00086  *  simple routine.
00087  *
00088  *  Optimization/clarity suggestions are welcome.
00089  */
00090 
00091 #ifdef HAVE_CONFIG_H
00092 #include <config.h>
00093 #endif
00094 
00095 #include <stdio.h>
00096 #include <stdlib.h>
00097 #include <string.h>
00098 
00099 #include "lame.h"
00100 #include "machine.h"
00101 #include "gain_analysis.h"
00102 
00103 /* for each filter: */
00104 /* [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz */
00105 
00106 #ifdef WIN32
00107 #pragma warning ( disable : 4305 )
00108 #endif
00109 
00110 /*lint -save -e736 loss of precision */
00111 static const Float_t ABYule[9][2 * YULE_ORDER + 1] = {
00112     {0.03857599435200, -3.84664617118067, -0.02160367184185, 7.81501653005538, -0.00123395316851,
00113      -11.34170355132042, -0.00009291677959, 13.05504219327545, -0.01655260341619,
00114      -12.28759895145294, 0.02161526843274, 9.48293806319790, -0.02074045215285, -5.87257861775999,
00115      0.00594298065125, 2.75465861874613, 0.00306428023191, -0.86984376593551, 0.00012025322027,
00116      0.13919314567432, 0.00288463683916},
00117     {0.05418656406430, -3.47845948550071, -0.02911007808948, 6.36317777566148, -0.00848709379851,
00118      -8.54751527471874, -0.00851165645469, 9.47693607801280, -0.00834990904936, -8.81498681370155,
00119      0.02245293253339, 6.85401540936998, -0.02596338512915, -4.39470996079559, 0.01624864962975,
00120      2.19611684890774, -0.00240879051584, -0.75104302451432, 0.00674613682247, 0.13149317958808,
00121      -0.00187763777362},
00122     {0.15457299681924, -2.37898834973084, -0.09331049056315, 2.84868151156327, -0.06247880153653,
00123      -2.64577170229825, 0.02163541888798, 2.23697657451713, -0.05588393329856, -1.67148153367602,
00124      0.04781476674921, 1.00595954808547, 0.00222312597743, -0.45953458054983, 0.03174092540049,
00125      0.16378164858596, -0.01390589421898, -0.05032077717131, 0.00651420667831, 0.02347897407020,
00126      -0.00881362733839},
00127     {0.30296907319327, -1.61273165137247, -0.22613988682123, 1.07977492259970, -0.08587323730772,
00128      -0.25656257754070, 0.03282930172664, -0.16276719120440, -0.00915702933434, -0.22638893773906,
00129      -0.02364141202522, 0.39120800788284, -0.00584456039913, -0.22138138954925, 0.06276101321749,
00130      0.04500235387352, -0.00000828086748, 0.02005851806501, 0.00205861885564, 0.00302439095741,
00131      -0.02950134983287},
00132     {0.33642304856132, -1.49858979367799, -0.25572241425570, 0.87350271418188, -0.11828570177555,
00133      0.12205022308084, 0.11921148675203, -0.80774944671438, -0.07834489609479, 0.47854794562326,
00134      -0.00469977914380, -0.12453458140019, -0.00589500224440, -0.04067510197014, 0.05724228140351,
00135      0.08333755284107, 0.00832043980773, -0.04237348025746, -0.01635381384540, 0.02977207319925,
00136      -0.01760176568150},
00137     {0.44915256608450, -0.62820619233671, -0.14351757464547, 0.29661783706366, -0.22784394429749,
00138      -0.37256372942400, -0.01419140100551, 0.00213767857124, 0.04078262797139, -0.42029820170918,
00139      -0.12398163381748, 0.22199650564824, 0.04097565135648, 0.00613424350682, 0.10478503600251,
00140      0.06747620744683, -0.01863887810927, 0.05784820375801, -0.03193428438915, 0.03222754072173,
00141      0.00541907748707},
00142     {0.56619470757641, -1.04800335126349, -0.75464456939302, 0.29156311971249, 0.16242137742230,
00143      -0.26806001042947, 0.16744243493672, 0.00819999645858, -0.18901604199609, 0.45054734505008,
00144      0.30931782841830, -0.33032403314006, -0.27562961986224, 0.06739368333110, 0.00647310677246,
00145      -0.04784254229033, 0.08647503780351, 0.01639907836189, -0.03788984554840, 0.01807364323573,
00146      -0.00588215443421},
00147     {0.58100494960553, -0.51035327095184, -0.53174909058578, -0.31863563325245, -0.14289799034253,
00148      -0.20256413484477, 0.17520704835522, 0.14728154134330, 0.02377945217615, 0.38952639978999,
00149      0.15558449135573, -0.23313271880868, -0.25344790059353, -0.05246019024463, 0.01628462406333,
00150      -0.02505961724053, 0.06920467763959, 0.02442357316099, -0.03721611395801, 0.01818801111503,
00151      -0.00749618797172},
00152     {0.53648789255105, -0.25049871956020, -0.42163034350696, -0.43193942311114, -0.00275953611929,
00153      -0.03424681017675, 0.04267842219415, -0.04678328784242, -0.10214864179676, 0.26408300200955,
00154      0.14590772289388, 0.15113130533216, -0.02459864859345, -0.17556493366449, -0.11202315195388,
00155      -0.18823009262115, -0.04060034127000, 0.05477720428674, 0.04788665548180, 0.04704409688120,
00156      -0.02217936801134}
00157 };
00158 
00159 static const Float_t ABButter[9][2 * BUTTER_ORDER + 1] = {
00160     {0.98621192462708, -1.97223372919527, -1.97242384925416, 0.97261396931306, 0.98621192462708},
00161     {0.98500175787242, -1.96977855582618, -1.97000351574484, 0.97022847566350, 0.98500175787242},
00162     {0.97938932735214, -1.95835380975398, -1.95877865470428, 0.95920349965459, 0.97938932735214},
00163     {0.97531843204928, -1.95002759149878, -1.95063686409857, 0.95124613669835, 0.97531843204928},
00164     {0.97316523498161, -1.94561023566527, -1.94633046996323, 0.94705070426118, 0.97316523498161},
00165     {0.96454515552826, -1.92783286977036, -1.92909031105652, 0.93034775234268, 0.96454515552826},
00166     {0.96009142950541, -1.91858953033784, -1.92018285901082, 0.92177618768381, 0.96009142950541},
00167     {0.95856916599601, -1.91542108074780, -1.91713833199203, 0.91885558323625, 0.95856916599601},
00168     {0.94597685600279, -1.88903307939452, -1.89195371200558, 0.89487434461664, 0.94597685600279}
00169 };
00170 
00171 /*lint -restore */
00172 
00173 #ifdef WIN32
00174 #pragma warning ( default : 4305 )
00175 #endif
00176 
00177 /* When calling this procedure, make sure that ip[-order] and op[-order] point to real data! */
00178 
00179 static void
00180 filterYule(const Float_t * input, Float_t * output, size_t nSamples, const Float_t * const kernel)
00181 {
00182     /*register double  y; */
00183 
00184     while (nSamples--) {
00185         *output = 1e-10 /* 1e-10 is a hack to avoid slowdown because of denormals */
00186             + input[0] * kernel[0]
00187             - output[-1] * kernel[1]
00188             + input[-1] * kernel[2]
00189             - output[-2] * kernel[3]
00190             + input[-2] * kernel[4]
00191             - output[-3] * kernel[5]
00192             + input[-3] * kernel[6]
00193             - output[-4] * kernel[7]
00194             + input[-4] * kernel[8]
00195             - output[-5] * kernel[9]
00196             + input[-5] * kernel[10]
00197             - output[-6] * kernel[11]
00198             + input[-6] * kernel[12]
00199             - output[-7] * kernel[13]
00200             + input[-7] * kernel[14]
00201             - output[-8] * kernel[15]
00202             + input[-8] * kernel[16]
00203             - output[-9] * kernel[17]
00204             + input[-9] * kernel[18]
00205             - output[-10] * kernel[19]
00206             + input[-10] * kernel[20];
00207         ++output;
00208         ++input;
00209         /* *output++ = (Float_t)y; */
00210     }
00211 }
00212 
00213 static void
00214 filterButter(const Float_t * input, Float_t * output, size_t nSamples, const Float_t * const kernel)
00215 {                       /*register double  y; */
00216 
00217     while (nSamples--) {
00218         *output = input[0] * kernel[0]
00219             - output[-1] * kernel[1]
00220             + input[-1] * kernel[2]
00221             - output[-2] * kernel[3]
00222             + input[-2] * kernel[4];
00223         ++output;
00224         ++input;
00225         /* *output++ = (Float_t)y; */
00226     }
00227 }
00228 
00229 
00230 /* returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not */
00231 
00232 int
00233 ResetSampleFrequency(replaygain_t * rgData, long samplefreq)
00234 {
00235     int     i;
00236 
00237     /* zero out initial values */
00238     for (i = 0; i < MAX_ORDER; i++)
00239         rgData->linprebuf[i] = rgData->lstepbuf[i]
00240             = rgData->loutbuf[i]
00241             = rgData->rinprebuf[i]
00242             = rgData->rstepbuf[i]
00243             = rgData->routbuf[i] = 0.;
00244 
00245     switch ((int) (samplefreq)) {
00246     case 48000:
00247         rgData->freqindex = 0;
00248         break;
00249     case 44100:
00250         rgData->freqindex = 1;
00251         break;
00252     case 32000:
00253         rgData->freqindex = 2;
00254         break;
00255     case 24000:
00256         rgData->freqindex = 3;
00257         break;
00258     case 22050:
00259         rgData->freqindex = 4;
00260         break;
00261     case 16000:
00262         rgData->freqindex = 5;
00263         break;
00264     case 12000:
00265         rgData->freqindex = 6;
00266         break;
00267     case 11025:
00268         rgData->freqindex = 7;
00269         break;
00270     case 8000:
00271         rgData->freqindex = 8;
00272         break;
00273     default:
00274         return INIT_GAIN_ANALYSIS_ERROR;
00275     }
00276 
00277     rgData->sampleWindow =
00278         (samplefreq * RMS_WINDOW_TIME_NUMERATOR + RMS_WINDOW_TIME_DENOMINATOR -
00279          1) / RMS_WINDOW_TIME_DENOMINATOR;
00280 
00281     rgData->lsum = 0.;
00282     rgData->rsum = 0.;
00283     rgData->totsamp = 0;
00284 
00285     memset(rgData->A, 0, sizeof(rgData->A));
00286 
00287     return INIT_GAIN_ANALYSIS_OK;
00288 }
00289 
00290 int
00291 InitGainAnalysis(replaygain_t * rgData, long samplefreq)
00292 {
00293     if (ResetSampleFrequency(rgData, samplefreq) != INIT_GAIN_ANALYSIS_OK) {
00294         return INIT_GAIN_ANALYSIS_ERROR;
00295     }
00296 
00297     rgData->linpre = rgData->linprebuf + MAX_ORDER;
00298     rgData->rinpre = rgData->rinprebuf + MAX_ORDER;
00299     rgData->lstep = rgData->lstepbuf + MAX_ORDER;
00300     rgData->rstep = rgData->rstepbuf + MAX_ORDER;
00301     rgData->lout = rgData->loutbuf + MAX_ORDER;
00302     rgData->rout = rgData->routbuf + MAX_ORDER;
00303 
00304     memset(rgData->B, 0, sizeof(rgData->B));
00305 
00306     return INIT_GAIN_ANALYSIS_OK;
00307 }
00308 
00309 /* returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not */
00310 
00311 static inline double
00312 fsqr(const double d)
00313 {
00314     return d * d;
00315 }
00316 
00317 int
00318 AnalyzeSamples(replaygain_t * rgData, const Float_t * left_samples, const Float_t * right_samples,
00319                size_t num_samples, int num_channels)
00320 {
00321     const Float_t *curleft;
00322     const Float_t *curright;
00323     long    batchsamples;
00324     long    cursamples;
00325     long    cursamplepos;
00326     int     i;
00327 
00328     if (num_samples == 0)
00329         return GAIN_ANALYSIS_OK;
00330 
00331     cursamplepos = 0;
00332     batchsamples = (long)num_samples;
00333 
00334     switch (num_channels) {
00335     case 1:
00336         right_samples = left_samples;
00337     case 2:
00338         break;
00339     default:
00340         return GAIN_ANALYSIS_ERROR;
00341     }
00342 
00343     if (num_samples < MAX_ORDER) {
00344         memcpy(rgData->linprebuf + MAX_ORDER, left_samples, num_samples * sizeof(Float_t));
00345         memcpy(rgData->rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t));
00346     }
00347     else {
00348         memcpy(rgData->linprebuf + MAX_ORDER, left_samples, MAX_ORDER * sizeof(Float_t));
00349         memcpy(rgData->rinprebuf + MAX_ORDER, right_samples, MAX_ORDER * sizeof(Float_t));
00350     }
00351 
00352     while (batchsamples > 0) {
00353         cursamples = batchsamples > rgData->sampleWindow - rgData->totsamp ?
00354             rgData->sampleWindow - rgData->totsamp : batchsamples;
00355         if (cursamplepos < MAX_ORDER) {
00356             curleft = rgData->linpre + cursamplepos;
00357             curright = rgData->rinpre + cursamplepos;
00358             if (cursamples > MAX_ORDER - cursamplepos)
00359                 cursamples = MAX_ORDER - cursamplepos;
00360         }
00361         else {
00362             curleft = left_samples + cursamplepos;
00363             curright = right_samples + cursamplepos;
00364         }
00365 
00366         YULE_FILTER(curleft, rgData->lstep + rgData->totsamp, cursamples,
00367                     ABYule[rgData->freqindex]);
00368         YULE_FILTER(curright, rgData->rstep + rgData->totsamp, cursamples,
00369                     ABYule[rgData->freqindex]);
00370 
00371         BUTTER_FILTER(rgData->lstep + rgData->totsamp, rgData->lout + rgData->totsamp, cursamples,
00372                       ABButter[rgData->freqindex]);
00373         BUTTER_FILTER(rgData->rstep + rgData->totsamp, rgData->rout + rgData->totsamp, cursamples,
00374                       ABButter[rgData->freqindex]);
00375 
00376         curleft = rgData->lout + rgData->totsamp; /* Get the squared values */
00377         curright = rgData->rout + rgData->totsamp;
00378 
00379         i = cursamples % 8;
00380         while (i--) {
00381             rgData->lsum += fsqr(*curleft++);
00382             rgData->rsum += fsqr(*curright++);
00383         }
00384         i = cursamples / 8;
00385         while (i--) {
00386             rgData->lsum += fsqr(curleft[0])
00387                 + fsqr(curleft[1])
00388                 + fsqr(curleft[2])
00389                 + fsqr(curleft[3])
00390                 + fsqr(curleft[4])
00391                 + fsqr(curleft[5])
00392                 + fsqr(curleft[6])
00393                 + fsqr(curleft[7]);
00394             curleft += 8;
00395             rgData->rsum += fsqr(curright[0])
00396                 + fsqr(curright[1])
00397                 + fsqr(curright[2])
00398                 + fsqr(curright[3])
00399                 + fsqr(curright[4])
00400                 + fsqr(curright[5])
00401                 + fsqr(curright[6])
00402                 + fsqr(curright[7]);
00403             curright += 8;
00404         }
00405 
00406         batchsamples -= cursamples;
00407         cursamplepos += cursamples;
00408         rgData->totsamp += cursamples;
00409         if (rgData->totsamp == rgData->sampleWindow) { /* Get the Root Mean Square (RMS) for this set of samples */
00410             double const val =
00411                 STEPS_per_dB * 10. * log10((rgData->lsum + rgData->rsum) / rgData->totsamp * 0.5 +
00412                                            1.e-37);
00413             int     ival = (int) val;
00414             if (ival < 0)
00415                 ival = 0;
00416             if (ival >= sizeof(rgData->A) / sizeof(*(rgData->A)))
00417                 ival = sizeof(rgData->A) / sizeof(*(rgData->A)) - 1;
00418             rgData->A[ival]++;
00419             rgData->lsum = rgData->rsum = 0.;
00420             memmove(rgData->loutbuf, rgData->loutbuf + rgData->totsamp,
00421                     MAX_ORDER * sizeof(Float_t));
00422             memmove(rgData->routbuf, rgData->routbuf + rgData->totsamp,
00423                     MAX_ORDER * sizeof(Float_t));
00424             memmove(rgData->lstepbuf, rgData->lstepbuf + rgData->totsamp,
00425                     MAX_ORDER * sizeof(Float_t));
00426             memmove(rgData->rstepbuf, rgData->rstepbuf + rgData->totsamp,
00427                     MAX_ORDER * sizeof(Float_t));
00428             rgData->totsamp = 0;
00429         }
00430         if (rgData->totsamp > rgData->sampleWindow) /* somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow */
00431             return GAIN_ANALYSIS_ERROR;
00432     }
00433     if (num_samples < MAX_ORDER) {
00434         memmove(rgData->linprebuf, rgData->linprebuf + num_samples,
00435                 (MAX_ORDER - num_samples) * sizeof(Float_t));
00436         memmove(rgData->rinprebuf, rgData->rinprebuf + num_samples,
00437                 (MAX_ORDER - num_samples) * sizeof(Float_t));
00438         memcpy(rgData->linprebuf + MAX_ORDER - num_samples, left_samples,
00439                num_samples * sizeof(Float_t));
00440         memcpy(rgData->rinprebuf + MAX_ORDER - num_samples, right_samples,
00441                num_samples * sizeof(Float_t));
00442     }
00443     else {
00444         memcpy(rgData->linprebuf, left_samples + num_samples - MAX_ORDER,
00445                MAX_ORDER * sizeof(Float_t));
00446         memcpy(rgData->rinprebuf, right_samples + num_samples - MAX_ORDER,
00447                MAX_ORDER * sizeof(Float_t));
00448     }
00449 
00450     return GAIN_ANALYSIS_OK;
00451 }
00452 
00453 
00454 static  Float_t
00455 analyzeResult(uint32_t const *Array, size_t len)
00456 {
00457     uint32_t elems;
00458     int32_t upper;
00459     size_t  i;
00460 
00461     elems = 0;
00462     for (i = 0; i < len; i++)
00463         elems += Array[i];
00464     if (elems == 0)
00465         return GAIN_NOT_ENOUGH_SAMPLES;
00466 
00467     upper = (int32_t) ceil(elems * (1. - RMS_PERCENTILE));
00468     for (i = len; i-- > 0;) {
00469         if ((upper -= Array[i]) <= 0)
00470             break;
00471     }
00472 
00473     return (Float_t) ((Float_t) PINK_REF - (Float_t) i / (Float_t) STEPS_per_dB);
00474 }
00475 
00476 
00477 Float_t
00478 GetTitleGain(replaygain_t * rgData)
00479 {
00480     Float_t retval;
00481     unsigned int i;
00482 
00483     retval = analyzeResult(rgData->A, sizeof(rgData->A) / sizeof(*(rgData->A)));
00484 
00485     for (i = 0; i < sizeof(rgData->A) / sizeof(*(rgData->A)); i++) {
00486         rgData->B[i] += rgData->A[i];
00487         rgData->A[i] = 0;
00488     }
00489 
00490     for (i = 0; i < MAX_ORDER; i++)
00491         rgData->linprebuf[i] = rgData->lstepbuf[i]
00492             = rgData->loutbuf[i]
00493             = rgData->rinprebuf[i]
00494             = rgData->rstepbuf[i]
00495             = rgData->routbuf[i] = 0.f;
00496 
00497     rgData->totsamp = 0;
00498     rgData->lsum = rgData->rsum = 0.;
00499     return retval;
00500 }
00501 
00502 
00503 Float_t
00504 GetAlbumGain(replaygain_t * rgData)
00505 {
00506     return analyzeResult(rgData->B, sizeof(rgData->B) / sizeof(*(rgData->B)));
00507 }
00508 
00509 /* end of gain_analysis.c */

Generated on Sun Dec 2 11:34:19 2007 for LAME by  doxygen 1.5.2